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Abstract

A conjecture expressing genus 1 Gromov-Witten invariants in mirror-theoretic terms

of semi-simple Frobenius structures and complex oscillating integrals is formulated. The

proof of the conjecture is given for torus-equivariant Gromov - Witten invariants of

compact Kähler manifolds with isolated fixed points and for concave bundle spaces over

such manifolds. Several results on genus 0 Gromov - Witten theory include: a non-linear

Serre duality theorem, its application to the genus 0 mirror conjecture, a mirror theorem

for concave bundle spaces over toric manifolds generalizing a recent result of B. Lian, K.

Liu and S.-T. Yau. We also establish a correspondence (see the extensive footnote in

section 4) between their new proof of the genus 0 mirror conjecture for quintic 3-folds

and our proof of the same conjecture given two years ago.
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Introduction

Gromov-Witten invariants of a compact symplectic manifold X are defined
by means of enumeration of compact pseudo-holomorphic curves in X. For
any cycle M in the moduli space of genus g Riemann surfaces with n marked
points and for any n cycles in X one can define a GW-invariant counting
those genus g marked pseudo-holomorphic curves in X which pass by the
marked points through the given cycles in X and whose holomorphic type
belongs to M . The handful of GW-invariants thus introduced obeys vari-
ous universal identities which originate from topology of moduli spaces of
Riemann surfaces and constitute a remarkable and fairly sophisticated alge-
braic structure. In this paper, we study the structure formed by rational and
elliptic GW-invariants.

The structure of rational GW-invariants alone is well-understood and
has been formalized by B. Dubrovin [7] in the concept of Frobenius man-
ifolds. The genus 0 GW-invariants define on the total cohomology space
H := H∗(X) a Frobenius manifold structure; roughly speaking, it consists
of the associative commutative 1 quantum cup-product on the tangent spaces
TtH which is a deformation of the ordinary cup-product, is symmetric with
respect to the Poincare intersection form 〈·, ·〉 and depends on the application
point t ∈ H in such a way that certain integrability conditions are satisfied.

The following observation is a foundation for the so called mirror conjec-
ture for Calabi-Yau manifolds and its generalization to arbitrary symplectic
manifolds suggested in [13]: Frobenius manifolds occur in the fields of mathe-
matics quite remote from symplectic topology or enumerative geometry, and
in particular — in singularity theory of isolated critical point of holomor-
phic functions. We outline below the singularity theory – symplectic topology
dictionary.

1Commutativity and symmetricity should be understood in the sense of super-algebra
since the cohomology space is Z2-graded.
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1. A germ f : (Cm, 0) → (C, 0) of
holomorphic function at an iso-
lated critical point of multiplic-
ity µ.

2. Local algebra C[[z]]/(∂f/∂z).

3. Residue pairing 〈φ, ψ〉 :=
∫

|∂f/∂zi|=εi

φ(z)ψ(z)dz1∧...∧dzm
(∂f/∂z1)...(∂f/∂zm)

4. Parameter space Λ of a miniver-
sal deformation fλ(z) of the crit-
ical point; can be taken in the
form fλ(z) :=
f(z)+λ1φ1 + ...+λµφµ where φα
are to represent a basis in the lo-
cal algebra.

5. Lagrangian submanifold
L ⊂ T ∗Λ generated by fλ, L :=
{(p, λ)|∃z : dzfλ = 0, p = ∂fλ

∂λ
}

6. Critical values u1, ..., uµ of Morse
functions fλ at the critical points.

7. Residue metric 〈∂λα, ∂λβ
〉λ :=

∑

z∈crit(fλ)

(∂λαfλ) (∂λβ
fλ)

det(∂2fλ/∂zi∂zj)
|z

diagonalized in the basis of non
- degenerate critical points of a
Morse function fλ.

8. Hessians ∆ := det( ∂2fλ

∂zi∂zj
) at the

critical points.

1. A compact symplectic manifold
X.

2. Cohomology algebra H∗(X)

3. Poincare pairing on H∗(X),
〈φ, ψ〉 :=

∫

X
φ ∧ ψ.

4. The space H := H∗(X)
considered as a manifold.

5. Spectral variety L ⊂ T ∗H of the
quantum cup-product ◦t,
L ∩ T ∗

t H := Specm(TtH, ◦t).
It is Lagrangian due to the in-
tegrability condition mentioned
above.

6. Function u : L → C such that
du = pdt|L considered as a mul-
tiple - valued function on H.

7. Poincare metric
〈φ, ψ〉t =

∑

p∈L∩T ∗

t H
φ(p)ψ(p)

∆(p)

diagonalized in the basis of
idempotents of the quantum
cup-product ◦t at semi-simple points
t.

8. The function ∆ : L→ C

(quantum Euler class) represent-
ing on L ⊂ L×H L the cohomol-
ogy class Poincare-dual to the
diagonal in X ×X.
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The objective of the present paper consists in extending the dictionary
to include elliptic GW-invariants.

The 3-valent tensor 〈a◦t b, c〉 of structural constants of the quantum cup-
product on TtH is actually defined by the formal series:

〈a ◦t b, c〉 :=
∞

∑

n=0

(a, b, c, t, ..., t)/n!

where the GW-invariant (a, b, c, t, ..., t) counts the number of rational curves
in X with n + 3 marked points situated on generic cycles whose homology
classes are Poincare-dual respectively to a, b, c, t, ..., t.

The genus 1 GW-invariants in question can be similarly organized into a
uni-valent tensor — an exact differential 1-form dG on H. The value of this
1-form on a tangent vector a ∈ TtH = H∗(X) is defined by the formal series

iadG :=
∞

∑

n=0

[a, t, ..., t]/n!

where the GW-invariant [a, t, ..., t] counts the number of elliptic curves in X
with n+1 marked points situated on generic cycles representing respectively
a, t, ..., t.

We propose the following construction for the singularity theory coun-
terpart of the differential 1-form dG in Gromov-Witten theory. The critical
values u1, ..., uµ of the functions fλ can be taken on the role of local co-
ordinates on the parameter space Λ of the miniversal deformation in the
complement to the caustic — the critical value locus of the lagrangian map
L ⊂ T ∗Λ → Λ. Consider the complex oscillating integral

I :=

∫

Γ

efλ(z)/~v(z, λ)dz1 ∧ ... ∧ dzm.

The partial derivative ~∂I/∂uα of the complex oscillating integral can be
expanded into the stationary phase asymptotical series

~m/2euα/~
(∂fλ/∂uα)|zcrit√

∆α

(1 + ~Rα + o(~))

near the non-degenerate critical point zcrit corresponding to the same critical
value uα. The asymptotical coefficients Rα actually depend only on the 4-
jet of fλ and the 2-jet of v at zcrit. In terms of the critical values uα, the
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Hessians ∆α and the asymptotical coefficients Rα the differential 1-form dG
is described by the formula:

(∗) dG =

µ
∑

α=1

(
1

48
d log ∆α +

1

2
Rαduα).

Our proposal has implications in both singularity and Gromov-Witten
theory.

In singularity theory, the residue metric on Λ (which is the counterpart of
the flat Poincare metric on H) has no reason to be flat. However, according
to K. Saito theory of primitive forms [25] one can choose the holomorphic
volume form v(z, λ)dz1 ∧ ... ∧ dzm (called primitive) in such a way that the
corresponding residue metric is flat. Moreover, Saito’s theory can be refor-
mulated as the theorem that the above dictionary introduces a Frobenius
structure on Λ provided that (z1, ..., zm) everywhere in the dictionary means
a unimodular coordinate system with respect to the primitive volume form.
The same primitive form should be used in the definition of complex oscil-
lating integrals involved into our construction of the 1-form (∗). With this
hypothesis in force, we arrive to the following

Conjecture 0.1. The 1-form (*) satisfies all axioms for the genus 1
GW-invariant dG.

In particular, the conjecture suggests that the 1-form (*) satisfies the
universal relation between genus 1 and genus 0 GW-invariants found by E.
Getzler [10].

Remark on examples. We will see in Section 1 from the theory of Frobe-
nius structures that differentials of the asymptotical coefficients Rα are ex-
pressible via the Hessians ∆β by

dRα =
1

4

∑

β

(∂α log ∆β)(∂β log ∆α)(duβ − duα),

where ∂γ means partial derivatives in the coordinate system (u1, ..., uµ). This
allows to compute Rα if the Hessians are known as functions of all uγ. How-
ever in applications to Gromov – Witten theory ∆β are usually known only
along some subspace in H, and the asymptotical coefficients are to be com-
puted independently on the Hessians. All examples considered in this paper
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are elementary and have µ = 2. In such a case there are two coordinates uγ
which we usually denote u±. The functions R± and ∆± depend only on the
difference u = u+ −u−. In the most examples we will have R± = ±R(u) and
∆± = ±D(u). Then the formula (∗) reduces to

dG =
1

24
d log ∆(u) +

1

2
R(u)du, where

dR

du
=

1

4
(
d log ∆(u)

du
)2.

We use this method in the following example, but in some other examples we
will present alternative techniques for computing asymptotical coefficients in
order to illustrate computational tools available in applications to sympectic
topology.

Example. The critical point f = x3 of type A2 has the miniversal defor-
mation x3−t1x+t0. At the critical point x± = ±(t1/3)

1/2 we have the critical
value u± = t0 − 2x3

± and the Hessian ∆± = 6x±. Thus ∆(u) = (−u/4)1/3,
d(log ∆)/du = 1/3u, R(u) =

∫

du/(36u2) = −1/(36u)+const where const =
0 by quasi-homogeneity. Therefore

dG =
1

24

du

3u
− 1

2

du

36u
= 0.

This result implies (by Hartogs principle) that for any isolated critical point
dG defined by (∗) outside the caustic in the base of miniversal deformation
extends holomorphicly to the whole base, and that dG = 0 for all simple
singularities Aµ, Dµ, Eµ (since dG has zero quasi-homogeneity degree). The
last conclusion agrees with E. Getzler’s relation. 2

In Gromov-Witten theory, the counterpart of complex oscillating integrals
of singularity theory can be defined, as we shell see in the next section,
entirely in terms of genus 0 GW-invariants. In particular, the coefficients Rα

and the 1-form (∗) can be defined in intrincic terms of the Frobenius structure
on H provided that the algebras (TtH, ◦t) are semi-simple for generic t ∈ H.

Conjecture 0.2. The elliptic GW-invariant dG of a compact symplectic
manifold X with genericly semi-simple quantum cup-product is expressed by
the formula (∗) in terms of rational GW-invariants.

2I am thankful to E. Getzler for correcting a mistake in my original computation.

6



In the rest of the paper we present some generalizations of the conjecture
and our evidence in their favor. 3

In Section 1 we review some definitions and results of genus 0 GW-theory,
give a more precise formulation of Conjecture 0.2 and verify it directly in the
example X = CP 1.

In Section 2 we generalize the conjecture to the case of equivariant GW-
theory on a Kähler manifold X provided with a Killing torus action with
isolated fixed points only (toric and flag manifolds are main examples). The
corresponding Frobenius structure is genericly semi-simple.

In Section 3 we prove the equivariant version of the conjecture.
In Section 4 we introduce and study GW-invariants of the non-compact

manifolds which are total spaces of sums of negative line bundles over toric
manifolds. Results of Sections 2 and 3 extend easily to such spaces. The key
new point in this Section is the mirror theorem saying that those rational
GW-invariants of such bundles which play the role of oscillating integrals in
the Frobenius structure are equal to certain oscillating integrals defined in
the spirit of toric hyper-geometric functions. In particular, the version of
Conjecture 0.1 for such oscillating integrals holds true.

Results of Section 4 provide a new illustration to the so called mirror
phenomenon: not only the GW-invariants of a manifold X form a structure
analogous to the one observed in singularity theory, but the GW-invariants
are explicitly expressed in terms of a specific datum of singularity theory type
called the mirror partner of X.

In Section 5 we deal with toric super-manifolds which are objects dual to
the bundles of Section 4 and whose GW-invariants are to coincide with GW-
invariants of toric complete intersections. We invoke the nonlinear Serre du-
ality theorem [12] (which relates genus 0 GW-invariants of a super-manifold
and of the dual bundle space) in order to give a new proof of the mirror
theorem for toric complete intersections [14]. The role of hyper-geometric
functions is more transparent in this version of the proof. We believe that el-

3While the paper was in preparation, B. Dubrovin and Y. Zhang [8] proved our conjec-
tures 0.1 and 0.2. Namely, they showed that the 1-form (*) is the only quasihomogeneous

solution to Getzler’s relation mentioned above. I am thankful to Yu. Manin for this ref-
erence. Yet the results of our paper do not follow from [8] since we deal with equivariant
generalizations of GW-theory where the quasihomogeneity properties of the 1-form (*) are
relaxed (see Section 2). It is plausible however that the method of [8] can be extended to
non-quasihomogeneous setting as well.
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liptic GW-invariants of toric complete intersections are expressible in terms of
the rational GW-invariants of the corresponding equivariant super-manifolds.
However we are not ready to report on such applications because of the dif-
ficulties we explain in the end of Section 5.

I am thankful to organizers and participants of the summer-97 Taniguchi
Symposium where the main results of this paper were first announced.

1 Gromov-Witten invariants and semi-simple

Frobenius structures

We review here some basic properties of Gromov-Witten invariants of com-
pact symplectic manifolds [20, 4, 3, 9, 21, 24, 26, 27, 29, 7].

Stable maps. Let (Σ, ε) denote a prestable marked curve, that is a
compact connected complex curve Σ with at most double singular points and
an ordered n-tuple (ε1, ..., εn) of distinct non-singular marked points. The
genus of (Σ, ε) is defined as g = dimH1(Σ,OΣ). The degree of a holomorphic
map f : (Σ, ε) → X to a compact (almost) Kähler manifold X is defined
as the total homology class d ∈ H2(X,Z) the map f represents. Two maps
f : (Σ, ε) → X and f ′ : (Σ′, ε′) → X are called equivalent if there exist
an isomorphism ϕ : (Σ, ε) → (Σ′, ε′) such that f = f ′ ◦ ϕ. A holomorphic
map f : (Σ, ε) → X is called stable if it has no non-trivial infinitesimal
automorphisms. The set of equivalence classes of degree d stable holomorphic
maps to X of genus g curves with n marked points is denoted Xg,n,d ( and
called moduli space of stable maps ). According to [3, 9, 21, 24] the moduli
spaces have a natural structure of compact orbi-spaces, complex-analytic if
X is Kähler. If X = pt, the spaces Xg,n,0 coincide with the Deligne-Mumford
compactifications Mg,n of moduli spaces of marked Riemann surfaces and are
orbifolds of dimension 3g−3+n (unless empty, which happens for g = 0, n < 3
and g = 1, n = 0). For any X degree 0 stable maps form the moduli spaces
Xg,n,0 = X ×Mg,n.

