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0. A popular example. A homogeneous degree 5 polynomial equation in 5
variables determines a quintic 3-fold in CP 4. Hodge numbers of a non-singular quintic
are known to be: hp,p = 1, p = 0, 1, 2, 3 (Kahler form and its powers), h3,0 = h0,3 = 1
(a quintic happens to bear a holomorphic volume form), h2,1 = h1,2 = 101 = 126− 25
(it is the dimension of the space of all quintics modulo projective transformations,
and h2,1 is responsible here for infinitesimal variations of the complex structure) and
all the other hp,q = 0.

Consider the family of quintics x1...x5 = λ1/5(x5
1 + ... + x5

5) invariant to 54 multi-
plications of the variables by 5-th roots of unity. The quotient by these symmetries
will generate singularities. Resolve the singularities. The result is known to be a
family Yλ of 3-folds with the table of Hodge numbers mirror-symmetric to that of the
quintics X: hp,q(Y ) = h3−p,q(X).

Manifolds with mirror-symmetric Hodge tables are called geometrical mirrors.
Discovered accidentally in a computer experiment, such mirror 3-folds very soon took
their place in various string models of the 10-dimensional Universe. As it is clear
now, so called Arnold’s strange duality of exceptional singularities [1] was probably
the first manifestation of mirror phenomena — for K3-surfaces.

Current interest to mirror manifolds is due to the so called mirror conjecture and
its first applications to enumerative algebraic geometry. The idea is that along with
the equality h1,1(X) = h2,1(Y ) of moduli numbers of Kahler structures on X and of
complex structures on Y , whole symplectic topology on X is equivalent to complex
geometry on Y , and vice versa.

This idea have led to a number of beautiful predictions (see for instance [6, 5])
in enumerative algebraic geometry, in particular – for numbers of rational curves of
each degree on the quintics.
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1. Singularity theory. Given a complex manifold Y n, a holomorphic volume
form ω and a holomorphic function f : Y → C, one can study exponential integrals
I~ =

∫

Γ
ef(y)/~ω, their asymptotics at ~ → 0 and their dependence on parameters.

Example. Let f be a weighted-homogeneous polynomial of deg f = 1 on n complex
variables (y1, ..., yn) of some positive weights deg yi = αi > 0 with an isolated critical
point y = 0 of multiplicity µ, a1, ..., aµ = 1 — monomials representing a basis in
the local algebra H = C[y]/(∂f/∂y), fλ = f + λ1a1 + ... + λµaµ — a miniversal
deformation of the critical point. The formal stationary phase approximation gives

Ii(λ) =

∫

efλ(y)ai(y)dy1 ∧ ... ∧ dyn ∼ ~
n/2efλ(y∗)/~

ai(y∗)
√

Jλ(y∗)

for each of µ critical points y∗(λ) of fλ, where Jλ = det(∂2fλ/∂y2). These asymptotics
satisfy ~∂Ij/∂λi ∼

∑

k ck
ij(λ)Ik where ck

ij are structural constants of the algebra Hλ =
C[y]/(∂fλ/∂y) of functions on the critical set: aiaj =

∑

ck
ijak in Hλ. The cycles

of integration can be described as real n-dimensional Morse-theoretic cycles of the
function Ref and thus correspond to the critical points and represent classes in the
asymptotical homology group Hn(Cn, Ref = −∞). Then the residue paring

(a, b) =
∑

y∗

a(y∗)b(y∗)

J(y∗)
=

1

(2πi)n

∫

|∂f/∂y|=const

a(y)b(y)dy1 ∧ ... ∧ dyn

∂fλ/∂y1...∂fλ/∂yn

becomes an asymptotical intersection pairing between the cohomology for f and −f
and is known to extend without singularities to λ = 0.

Theorem[16] These stationary phase asymptotics can be made exact by a suitable
choice of the volume forms ωλ instead of dy1 ∧ ... ∧ dyn and in special coordinates λ̃
on the parameter space, instead of (λ1, ..., λµ).

