Math 140. Midterm exam. 03.03.05. Solutions.

Problem 1. Let C be the plane curve $(x(t), y(t) = (t^2, t^5))$, and let $r(t) = \Phi(x(t), y(t))$ be another plane curve obtained from C by a possibly non-linear smooth map Φ from the plane to itself. Denote k the limit at $t \to 0$ of curvature of the curve $t \mapsto r(t)$. Find the range of possible values of k when Φ varies.

The curve is the graph of the double-valued function $y = \pm x^{5/2}$ which has the 2-nd derivative well-defined and continuous including the point x = 0and equal to 0 at this point (since 5/2 > 2). This implies that k = 0 (we've found this in one of the homeworks) and that the line y = 0 (call it L) is the "circle" of infinite radius best approximating the curve C near the origin. Application of a differentiable change of variables Φ transforms C and L to new curves C' and L' which still approximate each other up to order 2 near the image $\Phi(0,0)$ of the origin and thus have the same curvature at this point. Since the curvature of L' can be any number (e.g. $\Phi(x,y) = (x, y + ax^2/2)$ transforms y = 0 to the parabola $y = ax^2/2$ which has the curvature a at the origin), the same applies to C'.

Problem 2. Find all those real numbers which can be the values of the total curvature of closed regular space curves of non-constant curvature.

Any closed regular space curve has total curvature $\geq 2\pi$ by Fenchel's theorem. Any closed regular convex *plane* curve of index 1 other than a circle has non-constant curvature and has total curvature equal to 2π . Thus the value 2π is possible. Any value of the total curvature greater than 2π is also possible and easy to achieve (in a thousand different ways) by locally modifying a curve *C* with the total curvature equal to 2π . For instance, replace a small arc on *C* by the same arc placed on a parallel plane and connected with the remaining curve by two helices with appropriate parameters. Notice that the velocity curves of helices are arbitrary non-equatorial circles on the unit sphere, and the total curvatures — the lengths of these circles. So varying the helices with *n* twists, one can increase the total curvature by any number between 0 and $4\pi n$ (twice $2\pi n$), where n = 1, 2, ... is arbitrary. **Problem 3.** Compute the first fundamental form of the parameterized surface x = u + v, y = u + 2v, z = u + 3v and find the surface area of the region $u^2 + v^2 \leq r^2$.

The Riemannian metric is $(dx)^2 + (dy)^2 + (dz)^2 =$

$$(du + dv)^{2} + (du + 2dv)^{2} + (du + 3dv)^{2} = 3(du)^{2} + 2 \cdot 6(du)(dv) + 14(dv)^{2}.$$

The area is

$$\int \int_{u^2 + v^2 \le r^2} \sqrt{3 \cdot 14 - 6^2} du dv = \sqrt{6} \int \int_{u^2 + v^2 \le r^2} du dv = \pi r^2 \sqrt{6},$$

i.e. $\sqrt{6}$ times the Euclidean area of the disc of radius r.

Problem 4. Compute the total geodesic curvature of the closed curve $x = \cos t$, $y = \sin t$, z = 1, $0 \le t \le 2\pi$ on the surface of the cone $x^2 + y^2 = z^2$.

The part of the cone bounded by the circle z = 1 can be obtained by bending a piece of paper. Developing the paper back to the plane, we get a sector bounded by the circular arc of length 2π and of radius $\sqrt{2}$ (and therefore comprising the central angle of $2\pi/\sqrt{2}$ radian). Thus the geodesic curvature of the circle z = 1 (i.e. the ordinary curvature of the arc representing it on the Euclidena plane) is $1/\sqrt{2}$. Since the arc length is 2π , the total geodesic curvature of our curve is equal to $2\pi/\sqrt{2} = \sqrt{2\pi}$.

For those willing to double-check that our development of the cone is an isometry, consider the explicit parameterization of the cone by the sector $0 \leq \arctan v/u \leq 2\pi/\sqrt{2}, u^2 + v^2 \leq 2$:

$$x = \sqrt{(u^2 + v^2)/2} \, \cos(\sqrt{2} \tan^{-1}(v/u)), \tag{1}$$

$$y = \sqrt{(u^2 + v^2)/2} \sin(\sqrt{2} \tan^{-1}(v/u)),$$
 (2)

$$z = \sqrt{(u^2 + v^2)/2},\tag{3}$$

and compute the Riemannian metric:

$$(dx)^{2} + (dy)^{2} + (dz)^{2} = \frac{(udu + vdv)^{2}}{u^{2} + v^{2}} + \frac{(udv - vdu)^{2}}{u^{2} + v^{2}} = (du)^{2} + (dv)^{2}.$$