One introduces the following tautological maps:
- evaluation maps ev = (ev1, ..., evn) : Xg,n,d → Xn defined by evaluating

stable maps at the marked points;
- forgetting maps fti : Xg,n+1,d → Xg,n,d, i = 1, ..., n, well-defined (unless

d = 0 and Mg,n is empty) by forgetting the marked point εi followed by
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contracting those irreducible components of Σ which have become unstable;
- contraction maps ct : Xg,n,d → Mg,n defined by forgetting the map

f : (Σ, ε) → X followed by contracting unstable irreducible components of
the marked curve (Σ, ε).

The diagram formed by the forgetting map ftn+1 : Xg,n+1,d → Xg,n,d

and by the evaluation map evn+1 : Xg,n+1,d → X is called the universal
stable map: the fibre of ftn+1 over the point represented by a stable map
f : (Σ, ε) → X is canonically identified with (the quotient of) the curve Σ
(by the discrete group Aut(f) of automorphisms of the map f if this group
is non-trivial), and the restriction of evn+1 to the fibre (lifted to (Σ, ε)) is
equivalent to f . In particular, the sections ε1, ..., εn : Xg,n,d → Xg,n+1,d

defined by the marked points play the role of universal marked points on the
universal stable map.

One introduces the universal cotangent line li which is a line (orbi-)bundle
over Xg,n,d with the fibre T ∗

εi
Σ at the point [f ] and defined as the conormal

bundle to the universal marked point εi. The 1-st Chern classes c(1), ..., c(n)

of the orbi-bundles l1, ..., ln are well defined over Q.

Gromov – Witten invariants. Let T (c) = t(0) + t(1)c + t(2)c2 + ...
denote a formal power series with coefficients t(i) in the cohomology algebra
4 H∗(X). Given n such series T1, ..., Tn, one introduces the genus 0 Gromov-
Witten invariant of X by

(T1, ..., Tn)d :=

∫

[X0,n,d ]

(ev∗
1 T1)(c

(1)) ∧ ...∧ (ev∗
n Tn)(c

(n)).

Here integration means evaluation of a cohomology class on the virtual fun-
damental class of the moduli space. If X is a convex Kḧler manifold, i. e.
if the tangent bundle TX is spanned by global vector fields on X, then the
genus 0 moduli spaces X0,n,d are known to be compact complex orbifolds of
complex dimension 〈c1(TX), d〉 + dimCX + n− 3 (see [4]), and [X0,n,d] is the
findamental class of the orbifold which is well-defined over Q. In general the
moduli spaces can have many irreducible components of different dimensions
with nasty singularities. Newertheless one can endow them with rational
virtual fundamental classes of Riemann-Roch dimension

dimC[Xg,n,d] = 〈c1(TX), d〉 + (1 − g)(dimC X − 3) + n

4We always assume rational coefficients unless otherwise specified explicitly.
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in such a way that the axioms [20] of Gromov-Witten theory are satisfied.
We refer the reader to [3, 9, 21, 24] for several constructions of the virtual
fundamental classes an for their properties. Using the classes [Xg,n,d] one
can introduce higher genus GW-invariants. 5 In this paper we will use
the notation 6 [T1, ..., Tn]d for the genus 1 GW-invariants of X. In the case
when the series Ti = ti ∈ H∗(X) do not depend on c the GW-invariants
(t1, ..., tn)d (resp. [t1, ..., tn]d) have the enumerative meaning of the number
of degree d rational (resp. elliptic) curves in X passing through n generic
cycles Poincare-dual to t1, ..., tn.

We are going to use several universal identities between GW-invariants.
7

The WDVV-equation says that the following sum is totally symmetric in
A,B,C,D:

∑

n′+n′′=n

1

n′!n′′!

∑

d′+d′′=d

∑

νν′

(A,B, T, ..., T, φα)
n′+3
d′ ηαβ(φβ , T, ..., T, C,D)n

′′+3
d′′ .

5More general GW-invariants (like A(T1, ..., Tn)d) corresponding to a choice of a coho-
mology class A ∈ H∗(Mg,n) are defined by adding the factor ct∗ A to the integrand.

6We will add the super-script indicating the number of arguments as in (T, ..., T )n
d or

[T, ..., T ]nd when the number would otherwise be ambiguous.
7While the identities are frequently used and their origin is well-known and explained

for instance in [12], the actual proofs depend on details of the definition of the virtual
fundamental cycles. A definition sufficient for our purposes is contained in [21]. It is
based on the observation that the standard in algebraic geometry construction of the
normal cone to the zero locus Z of an algebraic section of a vector bundle is intrincic
with respect to the following data: (the variety Z, the complex E → F of vector bundles
over Z defined by the linearization of the section). The kernel T = ker(E → F ) is the
algebraic tangent space to Z, and the cokernel N is called the obstruction space. The
construction is adjusted to the orbi-bundle setting by applying it equivariantly on the
total space of a suitable principal orbi-bundle. In the case when Z is a moduli space
of stable maps the tangent and obstruction spaces are already defined (roughly, as the
kernel and cokernel of the Cauchy - Riemann operator). One can explicitly point out a
global resolution T → E → F → N of T and N by a suitable complex E → F of orbi-
bundles. This defines the intrincic normal subcone in F , and the virtual fundamental cycle
is defined as the intersection of this subcone with generic sections of F . As it is stated in
[21], with this definition the standard arguments justifying the axioms [20] of GW-theory
(they include the string, divisor, and WDVV-equations) go through. Detailed proofs are
scattered however in a number of papers: see [2] for properties of GW-invariants, [11]
for those of gravitational descendants, and [17] for equivariant generalizations of virtual
fundumental classes including the localization formulas we will need in Sections 2 – 5.
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Here {φα} is a basis in H∗(X), and
∑

αβ η
αβφα ⊗ φβ represents the class in

H∗(X ×X) Poincare-dual to the diagonal. In particular the matrix (ηαβ) is
inverse to the intersection matrix

ηαβ := 〈φα, φβ〉 :=

∫

X

φα ∧ φβ .

The string and divisor equations read respectively:

(1, T1, ..., Tn)d =
n

∑

i=1

(T1, ..., DTi, ..., Tn)d,

(p, T1, ..., Tn)d =
n

∑

i=1

(T1, ..., pDTi, ..., Tn)d + 〈p, d〉(T1, ..., Tn)d

where n should be at least 3 if d = 0, DT denotes the series (T (c)−T (0))/c,
and p ∈ H2(X). The string and divisor equations hold true for genus 1 GW-
invariants [...]d (with n ≥ 1 if d = 0) and for GW-invariants of higher genus
as well.

Gromov – Witten potentials. According to E. Witten [29] and B.
Dubrovin [7], the WDVV-, string and divisor equations have several impor-
tant interpretations in terms of the following generating functions for genus 0
GW-invariants. The genus 0 GW-potential is defined as the formal function
of t ∈ H∗(X):

F (t, q) =
∞

∑

n=0

1

n!

∑

d∈Λ

qd(t, ..., t)nd.

Here Λ denotes the Mori cone of X, the semi-group in the lattice
im (H2(X,Z) → H2(X,Q)) generated by those degrees of holomorphic curves
inX for which the virtual fundamental classes [Xg,n,d] are non-zero. All d ∈ Λ
have non-negative integer coordinates (d1, ..., dr) with respect to a suitable
integer basis p1, ..., pr in H2(X,Q). Thus the formal completion Q[[Λ]] of the
semigroup algebra of Λ is identified with a subalgebra in Q[[q1, ..., qr]]. The
symbol qd = qd11 ...q

dr
r stands therefore for the element d ∈ Λ in the semi-group

algebra.
Denote t0 the coordinate on H0(X), (t1, ..., tr) — the coordinates on

H2(X) with respect to the basis {pi}, so that t :=
∑

tαφα = t0 + t1p1 +
...+ trpr + ..., and assume that the basis {φα} = (1, p1, ..., pr, ...) is graded.
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The GW-potential F has the following obvious properties:
- F is homogeneous of degree 3 − dimC X with respect to the grading

deg tα = 1 − degφα/2, deg qd = 〈c1(TX), d〉,

- F (t, 0) =
∫

X
t ∧ t ∧ t /6,

- F̃ (t, q) := F (t, q)−F (t, 0) does not depend on t0 and satisfies qi∂F̃/∂qi =
∂F̃/∂ti (string and divisor equations for (t, ..., t)d) and thus

F̃ (t+
∑

τipi, q) = F̃ (t, q exp τ ).

We will also make use of the following generating functions:

Sαβ(t, q, ~) :=
∞

∑

n=0

1

n!

∑

d∈Λ

qd(φα, t, ..., t,
φβ

~ − c
)n+2
d ,

Vαβ(t, q, x, y) :=
∞

∑

n=0

1

n!

∑

d∈Λ

qd(
φα
x− c

, t, ..., t,
φβ
y − c

)n+2
d .

The ill-defined terms in these series are to be replaced as follows:

(φα,
φβ

~ − c
)0 := ηαβ , (

φα
x− c

,
φβ
y − c

)0 :=
ηαβ
x+ y

.

The tensor fields
∑

εε′

Sεε′dtεdtε′ and
∑

εε′

Vεε′dtεdtε′

have degrees respectively 2 − dimCX and 1 − dimCX with respect to the
above grading and deg ~ = deg x = deg y = 1.

In the following description of some identities between the GW-potentials
F, S, V we will denote ∂α the partial derivatives ∂/∂tα with respect to a basis
{φα} in H∗(X). In the formulas below we will ignore the signs which may
occur due to Z2-grading in cohomology and therefore assume that H∗(X)
has no odd part.

(1) Put Fαβγ := ∂α∂β∂γF0(t, q). The WDVV-equation for the GW-
potential F reads:

∑

εε′

Fαβεη
εε′Fε′γδ is symmetric in α, β, γ, δ .
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This identity is interpreted as associativity of the quantum cup-product ◦ :
H∗(X) ⊗H∗(X) → H∗(X) defined by the structural constants

〈φα ◦ φβ, φγ〉 := Fαβγ

(depending on parameters t =
∑

tαφα and q = (q1, ..., qr)). The quantum
cup-product is commutative, symmetric relatively the intersection form,

〈φα ◦ φβ, φγ〉 = 〈φα, φβ ◦ φγ〉 ,

and the unity 1 ∈ H∗(X) remains the unity for the quantum cup-product.
(2) The WDVV-equation for F is also interpreted as integrability of the

following system of linear PDE for a vector-function of t (depending also on
the parameters q and ~) with values in the cohomology space of X:

(∗∗) ~∂α~s = φα ◦ ~s .

The formally adjoint system with respect to the intersection form is −~∂α~s =
φα ◦ ~s:

∀α ∂α〈~s(t, q, ~), ~s(t, q,−~)〉 = 0.

(3) The generating functions (Sβγ) form a fundamental solution matrix
S for the system of PDE:

~∂αSβγ =
∑

εε′

Fαβεη
εε′Sε′γ .

Namely, WDVV-equations imply φα◦∂βS = φβ◦∂αS while the string equation
implies that ~∂0S = S.

(4) Application of WDVV-equations implies

∂0Vαβ(t, q, x, y) =
∑

εε′

∂0Sεα(t, q, x)η
εε′∂0Sε′β(t, q, y).

Together with the string equation this yields the unitarity condition
∑

εε′

Sεα(t, q, ~)ηεε
′

Sε′β(t, q,−~) = ηαβ

and the relation

Vαβ(t, q, x, y) =
1

x+ y

∑

εε′

ηεε
′

Sεα(t, q, x)Sε′β(t, q, y).

13



(5) The divisor equation with p =
∑

τipi applied to S(t, q, ~) shows that

Sαβ(t+ p, q, ~) =
∑

ε

Sαε(t, qe
τ , ~)ηεε

′〈φε′epτ/~, φβ〉.

This property together with the unitarity condition and the asymptotics
Sαβ|t=0,q=0 = ηαβ uniquely specifies S among fundamental solutions of the
differential system (∗∗).

Frobenius manifolds. According to B. Dubrovin [7], genus 0 GW-
invariants of X define on the cohomology space of X the structure of a
Frobenius manifold. We review here Dubrovin’s theory of canonical coordi-
nates on semi-simple Frobenius manifolds.

A Frobenius algebra structure on a vector space consists of a commutative
associative multiplication ◦ with unity 1 and a linear function α such that
〈u, v〉 := α(u ◦ v) is a non-degenerate bilinear form.

A Frobenius structure on a manifold H is a field of Frobenius algebra
structures on the tangent spaces TtH satisfying the following integrability
conditions:

(a) the metric 〈·, ·〉 is flat: ∇2 = 0,
(b) the unity vector field 1 is covariantly constant: ∇1 = 0,
(c) the 1-st order linear PDE system for sections s of TH defined by

~∇ws = w ◦ s is consistent for any ~ 6= 0.
The Frobenius manifold is said conformal of dimension D ∈ Q if it is

provided with a vector field E (called Euler) such that the tensor fields 1, ◦
and 〈·, ·〉 are eigen-vectors of the Lie derivative operator LE with the eigen-
values respectively −1, 1 and 2 −D.

In flat coordinates {tα} of the metric the condition (c) can be reformulated
as flatness for any ~ of the connection

(1) ∇~ := ~d −
∑

α

Aα(t)dtα∧

where Aα are the multiplication operators ∂α◦t.
Using the property of the structural constants Fαβγ of the quantum cup-

product on H∗(X) to depend on qi, ti, i = 1, ..., r only in the combinations
qi exp ti, we see that the quantum cup-product and the Poincare pairing
define on H = H∗(X,C)/2πiH2(X,Z) the structure of a (formal) Frobenius

14



manifold of conformal dimension D = dimCX with respect to the Euler
vector field

E = t0∂0 +
r

∑

i=1

ci∂i +
∑

α:deg tα<0

deg(tα)tα∂α.