In particular this means that the differential equations ~∂i
~I = [ai]·~I with [ai], I(λ̃)

∈ Hλ̃ form a family ∇~ = ~d −
∑

[ai]dλ̃i of connections flat for all ~. They are iden-
tified with the Gauss–Manin connections in the cohomological bundle. The residue
pairing therefore literally coincides with the intersection pairing and induces (see [17])
on the parameter space a flat complex metric. The coordinates λ̃ are defined as flat
coordinates of this metric.

In the contemporary language this theorem means that the integrals define on the
parameter space the structure of a Frobenius manifold [7] and thus satisfy axioms of
Topological Conformal Field Theory (TCFT) (Landau – Ginzburg models of TCFT).

One can at least try to extend this theorem based on deep properties of variations
of Hodge structures to arbitrary families (Y, f, ω)λ. Consider a degenerate case where
Y is a compact Kahler manifold. For this, Y should bear a holomorphic volume form
(hn,0 = 1). Then f is necessarily constant, and the exponential integrals turn into
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periods
∫

ωn,0 of the volume form. The periods depend on the complex structure on
Y and satisfy some linear differential Picard – Fuchs equations (describing variation
of pure Hodge structures). The algebra Hλ of the critical set Y should be replaced
by its cohomology Hn(Y ). It is a separate problem whether one can derive from
these ‘massless’ Landau – Ginzburg data complete models of TCFT (they are called
B-models, after E.Witten), but in many cases one can construct flat coordinates on
moduli spaces of complex structures. The family of quintic-mirrors Yλ — is one of
them.

2. Symplectic topology. Let Xn be a compact Kahler manifold. Given m
cycles A1, ..., Am ⊂ X, an integral homology class D ∈ H2(X) and a configuration
(x1, ..., xm) of m points on CP 1, one may ask: how many holomorphic maps ϕ :
CP 1 → X with ϕ∗[CP 1] = D and ϕ(xi) ∈ Ai are there? The answers (let us denote
them Fm,D[A]), being properly understood as intersection indices in certain moduli
spaces of holomorphic maps, turn out to depend only on homology classes of Ai and
homotopy type of almost Kahler structure on X and provide symplectic invariants
of X called Gromov-Witten invariants. They are not independent, and the universal
identities for them can be interpreted as the associativity constraint of the quantum
cohomology algebra H∗

q (X) and compatibility of some linear PDEs.
Pick an integral basis p1, ..., pk of symplectic classes in H2(X), denote (D1, ..., Dk)

coordinates of D in the dual basis and put (a1|a2|...|am) =
∑

D qDFm,D[A1, ..., Am]
where Ai are Poincare dual to cohomology classes ai.

Theorem [14, 15]. Gromov - Witten invariants are well - defined at least if
c1(X) ≥ 0, (a1|a2) coincides with the Poincare pairing (a1, a2) on H∗

q (X) =
H∗(X, C[[q]]), (a1|a2|a3) are structural constants (a1 ∗a2, a3) of a skew - commutative
associative multiplication ∗ on H∗

q (X) which at q = 0 coincides with the usual cup-
product, and (a1|...|am) = (a1 ∗ ... ∗ am, 1). Beside this, the differential equations

~qi∂qi
~I = pi ∗ ~I, i = 1, ..., k, for a vector-function I(q) ∈ H∗(X) form a compatible

system (i. e. a flat connection) for each ~.
The ∗-product is graded if one assigns usual degrees deg aj = codim Aj to the

cocycles and non-trivial degrees deg qi = 2di to the parameters where d1p1+...+dkpk =
c1(X).

Actual definitions of Gromov–Witten invariants involve non-integrable perturba-
tions of the complex structure on CP 1 × X, and rigorous computation of quantum
cohomology is a non-trivial problem. The following examples, except for the first one,
are rather reasonable conjectures than theorems.

