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Abstract The geometry of Kepler’s problem is elucidated by lifting the motion from

the (x,y)-plane to the cone r2 = x2 + y2.
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Introduction. In the senior year at the Moscow high school no. 2, my astronomy

term paper1 was about Kepler’s laws of planetary motion. The intention was to de-

rive the three famous empirical laws from the first principles of Newtonian gravita-

tion. Assuming the 1st law, which stipulates that each orbit is a conic section with

the center of attraction at its focus, I had no difficulty deriving the 2nd and 3rd laws

(about conservation of sectorial velocity, and the relation between the periods of revo-

lutions with the orbits’ sizes respectively). However, the derivation of the 1st law per

se resisted my effort, apparently, for the lack of skill in solving Ordinary Differential

Equations.

Physics and math were taught in our school at an advanced level, and so I had no

problems with differentiation of functions, and even with setting Kepler’s problem in

the ODE form:

r̈ =−k
r

|r|3 .

Here r denotes the radius-vector of the planet with respect to the center of attraction,

and k is the coefficient of proportionality in the Newton law “F = ma” between the

acceleration and the “inverse-square radius.” Yet, solving such ODEs was beyond our

syllabus.

The unfortunate deficiency was overcome in college, but the traditional solution

of Kepler’s problem — by integrating the ODE in polar coordinates — left a residue
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of frustration. Namely, it remained unclear why, after all, the trajectories are conic

sections. So, the high-school project became transformed into the question:

Where is the cone whose sections are the planetary orbits?

In this article, the answer to this question is presented among several other related

achievements, including a derivation of Kepler’s 1st law for readers familiar with the

cross-product of vectors and differentiation, but not necessarily integration or ODEs.

Thirty years ago, an abstract of this article was included by V. I. Arnold into his

joint with V. V. Kozlov and A. I. Neishtadt survey of classical mechanics [2]. Since

then, I gave several presentations of this elementary topic: on a lunch seminar, student

colloquium, math circle, in some lecture courses, but it might still be worth appearing

in print.

In fact, there is no lack of accounts on Kepler’s problem, icluding some of el-

ementary nature (e.g. [1], [3], [4]), though in those I’ve seen, I don’t notice much

overlap with ours. In any case, our treatment can hardly provide anything but one

more geometric interpretation of what’s been revolving around for ages.

1. Conservation of angular momentum. The angular momentum vector is defined

as the cross-product

M = m(r× ṙ),

where m is the mass of the planet. Differentiating, one finds

Ṁ = m(ṙ× ṙ)+m(r× r̈) = 0,

whenever the force field is central (i.e. mr̈ = F(r) is proportional to the radius-vector

r). Thus, in a central force field, the angular momentum vector is conserved. In par-

ticular, the direction of M is conserved, that is, the motion of the planet occurs in

the plane spanned by the radius-vector r(0) and the velocity vector ṙ(0) at the initial

moment t = 0. Thereby Kepler’s problem in 3D is reduced to Kepler’s problem in

2D.

2. Kepler’s 2nd law describes relative times the celestial body spends in various

parts of the trajectory: In equal times, the radius-vector of the body sweeps equal ar-

eas. In other words, the “sectorial velocity” is constant. This is true for motion in any

central force field and follows from the the conservation of the angular momentum

vector M = m(r× ṙ). In particular, the length µ := m|r× ṙ| of the angular momentum

vector is conserved, and so is the sectorial velocity |r× ṙ|/2 = µ/2m.

3. The cone and the orbits. In the 3-dimensional space with coordinates (x,y,r),
consider the cone given by the equation

r2 = x2 + y2.

A purely geometric theorem below recasts Kepler’s 1st law as the claim that in Ke-

pler’s 2D problem with the center of attraction located at the origin (x,y) = (0,0),
trajectories are the projections to the (x,y)-plane of plane sections of this cone.
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Definition. The geometric locus of points on the plane with the fixed ratio

(called eccentricity and denoted e) between the distances to a given point (called

focus) and a given line (called directrix) is a quadratic curve called ellipse, when

e < 1, parabola, when e = 1, and hyperbola, when e > 1.