Here
∑

cipi is the 1-st Chern class of TX .

Given a pensil of flat connections ∇~ one can study asymptotical behavior
of horizontal sections as ~ → 0. The asymptotics is described by the following
data.

- The characteristic Lagrangian variety L ⊂ T ∗H defined as the spectrum
Spec(V ect(H), ◦) of the algebra of vector fields on H with the multiplication
◦. Flatness of ∇~ = ~d − A1 is equivalent to A1 ∧ A1 = 0 and dA1 = 0.
The first condition means commutativity [Aα, Aβ] = 0 while the second one
implies that L is Lagrangian at generic points [16].

- The function u on L, may be multiple-valued, defined as a potential for
the action 1-form

∑

pαdtα on T ∗H restricted to L. In our case of conformal
frobenius structures u can be chosen as the restriction to L of the function
∑

cipi +
∑

(deg tα)pαtα on T ∗H defined by the Euler vector field E.
- The function ∆ on L defined by the metric 〈p, p〉 on T ∗H. It is the

restriction to L of
∑

pαη
αβpβ .

A point t ∈ H where the algebra (TtH, ◦t) is semi-simple is called semi-
simple. In a neighborhood of a semi-simple point the characteristic variety
L consists of N = dimH sections of T ∗H which span each T ∗

t H so that
the corresponding branches uα, α = 1, ..., N , of the function u form a local
coordinate system on H called canonical. The vector fields fα = ∆−1/2∂/∂uα
form an orthonormal basis diagonalising ◦. Let Ψ denote the transition
matrix from the basis ∂/∂tα to fβ : ∂/∂tα =

∑

ψαβfβ .

Proposition 1.1 (see [7].) In a neighborhood of a semi-simple point
there exists a fundamental solution of the system ∇~s = 0 represented by the
asymptotical series

(2) Ψ(1 + ~R(0) + ~2R(1) + ...) exp(U/~)

where U = diag(u1, ..., uN) is the diagonal matrix of canonical coordinates.

Proof. Indeed, substituting the series into the equation we obtain the
chain of equations

A1Ψ = ΨdU, Ψ−1dΨ = [dU,R(0)],

15



DR(0) = [dU,R(1)], ..., DR(k) = [dU,R(k+1)], ...

where the connection operator D = d + Ψ−1dΨ∧ is flat and anti- commutes
with dU∧. The first equation means that Ψ diagonalizes A1 to dU . Columns
of Ψ form an orthogonal basis since A1 is self-adjoint with respect to 〈·, ·〉.
The next equation requires the columns to be normalized to constant lengths
and expresses off-diagonal entries of R(0) via Ψ. In particular R(0) is sym-
metric. 8 The diagonal entries of R(0) can be found by integration from the
next equation:

dR
(0)
ii =

∑

l

R
(0)
il (dul − dui)R

(0)
li .

Closedness of the RHS is easy to derive directly from the flatness D2 = 0.
Continuing the inductive procedure, we express the off-diagonal part ofR(k+1)

via R(k) algebraicly from [dU,R(k+1)] = DR(k), and find the diagonal part of
R(k+1) by integration from the next equation. Let us check compatibility
conditions.

First, DR(k) has the zero diagonal (induction hypothesis) and thus is a
commutator with dU due to De Rham lemma: the anti-commutator
{dU,DR(k)} = D[R(k), dU ] = −D2R(k−1) = 0.

It remains to verify exactness of
∑

lR
(0)
il (dul − dui)R

(k+1)
li . It can be

reformulated as d(R(0)[dU,R(k+1)])diag = 0. We have:

d(R(0)[dU,R(k+1)]) = (dR(0)) ∧DR(k) +R(0)dDR(k) =

(dR(0) − [dU,R(0)]) ∧DR(k) = (DR(0))t ∧DR(k) = [(R(1))t, dU ] ∧ [dU,R(k+1)]

which has zero diagonal entries. �

Remarks. (1) The asymptotical solution of Proposition 1.1 is not unique.
First, the canonical coordinates are defined up to a constant summand.
When the choice has been made, the matrix Ψ of eigen-vectors is defined
up to the right multiplication by a constant diagonal matrix. Such a mul-
tiplication conjugates all R(k) by this matrix and thus does not change the
diagonal entries. Finally, another choice of intgration constants for R

(k)
ii

gives rise to the right multiplication of the whole series by a diagonal ma-
trix diag (C1(~), ..., CN(~)), where Ci = 1 + c

(0)
i ~ + c

(1)
i ~2 + ... and c

(j)
i are

constants.

8For those familiar with Dubrovin’s notations: our R
(0)
ij , i 6= j, coincide with his γij .
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(2) In the canonical coordinate system (u1, ..., uN) flatness of the connec-
tion D reads: 9

∂lR
(0)
ij = R

(0)
il R

(0)
lj , l 6= i, j,

∑

l

∂lR
(0)
ij = 0.

Since R(0) is symmetric, this implies that the 1-form

dR :=
N

∑

i=1

R
(0)
ii dui

is closed.
(3) The flat metric on H is diagonal in the canonical coordinate system

and takes on
∑

i ∆
−1
i (dui)

2. The connection D is the Levi-Civita connection

of this metric written in the basis of vector fields ∆
1/2
i ∂/∂ui. Thus the

coefficients Rij with i 6= j can be computed in terms of the metric. This
observation leads to the formula mentioned in the introduction:

dR
(0)
ii =

1

4

∑

j

(∂i log ∆j)(∂j log ∆i)(duj − dui).

(4) In the conformal case the Euler field assumes in the canonical coor-
dinates the form E =

∑

ul∂l. The homogeneity relation LER
(0) = −R(0) to-

gether with the above flatness condition form a remarkable system of Hamil-
tonian differential equations which determines R(0). Namely, following B.
Dubrovin [7] consider the anti-symmetric matrix Vij := R

(0)
ij (ui − uj) as a

point in the Poisson manifold so∗N . Introduce N non-autonomous quadratic
hamiltonians

Hi :=
1

2
LER

(0)
ii =

1

2

∑

j 6=i

VijVji
ui − uj

.

These hamiltonians Poisson-commute on so∗N and their flows determine the
dependence of V on u: ∂iVjl = {Hi, Vjl}. 10

9The last relation means that the vector
∑

∂l represents the unity in TtH and holds

true for all R
(k)
ij .

10In fact Hi = −R
(0)
ii /2 + const in the case of conformal Frobenius structures. I am

thankful to B. Dubrovin for this observation. The last relation fails however in the more
general setting we will encounter in the next section.
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Elliptic GW-invariants. Introduce the elliptic GW-potential of X

G(t, q) :=
∑

d∈Λ

∞
∑

n=0

qd[t, ..., t]dn/n!.

The degree 0 part of G equals

G(t, 0) = − 1

24

∫

X

t ∧ cdimX−1(TX),

while the non-zero degree terms depend on qi only in the combinations
qi exp ti due to the divisor equation. Thus dG can be considered as a closed
1-form on the Frobenius manifold H = H∗(X,C)/2πiH2(X,Z). It has ho-
mogeneity degree 0 with respect to the Euler vector field on H.

Let t ∈ H be a semi-simple point. In a neighborhood of t the functions
log ∆α, R

(0)
αα are uniquely defined up to additive constants. We normalize the

constants in R
(0)
αα by the homogeneity condition

LER
(0)
αα = −R(0)

αα.

Conjecture 1.2. Suppose that the Frobenius structure defined by the
rational GW-potential F of the manifold X is semi-simple. Then the elliptic
GW-potential of X is determined by

dG =
∑

α

d(log ∆α)/48 +
∑

α

R(0)
ααduα/2.

Example: X = CP 1. The classes 1 and p Poincare-dual to the funda-
mental class and a point form a basis in H∗(X). The elliptic GW-potential
is G = −t/24 where t is the coordinate on H2(X) since non-constant ellip-
tic curves do not contribute to G for dimensional reasons. Our conjecture
agrees with this fact. Indeed, looking for the fundamental solution S =
Ψ(1 + R~ + o(~)) exp(U/~) of the differential system ~Ṡ1 = S2, ~Ṡ2 = etS1

corresponding to the quantum cohomology algebra Q[p, q]/(p2 − q) of CP 1,
we find

Ψ−1Ψ̇ = [U̇ , R], (Ṙ+ Ψ−1Ψ̇R)diag = 0.
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The normalized eigen-vectors of the quantum multiplication operator p◦ cor-
responding to the eigen-values u̇± = ±et/2 are equal to (e−t/4p ± et/4). We
find (Ψ−1Ψ̇)+− = −1/4 and R+− = e−t/2/8 = −R−+. Respectively,

Ṙ++ = −R+−(u̇+ − u̇−)R−+ = exp(−t/2)/32 = −Ṙ−−

and therefore R++du+ +R−−du− = −dt/8.
On the other hand, ∆± = ±2et/2 and thus d log ∆+∆− = dt. We find

dG = dt/48 − dt/16 = −dt/24.

2 Equivariant GW-invariants

in genus 0 and 1

In this section we formulate a theorem confirming an equivariant version of
Conjecture 1.2 in the case of toric actions with isolated fixed points.

Equivariant cohomology. Let a compact group G act on a topological
space M . The equivariant cohomology H∗

G(M) is defined as the cohomology
of the homotopy quotientMG := (EG×M)/G where EG is the total space of
the universal principal G-bundle EG→ BG. When M is a point MG = BG,
and the ring H∗

G(pt) = H∗(BG) plays the role of the coefficient ring in
the G-equivariant cohomology theory. In particular, the G-equvariant map
M → pt induces the M-bundle MG → BG and a natural structure of the
H∗
G(pt)-module on H∗

G(M).
A G-equivariant vector bundle V over a G-space M induces a vector bun-

dle VG over the homotopy quotient MG. Equivariant characteristic classes
of V are defined as the ordinary characteristic classes of VG. This construc-
tion applies to equivariant orbi-bundles over orbi-spaces and gives rise to
equivariant characteristic classes of orbi-bunles well-defined in H∗

G(M,Q).
In the case of smooth orientation-preserving G-actions on compact ori-

ented manifolds the fiberwise integration over the fibres of the M-bundle
MG → BG defines the H∗

G(pt)-linear homomorphism
∫

M
: H∗

G(M) → H∗
G(pt)

and the bilinear Poincaré pairing

〈φ, ψ〉 :=

∫

[M ]

φ ∧ ψ,
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non-degenerate over H∗(BG,Q) in the case of Hamiltonian G-actions on
compact symplectic manifolds. The same operations are well-defined over Q

in the case of orbifolds.
Let us assume now that G is a torus. According to the Borel fixed point

localization formula
∫

[M ]

φ =

∫

[MG]

i∗φ

EulerG(NM (MG))

where i : MG → M is the inclusion of the fixed point submanifold MG

into M , NM(MG) is the normal bundle to the fixed point submanifold, and
EulerG is the G-equivariant Euler class. In the orbifold case NMM

G is an
equivariant orbi-bundle over the orbifold MG, and the localization formula
holds true over Q. One should have in mind however that the fundamental
class of the fixed point sub-orbifold MG differs from the geometrical funda-
mental class of the orbifold MG by the factors 1/|Aut| on each connected
component, where Aut is the subgroup — in the symmetry group defining
the orbifold structure onM at a generic point of the component — stabilizing
the point.

Genus 0. Let X be a compact Kähler manifold provided with a Hamil-
tonian Killing action of a compact Lie group G. Then the group acts also
on the moduli spaces of stable maps Xg,n,d, and this action commutes with
evaluation, forgetting and contraction maps. The constructions [3, 21, 24]
of the virtual fundamental cycles [Xg,n,d] can be extended to the equivariant
setting. 11 This allows one to generalize GW-theory to the equivariant case.
The theory of equivariant genus 0 GW-invariants [12] is quite analogous to
the theory of Frobenius structures reviewed in Section 1. We describe below
the modifications to be made in the equivariant setting emphasizing the case
of tori actions.

(1) The coefficient algebra H∗
G(pt,Q) of the equivariant cohomology the-

ory replaces the ground field Q of the non-equivariant GW-theory. If G
is the l-dimensional torus the algebra is isomorphic to the polynomial ring
Q[λ1, ..., λl] in l generators of degree 1 (in our complex grading) since BG
is weakly homotopy equivalent to (CP∞)l. In all questions involving Borel

11For convex X the G-equivariant virtual fundamental class [X0,n,d] coincides with the
equivariant fundamental class of X0,n,d considered as an orbifold.
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localization formulas the algebra is replaced by the field of fractions Q(λ)
since rational functions of λ can occur.

(2) The equivariant GW-invariants (T1, ..., Tn)
d
n and their higher genus

counterparts take values in Q[λ] and are polylinear over Q[λ]. The potentials
F (t, q), Sαβ(t, q, ~), Vαβ(t, q, x, y), etc., can be therefore considered as formal
functions with coefficients in Q[λ] and thus are functions of λ as well. Note
that t =

∑

tαφα is now the general equivariant cohomology class of X, and
that {φα} here represents a Q(λ)-basis in the Q[λ]-module H∗

G(X).
(3) The string equation remains unchanged in the equivariant case. As-

suming for simplicity that X is simply connected (which is automatically the
case if the Hamiltonian torus action has only isolated fixed points) we have
the short exact sequence

0 → H2(BG) → H2
G(X) → H2(X) → 0.

The divisor equation and its consequences for GW-potentials hold true in the
equivariant case as well if only we interpret 〈p, d〉 as the value of the projection
of p ∈ H2

G(X) to H2(X) on the homology class d ∈ H2(X). Nevertheless it
will be convenient sometimes to keep the formal variables q1, ..., qr in place
and thus to consider (Q[λ])[[Λ]] as the ground algebra in the equivariant
setting.