Examples. 1) H∗
q (CP n−1) ≃ C[p, q]/(pn− q), and the differential system is equiva-

lent to the scalar equation ~ndnI/dtn = etI where t = log q. The intersection pairing
is given by the residue formula

∮

a(p)b(p)dp/(pn − q) and similar formulas hold in all
other examples below.
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2) For the space Fn of complete flags in Cn, denote An the n × n matrix with
u1, ..., un on the diagonal, q1, ..., qn−1 right above, −1’s right under the diagonal, and
zeroes otherwise. Put Σi = trAi

n. Then (see [11]) H∗
q (Fn) ≃ C[u, q]/(Σ). In fact

Σi coincide with conservation laws of a Toda lattice on n particles with potentials
qi = −eti−ti+1 (see [11]). The question why the algebra H∗

q (Fn) is isomorphic to the
algebra of functions on the singular invariant variety of the Toda lattice, is open.

3)Let X = C
N//T k be a toric manifold obtained by the Marsden – Weinstein

reduction from the standard Hermitian space by a subtorus in the maximal torus
T N . Denote (mij) the integral k × N matrix of the natural projection Lie∗T N →
Lie∗T k. Then the quantum cohomology algebra of X is given by the generators
(u1, ..., uN, p1, ..., pk, q1, ..., qk) and relations uj =

∑

i mijpi, qi =
∏

j umij (V.Batyrev,
see also [9] where a discrete version of quantum cohomology of toric manifolds had
been computed as a by-product of a symplectic fixed point theorem).

4)Let X3 be a non-singular quintic in CP 4. Its hyperplane section p generates in
H∗(X) a subalgebra Heven = C[p]/(p4) with the intersection form (pi, 1) = 0 for i 6= 3
and (p3, 1) = 5. Its quantum deformation is almost the same except for p∗p = K(q)p2

or, equivalently, (p ∗ p, p) = K(q) where K(q) = 5 +
∑∞

d=0 ndd
3qd/(1 − qd) (see [2] ).

Here nd is the number of degree-d rational curves in X: on a generic (almost)-Kahler
3-fold with c1 = 0 rational curves are discrete and all contribute to the quantum cup-
product (which now respects the usual grading i. e. deg q = 0). The corresponding
differential system is equivalent to (I ′′/K(q))′′ = 0 with ′ = ~qd/dq. It is degenerate
in the sense that it is independent on ~ and easy to solve, except for the numbers nd

with d > 3 are unknown! 1

In fact we have described only few of all Gromov - Witten invariants (see [18]),
which form a complete set of ‘correlation functions’ of a sigma-model, or A-model of
TCFT and when computable, provide algebraic geometry with very non-trivial new
enumerative information [13].

3. The mirror conjecture. Mirror Conjecture predicts equivalence of A and
B models of TCFT on an algebraic Calabi–Yau manifold to B and A models on its
geometrical mirror. In our ‘down-to-earth’ language: for geometrical mirrors X and Y
the differential system of Heven

q (X) should coincide with the Picard–Fuchs equation
for Y taken in flat coordinates (and vice versa). Authors [6] of this formulation
exploited it in order to predict numbers nd for quintics.

They start with one of the periods I1 =
∫

ω3,0
λ =

∑

(5k)!λk/(k!)5, reconstruct
the Picard–Fuchs equation: D4I = 5λ(5D + 1)(5D + 2)(5D + 3)(5D + 4)I , where
D = λd/dλ, bring it in a neighborhood of the singular point λ = 0 to the form
(J ′′/k(q))′′ = 0, conjecture that k(q) = K(q) and find from this n1 = 2875, n2 =
609250, n3 = 317206375 (eventually in coherence with available data) and predict n4

1See however [12]
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to be 242467530000.
Bringing equation to the simple form involves: 1) finding the solution I2 =

log(λ)I1 + Ĩ with Ĩ holomorphic and vanishing at λ = 0, 2) introducing the new
local coordinate q = λ exp(Ĩ/I1) and 3) computing the equation satisfied by Ji =
Ii/I1, i = 1, 2, 3, 4, as functions of q.

Our previous discussion suggests the following generalization of the mirror prob-
lem:

Is there a natural map (functor?) from (a class of) TCFT-models (symplectic
sigma-models, or Frobenius manifolds, or quantum cohomology algebras) to gener-
alized Landau - Ginzburg data? Simpler, how to solve the differential equations
~dI = A∧ I by means of exponential holomorphic integrals? We will partially answer
this question for the class of toric manifolds.