This is one of classical definitions of ellipses, parabolas, and hyperbolas. The case

of circles corresponds to e = 0 and the directrix “located at infinity”.

Theorem. The projection of a conic section to the (x,y)-plane is a quadratic

curve whose focus is the vertex of the cone, directrix is the line of intersection of the

cutting plane with the plane r = 0, and eccentricity is equal to the tangent of the

angle between the planes.
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Fig. 1 An orbit’s focus, directrix, and eccentricity

Proof. Since generators (PO, see Figure 1) of the cone r2 = x2 + y2 make 45◦

with the plane r = 0, the distance from a point (P) on the cone to its projection (P′)
to the plane is equal to the distance from the projection to the vertex of the cone

(PP′ = OP′), and for points of the same plane section is proportional to the distance

(QP′) from the projection to the line of intersection of the secting plane and the plane

r = 0, with the coefficient of proportionality equal to the slope (tan(∠PQP′)) of the

secting plane.

4. Kepler’s 1st law by differentiation. Suppose that a point is moving on the surface

of the cone r2 = x2 + y2 in such a way that the projection of the point to the plane

obeys the equation of motion r̈ =−kr/|r|3. We represent the position of the point on

the cone by its radius-vector R in space with respect to the origin shifted by distance

l along the axis of the cone:

R := r+ re− le, where e = (0,0,1).
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We choose the shift to be different for different trajectories and determined by the

value of sectorial velocity: l = µ2/km2. Since it is conserved, the same value of l

serves all points of one trajectory.

Proposition. In Kepler’s problem on the plane, each trajectory (with the given

value of sectorial velocity), when lifted to the cone r2 = x2 + y2, obeys the equation

of motion:

R̈ =−k
R

r3
.

N
R

R

O

el

.

Fig. 2 Fictitious angular momentum

Proof. Differentiating R with respect to time, we find:

Ṙ = ṙ+
ṙ · r

r
e.

Differentiating again, we get:

R̈ = r̈+
r̈ · r

r
e+

ṙ · ṙ
r

e− (ṙ · r)2

r3
e.

Taking in account the equation of motion r̈ =−kr/|r|3, we have:

R̈ =−k
r

r3
− k

r2
e− (ṙ · ṙ)(r · r)− (ṙ · r)2

r3
e.

Note that

(ṙ · ṙ)(r · r)− (ṙ · r)2 = |r× ṙ|2 = µ2

m2
= kl,

four times the square of the sectorial velocity. Thus, at a fixed value of sectorial

velocity, we obtain:

R̈ =−k
r+ re− le

r3
=−k

R

r3
.
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Corollary 1. The fictitious angular momentum N := m(R× Ṙ) is conserved.

Proof. Ṅ = m(Ṙ× Ṙ)+m(R× R̈) = 0, since R̈ is proportional to R.

In particular, the direction of vector N is conserved, and so the trajectory lies in

the section of the cone by the plane passing through the point le and spanned by

vectors R(0) and Ṙ(0) (perpendicular to N). We have arrived at

Corollary 2 (Kepler’s 1st law). When lifted from the plane to the cone, Keple-

rian trajectories become plane sections of the cone.

Corollary 3. Keplerian trajectories with a fixed value of sectorial velocity cor-

respond to the sections of the cone by planes passing through the same point le on

the axis, l = µ2/km2.

Note that l here is non-negative. To obtain negative values of l one must assume

that k < 0, i.e. that the planet is repelled from the Sun by the central anti-gravity force

inversely proportional to the square of the distance (as in Coulomb’s law for electric

charges of the same sign). A plane crossing the axis of the cone at a point below

the plane r = 0 can intersect the part of the cone above this plane along one of the

branches of a hyperbola, namely the branch unlinked with the axis. Thus, as a bonus,

we obtain:

Corollary 4. In Kepler’s anti-gravity problem, planets move along branches

of hyperbolas with the Sun at the focus, namely along those branches which (being

separated from the focus by the directrix) don’t go around the Sun.