(4) The equivariant GW-potential F defines on H := H∗
G(X,Q[[Λ]]) a

Frobenius structure over the ground ring (Q[λ])[[Λ]]. The divisor equation
induces however the following symmetry:

(∂i − qi∂/∂qi)F̃αβγ(t, q, λ) = 0, i = 1, ..., r,

where ∂i are the tangent vector fields along H2
G(X) representing the basis

in H2(X) as in Section 1. The grading axiom should be modified in the
equivariant case: the potential F is homogeneous of degree 3 − dimX with
respect to the Euler field

E =
∑

α

(deg tα)tα∂α +
∑

i

ciqi∂/∂qi +
∑

j

λj∂/∂λj.

Due to the last summand the Euler derivation is not Q[λ]-linear, and thus the
axioms of the conformal Frobenius manifold are not satisfied. We will call the
Frobenius structures with such a modified grading axiom quasi-conformal.
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Let us assume now that the action of the torus G on X has only isolated
fixed points. The δ-functions of the fixed points form a basis {φα} in the
equivariant cohomology of X over the field of fractions Q(λ). The classical
equivariant cohomology algebra ofX is semi-simple at generic λ and therefore
its quantum deformation and the corresponding quasi-conformal Frobenius
manifold H is genericly semi-simple as well. Thus Proposition 1.1 applies
and gives rise to the expansion 12

(Sαβ(t, q, ~, λ)) = Ψ(1 + ~R(0) + o(~)) exp(U/~) .

The canonical coordinates uα and the diagonal entries R
(0)
αα of the matrix

R(0) are defined by the Frobenius structure up to additive “constants” which
are now elements of the ground ring (Q[λ])[Λ]. 13 Moreover, the symmetry
induced by the divisor equation for the potentials Sαβ implies that R(0) is
invariant with respect to the vector fields ∂i − qi∂/∂qi. This allows us to

normalize the additive constants by the condition R
(0)
αα ≡ 0 mod (q).

Genus 1. Introduce now the equivariant genus 1 potential

G(t, q, λ) :=
∑

d∈Λ

∞
∑

n=0

qd[t, ..., t]dn/n!.

The degree d = 0 part of G can be computed by the localization formulas:

G(t, 0, λ) = − 1

24

∫

X

t ∧ cdimX−1(TX) = − 1

24

∑

α

tαc
α
−1,

where cα−1 is defined to be the ratio cdimX−1(TX)/cdimX(TX) of the equivariant
Chern classes localized to the fixed point α ∈ XG.

12We will discuss it with greater detail in Section 3 in connection with localization
formulas.

13Dubrovin’s classification of semi-simple Frobenius structures should be modified in the
quasi-conformal case as explained in [12]. In particular, the Hamiltonians Hi play now the
role of densities in the Poisson-commuting Hamiltonians on the affine Lie coalgebra ŝo∗N .

They can be also described as the Lie derivatives Hi =
∑

α uα(∂/∂uα)R
(0)
ii but are no

longer proportional to R
(0)
ii since these functions are quasi-homogeneous with respect to

the Euler field E which takes on
∑

uα∂/∂uα +
∑

λj∂/∂λj +
∑

ciqi∂/∂qi in the canonical
coordinate system.
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Theorem 2.1. Suppose that the complexified action of the torus GC on
the compact Kähler manifold X has only isolated fixed points and isolated
1-dimensional orbits. Then

dG =
∑

α

d(log ∆α)/48 −
∑

α

cα−1duα/24 +
∑

α

R(0)
ααduα/2.

Remarks. (1) The differential d in the theorem is taken with respect to
the coordinates tα on the space H over the ground ring (Q[λ])[Λ]. Thus q
and λ are considered as constants.

(2) Redefining the additive constants in R
(0)
αα by

Rα := R(0)
αα − cα1 /12

we can reformulate the theorem in the form

dG =
∑

d log ∆α/48 +
∑

Rαdua/2

suggested in the introduction. In the several examples we tried both sum-
mands in the RHS have limits as λ approaches 0 and in this limit turn into
their non-equivariant counterparts. If proven to be the general rule, this
observation would confirm the Conjecture 1.2 for toric manifolds and homo-
geneous Kähler spaces.

Example. Equivariant quantum cohomology of CP 1 = P (C2) with respect
to the circle acting by diag(eiϕ, e−iϕ) on C2 is known to be isomorphic 14 to
Q[p, q, λ]/(p2 − λ2 − q) with the equivariant Poincaré pairing

〈φ, ψ〉 =
1

2πi

∮

φ(p, q, λ)ψ(p, q, λ)
dp

p2 − λ2 − q
.

Introducing the indices ± for the two fixed points on CP 1 with the normal
Euler classes ±2λ, we find that the normalized “Hessians” ∆± are equal to
±2p/(±2λ) where p = (1 + q/λ2)1/2 = λ + O(q). The differentials of the
canonical coordinates are given by

du± = ±pd log q = ± 2p2dp

p2 − λ2
.

14We write here q instead of q exp t in order to minimize the paperwork.
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In the basis φ± = (λ± p)/2λ in H∗
G(CP 1) the matrix Ψ of normalized eigen-

vectors of quantum cup-product operators takes on

Ψ =
1

2

[

z + z−1 −z + z−1

z − z−1 −z − z−1

]

,

where z := (1 + q/λ2)1/4 = 1 + .... Respectively,

Ψ−1Ψ̇ =

[

0 −ż/z
−ż/z 0

]

,

where the dot means qd/dq.
The diagonal entries of R(0) can be found by integration of ±(ż)2/z2(u̇+−

u̇−) = ±(p2 − λ2)/32p5. Since d log q = (2p/(p2 − λ2))dp, we have

R
(0)
++ = −R(0)

−− =

∫ p

λ

x2 − λ2

16x4
dx = − 1

16p
+

λ2

48p3
+

1

24λ
.

The contribution to Ġ via Theorem 2.1 equals

1

2
(R

(0)
++u̇+ +R

(0)
−−u̇−) = − 1

16
+

λ2

48p2
+

p

24λ
.

The other two summands are

− 1

24
(
u̇+

2λ
+

u̇−
−2λ

) = − p

24

(which together with the first one yields −1/16 + λ2/48p2) and

2
∆̇

24∆
=

ṗ

24p
=
p2 − λ2

48p2
.

The total sum −1/16 + 1/48 = −1/24 agrees with the known result G =
−(log q)/24.

3 Fixed point localization

in genus 0 and 1

The proof of Theorem 2.1 is based on application of the Borel fixed point
localization formula to the equivariant virtual fundamental classes [Xg,n,d]

24



of the moduli spaces of stable maps. A stable map f : (Σ, ε) → X repre-
sents a fixed point of the torus action in the moduli space if its shift by the
torus action can be compensated by automorphisms of the marked curve.
Equivalently,

- f(Σ) is contained in the union of 0- and 1-dimensional orbits of GC,
- f(ε) is contained in the fixed point set XG,
- if the map f restricted to an irreducible component of Σ is constant

then the image is a fixed point,
- if it is not constant then the component is isomorphic to CP 1, carries

no more than 2 special points (which can be positioned at 0 and/or ∞, and
the map is a multiple cover z 7→ w = zm onto the closure of a 1-dimensional
orbit (which is also isomorphic to CP 1 with w = 0,∞ to be the fixed points).

The connected component of the fixed point set XG
g,n,d containing the

equivalence class [f ] can be described as the product of the Deligne-Mumford
spaces Mgi,ki

factorized by a finite symmetry group of the combinatorial
structure of the map f . Each factor Mgi,ki

corresponds to a connected com-
ponent Σi in f

−1(XG), gi is the arithmetical genus of Σi, and ki equals the to-
tal number of marked points and of special points (Σ − f−1(XG))∩f−1(XG)
situated on Σi.

Application of the fixed point localization formula requires a description
of the virtual normal bundle to each fixed point component and reduces to
integration over the Deligne-Mumford spaces. The idea to apply the local-
ization technique to the moduli spaces Xg,n,d is due to M. Kontsevich [19]
and was systematically exploited in [12, 14] and several other papers. The
description used in [19, 12, 13] for localizations of the fundamental classes
[X0,n,d], being obvious in the orbifold case, can be easily extended to the
general “virtual” case. A rigorous justification of these localization formulas
was recently given in [17] on the basis of the algebraic-geometrical approach
[3] to the virtual fundamental cycles.

The idea of our proof of Theorem 2.1 can be now described as follows.
Any fixed point of the torus G action on the genus 1 moduli spaces X1,n,d

has the following combinatorial structure:
- either it is a tree walking along the skeleton of 1-dimensional orbits in

X, and f−1(XG) has exactly one connected component Σ0 of arithmetical
genus 1,

- or it is a graph walking along the skeleton of 1-dimensional orbits with
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exactly one cycle, and all irreducible components are rational.
The way how the fixed points of the first type contribute to the genus 1

GW-potential G via localization formulas can be compared to suitable genus
0 GW-invariants. As we shell see, the total contribution of all fixed point
components with Σ0 mapped to the fixed point α in X equals log ∆α/48 −
cα−1uα/24. The proof is partly based on intersection theory in Deligne-
Mumford spaces.

Contributions of the second type fixed points to G are hard to compare
with genus 0 GW-invariants directly because of the rotational symmetry of
the cycle. By computing their contributions to the partial derivatives ∂γG
instead, we distinguish a marked point in (Σ, ε) which carries the class φγ and
is situated on a branch of the graph approaching the cycle of 1-dimensional
orbits at a fixed point α. This breaks the rotational symmetry of the cycle and
allows us to compare localization formulas for the cycles with those for the
chains between the fixed points α and β with β = α. As we shell see, all such
contributions add up to R

(0)
αα∂γuα/2. The proof is based on “materialization”

of Dubrovin’s structural theory of semi-simple Frobenius manifolds in terms
of fixed point localization.

Intersection theory in M0,k and M1,k.

Let us consider the GW-theory with a point taken on the role of the
target space (so that the moduli spaces of stable maps are Deligne-Mumford
spaces) and introduce the following GW-potentials:

u(T ) :=

∞
∑

n=1

1

n!
(1, T, ..., T, 1)n+2 ,

s(T, ~) := 1 +

∞
∑

n=1

1

n!
(1, T, ..., T,

1

~ − c
)n+2 ,

v(T, x, y) :=
1

x+ y
+

∞
∑

n=1

1

n!
(

1

x− c
, T, ..., T,

1

y − c
)n+2 ,

δ(T ) :=
∞

∑

n=0

1

n!
(1, 1, 1, T, ..., T )n+3 ,

µ(T ) :=

∞
∑

n=1

1

n!
ω[T, ..., T ]n ,
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ν(T ) :=
∞

∑

n=1

1

n!
[T, ..., T ]n .

In these formulas, T = t0 + t1c + t2c
2 + ... is a series in one variable

to be replaced by the 1-st Chern class c(i) of the universal cotangent line
over Mg,n with the index i depending on the position of the series T in the
correlator. The correlators (...)k and [...]k mean integration over M0,k and
M1,k respectively. The correlator ω[...]k means integration

∫

M1,k

ω ∧ ...

against the 1-st Chern class ω of the Hodge line bundle H over M1,k. The
fiber of this (orbi)-bundle over [Σ, ε] is the space H0(Σ, KΣ) of “holomorphic
differentials” on the stable curve Σ. It is the pull-back of the Hodge line bun-
dle over M1,1 by (any of) the forgetting maps M1,k → M1,1. Respectively,
ω ∧ ω = 0, the class ω on M1,1 coincides with c(1), and the orbi-structure of
M1,1 and H manifests in the well-known formula

∫

[M1,1]

ω = 1/24 .

The potentials u, s, v, δ, µ, ν can be considered as functionals on the space
of formal series T . We will assume however that the coefficients t0, t1, t2, ...
are elements of some formal series algebra K[[Λ]] (in our applications K =
Q(λ)), and that the whole series T (c) can be rewritten as a formal q-series
∑

d∈Λ ad(c)q
d with coefficients ad which are rational functions of c regular at

c = 0. Thus each ti is a formal q-series, and we will assume also, that ti ≡ 0
mod (q) for i > 0. These conditions (satisfied in our applications) guarantee
that the tragectory of the vector field

L := ∂/∂t0 − t1∂/∂t0 − t2∂/∂t1 − ...

with the initial condition T is well-defined by

t0(τ ) = τ +
∞

∑

n=0

tn(0)
(−τ )n
n!

, t1(τ ) = 1 − dt0/dτ, t2(τ ) = −dt1/dτ, ...
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and has a unique intersection with the hyperplane t0 = 0. We will use
these facts in the following application of the string equation (notice that
LT = 1 − (T (c)− T (0))/c).

Proposition 3.1 (see [7, 12, 6]).

s = eu/~, v =
eu/x+u/y

x+ y
, µ =

u

24
, ν =

log δ

24
.

Proof. The string equation implies

Lu = 1, Ls =
s

~
, Lv =

v

x
+
v

y
,

Lδ = 0, Lµ =
1

24
, Lν = 0.

At t0 = 0 the initial conditions

u = 0, s = 1, v = 1/(x + y), δ = 1/(1 − t1), µ = 0, ν = −(log(1 − t1))/24

can be computed from definitions with the use of dimensional reasoning
(dimM0,n+2 = n − 1 < n and dimM1,n = n) and in the case of δ and
ν — on the basis of the formulas (1, 1, 1, c, ..., c)n+3 = n!(1, 1, 1) = n! and
[c, ..., c]n = (n − 1)![c] = (n − 1)!/24 which follow from the famous dilation
equation 〈T, ..., T, c〉g,n+1,d = (2g − 2 + n)〈T, ..., T 〉g,n,d.

Materialization of canonical coordinates. We have to review here
some basic structural results from [12] on localization in genus 0 equivariant
GW-theory which were perhaps overshadowed by mirror theorems proved
there. Let us outline here the key observation and refer to [12], Section 8,
for further details.