From such a point of view the Picard–Fuchs equation for Y should have an intrinsic
interpretation in terms of the problem of computing Gromov-Witten invariants for
X. We will point out some.

The (open) question why the above computational procedure (for an equation
that had already been intrinsicly attributed to X) yields quantum cohomology of X,
is probably related to the problem in what sense the above ‘functor’ is an involution
on its invariant subset that the class of algebraic Calabi-Yau manifolds seems to
constitute.

And all these problems lead to the same question: What is the intrinsic meaning
of solutions of the quantum cohomology differential system?

4. A project: Equivariant Floer cohomology. Let LX be the space of
contractible loops in a compact Kahler manifold X. It inherits the Kahler structures
from X and additionally carries the action of S1 by isometries (translations in the
source). The Hamiltonian of this action is the action functional: to a contractible loop
it assigns the symplectic area of a disk, contracting the loop, and can be multiple-
valued. Doing Morse - Novikov theory for the action functionals H : L̃X → R on
the universal covering of LX, one comes to definition of Floer homology FH of X
(isomorphic to H∗(X, C[q±1])) [8]: gradient trajectories of H in LX are holomorphic
cylinders in X. If one introduces multiplication in FH using the ‘map’ LX × LX →
LX of composition of loops (= holomorphic pants in X), it leads to the construction
of quantum multiplication in H∗

q (X) (see [11]).

Project: Construct S1-equivariant Floer cohomology FHS1(L̃X). Let ω1, ..., ωk

be Kahler forms LX corresponding to the integral basis of Kahler forms on X, let
H1, ..., Hk be corresponding Hamiltonians (of the same S1-action!) on the covering
L̃X → LX with the group of covering transformations Zk = H2(X, Z). The gener-
ators q1, ..., qk of the group Zk commute with the S1-action, preserve the forms ωi

lifted to L̃X from LX, but transform Hi : q∗i (Hj) = Hj − δij.
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Denote C[~] the coefficient algebra H∗(BS1) = H∗(CP∞) of the equivariant theory
and introduce Duistermaat - Heckman equivariantly closed forms pi = ωi + ~Hi

see [3]).
Proposition: piqj − qjpi = ~qiδij as operators on an equivariant Floer complex.
Corollary: FHS1(L̃X) should carry the module structure over the algebra D of

differential operators generated by qi = eti·, and pj = ~∂/∂tj.
A semi-classical limit ~ → 0 should give rise to the subalgebra in H∗

q (X) gener-
ated by the Kahler classes pi and qi. In particular relations between them should
describe a lagrangian variety with respect to the Poisson bracket {pi, qj} = qiδij —
the characteristic variety of the D-module.

5. Realization: Toric manifolds. Holomorphic maps CP 1 → X to a toric
manifold X = C

N//T k can be described as equivariant maps C
2 → C

N . This com-
pactifies the map spaces up to toric manifolds Xd = CN+D//T k. Here the homol-
ogy class d of maps can be identified with an integral point in LieT k such that
∀j = 1, ..., N, Dj =

∑

i mijdi ≥ 0, and D =
∑

Dj . We can interpret the map spaces
as approximations of LX by algebraic loops (S1

C
⊂ CP 1), define FHS1(X) as a certain

limit (see [10]) of H∗
S1(Xd) and using the explicit toric description of Xd, compute the

D-module.
The algebra H = H∗(X) is generated by the integral Kahler classes P1, ..., Pk

(See [3]). Denote (·, ·) intersection pairing on H, Ω : H → H — the automorphism
generated by Pi 7→ −Pi. Introduce notations: Uj = ΣmijPi, Dj = Σmijdi, ti = log qi,
∂j = ~Σmij∂/∂ti, ∆r

j = ∂j(∂j − ~)...(∂j − (r − 1)~) and for any M ∈ Z put M [x]! =

~M
∏M

m=−∞(x + m)/
∏0

m=−∞(x + m).
Theorem 1.[10] Suppose c1(X) > 0. Then
1. FHS1 ≃ D/J where the left D-ideal J is generated by all operators ∆r1

1 ...∆rN

N −
qm∆l1

1 ...∆lN
N with rj ≥ 0, lj ≥ 0 and rj − lj = Dj .

