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It is mandatory to begin a lecture with something transparent for any
undergraduate math major. Preparing this talk I tried to recall what I myself
was able to understand twenty years ago when I first came to V. Arnold’s
seminar on singularity theory. My choice of the subject area was due to an
advice of a senior student who explained that singularity theory is worth
studying because it is situated on the intersection of virtually all branches of
mathematics. In this lecture, I will try to show that the advice was not so
bad indeed.

Singularity theory [2]. The most of the applications of singularity the-
ory are based on the theorem that the critical point of the function x3 decays
into a local maximum and a local minimum when the function is perturbed
to x3 − λx. Therefore a solid calculus course is among the prerequisites for
students specializing in singularity theory.

The number of non-degenerate critical points to which f = xµ+1 decays
under a generic perturbation fλ can be computed algebraicly as the dimension
of the local algebra

Q := C[x]/(∂f/∂x)

spanned by the monomials 1, x, x2, ..., xµ−1 which are to be multiplied modulo
xµ = 0. Therefore the abstract algebra should be learned as early as possible.

It takes a great deal of complex analysis to prove the general multiplicity
formula µ = dimQ based on the property of the residue pairing

〈ϕ, ψ〉 := Res∞
ϕ(x)ψ(x)dx

∂fλ/∂x

to define a non-degenerate symmetric bilinear form on the algebra Qλ :=
C[x]/(∂fλ/∂x) of functions on the critical set.
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Furthermore, all perturbation patterns of the critical point f are con-
tained in the miniversal deformation obtained by adding to f a general linear
combination of the monomials spanning the local algebra:

fλ(x) = xµ+1 + λ1x
µ−1 + λ2x

µ−2 + ...+ λµ−1x+ λµ.

In symplectic geometry, a family of functions generates a lagrangian
submanifold L in the cotangent bundle T ∗Λ of the parameter space. It is
parametrized by critical points xcrit of the functions from the family:

L := {(p, λ)|∃xcrit : p = dλfλ(xcrit)}.

The lagrangian submanifolds generated by miniversal deformations of iso-
lated critical points provide normal forms for singularities of wave fronts and
caustics arising in geometrical optics and classical mechanics.

In the wave optics, one of the approaches is based on studying oscillating
integrals of the form

I~(λ) :=

∫

Γ

exp(fλ(x)/~)dx

as generalized Airy functions of the parameters λ of the miniversal deforma-
tion. It is the stationary phase approximation

∫

exp(fλ(x))dx ∼ ef(xcrit)/~

√

Hessxcrit
fλ

to the oscillating integral that links wave theory with geometrical optics in
the “short wave limit” ~ → 0.

Similarly to the classical Airy functions, the oscillating integrals can be
described via solutions to Picard-Fuchs linear differential equations. The
monodromy of such solutions around the discriminant in the complex pa-
rameter space Λ is determined by the monodromy of the integration cycles
Γ constructed by tools of Morse theory for the real functions Re fλ. Thus
singularity theory makes use of algebraic and differential topology as well.

The monodromy groups turn out to be reflection groups, and the theory
— related to Dynkin diagrams, the ADE-classification of simple Lie alge-
bras, representations of binary groups of regular polyhedra, the theory of
automorphic functions, the Chevalley theorem for complex cristallographic

2



groups and many other interesting topics a beginning math student is anxious
to learn.

Symplectic topology. After 1982 the subject of Arnold’s seminar be-
gan to drift toward the direction quite remote from singularity theory. The
change was caused by Conley - Zehnder’s proof [4] for symplectic tori of the
Arnold fixed point conjecture [1] saying that hamiltonian transformations on
compact symplectic manifolds must have fixed points.

The proof, based on fairly fresh ideas, inspired several new applica-
tions, and in particular — Ya. Eliashberg’s “existence theorem of symplec-
tic topology”[7]: symplectomorphism groups are C0-closed in the groups of
volume-preserving diffeomorphisms. In 1984 M. Gromov [14] proposed to
construct topological invariants of symplectic manifolds by studying holo-
morphic curves in the spirit of classical enumerative algebraic geometry.

Consider the complex projective space CP n as a model example of a real
2n-dimensional manifold with the imaginary part of the Fubbini Kähler form
on the role of the symplectic structure. One can think of the cohomology
algebra of CP n in Poincaré-dual terms of cycles 1, p, p2, ..., pn−1 representing
the fundamental class, hyperplane section, codimension 2 subspace, etc. The
algebra is provided with the non-degenerate Poincaré intersection pairing

〈ϕ, ψ〉 =
1

2πi

∮

ϕ(p)ψ(p)
dp

pn
.

The only obvious topological invariant of a symplectic structure is the coho-
mology class of the symplectic differential 2-form in the cohomology algebra.