Consider a stable map f : (Σ, ε) → X from a generic fiber of the con-
traction map X0,n,d → M0,n → M0,k defined by the first k marked points.
The fiber is specified by a configuration of k ordered distinct points on CP 1.
Due to the definition [19] of the contraction map, the curve Σ must contain a
unique irreducible component CP 1 carrying k special (= marked or singular)
points realizing an isomorphic configuration. If the map f represents a fixed
point of the torus action on X0,n,d, then f maps the irreducible component to
one of the fixed points inX. Thus we can single out the connected component
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Σ0 of f−1(XG) (we will call it special), containing this CP 1, and associate
the fixed point α = f(Σ0) ∈ XG to the fixed point [f ] ∈ XG

0,n,d. This allows
us to partition certain GW-invariants into contributions — via fixed point
localization formulas — of those fixed points for which the special component
is mapped to a given fixed point α. Applying the WDVV-argument to such
contributions separately for each α we arrive at some local WDVV-identities
which are essentially independent on the global WDVV-equation. Combining
local and global WDVV-equations we obtain simultaneous diagonalization of
quantum cup-product operators in a basis associated with fixed points of G
in X.

Let us introduce the local GW-potentials uα, Dα,Ψ
α
β involved into the

diagonalizing structure. Let t =
∑

α tαφα denote the general equivariant
cohomology class of X represented in the basis of fixed points. We denote
∂α the partial derivative with respect to tα and use the notation ∂0 for the
differentiation operator

∑

α ∂α in the direction of 1 ∈ H∗
G(X). We put eα :=

〈φα, φα〉−1 = ηαα = EulerG(TαX).

• Consider a point in X0,n,d with the property that the first two marked
points are located on the same connected component of f−1(XG). The
total contribution of all such fixed points to the GW-potential

eα∂α∂αF0 = eα

∞
∑

n=0

1

n!

∑

d∈Λ

qd(φα, φα, t, ..., t)
d
n+2

is denoted uα. The potentials uα have homogeneity degree 1, are con-
gruent to tα modulo (q) and can be taken on the role of local coordinates
on H∗

G(X) instead of tα.

• Similarly, consider those fixed points where the first 3 marked points
are located on the same connected component of f−1(XG). The total
contribution of such fixed points to the GW-potential

eα∂α∂α∂αF0 = eα

∞
∑

n=0

1

n!

∑

d∈Λ

(φα, φα, φα, t, ..., t)
d
n+3

is denoted Dα. We have: degDα = 0 and Dα ≡ 1 mod (q).

• Finally, consider the fixed points with the 1-st marked point situated
on the same connected component of f−1(XG) as the two special points
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which give birth to the branches carrying the 2-nd and 3-rd marked
points. The total contribution of such fixed points to

eα∂α∂β∂0F0 = eα

∞
∑

n=0

1

n!

∑

d∈Λ

qd(φα, φβ, 1, t, ..., t)
d
n+3

is denoted Ψα
β , has degree 0 and reduces to δβα modulo (q).

Theorem 3.2. (see [12]). The matrix (Ψi
α) satisfies the orthogonality

relations
∑

i

Ψi
αe

−1
i Ψi

β = δαβe
−1
β ,

∑

α

Ψi
αeαΨ

j
α = δijej,

the normalization condition
∑

α

Ψi
α = D−1

i

and diagonalizes structural constants of the quantum multiplication:

∂α∂β∂γF0 =
∑

i∈XG

Ψi
α

DiΨ
i
β

ei
Ψi
γ.

The eigen-values DiΨ
i
β of the quantum cup-product operators φβ◦ satisfy the

integrability condition
∑

β

DiΨ
i
βdtβ = dui.

The theorem means that the local GW-potentials ui are the canonical
coordinates of Dubrovin’s axiomatic theory of Frobenius structures, and Di

are the square roots of the normalized “Hessians”: ∆i = eiD
2
i .

Proof of Theorem 2.1. Let us begin with a remark on the general
structure of fixed point localization formulas in Xg,n,d. A connected compo-
nent of the fixed point set XG

g,n,d is identified by the combinatorial structure
of a stable map f : (Σ, ε) → X. The combinatorial structure can be specified
by the following data:

- the genera gi of connected components Σi of f−1(XG) (we will call Σi

vertices and consider the genus gi undefined in the case if the vertex Σi is a
point),
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- the fixed points α = f(Σi),
- the graph of rational components of Σ connecting Σi’s (we will call such

components edges),
- the 1-dimensional orbits in X to which the edges are mapped to and

the multiplicities of the maps (when necessary we will specify the orbit by
the indices α 6= β of the fixed points it connects, denote dαβ ∈ Λ the degree
of the orbit as a curve in X and denote m the multiplicity of the map),

- the indices of marked points situated on each Σi.
The connected components of XG

g,n,d are orbifolds (quotients of products
of Deligne-Mumford spaces), and the virtual normal bundles whose equiv-
ariant Euler classes occur in the localization formulas are orbi-bundles over
these orbifolds. These bundles can be split into virtual sums of contributions
corresponding to the edges and to the vertices, and the Euler classes — into
products of corresponding contributions. The contribution of each edge to
the Euler class has the form of the product of characters of LieG and depends
only on the correspondind degree dαβ and multiplicity m.

Let us consider the intersection point x of a vertex Σi with an edge CP 1.
The virtual normal space contains the summand TxΣi⊗TxCP 1. It contributes
to the inverse Euler class by (χαβ/m − c)−1. Here χαβ is the character of
the torus action on the tangent line to the closure of the 1-dimensional orbit
at α = f(Σi), and c is the 1-st Chern class of the universal cotangent line
over Mgi,ki

at the marked point corresponding to x. The product of such
contributions is to be integrated over Mgi,ki

in the localization formulas.
Adding up the contributions of all fixed point components in all the mod-

uli spaces Xg,n,d with various n and d to certain local GW-potentials we will
obtain the exponential-like sums

∑

k〈T, ..., T 〉/k! of integrals over the Mg,k

with rather complicated (and unspecified) series T = t0 + t1c+ t2c
2 + .... For

example, the local genus 0 GW-potential uα equals u(T ). Here the q-series
T =

∑

d ad(c)q
d has some rational functions of c on the role of the coeffi-

cients ad and a0 = tα. The whole series T takes in account contributions via
localization formulas of all tree-like branches of genus 0 maps f : (Σ, ε) → X
which join the special component Σ0 at the fixed point α.

With the above remarks in mind, let us study now the contributions to
the genus 1 GW-potential G of all the first type fixed points whose elliptic
vertex Σ0 is mapped to α ∈ X. The contribution of the vertex to the virtual
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normal bundle contains the summand

H0(Σ0,OΣ0 ⊗ TαX) ⊖H1(Σ0,OΣ0 ⊗ TαX).

Thus the inverse Euler class contains the factor

EulerG(H∗ ⊗ TαX)

EulerG(TαX)
= 1 − cα−1ω

in addition to the factors (χαβ/m − c)−1 discussed above. The total contri-
bution of the first type fixed points equals therefore

∑

[T, ..., T ]/k!− cα−1

∑

ω[T, ..., T ]/k! = ν(T )− cα−1µ(T ) .

Notice that the series T here is the same as in the above description of uα.
We conclude that the total contribution equals

(logDα)/24 − cα−1uα/24 .

Consider now the contributions of the second type fixed points to

∂γG =
∑

n,d

qd[φγ, t, ..., t]
d
n+1/n! .

Let α be the fixed point in X where the tree-like branch of (Σ, ε) carrying
the 1-st marked point (with the class φγ) joins the cycle of edges in Σ, and
let Σ0 be the corresponding vertex of Σ. Denote χ and χ′ the characters
of LieG on the tangent lines to the 1-dimensional orbits where the edges of
the cycle adjecent to Σ0 are mapped to, and denote m and m′ the corre-
sponding multiplicities. Summing over all the second type fixed points with
these data we see that the contribution of the vertex Σ0 can be described as
e−1
α ∂γv(T, χ/m, χ

′/m′)

= ∂γ
exp(uαm/χ+ uαm

′χ′)

(χ/m+ χ′/m′)eα
=

exp(uαm/χ+ uαm
′/χ′)

(χ/m)(χ′/m′)eα
∂γuα.

This localization factor can be rewritten as

(∂γuα) lim
x,y→0

exp(uαm/χ)

eα(x+ χ/m)
eα

exp(uαm
′/χ′)

eα(y + χ′/m′)
.
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Let us compare now this localization factor and the contribution of the
rest of the cycle with localization formulas for the genus 0 GW-potential

Vαα(x, y) =
∑

n,d

qd

n!
(
φα
x− c

, t, ..., t,
φα
y − c

)dn+2 .

The localization factors corresponding to vertices carrying the first and the
last marked points (with the classes φα) vanish unless these vertices are
mapped to α ∈ X. If they are, consider the chain of edges connecting the
vertices and denote m,m′ and χ, χ′ the multiplicities and the characters of
the edges adjecent to these vertices. The localization factors of the vertices
with these data are equal to

e−1
α v(T, x, χ/m) =

exp(uα/x+ uαm/χ)

eα(x+ χ/m)
,

e−1
α v(T, y, χ′/m′) =

exp(uα/y + uαm
′/χ′)

eα(y + χ′/m′)
.

Since the rest of the chain contributes to ∂γG and to Vαα in the same way,
we conclude that the total contribution to ∂γG of the second type fixed point
in question equals

(∂cuα)
1

2
lim
x,y→0

[e−uα/xVαα(x, y)e
−uα/yeα −

1

x+ y
] .

where the factor 1/2 takes care of the two orientations of cycles.
Let us look now at the fundamental solution matrix

Sβα =
∑

n,d

qd

n!
(φβ, t, ..., t,

φα
~ − c

)dn+2

via localization formulas. The dependence of Sβα on ~ is due only to the
localization factor of the vertex carrying the last marked point; it is equal to

exp(uα/~)

eα(~ + χ/m)

if the first marked point belongs to another vertex, and to exp(uα/~)e−1
α δβα

if the vertex is the same. Since χ 6= 0, we can expand (~ + χ/m)−1 into a
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power series in ~ and summing over all fixed point conponents obtain the
asymptotical expansion Ψ(1 + ~R(0) + o(~)) exp(U/~) of Proposition 1.1 for
the fundamental solution matrix (Sβαeα). Notice that the matrix Ψ of eigen-
vectors here is normalized in the same way as (and thus coincides with) the
matrix (Ψα

β) in Theorem 3.2, since Sβαeα ≡ δαβ mod (q).
It remains only to invoke the WDVV-identity

Vαα =
∑

β

Sβα(x)eβSβα(y)/(x+ y) ,

the asymptotical expansion

Sβα(~) =
∑

i

Ψi
β(δiα + ~R

(0)
iα + o(~)) euα/~e−1

α ,

and the orthogonality relation

∑

β

Ψi
βeβΨ

j
β = δijei

in order to identify the above limit with R
(0)
αα.

Combining the contributions of all first and second type fixed points we
conclude that

dG =
∑

α

[ d(logDα)/24 − cα−1duα/24 +R(0)
ααduα/2 ] .

4 A mirror theory for concave bundles.

Genus 1. Let X be a compact Kähler manifold and V be a holomorphic
vector bundle E → X with the total space E. We call the bundle V concave
if for any non-constant stable map f : (Σ, ε) → X the induced bundle f∗V
over Σ has no global holomorphic sections: H0(Σ, f∗V ) = 0. Direct sums of
negative line bundles are concave and will play the role of main examples in
this section.

If V is concave then non-constant stable maps to E are actually maps
to the zero section of V and therefore the moduli spaces Eg,n,d = Xg,n,d are
compact for d 6= 0. This allows one to define GW-invariants of non-compact
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space E. Namely, for d 6= 0 denote V ′
g,n,d the obstruction bundle over Xg,n,d

formed by the spaces H1(Σ, f∗V ). The virtual fundamental class [Eg,n,d] is
the cap-product of [Xg,n,d] with the Euler class of the obstruction bundle:

∫

[Eg,n,d ]

Φ =

∫

[Xg,n,d ]

Φ ∧ Euler(V ′
g,n,d).

In order to include the concave bundle spaces into the general framework
of GW-theory one has to extend the above formula to the case d = 0 when
the moduli spaces are non-compact. Following [12] we provide V with the
fiberwise circle action U1 : E by unitary scalar multiplication. The constant
maps f : (Σ, ε) → X form the fixed point set X × Mg,n of U1-action on
Eg,n,0 = E × Mg,n with the normal bundle V ⊗ C = H0(Σ, f∗V ). We
introduce U1-equivariant GW-invariants of E for d 6= 0 — by

∫

[Eg,n,d ]

Φ =

∫

[Xg,n,d ]

Φ ∧ EulerU1(V
′
g,n,d),

and for d = 0 — by the localization formula

∫

[Eg,n,d ]

Φ :=

∫

[Xg,n,d ]

Φ ∧
EulerU1(V

′
g,n,d)

EulerU1(V )
.

The GW-invariants take values in the coefficient field Q(λ) of the U1-equivariant
theory, but the degree d 6= 0 invariants are defined over Q[λ] and specialize
to the non-equivariant ones at λ = 0. The construction immediately extends
to the case of GW-theory equivariant with respect to an additional group G
acting on E → X.

As it is shown in [12] 15 the genus 0 GW-invariants of concave bundle
spaces E have the same properties as equivariant GW-invariants of compact
manifolds including WDVV, string and divisor equations. In particular they
define on the space H = H∗(E,Q(λ)[[Λ]]) provided with the intersection
pairing

〈φ, ψ〉 =

∫

X

φ ∧ ψ ∧ Euler−1
U1

(V )

15Strictly speaking the paper deals with the case of convex base X, but the arguments
easily extend to any Kähler base as soon as the GW-theory for X has been worked out.
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a quasi-conformal Frobenius structure of dimension D = dimCE. The Euler
vector field on H is defined by the usual rules; in particular degλ = 1, and
the 1-st Chern class of the tangent bundle is c1(TE) = c1(TX) + c1(V ).

We generalize our genus 1 theory to concave bundle spaces E. Similarly
to the compact case we introduce potential

G(t, q, λ) :=
∑

n,d

qd

n!
[t, ..., t]nd

encoding genus 1 equivariant GW-invariants of E. The Conjecture 1.2 ap-
plies.

