Math 140. Midterm exam. 03.03.05. Solutions.

Problem 1. Let C be the plane curve (z(t),y(t) = (t3,°), and let
r(t) = ®(x(t),y(t)) be another plane curve obtained from C' by a possibly
non-linear smooth map ® from the plane to itself. Denote k& the limit at
t — 0 of curvature of the curve ¢t — 7(¢). Find the range of possible values
of k£ when & varies.

The curve is the graph of the double-valued function y = 422 which
has the 2-nd derivative well-defined and continuous including the point z = 0
and equal to 0 at this point (since 5/2 > 2). This implies that £ = 0 (we’ve
found this in one of the homeworks) and that the line y = 0 (call it L) is the
“circle” of infinite radius best approximating the curve C' near the origin.
Application of a differentiable change of variables ® transforms C' and L to
new curves C’ and L’ which still approximate each other up to order 2 near
the image ®(0, 0) of the origin and thus have the same curvature at this point.
Since the curvature of L' can be any number (e.g. ®(x,y) = (z,y + az?/2)
transforms y = 0 to the parabola y = ax?/2 which has the curvature a at
the origin), the same applies to C".

Problem 2. Find all those real numbers which can be the values of the
total curvature of closed regular space curves of non-constant curvature.

Any closed regular space curve has total curvature > 27 by Fenchel’s the-
orem. Any closed regular convex plane curve of index 1 other than a circle
has non-constant curvature and has total curvature equal to 27. Thus the
value 2 is possible. Any value of the total curvature greater than 2 is also
possible and easy to achieve (in a thousand different ways) by locally modi-
fying a curve C' with the total curvature equal to 27. For instance, replace a
small arc on C' by the same arc placed on a parallel plane and connected with
the remaining curve by two helices with appropriate parameters. Notice that
the velocity curves of helices are arbitrary non-equatorial circles on the unit
sphere, and the total curvatures — the lengths of these circles. So varying
the helices with n twists, one can increase the total curvature by any number
between 0 and 47n (twice 27n), where n = 1,2, ... is arbitrary.



Problem 3. Compute the first fundamental form of the parameterized
surface v = u + v, y = u+ 2v, z = u + 3v and find the surface area of the
region u? + v? < r?.

The Riemannian metric is (dz)? + (dy)? + (dz)* =
(du + dv)? + (du + 2dv)* + (du + 3dv)? = 3(du)? + 2 - 6(du)(dv) + 14(dv)>.

The area is

// V314 — 62dudv = \/6// dudv = 7r*V/6,
w242 <r? u24p2<r?

i.e. v/6 times the Euclidean area of the disc of radius .

Problem 4. Compute the total geodesic curvature of the closed curve
x =cost, y =sint, z =1, 0 <t < 27 on the surface of the cone z2+y? = 22.

The part of the cone bounded by the circle z = 1 can be obtained by
bending a piece of paper. Developing the paper back to the plane, we get
a sector bounded by the circular arc of length 27 and of radius v/2 (and
therefore comprising the central angle of 27/y/2 radian). Thus the geodesic
curvature of the circle z = 1 (i.e. the ordinary curvature of the arc repre-
senting it on the Euclidena plane) is 1/4/2. Since the arc length is 27, the
total geodesic curvature of our curve is equal to 27/ V2 = /2.

For those willing to double-check that our development of the cone is an
isometry, consider the explicit parameterization of the cone by the sector
0 < arctanv/u < 27T/\/§, u? + 0?2 <2

z=+/(u2+v2)/2 cos(vV2tan"(v/u)), (1)
y=+/(u? +0?)/2 sin(v2tan" (v/u)), (2)
z =/ (u? 4+ v2)/2, (3)

and compute the Riemannian metric:
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