According to M. Gromov, a handful of non-trivial symplectic invariants
can be constructed by counting compact holomorphic curves in CP n of given
genus and degree passing through given generic cycles. For example, the
series

F (t) =
∞

∑

k=0

1

k!
(t, t, ..., t)

where (t, ..., t) means the number of rational curves passing through k generic
cycles representing the same general cohomology class t = t0 + t1p + t2p

2 +
...+ tn−1p

n−1 encodes information about genus 0 invariants.
According to E. Witten [18], the invariants are not independent (to regrets

of symplectic topologists and benefits of algebraic geometers) and obey some
universal identities. For example, the 3-rd partial derivatives Fαβγ of F ,
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considered as a non-linear function on the cohomology spaceH, are structural
constants 〈pα ◦t p

β , pγ〉 of a commutative associative multiplication ◦t on
the tangent space TtH called the quantum deformation of the classical cup-
product.

Moreover, the system of linear differential equations

~∂α
~I = (pα) ◦t

~I

to be solved for a cohomology-valued vector function on H is consistent for
any non-zero value of the parameter ~. This integrability condition and the
associativity of the quantum cup-product represent the universal identities
among the genus 0 Gromov-Witten invariants of compact symplectic mani-
folds.

Furthermore, the asymptotic behavior of solutions I~(t) to the above dif-
ferential equations as ~ → 0 can be described by the “stationary phase
anzatz”

I~ ∼
∑

i

Coeffi
eui/~

√
∆i

where ui and ∆i are functions of t. They describe the common eigenval-
ues ∂αui of the commuting quantum multiplication operators pα◦t and the
Poincaré intersection paring in the basis of eigenvectors respectively.

In particular, the quantum cohomology algebra can be considered as the
algebra of functions on a subvariety L in the cotangent bundle space T ∗H,
the variety L is necessarily lagrangian since its branches over H are locally
represented by the differentials dui, and the Poincaré intersection pairing on
TtH is given by the “residue anzatz”

〈ϕ, ψ〉 =
∑

pi∈L∩T ∗

t
H

ϕ(pi)ψ(pi)

∆i

.

Quantum field theory. The parallel between the structure of Gromov-
Witten invariants in symplectic topology and the data arising in the theory
of critical points of holomorphic functions can be formalized in the axiomatic
language of 2-dimensional conformal quantum field theory. In this theory,
the space-time is represented by a Riemannian surface Σ, the fields φ are
maps from the surface to a suitable target space, and a theory is specified
by a choice of the action functional S{φ} =

∫

Σ
L(φ, dφ, ...) of the fields
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which may depend on the conformal class of the metric on the space-time.
Correlators of the quantum field theory are supposed to be defined by the
Feynman path integrals over the space of all fields and Riemannian metrics

(a, b, ..., c) =

∫

a(φ)b(φ)...c(φ) exp(iS{φ})

where the observables a, b, ..., c are some functionals of the fields and may
also depend on the conformal class of the metric on Σ.

In the axiomatic approach to the quantum field theory one assumes that
the functional integration over the space of all fields (which is hard to make
sense of) has been already performed to yield a closed differential form on
the moduli space of conformal structures. It remains only to integrate this
form over a cycle in the moduli space.

The moduli spaces in question usually denoted M̄g,k are compactified
Deligne-Mumford spaces of so called stable genus g compact complex curves
with k marked points. One can invent many meaningful constructions of
cycles in these spaces. Each such construction generates a correlator to be
defined in any 2-dimensional quantum field theory. The relations between
the homology classes of the cycles represent therefore the universal identities
between the correlators. Thus the system of axioms is implicitly encoded by
the topology of all the Deligne-Mumford spaces. For example, the simplest
of the Deligne-Mumford spaces is the sphere M̄0,4 of values of the cross-ratio
z among 4 marked points on CP 1. The forbidden values z = 0, 1,∞ of the
cross-ratio correspond to the 3 ways of distributing the 4 points in pairs
among the two components of the reducible rational curve which consists of
two intersecting straight lines. The associativity of the quantum cup-product
originates from the simple fact that the points z = 0, 1, and ∞ represent the
same homology class of M̄0,4.

Algebraic topology of other Deligne-Mumford spaces is fairly sophisti-
cated and is understood well only in genus 0 and 1 (see [10]). Nevertheless
one can show that for any compact symplectic manifold the Gromov-Witten
invariants, which correspond to cycles in Deligne-Mumford spaces by the
very definition, indeed satisfy the axioms of the 2-dimensional quantum field
theory. This fact has been rigorously established by several groups of authors
[9] which completed the project started by M. Kontsevich [15] in 1994.

To the contrary, in singularity theory the possibility to associate a 2-
dimensional quantum field theory to any isolated critical point remains un-
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certain. However the fact that the axioms for genus 0 correlators alone hold
true (see [6]) turns out to be equivalent to K.Saito’s approach [17] to complex
oscillating integrals via so called primitive forms and flat coordinates which
has been known in singularity theory since 1982.

The mirror conjecture. It should have been a great surprise for par-
ticipants of Arnold’s seminar to learn that their research in the two remote
directions can be unified by a single system of axioms. Yet this fact does
not indicate any direct relationship between singularity theory and symplec-
tic topology. The idea that such a relationship might exist came from string
theory as The Mirror Conjecture. The idea suggests that not only the axioms
are the same, but also the realization of the axioms by Gromov-Witten in-
variants of a particular symplectic manifold might coincide with a particular
realization of singularity theory type.