Let us assume now that the base X is provided with a Killing Hamiltonian
action of a torus T , that the action of the complexified torus has only isolated
0- and 1-dimensional orbits, and that the action can be lifted to the bundle
E → X. The Frobenius structure defined on H by the genus 0 GW-invariants
of E is genericly semi-simple. In particular, the canonical coordinates uα,
the “Hessians” ∆α and the asymptotical coefficients R

(0)
αα are defined.

The reduction of the genus 1 potentialGmodulo (q) equals−
∑

α c
α
−1tα/24

where
∑

tαφα is the coordinate representation of the general cohomology
class t in the basis of δ-functions of the fixed points, and cα−1 is the ratio
cdimE−1(TαE)/cdimE(TαE) of the T × U1-equivariant Chern classes of the
tangent space to E at the fixed point α.

The following theorem — and its proof — is a straightforward general-
ization of Theorem 2.1 to concave bundle spaces.

Theorem 4.1.

dG =
∑

α

[ d(log ∆α)/48 − cα−1duα/24 +R(0)
ααduα/2].

Genus 0. We develop now a mirror theory of concave toric bundle spaces
which in principal allows one to compute their genus 0 GW-invariants.

According to T. Delzant, a compact symplectic toric manifold X with the
Picard number r can be obtained by the symplectic reduction of a standard
Cm by a linear torus action T r : Cm on a sutable level of the momentum map.
16 According to F. Kirwan, the equivariant cohomology algebraH∗

Tm(X) with

16We refer to [14] for a detailed discussion of combinatorics, geometry and topology of
symplectic toric manifolds.
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respect to the maximal torus action Tm : Cm is generated over Q[λ1, ..., λm] =
H∗(BTm) by the classes w1, ..., wm of degree 2 Poincaré-dual to the invariant
cycles obtained by the reduction of the coordinate hyperplanes in Cm. The
generators wj can be written as linear combinations

wj =
r

∑

i=1

pimij − λj , j = 1, ..., m,

in terms of some classes p1, ..., pr representing a basis in H2(X,Z). We will
use this basis for labeling by d = (d1, ..., dr) the degrees of curves in X and
denote Λ the semigroup of the degrees.

Consider the concave vector bundle V : E → X which is the direct sum
of l negative line bundles over X. Let

vj = λ′j −
r

∑

i=1

pilij, j = 1, ..., l,

be the 1-st Chern classes of the summands equivariant with respect to the
torus G := Tm × T l action where the second factor acts fiberwise on V by
diagonal transformations.

Our objective is to compute the fundamental solution matrix (Sαβ(t, q, ~))
for the concave bundle space E at q = 1 and t ∈ H0

G(E)⊕H2
G(E). According

to the string and divisor equations it coincides with

Sαβ :=
∑

d∈Λ

qd(φα, e
(t0+p log q)/~ φβ

~ − c
)d,

where {φα} is the basis in H∗
G(E) of δ-functions of the fixed points, qd =

exp(
∑

diti), p log q =
∑

piti, t1, ..., tr are coordinates on H2(E) and t0 is the
coordinate on H0(E).

We introduce the formal series in q and 1/~ with vector coefficients in
H∗
G(E,Q(λ, λ′)) by

J := 1 +
1

~

∑

d6=0

qd ev∗

EulerG(V ′
0,1,d)

~ − c
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where ev : E0,1,d → E is the evaluation map. The vector-function J is related
to the row sum of the matrix (Sαβ) by

∑

α

Sαβ = 〈J, e(t0+p log q)/~φβ〉.

This follows from the string equation in view of
∑

φα = 1.

We introduce the hypergeometric series I in q and 1/~ with coefficients
in H∗

G(X,Q(λ, λ′)) by the following explicit formula:

I :=
∑

d∈Λ

qdΠl
j=1

Π
Lj(d)−1
k=−∞ (vj − k~)

Π−1
k=−∞(vj − k~)

Πm
j=1

Π0
k=−∞(wj + k~)

Π
Dj(d)
k=−∞(wj + k~)

where Lj(d) =
∑

i dilij, Dj(d) =
∑

i dimij.

Theorem 4.2. Suppose that the 1-st Chern class
∑m

j=1 wj +
∑l

j=1 vj of
the concave toric bundle space E is non-negative. Then

e(t0+p log q)/~J and e(t0+p log q)/~I

coincide up to a change of variables

t0 7→ t0 + f0(q) +
∑

λjgj(q) +
∑

λ′jhj(q),

log qi 7→ log qi + fi(q), i = 1, ..., r,

where fi, gj, hj (resp. f0) are q-series supported at Λ − 0 of the homogeneity
degree 0 (resp. 1).

Remark. The hypothesis c1(TE) ≥ 0 guarantees that deg qd ≥ 0 for any
d ∈ Λ. The series I and J have the homogeneity degree 0. By definition
J = 1 + o(~−1). The change of variables transforming I to J is determined
by the asymptotics

I = 1 + ~−1[f0 +
∑

pifi +
∑

λjgj +
∑

λ′jhj] + o(~−1).

Theorem 4.2 is quite similar to the mirror theorem 0.2 in [14] for toric convex
super-manifolds and complete intersections. However in the case of concave
bundles V of dimension l > 1 the series I has the asymptotics 1 + o(~−1)
(due to the factor Πl

j=1(vj − 0~)) and thus coincides with J .
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Corollary 4.3. For concave toric vector bundles E → X of dimension
> 1 the GW-potential J of the total space E coincides with the hypergeometric
series I, provided that c1(TE) ≥ 0.

Actually I = 1 +O(~−l) which allows us to derive

Corollary 4.4.If l > 1 then in the small equivariant quantum cohomology
algebra of E we have v1 ◦ ... ◦ vl = ϕ(±q)v1...vl where ±qd = (−1)

P

Lj (d)qd

and

ϕ(q) =
∑

d:
P

Lj(d)=
P

Dj (d)

L1(d)!...Ll(d)!

D1(d)!...Dm(d)!
qd,

while any shorter quantum product of degree 2 classes coincides with classical.

Proof. We are going to exploit the fact, that the matrix S = (Sαβe
−1
β )

satisfies ~∂S = (p◦)S, where ∂ is the derivative q∂/∂q in the direction of a
second degree class p, as the base for induction. Suppose that for all p we
have (~∂)kS = (pk◦)S and thus = (pk◦) + O(~−1) with no terms of positive
order in ~. Then the row sums

∑

α〈φα, pk ◦ φβ〉 = 〈pk, φβ〉 are constant, and
we conclude that

(~∂)k+1S = ~(∂(pk◦))S + (pk ◦ p) ◦ S

has the row sums 〈pk ◦ p, φβ〉 + O(~−1). Therefore, if the row sum of S
has the asymptotics (1 +O(~−l))e(t0+p log q)/~ (as in our case) we conclude by
induction that for k < l − 1 we have 〈pk ◦ p, φβ〉 = 〈pk+1, φβ〉 for any β and
thus pk ◦ p = pk+1. In the border case k = l − 1 we find pk ◦ p from the row
sum of (~∂)k+1 modulo ~−1.

In the case of the row sum Ie(t0+p log q)/~ we apply polarization of the above
conclusion and consecutively differentiate in the directions corresponding to
the classes p = v1, ..., vl. The resulting series equals v1...vlϕ(±q) modulo ~−1,
and thus v1 ◦ ... ◦ vl = v1...vlϕ(±q). �

While the present paper was in preparation, a result equivalent to Theo-
rem 4.2 in the case of concave bundles over projective spaces was published
in [22]. 17

We outline below a proof of Theorem 4.2 which is completely parallel to
the proof of the mirror theorem for projective and toric complete intersections

17In our lecture course at UC Berkeley [28] the theorem was also stated over projective
spaces.

39



given in [12] and [14] respectively and, as we explain in the footnotes, is a
variant of the proof given in [22].

Scheme of the proof. Step 1. Fixed point localization in E0,2,d gives
rise to a recursion relation for Sαβ. Namely, introduce the formal series Jβα
in q and 1/~ with coefficients in Q(λ, λ′) by

Jβα(q, ~) := Sαβ(q, ~)e−(t0+p(β) log q)/~eβ ,

where p(β) is the localization of p at the fixed point β ∈ E, and eβ =
EulerG(TβE). As a 1/~-series, Jβα = δαβ+O(~−1) by definition, but

∑

α J
β
α =

1 + o(~−1) since the row sum of the matrix Jαβ is equal to the localization
Jβ of the vector-function J at the fixed point β ∈ E.

Proposition 4.5.

Jβα(q, ~) = δαβ +
∑

d6=0

qdP β
α

(d)(~−1) +
∑

γ 6=β

∞
∑

m=1

Jγα(q, χγβ/m)
qmdγβ Coeffβγ (m)

~ − χγβ/m

where P β
α

(d) are polynomials in ~−1 with coefficients in Q(λ, λ′) and Coeffβγ (m)
are (known) rational functions of (λ, λ′).

The proof of Proposition 4.5 [12, 14] is obtained by counting contributions
to Jβα of fixed points in E0,2,d via localization formulas. The tree representing
such a fixed point contains the vertices Σα and Σβ carrying the two marked
points and contains a chain of edges connecting these vertices. In the case
when Σβ is a point, the last edge in the chain (it connects the fixed points γ
and β) yields the localization factor Coeffβγ (m)/(~ − χγβ). The character-
istics m,χγβ, dγβ of the edge here are the same as in Section 3. The rest of
the chain is taken care of by the localization factor Jγα(q, χγβ/m). All other
fixed points (with Σβ being a curve) contribute somehow to the polynomial
tail

∑

P (d)qd.
Proposition 4.5 means that the coefficients of the q-series Jβα are rational

functions in ~ with 1-st order pole at ~ = χγβ/m and the residue at the pole,
controlled recursively by the (known) coefficients Coeffβγ (m), and with high
order pole at ~ = 0.

The same recursion relation (with the index α omitted) holds true for the
row sums Jβ. There is no need here to write down explicitly the recursion
coefficients Coeffβγ (m). In fact the localization components Iβ of the explic-
itly written vector-function I are also q-series with coefficients rational in ~.
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Rewriting Iβ as sums of simple fractions 1/(~ − χγβ/m) yields a recursion
relation for Iβ of the same form as the one for Jβ. It suffices to tell only that
the recursion coefficients Coeffβγ (m) for Iβ are the same as for Jβ (while the
polynomial tails can be different).

Step 2. Given the polynomials P
(d)
αβ (~−1), the recursion relation of Propo-

sition 4.5 determines the matrix (Jβα) unambiguously. The following propo-
sition provides a serious constraint on these polynomials.

Proposition 4.6.For any α, γ the series in q and z = (z1, ..., zr)
∑

β

Jαβ(qe
~z, ~)epβze−1

β Jβγ(q,−~)

has coefficients polynomial in ~.

The proof of Proposition 4.6 (see [12, 14]) is based on another interpre-
tation of GW-potentials Sαβ . Let us consider the concave bundle E → X
which is the cartesian product of E → X with CP 1 and is provided with the
standard action of S1 via the second factor. The G×S1-equivariant cohomol-
ogy of E is isomorphic to the tensor product of S1-equivariant cohomology
algebra Q[π, ~]/(π(π− ~)) of CP 1 (here ~ is the generator of H∗(BS1)) with
the G-equivariant cohomology algebra of E. It has a basis {φαπ, φγ(~−π)}.

Let En,d be the moduli space of genus 0 stable maps to E = E×CP 1 with
n marked points of degre d in projection to E and of degree 1 in projection
to CP 1. We introduce the GW-potential

Gαγ :=
∑

n,d

qd

n!
〈φαπ, pzπ, ..., pzπ, φγ(~ − π)〉n+2

d ,

where the correlator 〈...〉n+2
d refers to the G × S1-equivariant GW-invariant

of the concave bundle space E obtained by integration over [En+2,d].
The series Gαγ depends on ~ but not on ~−1 since it is defined without

localization to fixed points of S1-action. Applying localization to fixed points
of S1-action on En,d and then using the divisor equation one finds that Gαγ
coincides with the convolution series introduced in Proposition 4.6.

Remark. One can also define the GW-potentials Gαγ by

Gαγ =
∑

d

qd
∫

[E2,d]

ev∗
1(φαπ) ev∗

2(φγ(~ − π))EulerG×S1(V ′
2,d)e

Pz,
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where P = (P1, ..., Pr) are the equivariant 1-st Chern classes of the universal
line bundles over E2,d introduced in [14]. The definition uses embeddings of
the toric manifold into projective spaces and the map ϕ from X0,d to the toric
compactification X(d) of spaces of degree d maps CP 1 → X in the case when
X is a projective space.

Summing Gαγ over α and γ we arrive to the polynomiality property
for the row sums Jβ . The same polynomiality property holds true for Iβ:
〈I(qe~z, ~), epzI(q,−~)〉 depends on ~ but not on ~−1. The proof (see [14]) is
based on localization to fixed point of S1-action applied to the series

G̃ =
∑

[X(d)]

EulerG×S1(V ′
(d))e

Pz

which mimics the GW-potential
∑

αγ Gαγ in terms of toric compactifications

X(d) of spaces of degree d maps CP 1 → X.

Step 3. Let us call a solution (Jβα) (respectively (Jβ)) to the recursion
relation of Proposition 4.5 polynomial if it satisfies the polynomiality property
described in Proposition 4.6.

Proposition 4.7. A polynomial solution (Jβα) (respectively (Jβ)) to the
recursion relation satisfying the asymptotical conditions

Jβα = δαβ +O(~−1),
∑

α

Jβα = 1 + o(~−1)

(respectively Jβ = 1 + o(~−1)) is unique (if it exisits).

The proof is obtained by a straightforward argument of perturbation the-
ory as in Proposition 4.5 in [14]. This result completes the proof of Corollary
4.3.

Remark. It is not hard to prove that under the hypotheses of Corollary
4.3 there exist differential operators Dα(~q∂/∂q, q, ~) such that

Jβαe
(pβ log q)/~ = Dα[J

βe(pβ log q)/~].

The proof is constructive, but we do not know how to describe the formulas
for Jβα in a closed form.

Step 4. Since both (Jβ) and (Iβ) are polynomial solutions to the same
recursion relation, the proof of Theorem 4.2 is completed by the following
proposition whose proof is also straightforward.
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Proposition 4.8. Transformations described in Theorem 4.2 preserve
the class of polynomial solutions to the recursion relation.