2. The kernel of this linear differential system is generated by the components of
the following vector-function of t with values in the cohomology algebra H: ~f~(t) =
~k−NePtΣd∈Zkedt/D1[U1]!...DN[UN ]!.

3.
∑

d edτ
∫

Xd
ep(t−τ )/~ = ~N−k(~f~(t), Ω~f−~(τ )),

where pi are Duistermaat - Heckman forms ωi +~Hi on each Xd corresponding to our
basis in Lie∗T k ≃ H2(Xd) and the S1-action.

4. Suitable limits to ~ = 0 give rise to the algebra H∗
q (X) and a generating series

for symplectic volumes of Xd.
Example. For k = 1, N = n and (mij) = (1, ..., 1) we get X = CP n−1. Then

P n = 0 and components of ~f = ePt
∑∞

d=0 edt/[(P +1)...(P +d)]n~nd give all n solutions
of (~d/dt)nI = etI , and the first one (P = 0) is

∑

qd/(d!)n
~

nd.
6. Toric complete intersections. Given T k-invariant homogeneous polynomi-

als on CN , one can plug components of a rational curve C2 → CN into them and
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equate to zero identically. In the spaces Xd the solutions form the zero locus of a
PSL2(C)-invariant holomorphic section of a suitable equivariant vector bundle. If
such sections were transverse to the zero section the loci would represent equivariant
Euler classes of these bundles. One may hope to reconstruct the D-modules and
quantum cohomology algebras of complete intersections X ′ ⊂ X from such classes,
substituting them for fundamental cycles of the map spaces X ′

d.
For simplicity let us consider the case of Calabi–Yau complete intersections in

X = CP n−1. Let l1, ..., lr > 0 be Chern numbers of r line bundles with l1+ ...+ lr = n.
Introduce the algebra H = C[P ]/(P n−r) with the intersection pairing (P n−r−1, 1) =
l1...lr (the image of H∗(X) → H∗(X ′)) and denote El

d(p, ~) the S1-equivariant Euler
class of that ‘suitable’ vector bundle over Xd.

Theorem 2. [10]
Σ∞

d=0e
dτ

∫

Xd
ep(t−τ )/~El

d(p, ~) = (−1)n−1~1+r−n(~gl(t), Ω~gl(τ )) where

~gl = ePt
∑∞

d=0 edt(l1d)[P ]!...(lrd)[P ]!/(d[P ]!)n. The n−r components of ~gl in H provide
a complete solution to the differential equation (D = d/dt):
Dn−rI = l1...lre

t(l1D + 1)...(l1D + l1 − 1)...(lrD + 1)...(lrD + lr − 1)I.
This is exactly the equation that was found in [5] as the Picard–Fuchs equation

for mirrors of projective Calabi–Yau complete intersections, satisfied by the ‘hyper-
geometric’ series

∑

d l1!...lr!q
d/(d!)n.

In particular we have obtained the equation D4I = 5et(5D+1)...(5D+4)I entirely
in topological terms of map spaces and not as a Picard – Fuchs equation of a Landau
– Ginzburg model. Furthermore, its solution
eP t

∑

qd(5P + 1)...(5P + 5d)/(P + 1)5...(P + d)5, rewritten as
ePt(G1 + G2P + G3P

2 + G4P
3) = G1(q) + P (G1(q) log q + G2(q)) + ...,

yields I1 as G1 and Ĩ as G2.
Thus each coefficient of G1, ..., G4 should hide some enumerative information about

rational curves in CP 4 relative to (one or many) quintics: what appeared meaningless
in the Picard-Fuchs equation due to accidental choice of the coordinate λ in the family
of quintic-mirrors, turns out related directly to the exterior geometry of quintics in
CP 4.

Problem: Recover this information.
7. Integral representations. It is not surprizing that toric geometry provides

integral formulas for some hypergeometric series. However they will illuminate pos-
sible nature of mirror manifolds.

