
Math 140. Midterm exam. 03.03.05. Solutions.

Problem 1. Let C be the plane curve (x(t), y(t) = (t2, t5), and let
r(t) = Φ(x(t), y(t)) be another plane curve obtained from C by a possibly
non-linear smooth map Φ from the plane to itself. Denote k the limit at
t → 0 of curvature of the curve t 7→ r(t). Find the range of possible values
of k when Φ varies.

The curve is the graph of the double-valued function y = ±x5/2 which
has the 2-nd derivative well-defined and continuous including the point x = 0
and equal to 0 at this point (since 5/2 > 2). This implies that k = 0 (we’ve
found this in one of the homeworks) and that the line y = 0 (call it L) is the
“circle” of infinite radius best approximating the curve C near the origin.
Application of a differentiable change of variables Φ transforms C and L to
new curves C ′ and L′ which still approximate each other up to order 2 near
the image Φ(0, 0) of the origin and thus have the same curvature at this point.
Since the curvature of L′ can be any number (e.g. Φ(x, y) = (x, y + ax2/2)
transforms y = 0 to the parabola y = ax2/2 which has the curvature a at
the origin), the same applies to C ′.

Problem 2. Find all those real numbers which can be the values of the
total curvature of closed regular space curves of non-constant curvature.

Any closed regular space curve has total curvature ≥ 2π by Fenchel’s the-
orem. Any closed regular convex plane curve of index 1 other than a circle
has non-constant curvature and has total curvature equal to 2π. Thus the
value 2π is possible. Any value of the total curvature greater than 2π is also
possible and easy to achieve (in a thousand different ways) by locally modi-
fying a curve C with the total curvature equal to 2π. For instance, replace a
small arc on C by the same arc placed on a parallel plane and connected with
the remaining curve by two helices with appropriate parameters. Notice that
the velocity curves of helices are arbitrary non-equatorial circles on the unit
sphere, and the total curvatures — the lengths of these circles. So varying
the helices with n twists, one can increase the total curvature by any number
between 0 and 4πn (twice 2πn), where n = 1, 2, ... is arbitrary.
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Problem 3. Compute the first fundamental form of the parameterized
surface x = u + v, y = u + 2v, z = u + 3v and find the surface area of the
region u2 + v2 ≤ r2.

The Riemannian metric is (dx)2 + (dy)2 + (dz)2 =

(du + dv)2 + (du + 2dv)2 + (du + 3dv)2 = 3(du)2 + 2 · 6(du)(dv) + 14(dv)2.

The area is
∫ ∫

u2+v2≤r2

√
3 · 14 − 62dudv =

√
6

∫ ∫

u2+v2≤r2

dudv = πr2
√

6,

i.e.
√

6 times the Euclidean area of the disc of radius r.

Problem 4. Compute the total geodesic curvature of the closed curve
x = cos t, y = sin t, z = 1, 0 ≤ t ≤ 2π on the surface of the cone x2+y2 = z2.

The part of the cone bounded by the circle z = 1 can be obtained by
bending a piece of paper. Developing the paper back to the plane, we get
a sector bounded by the circular arc of length 2π and of radius

√
2 (and

therefore comprising the central angle of 2π/
√

2 radian). Thus the geodesic
curvature of the circle z = 1 (i.e. the ordinary curvature of the arc repre-
senting it on the Euclidena plane) is 1/

√
2. Since the arc length is 2π, the

total geodesic curvature of our curve is equal to 2π/
√

2 =
√

2π.
For those willing to double-check that our development of the cone is an

isometry, consider the explicit parameterization of the cone by the sector
0 ≤ arctan v/u ≤ 2π/

√
2, u2 + v2 ≤ 2:

x =
√

(u2 + v2)/2 cos(
√

2 tan−1(v/u)), (1)

y =
√

(u2 + v2)/2 sin(
√

2 tan−1(v/u)), (2)

z =
√

(u2 + v2)/2, (3)

and compute the Riemannian metric:

(dx)2 + (dy)2 + (dz)2 =
(udu + vdv)2

u2 + v2
+

(udv − vdu)2

u2 + v2
= (du)2 + (dv)2.
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