Remark. One can easily point out constant coefficient differential opera-
tors Dα such that the hypergeometric series

Iβα := e(−p log q)/~Dα[I
βe(p log q)/~]

form a polynomial solution to the recursion relation of Proposition 4.5. They
usually have wrong asymptotics however. The matrix (Iβα) can be trans-
formed to Jβα , but in general the transformation requires matrix differential
operators of infinite order (including changes of variables), and we do not
know how to describe the transformation concisely. 18

18The genus 0 mirror conjecture for complete intersections in the projective space X =
CP n has now five proofs — the four variations of the same proof (in [12], in [14], the one
outlined above but applied to convex bundles over X instead of concave bundles, and the
one in Section 5 of this paper based on nonlinear Serre duality), and the proof recently
given in [22]. Here we compare the methods in [22] with our approach.

The key idea (see Step 2 above) — to study GW-invariants of the product X × CP 1

equivariant with respect to the S1-action on CP 1 instead of GW-invariants on X — is
borrowed in [22] from our paper [12], Sections 6 and 11. In fact this idea is profoundly
rooted in the heuristic interpretation [15] of GW-invariants of X in terms of Floer coho-
mology theory on the loop space LX where the S1-action is given by rotation of loops.
The generator in the cohomology algebra of BS1 denoted ~ in our papers corresponds to
α in [22].

Another idea, which is used in all known proofs and is due to M. Kontsevich [19], is to
replace the virtual fundamental cycles of spaces of curves in a complete intersection by the
Euler cycles of suitable vector bundles over spaces of curves in the ambient space. Both
papers [12] and [22] are based on computing the push forward of such cycles to simpler
spaces. Namely, the cycles are S1-equivariant Euler classes of suitable bundles over stable
map compactifications of spaces of bi-degree (d, 1) rational curves in X×CP 1, the simpler
spaces are toric compactifications of spaces of degree d maps CP 1 → X = CP n, and the
push-forwards are denoted Ed in [12] and ϕ!(χd) in [22].

The toric compactification is just the projective space CP (n+1)d+n of (n + 1)-tuples
of degree ≤ d polynomials in one variable z, which genericly describe degree d maps
CP 1 → X = CP n; the space is provided with the S1-action z 7→ z exp(it) (as in the
loop space!) Thus both papers depend on continuity of certain natural map (denoted µ
in [12] and ϕ in [22]) between the two compactifications. The continuity is stated in [22]
as Lemma 2.6. It coincides with our Main Lemma in [12], Section 11. Our proof of the
lemma based on an inductive computation with line bundles over curves in terms of local
trivializations is replaced in [22] by more standard algebraic-geometrical arguments due to
J. Li. It is worth repeating here the remark from [12] that a different proof of the lemma
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was provided to me by M. Kontsevich, with whom we first discussed the map between the
two compactifications in Fall 1994.

The new concept introduced in [22] — the eulerity property of the classes Ed (Definition
2.3 in [22]) — is to replace both the recursion relation (Step 1 above) and the polynomiality

property (Step 2) of the gravitational GW-invariant (J in the above outline). Eulerity is
actually equivalent to recursion + polynomiality. Theorem 2.5 in [22] asserting the eulerity
property of the classes {Ed} coincides with Proposition 11.4(2) in [12] deduced there from

the recursion + polynomiality. The proof of Theorem 2.5 in [22] is based on the same
localization to fixed points of S1-action on spaces of curves as in our proof of Corollary
6.2 in [12] which guarantees the polynomiality. The recursion is derived in [12] by further
fixed point localization with respect to the torus acting on X = CP n. Thus the proof in
[22] shows that the latter localization argument is unnecessary.

The relationship among the two solutions to the recursion relation — the gravitational
GW-invariant and the explicitly defined hypergeometric series (I in the above outline)
— is based on some uniqueness result (Proposition 11.5 in [12]) for solutions to the re-
cursion relation satisfying the polynomiality property. The corresponding result in [22]
is Theorem 2.11 about linked Euler data. Linked there translates to our terminology as
the recursion coefficients in the recursion relations for I and J being the same. The proof
of the uniqueness result in [22] is the same as in [12] or [14]. The difference is that the
uniqueness property is formulated in [22] solely in terms of the Euler data {Ed} and not
in terms of gravitational GW-invariant the data generate.

The uniqueness result allows to identify the gravitational and hypergeometric solutions
to the recursion by some changes of variables (the mirror transformations). This is de-
duced in [12] from Proposition 11.6 which states that both the recursion relation and the
polynomiality property are preserved by the mirror transformation (see Step 4 above).
The corresponding result in [22] is Lemma 2.15 which says that the (equivalent!) eulerity
property is invariant under mirror transformations. It turns out however that while it is
straightforward to check the invariance of recursion and polynomiality (Proposition 11.6
in [12]), it is technically harder to give a direct proof of the invariance of eulerity, which
requires the notion of lagrangian lifts introduced in [22]. The use of lagrangian lifts is
therefore unnecessary.

The last part of the proof in [22] (see Section 3 there) addresses the following issue:
while the previous results allow to compute some GW-invariants in terms of hypergeo-
metric functions, what do these GW-invariants have to do with the structural constants
of quantum cohomology algebra involved in the formulation of the mirror conjecture?

The computational approach to the issue in [22] is also not free of overlaps with [12].
However it remains unclear to us why the authors of [22] ignore the fundamental relation-
ship between the gravitational GW-invariant and quantum cohomology which resolves
the issue momentarily. The relationship was described by R. Dijkgraaf and B. Dubrovin
[7] in the axiomatic context of 2-dimensional field theories and adjusted to the setting
of equivariant GW-theory in Section 6 of [12]. According to these results the structural
constants of quantum cohomology algebra (such as Yukawa coupling in the case of quintic
3-folds) are coefficients of the linear differential equations satisfied by the gravitational
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Mirrors. The hypergeometric series Iβ can be represented by hypergeo-
metric integrals:

Iβ(q, ~)e(pβ log q)/~ =

∫

Γβ
q⊂E′

q

e(
Pm

j=1Wj+
Pl

j=1 Vj)/~Πm
j=1W

λj/~
j Πl

j=1V
−λ′j/~

j ×

× d logW1 ∧ ... ∧ d logWm ∧ d log V1 ∧ ... ∧ d log Vl
d log q1 ∧ ... ∧ d log qr

.

Here Γβq are suitable non-compact cycles of middle dimension in the complex
m+ l− r-dimensional manifold

E ′
q = {(W,V )|Πm

j=1W
mij

j = qiΠ
l
j=1V

lij
j , i = 1, ..., r}

provided with the local coefficient system W λ/~V −λ′/~.
Due to Theorem 4.2 the above oscillating integral can be considered as

the mirror partner of the concave toric bundle space E 19 in the sense of

GW-invariants in question. In fact such a relationship was the initial point of the whole
project started by [13, 15] and completed in [12, 14].

Thus the two proofs of the same theorem appear to be variants of the same proof rather
than two different ones, except that our reference to the general theory of equivariant
quantum cohomology, developed in [12], Sections 1 – 6, for concave and convex vector
bundles over convex manifolds, is replaced in [22] by a computation.

It is worth straightening some inaccuracy of [22] in quotation. As it is commonly known,
“Givental’s idea of studying equivariant Euler classes” (see p. 1 in [22]) is due to M. Kont-
sevich [19] who proposed a fixed point computation of such classes via summation over
trees. The idea of the equivariant version of quantum cohomology listed on p. 6 of [22]
among “a number of beautiful ideas introduced by Givental in [12, 13]” was actually sug-
gested two years earlier in [16] by a different group of authors. The statement in the
abstract that the paper [22] “is completing the program started by Candelas et al, Kont-
sevich, Manin and Givental, to compute rigorously the instanton prepotential function for
the quintic in P 4” is also misleading: the paper is more likely to confirm that the program
has been complete for two years.

19The series I(q, ~)e(p log q)/~ is annihilated by any linear differential operator
D(~q∂/∂q, q, ~) which annihilates the integral with any cycle Γ, but usually not vice versa.
In order to get a one-to-one correspondence here one should impose some constraint on
the cycles. We do not know however an exact description of the corresponding homology
group. Different choices of such a constraint should correspond to different toric bundles
E → X whith the same matrices (mij) and (lij). Thus the integral formula itself (which
depends only on these matrices) can represent mirror partners of several different spaces
(depending on the level of the momentum map in the symplectic reduction procedure).
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the generalized mirror conjecture suggested in [13]: the equivariant GW-
potential Jβ(q, ~)e(p log q/~) which plays the role of oscillating integrals in our
symplectic topology — singularity theory dictionary coincides with the os-
cillating integral after the transformation to flat coordinates described in the
theorem.

Regardless of the mirror theory one can use the integral representation
in order to compute the genus 1 GW-potential of E via the Hessians ∆α and
the asymptotical coefficients Rα at the critical points of the phase function
∑

(Wj +λj logWj)+
∑

(Vj −λ′j log Vj) under the constraints
∑

mij logWj −
∑

lij log Vj = log qi, i = 1, ..., r. 20 We suggest the reader to recover the
genus 1 potential dG = dq/24q for E = X = CP 1 by this method and

observe that the asymptotical coefficients Rα coincide with R
(0)
αα − cα−1/12.

Application. Consider a generic holomorphic sphere CP 1 in a Calabi-
Yau 3-fold. Such spheres occur in a discrete fashion with the normal bundle
isomorphic to O(−1)⊕O(−1) which is concave. Multiple covers of this sphere
contribute to genus 0 and 1 GW-potentials of the 3-fold, and the problem
of computing these contributions reduces to studying GW-invariants of the
non-compact total space E of the normal bundle.

According to Corollary 4.3 the hypergeometric series 21

I =
∞

∑

d=0

qd
Πd−1
m=0(p +m~)2

Πd
m=1(p− λ+m~)(p+ λ +m~)

coincides with the GW-potential J . The intersection index
∫

[E]

ϕ(p)I =
1

2πi

∮

ϕ(p)I
dp

λ2(p2 − λ2)

equals the sum of a (d = 0)-term which has no limit at λ = 0 with a series
which at λ = 0 turns into

∞
∑

d=1

qd Resp=∞
ϕ(p)dp

p2(p + d~)2
.

20Notice that choosing p1, ..., pr on the role of Lagrange multipliers we arrive at the
equations of the critical points in the form Wj =

∑

i pimij − λj, Vj = λ′

j −
∑

i pilij .
21We reduce the group G here to the one-dimensional torus so that H∗

G(CP 1) =
Q[p, λ]/(p2 − λ2) where p is the equivariant Chern class of O(1).
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This formula with ϕ = exp (p log q)/~ determines the contribution of multiple
covers of the sphere to the genus 0 GW-potentials Sαβ of the Calabi-Yau
3-fold. The result coincides — and Corollary 4.3 explaines why — with
the formula for such a contribution obtained in [15] by toric (and therefore
heuristic) methods. It is shown in [15] how this result implies the famous
formula 22 D3QD/(1 − QD) for contributions of degree D spheres and their
multiple covers to the Yukawa coupling 〈P ◦ P, P 〉 of a Calabi-Yau 3-fold.

Furthermore, according to Corollary 4.4 the class p satisfies the relation
p2 = λ2/(1 − q). in the equivariant quantum cohomology algebra of the
concave space E. From this, we find the differentials of the canonical coor-
dinates:

du± = dt0 + p±d log q = dt0 ± λ(1 − q)−1/2d log q

and thus ∂/∂u+−∂/∂u− = (1−q)1/2λ−1q∂/∂q. From the intersection pairing
〈1, 1〉 = 〈p, p〉 = 0, 〈1, p〉 = λ−2 in the equivariant cohomology of E we find
the “Hessians”: 1/∆+ + 1/∆− = 0, p+/∆+ + p−/∆− = λ−2 and thus

∆± = ±2λ3(1 − q)−1/2.

In particular d log(∆+∆−) = q(1 − q)−1d log q. Using the expression of Rij

in terms of ∆i we find, after some elementary computations,

dR++ = −dR−− =
q2d log q

32λ(1 − q)3/2

and therefore

R++ = −R−− =
(1 − q)1/2

16λ
+

(1 − q)−1/2

16λ
− 1

8λ
.

Since the constants −c±−1/12 = ±1/8λ, we conclude that

(R++ − c+−1/12)du+ + (R−− − c−−1/12)du− = (
1

8
+

1

8(1 − q)
)d log q.

22The formula claimed by physicists [5] was first confirmed in [1] by toric methods
and then rigorously justified by Yu. Manin, J. Bryan, R. Pandharipande by equivariant
methods more elementary than the mirror theory. This example is also contained in [22]
and [28].
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Combining 1/2 of this with 1/48-th of q(1 − q)−1d log q we finally arrive at

dG = (
1

8
+

q

12(1 − q)
)d log q.

In the application to counting multiple elliptic covers of CP 1 the degree
d = 0 term 1/8 is to be ignored. The remaining part d log(1 − q)−1/12 gives
rise to the formula log(1 − QD)−1/12 for the contribution of degree D ratio-
nal curves to the genus 1 GW-potential of a Calabi-Yau 3-fold, claimed by
physicists and recently confirmed by more elementary equivariant methods
in [17].

5 Nonlinear Serre duality.

Let Y ⊂ X be a submanifold given by a section of a vector bundle V . It
is plausible that some GW-invariants of Y depend only on the bundle. In
higher genus realization of this idea encounters some obstruction avoidable
in the genus 0 case which we begin with.

Convex super-manifolds. The vector bundle V : E → X is called
convex if it is spanned by global holomorphic sections. For a stable genus 0
map f : Σ → X we have H1(Σ, f∗V ) = 0 and thus the spaces H0(Σ, f∗V )
form an orbi-bundle V0,n,d : E0,n,d → X0,n,d over the moduli space. We
introduce genus 0 GW-invariants of the super-manifold ΠE by defining the
virtual fundamental class [ΠE0,n,d] as the cap-product of the homology class
[X0,n,d] with the cohomology class EulerG(V0,n,d). Here EulerG means the
equivariant Euler class with respect to a (lifted to V0,n,d) Hamiltonian action
of G on E → X such that all fixed points are contained in the zero section.
Therefore the GW-invariants (A,B, ..., C)dn of the supermanifold ΠE take
their values in H∗(BG,Q).