Attempting to make the idea more precise, we may conjecture (see [11])
that to a 2n-dimensional compact symplectic manifold X one can natu-
rally associate the mirror partner of X, which consists of a family Yλ of
n-dimensional complex algebraic manifolds, a family fλ of holomorphic func-
tions Yλ → C and a family ωλ of holomorphic volume forms on Yλ, in such a
way that the structure on the parameter space Λ defined in terms of critical
points, residue pairings and complex oscillating integrals

∫

Γ⊂Yλ

exp(fλ/~) ωλ

is isomorphic to the structure defined by the genus 0 Gromov-Witten invari-
ants of X on the cohomology space H. This formulation can be supported
by several classes of examples. Yet the mirror conjecture resembles a uni-
versal “physical” principle (like the Energy Conservation Law which is to be
modified every time it conflicts with experimental data) rather than a precise
mathematical conjecture which is to be proved or disproved.

As some examples suggest, in the Calabi-Yau case, when X is Kähler
and admits holomorphic volume forms, the mirror manifolds Yλ should be
compact (so that fλ = const) but still carry the holomorphic volume form
ωλ. Thus the oscillating integrals degenerate into the periods

∫

γ⊂Yλ

ωλ dis-
tinguishing complex structures on the — also Calabi-Yau — manifolds Yλ.
The relationship between X and Y is symmetric: Gromov-Witten invariants
of Y are to be equivalent to invariants of the complex structures on X. This
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“classical” case of the conjecture gave the name to the mirror symmetry phe-
nomenon. As it is clear now, the first non-trivial example of mirror symmetry
— for some K3 surfaces — has been known in singularity theory since 1974
under the name “Arnold’s strange duality”(see [5]).

Examples. We outline below two applications of the mirror correspon-
dence between singularity theory and symplectic topology.

Consider the complex oscillating integral

I~(t) =

∫

Γ⊂{x0...xn=et}

e(x0+...+xn)/~
dx0 ∧ ...∧ dxn

d(x0...xn)
.

It satisfies the differential equation (~d/dt)n+1I = etI with the symbol pn+1 =
et. This identifies the integral as the mirror partner of CP n. Indeed, the fact
that there is exactly one straight line passing through two distinct points
in CP n can be encoded (see [8]) by the relation pn+1 = et in the quantum
cohomology algebra of CP n where t is the coordinate on H2(CP n). This fact
is known to determine all other genus 0 Gromov-Witten invariants of CP n

via the universal axioms (see [16]).
Consider now a non-singular degree n + 1 hypersurface X in CP n. It

is an example of a Calabi-Yau manifold, and the genus 0 Gromov-Witten
invariants of X depend on infinitely many “independent” numbers md, d =
1, 2, 3, ..., accountable for degree d rational curves in X.

Theorem [12]. Genus 0 Gromov-Witten invariants of X are encoded by
the degenerate “oscillating integral”

∫

γ⊂{x0...xn=et , x0+...+xn=1}

dx0 ∧ ... ∧ dxn

d(x0...xn) ∧ d(x0 + ...+ xn)
.

For n = 4 the theorem allows one to confirm the predictions m1 =
2875, m2 = 609250, m3 = 317206375, m4 = 242467530000, ... for the num-
bers of degree d rational curves on quintic Calabi-Yau 3-folds made in 1991
by Candelas, de la Ossa, Green and Parkes [3] on the basis of the mirror
conjecture. The result can be extended to Fano and Calabi-Yau complete
intersections in projective spaces and more general toric manifolds. Also,
the theorem motivates the quantum Lefschetz hyperplane section conjecture
which identifies the interior integral in the double integral

∫

Y

efλ/~ωλ =

∫

eτ/~dτ

∫

fλ=τ

ωλ/dfλ
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as the mirror partner of the anti-canonical hypersurface in a Fano manifold
X in terms of the mirror partner (Yλ, fλ, ωλ) of X.

In the second example we express the generating function G : H → C,

G(t) =
∞

∑

k=0

1

k!
[t, t, ..., t],

for genus 1 Gromov-Witten invariants in terms of genus 0 Gromov-Witten
invariants of X encoded by the oscillating integral

∫

exp(ft/~)ωt. Take the
critical values ui, i = 1, ..., dimH, of the Morse function ft for local coordi-
nates near a generic point t ∈ H. Let ∆i denote the Hessian of ft at the
critical point with respect to ωt. Let Ri denote another characteristic of the
critical point obtained from the stationary phase asymptotic expansion near
this critical point:

~
∂

∂ui

∫

eft(u)/~ωt(u) = const ~
(dimY )/2 eui/~ [1 +Ri~ + o(~)].

Conjecture.

dG =
1

48

∑

i

d∆i

∆i
+

1

2

∑

i

Ridui.

The conjecture is supported by a corresponding theorem [13] applicable to
certain class of toric manifolds and toric complete intersections. Also, it sug-
gests how to extend to genus 1 the axiomatic genus 0 quantum 2-dimensional
field theory associated in singularity theory to any isolated critical point.
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