Definition. A function F : E → C on the fibered space π : E → B generates the
lagrangian variety L = {(p, t) ∈ T ∗B‖∃x ∈ π−1(t) : dF |x = π∗(p)}.

Lemma. Theorem 1 with k = N and mij = δij formally gives P = 0 and ~f =
∑

d∈ZN
+

edt/d1!...dN!~N |d| = exp(
∑

etj/~).

Theorem 3 [10]. Let X = C
N//T k be a compact toric manifold with c1 > 0.
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Then
1. The quantum cohomology algebra H∗

q (X) is the algebra of functions on the
lagrangian variety generated by F = u1 + ... + uN : CN → C with π : u 7→ q given by
qi =

∏

u
mij

j .
2. Take the holomorphic volume form ωq on π−1(q) equal

(∧jduj/uj)/(∧idqi/qi). Then integrals

I(log q) =

∫

Γ⊂π−1(q)

ωq e(u1+...+uN )/~

over cycles Γ corresponding to dimH∗
q (X) critical points of F |π−1(q) provide a com-

plete set of solutions to the differential system of Theorem 1.1.
Notice that dimπ−1(q) = N − k = dimC X. According to our formulation of the

mirror problem we should call the Landau–Ginzburg data (E → B, F, ω) a family
mirror-symmetric to the toric manifold X.

Furthermore, put X ′
q = F−1(1) ∩ π−1(q), ω′

q = ωq/d(F |π−1(q)).
Theorem 4 [5, 10] All solutions of the differential equation of Theorem 2 with

r = 1 are integrals
∫

ω′
q over compact cycles Γ′ ∈ X ′

q.
In order to obtain the same result for r > 1 one should split u1 + ... + uN into r

sums of length l1, ..., lr and consider the sums as equations of a complete intersection
X ′ in the fibres of π.

Theorem 4 matches well to remarkable Batyrev’s construction [4] of geometrical
mirror pairs of toric hypersurfaces: fibers π−1(q) are the complex tori which, when
suitably compactified into a toric variety, meet F−1(1) along Batyrev’s Calabi–Yau
hypersurface, and ω′ extends to its holomorphic volume form. Thus Batyrev’s mirrors
of toric hypersurfaces are hypersurfaces in the mirrors of their ambient toric manifolds.

Example. Replace the homogeneous equation q1/5(x5
1 + ... +x5

5) = x1...x5 with the
affine equation in Z4

5-invariant coordinates ui = q1/5x5
i /x1...x5. Then u1...u5 = q, and

the equation is u1 + ...+u5 = 1. This corresponds to our matrix (mij) = (1, 1, 1, 1, 1).
8. Homological geometry. Along with the differential equations of Theo-

rems 1,2 the above integral formulas have intrinsic cohomological meaning in toric
geometry. In fact the description of H∗

q (X) by N + k generators and relations is
a q-deformation of the following similar description of H∗(X). A symplectic quo-
tient CN//T k can be identified with the free quotient C̆N/T k

C
of some domain in CN ,

and H∗(CN//T k) — with the equivariant cohomology H∗
T k(C̆

N). One begins with

H∗
T N (CN) = H∗(BT N) = C[u], then computes H∗

T N (C̆N ) which causes factorisation
by some ‘multiplicative’ ideal, and finally reduces the group T N to T k which imposes
the additive relations.

Therefore our (u1, ..., uN) are in fact characteristic classes of T N , and the function
F =

∑

uj is the universal 1-st Chern class c1 (of all toric manifolds – quotients of C
N).
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Our solutions to the quantum cohomology differential systems are given by integrals
in SpecH∗(BT N) over Morse theoretic cycles of the function Re(c1). It suggests that
in general mirror manifolds should live in some cohomologies of each other.

The integral formulas can be recovered from our D-module approach: one should
first compute ‘equivariant Floer cohomology’ which are equivariant also with respect
to the maximal torus T N/T k of Aut(X), and then get rid of this extra-structure. The

first step adds variables, the second — expresses ~f as a De Rham class in excessive
variables.
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