The genus 0 equivariant GW-theory extends, as it is shown in [12], to
super-manifolds without any serious changes and gives rise to a Frobenius
structure over the ground ring Q(λ)[[Λ]] on the equivariant cohomology space
H = H∗

G(X,Q[[Λ]]). The Poincaré metric on H is induced by the pairing

〈φ, ψ〉 :=

∫

[X ]

φ ∧ ψ ∧EulerG(V ).
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The quasi-conformal structure is determined by the usual grading on H∗
G(X)

and by the 1-st Chern class of the super-manifold:

c1(TΠE) := c1(TX) − c1(V ).

The conformal dimension of the Frobenius structure equals dimCX−dimC(V )
which coincides with the super-dimension of ΠE.

The holomorphic section s : X → E restricted to a curve f : Σ → X in-
duces an element in H0(Σ, f∗V ) and thus — a section s0,n,d : X0,n,d → E0,n,d.
The zero locus s−1

0,n,d(0) coincides with the moduli space Y0,n,d of stable maps
to Y = s−1(0) of degree d in the ambient space X. The virtual fundamental
class [Y0,n,d] in X0,n,d coincides with [X0,n,d]∩Euler(V0,n,d). This (M. Kontse-
vich’s) observation serves as a basis for applications of GW-theory of super-
manifolds to complete intersections. It shows that in the non-equivariant
limit λ = 0 the equivariant correlators (A,B, ..., C)dn of ΠE turn into the cor-
responding correlators of Y among classes induced from the ambient space
X.

Localization via materialization. Let us assume now that the group
GC is a torus acting on X with isolated zero- and one-dimensional orbits,
that the bundle V is the sum of positive line bundles (so that it is convex
and the dual bundle V ∗ is concave), and that the action is lifted to V and
V ∗ in the dual fashion. We will show (following Section 12 in [12]) that the
Frobenius structures of the convex super-manifold ΠE and of the concave
bundle space E∗ are closely related.

Let φα, as usually, be the basis of fixed points in H∗
G(X). Denote e0

α and
e′α the Euler factors EulerG(TαX) and EulerG(Vα) = (−1)dimVEulerG(V ∗)
respectively. We put sβα(~) := Sαβ(~)e−uβ/~e0

β(e
′
β)

−1 where uβ are material-
ized canonical coordinates of Theorem 3.2 applied to the case of the super-
manifold ΠE.

Proposition 5.1. The matrix (sβα) satisfies the recursion relation

sβα(~) = δαβ +
∑

(γ,β)

∞
∑

m=1

sγα(χγβ/m) Coeffβγ (m)
(qdγβe(uγ−uβ )/χγβ)m

~ − χγβ/m
.

The summation indices (γ, β) indicate one-dimensional orbits of GC con-
necting the fixed points γ and β, and dγβ and χγβ have the same meaning as
in Section 3.
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Proof. The proposition is obtained by localization technique in the same
way as the recursion relation in Step 1 in the proof of Theorem 4.2: we cut
out the last edge (m-multiple cover of the orbit (γ, β)) in the chain connecting
the vertices carrying φα and φβ. The recursion coefficient takes in account
the localization factor of the edge. However this time we use the localization
factor of the last vertex (carrying φβ) in the form described in Proposition
3.1: v = (~ + χβγ/m)−1 exp(uβ/~ +muβ/χβγ). �

The linear recursion relation of Proposition 5.1 unambiguously deter-
mines the fundamental solution (Sαβ) as a function of canonical coordi-
nates. The relation between canonical coordinates uβ and the flat coor-
dinates tβ is non-linear and is obtained from the asymptotics

∑

α Sαβ =
(1 + o(~−1))etβ/~(e0

β)
−1e′β. Expand sβα(~) as δαβ + ṡ β

α~−1 + o(~−1). With this
notation we arrive at

tβ = uβ +
∑

α

ṡβα.

Parallel results for concave bundles V ∗ look as follows. Denote here the
fundamental solution matrix by (S∗

αβ) and put s∗ βα = (−1)dimV e′aS
∗
αβe

−uβ/~e0
β.

Then (s∗ β
α(~)) satisfies the recursion relation of Proposition 5.1 with new re-

cursion coefficients Coeff∗ β
γ(m), where uβ are now the canonical coordinates

of Theorem 3.1 applied to the concave bundle space E∗. Respectively, the flat
coordinates t∗β are found from

∑

α S
∗
αβ = (1 + o(~−1))etβ/~(e0

βe
′
β)

−1(−1)dimV :

t∗β = uβ +
∑

α

(e′α)
−1ṡ∗ β

αe
′
β.

Now the Serre duality enters the game as the following identity:

Coeff∗ β
γ(m) = (−1)mcγβCoeffβγ (m),

where cγβ is the value of the 1-st Chern class of the bundle V on the degree
dγβ of the 1-dimensional orbit (γβ).

Indeed, the coeefficients arise from fixed point localization formulas ap-
plied to the map ϕ : Σ0 → CP 1, z 7→ w = zm of Σ0 ≃ CP 1 onto the
orbit. Both coefficients are ratios of two equivariant Euler classes which
come from the virtual normal space to XG

0,n,d in X0,n,d (the denominators),

and from the bundles V0,n,d and V ∗′

0,n,d respectively (the numerators). Due to
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our choice of normalization for s and s∗ the denominators are the same, and
the numerators are the equivariant Euler classes respectively of the space (of
holomorphic sections vanishing at z = ∞)

H0(Σ0, (ϕ
∗V ) ⊗OΣ0(−[∞]) )

and of
H1(Σ0, (ϕ

∗V ∗) ⊗OΣ0(−[0]) ).

By (elementary) Serre duality on Σ0 the second space is canonically dual to

H0(Σ0, (ϕ
∗V ) ⊗KΣ0([0]) ).

But the twisted canonical line bundle KΣ0([0] + [∞]) on Σ0 ≃ CP 1 is triv-
ialized by the invariant section d log z. Since mcγβ is the dimension of the
dual cohomology spaces, we conclude that the numerators differ by the sign
(−1)mcγβ .

Thus we arrive at the “nonlinear Serre duality” theorem [12].

Theorem 5.2. The fundamental solution matrices (Sαβ) and (S∗
αβ) of

the dual convex super-manifold ΠE and concave vector bundle space E∗, con-
sidered as functions of canonical coordinates, satisfy

Sαβ(u, q, ~) = (−1)dimV e′αS
∗
αβ(u,±q, ~)e′β,

where ±qd means (−1)〈c1(V ),d〉qd.

In flat coordinates, the fundamental solution matrices are related there-
fore by an additional transformation of coordinates t∗ = t∗(u(t, q),±q). The
transformation can be found directly from (S∗

αβ) in flat coordinates by com-
paring the asymptotics of row sums in Theorem 5.2 modulo ~−2. Introduce
Ṡ∗
αβ(t

∗, q) by

S∗
αβ = [δαβ + Ṡ∗

αβ~
−1 + o(~−1)]et

∗

β
/~(e0

βe
′
β)

−1(−1)dimV .

After some elementary computation we get

tβ = t∗β +
∑

α

e′αṠ
∗
αβ(t

∗,±q)(e′β)−1.
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Notice that modulo ~−2 the GW-potential S∗
αβ equals

δαβ(e
0
βe

′
β)

−1(−1)dimV + ~−1
∑

d,n

qd(φα, t
∗, ..., t∗, φβ)/n!.

We obtain from this that in more invariant terms the change of variables is
describes by the GW-invariants

tβ =
∑

n,d

(±q)d(e′, t∗, ..., t∗, φβe0
β)

∗/n!

where e′ =
∑

α e
′
αφα is the equivariant Euler class of V . In particular, the Ja-

cobian of the change of variables is described by the operator e′◦ of quantum
multiplication in H∗

G(E∗):

dtβ =
∑

γ

(e◦)βγ(t∗,±q)dt∗γ.

We reiterate a question posed in [12]: how general is the nonlinear Serre
duality relationship between GW-theory of dual supermanifolds and bundle
spaces?

Toric supermanifolds. Let us assume now that V is a direct sum of
positive line bundles over a toric symplectic manifold X with equivariant
Chern classes

vj =
∑

i=1

pilij − λ′j, j = 1, ..., l,

(pi here are the same as in Theorem 4.2) and restrict ourselves to the study
of the fundamental solution (Sαβ) for ΠE along H0 ⊕H2 (with coordinates
t0 and t = log q respectively). As in Section 4, we have

∑

α

Sαβ = 〈J(q, ~)e(t0+p log q)/~, φβ〉

where J is a formal vector q-series with coefficients which are rational func-
tions of λ, λ′ and ~. Combining the nonlinear Serre duality with the mirror
theorem for V ∗ we conclude that the series J is obtained by a change of
variables from its hypergeometric counterpart I . More precisely, introduce
the hypergeometric vector-function

I =
∑

d

qdΠl
j=1

Π
Lj(d)
k=−∞(vj + k~)

Π0
k=−∞(vj + k~)

Πm
j=1

Π0
k=−∞(wj + k~)

Π
Dj(d)
k=−∞(wj + k~)
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whose terms differ from those in the hypergeometric series in Theorem 4.2
(let us denote here that series by I∗) by the factors (−1)l(v1...vl)

−1(v1 +
L1(d)~)...(vl + Ll(d)~) and by the signs ±q. Taking into account Corollaries
4.3 and 4.4 we arrive at the following mirror theorem for toric supermanifolds
[14]. 23

Corollary 5.3. Suppose that the toric supermanifold ΠE has non-negative
1-st Chern class and that dimV > 1. Then the GW-potential J(q, ~)e(t0+p log q)/~

is obtained from the hypergeometric vector series I(q, ~)e(t0+p log q)/~ by the di-
vision I 7→ I/ϕ(q) and by the change of variables

t0 7→ t0 + λg(q) + λ′g′(q) + f0, log qi 7→ log qi + fi(q)

unambiguously determined by the asymptotics

I = ϕ[1 + ~−1(λg + λ′g′ + f0 + f1p1 + ...+ frpr) + o(~−1)].

Proof. The series v1...vlIe
(p log q)/~ is actually obtained by differentiat-

ing I∗e(p log q)/~, as in Corollary 4.4, in the directions corresponding to the
classes 24 −v1, ...,−vl and changing q to ±q. According to Corollary 4.4 the
product e′ = v1 ◦ ... ◦ vl in the quantum cohomology algebra of E∗ equals
v1...vlϕ(±q). This identifies components of the ratio ϕ−1Ie(t0+p log q)/~ with
the GW-potentials

∑

(±q)d(e′,
e(t0+p log q)/~φβe

0
β

~ − c
)∗

whose asymptotical terms of order ~−1 determine the change of variables
prescribed by Theorem 5.2.

23Our hypotheses here are somewhat more restrictive than in [14], first — because
we assume that V is strictly positive, and second — because of the condition dimV >
1. In applications to hypersurfaces, say, in CP n the last condition is not constraining
because one can describe the same hypersurface as a codimension 2 complete intersection
in CP n+1. (We suggest the reader to consider the example of Calabi-Yau 3-folds given by
two equations of degrees 5 and 1 in CP 5 in order to observe how the mirror transformation
of [5] emerges from our formulas in the non-equivariant limit.) We believe that the same
trick can be applied to hypersurfaces in general toric varieties by extending GW-theory to
Kähler orbifolds following M. Kontsevich’s proposal.

24Notice that vj here correspond to −vj in Section 4.
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Elliptic GW-invariants. Trying to extend GW-theory of convex syper-
manifolds to higher genera in a way consistent with GW-theory for corre-
sponding complete intersections we encounter the following difficulty. Let
f : (Σ, ε) → X be a stable map. Even if the bundle V : E → X is convex,
the space H1(Σ, f∗V ) can be nontrivial depending on the map. As a result,
the spaces H0(Σ, f∗V ) do not form a vector bundle over Xg,n,d. In any way,
for a complete intersection Y given by a section of V the virtual fundamental
class [Yg,n,d] in Xg,n,d does not have to be the cap-product of a cohomology
class with the virtual fundamental class [Xg,n,d].

Counter-example. Consider the moduli space X1,1,0 = X×M1,1 of degree
0 elliptic maps to an m-dimensional X. As we know, the virtual fundamental
class is Poincaré-dual to cm(X)− ω cm−1(X). On the other hand the virtual
fundamental class [Y1,1,0] for an (m-l)-dimensional submanifold i : Y ⊂ X is
determined by the push-forwards i∗(cm−l−1(Y )) and i∗(cm−l(Y )). When Y is
given by a section of V , the push-forwards can be computed in terms of V .
Namely, the section identifies the normal bundle to Y in X with i∗V . Thus
the (unstable) total Chern class of Y equals

ξm−l + c1(Y )ξm−l−1 + ...+ cm−l(Y ) = i∗
ξm + c1(X)ξm−1 + ...+ cm(X)

ξl + c1(V )ξl−1 + ...+ cl(Y )
.

The Chern classes of Y we need are extracted from this ratio as

cm−l(Y ) = i∗ Resξ=∞
Chern(X)

Chern(V )

dξ

ξ
and cm−l−1(Y ) = Resξ=∞

Chern(X)

Chern(V )

dξ

ξ2
.

Since ω2 = 0, the virtual fundamental class i∗(cm−l(Y ) − ω cm−l−1(Y ) of
[Y1,1,0] is therefore computed as the Poincaré-dual to

Euler(V )Resξ=∞
Chern(X)

Chern(V )

dξ

ξ + ω
.

and has no reason to be a multiple of cm(X) − ω cm−1(X).

We believe that the virtual fundamental class [Yg,n,d] in Xg,n,d is the non-
equivariant limit of a suitable equivariant homology class in Xg,n,d and thus
can be expressed via localization formulas in terms of the fundamental class
[XG

g,n,d] of the fixed point orbifold. This would allow one to include complete
intersections in the domain of applications of the results and methods of
this paper. We are not ready however to report upon any progress in this
direction and hope to return to this problem elsewhere.
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