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3.1. Classical problems of Linear Algebra

Nonlinear problems, such as finding maxima or inversion of functions, eval-
uation of areas and volumes, summation of infinite series, etc. are complicated.
Differential and Integral Calculus gives us plenty useful hints how to approach such
problems, but simple universal recipes among them are rare. To the contrary, Lin-
ear Algebra deals with very simple, linear or quadratic functions. Among numerous
questions one may ask about such functions there are, roughly speaking, only four
basic, similarly formulated problems which Linear Algebra can handle. It is com-
pleteness and simplicity of solutions to these problems what makes Linear Algebra
efficient in applications. The four model questions and the answers can be described
as follows.

Question 1. Given m linear functions in n variables,

yl = a11x1 —|— —|— A1nTn

3
Ym = GAqi%1+ ...+ AmnTn

what is the simplest form to which they can be transformed by linear changes of the
variables,

o o= mYi+...+binYn 1 = cnXi+...+enXy

Ym = bm1}/1 + ...+ bmmYm Tn = Canl + ...+ Cnan
The answer is given by

The Rank Theorem. Any m linear functions in n variables can be transformed
by suitable linear changes of dependent and independent variables to exactly one of
the forms:

Yi=X1,...,.Y,=X,,Y,11=0,...,Y,;, =0 where 0 <r <m,n.
The number r featuring in the answer is called the rank of the set of m linear
functions in question.
Question 2. Given a homogeneous quadratic function in n variables,
Q = quat 4 2q122102 + 2q130173 + .. + Guni,
what is the simplest form it can be transformed to by a linear change of the variables

X1 = Clle + ...—|—01an

Ty = Cp1iX1+ ...+ cunXn

The Inertia Theorem. Any homogeneous quadratic function in n variables can
be transformed by a suitable linear change of the variables to exactly one of the
normal forms:

X{4 . +X X - X2

p+q Where 0 <p+q <n.

The numbers p and g of positive and negative squares in the normal form are
called inertia indices of the quadratic function in question. If the quadratic function
@ is known to be positive everywhere outside the origin, the Inertia Theorem tells
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us that in a suitable coordinate system @ assumes the form X7 + ...+ X2 with the
inertia indices p =n, ¢ = 0.

Question 3. Given two homogeneous quadratic functions Q(x1,...,x,) and
S(x1, ..., xn) of which the first one is known to be positive everywhere outside the
origin, what is the simplest form they can be simultaneously transformed to by a
linear change of the variables?

The Orthogonal Diagonalization Theorem. Any pair @, S of homogeneous qua-
dratic functions in n variables, of which Q is positive everywhere outside the origin,
can be transformed by a linear changes of the variables to exactly one of the normal
forms

Q=X+ .. +X2 S=MX}+..+NX2, where \; > ... > \,.

Question 4.Given a constant coefficient system of n linear homogeneous 1-st
order ordinary differential equations
.fl = a11T1+ ... +a1nxy
3
Tn = Qpi%1+ ...+ apnTn

what is the simplest form to which it can be transformed by a linear change of the
phase variables
X1 = Clle + ...—|—01an

Tn = Cn1X1+ ...+ cennXn
The answer to this question is easier to formulate assuming that the coefficients
a;; of the system as well as the coefficients c¢;; in the change of variables are allowed
to be complex numbers.

Example. The system of ODEs

T = )\CCl + X2

IEQ = )\CCQ + x3

imfl = Axmfl + ITm
Tm = AL,

is equivalent to the single m-th order ODE
d
— = A)"y(t) =0
(5 = A"y(t) =0,
d d
y=a1, 2y =AY =2, (2 =Ny =13

and is called the Jordan cell of size m with the eigenvalue A. Let us introduce a

Jordan system of several Jordan cells of sizes my, ..., m, with eigenvalues Ay, ..., A,
similarly equivalent to the system
d m d m
(E —A)™y =0, .., (E = A)"yr =0

of r unlinked ODEs of orders my, ..., m.

The Jordan Theorem. Any constant coefficient system of n linear 1-st order
ODEs can be transformed by a complex linear changes of phase variables to exactly
one (up to reordering of cells) of the Jordan systems with my + ... + m, = n.
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Note that the classification list in the Jordan Theorem (as well as in the Or-
thogonal Diagonalization Theorem) is not discrete since Jordan systems depend on
the choice of complex numbers Ay, ..., A,. In fact the numbers can be found as the
roots of the characteristic polynomial det(A — A) of the coefficient matrix A = [a;;]
of the original ODE system. In the typical case when all roots are simple all Jordan
cells have size 1. Thus we arrive at the following corollary of the Jordan Theorem:

A typical constant coefficient system of n linear 1-st order ODEs can be trans-
formed by linear changes of phase variables to the form

X1 =MX1, ooy Xn = M X

That’s about it. One may ask many other similarly looking questions, for
instance — about simultaneous classification of triples of quadratic forms or pairs
of ODE systems. Such problems are considered unsolvable: Linear Algebra helps
to solve only those problems which can be reduced to one of the previous four or
to their slightly more general variants. The catch here is not in the word general
but in the word reduced: each of the above theorems has numerous equivalent
reformulations and corollaries (we have seen this in the example of the Orthogonal
Diagonalization Theorem on the plane), and one needs quite a bit of experience in
order to recognize the questions which can be reduced to them and rule out those
where Linear Algebra is helpless.

There is however one more basic theorem (or better to say — formula) in Linear
Algebra which has no resemblance with the above classifications. It answers the
question which substitutions of the form

X1 = Clle + ...—|—01an
Ty = Cp1iX1+ ...+ cunXn
are indeed changes of the variables and therefore allow to express Xu, ..., X, linearly

via T1, ..., Tn. It turns out that there exists a remarkable function det of n? variables
€11, .--; Cnp, Which vanishes if and only if the square matrix C' = [¢;;] is not invertible.
We begin our study of higher dimensional linear algebra with properties of matrices
and determinants.

Exercises 3.1.

(a) Formulate The Rank Theorem in the particular case of two linear functions in two
variables. Using the theorem classify linear transformations from the (z1, z2)-plane to (y1,y2)-
plane up to linear changes of coordinates in both planes. Prove The Rank Theorem in the case
m=n=2.

(b) Formulate The Inertia Theorem in the particular case n = 2 and compare the statement
with results of Chapter 1.

(c) Show that X12 + ... + X2 is the only one of the normal forms of The Inertia Theorem
which is positive everywhere outside the origin.

(d) Prove that the special case n = 2 of The Orthogonal Diagonalization Theorem is equiv-
alent to the Orthogonal Diagonalization Theorem of Chapter 1.

(e) Using the binomial formula show that that the Jordan cell of size m with the eigenvalue
A can be written as the m-th order ODE

R ) R ) e A G e (R PN G R

(f) Show that y(t) = eM(co + tcy + ... + ¢m_1t™ 1) is the general solution to the ODE
d m,, —
=AMy =0.
(g) Specialize the formulation of the Jordan theorem to the case of n = 2 linear ODEs
%X = Ax.