Remark. The equation of motion on the surface of the cone splits into two: the

usual Newton equation for radius-vector r on the plane, and the scalar equation

r̈ =− k

r2
+

µ2

m2r3
.

The latter is the effective Newton equation in polar coordinates at a fixed value of

sectorial velocity. The traditional solution of Kepler’s problem consists in treating the

effective equation as a mechanical system with one degree of freedom and integrating

it using the effective energy conservation law.

5. Dandelin’s spheres. The definition of an ellipse as a quadratic curve with the ec-

centricity < 1 competes with another definition of an ellipse as the locus of points

on the plane with a fixed sum of distances to two given points called foci. The fol-

lowing famous geometric proof of the fact that closed conic sections are ellipses was

invented by French mathematician G. P. Dandelin (1794 – 1847).

Into a conical cup (Figure 3), place two balls so that they, being tangent to the

cone, also touch the secting plane (one from above the other from below). The claim

is that the points F and G of tangency with the plane are the foci of the conic section.

Indeed, given a point A on the conic section, the segments AF and AG are tangent

to the respective balls at the points F an G since the balls touch the plane at these

points. The segments AB and AC of the generator OA of the cone are also tangent to

the balls, since the balls touch the cone at B and C respectively. Since all tangents to
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the same ball from the same point have the same length, one concludes that AF = AB,

AG = AC, and hence AF +AG = BC. The latter is the distance along a generator of

the cone between the parallel circles along which the cone touches the balls. This

distance does not depend on the position of A on the conic section.

Exercise. Extend Dandelin’s construction to hyperbolic sections of the cone.

F

G

B

O

A

C

Fig. 3 Dandelin’s spheres

6. Osculating paraboloids. Here we reconcile the two definitions of ellipses by lo-

cating the second focus of a Keplerian orbit.

Theorem. Into the conical cup, inscribe a paraboloid of revolution so that it

touches the secting plane. Then the projection of the point of tangency to the hori-

zontal plane is the second focus of the projected conic section (the vertex of the cone

being the first one).

Proof. First, note that a paraboloid of revolution is the locus of points equidistant

from its focus lying on the axis of revolution and the directrix plane perpendicular to

it. Consequently, the plane tangent to the paraboloid at a given point is the locus

of points equidistant from the focus and the foot of the perpendicular dropped from

the given point to the directrix. (This shows that the direction normal to the tangent

plane makes equal angles with the direction to the focus and the direction of the axis,

which implies the famous optical property of the parabolic mirror to reflect all rays

parallel to the axis into the focus.) To justify this claim, consider the plane of all

points equidistant from the focus and the aforementioned foot of the perpendicular

dropped from the given point. Any other point on this plane is farther from the foot

(and hence from the focus) than from the directrix, and therefore lies outside the

paraboloid. Thus, the plane has only one common point with the paraboloid, and

hence touches it at this point.
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Lemma. Paraboloids of revolution inscribed into the cone r2 = x2 + y2 have the

plane r = 0 as the directrix, and the center of the circle of tangency with the cone as

the focus.

Indeed, at the circle of tangency, the tangent planes make 45◦ with the direction

of the axis, hence the center of the circle must be the focus, and hence the plane r = 0

the directrix.

Now let P be a point on the section of the cone by the plane tangent to the

paraboloid at F (Figure 4), P′ and P′′ be the projections of P to the horizontal planes

through the focus O′ of the paraboloid and the vertex O of the cone respectively,

and likewise F ′ and F ′′ be the projections of F . Then the right triangles PP′O′ and

F ′′P′′P are congruent, since PO′ = PF ′′ (as was explained before the lemma), and

P′O′ = P′′O = P′′P (as was already noted in Section 3). Therefore P′′F ′′ = P′P and

so P′′O+P′′F ′′ = P′P′′, the distance from the focus O′ of the paraboloid to the direc-

trix plane, and does not depend on the choice of a point P on the conic section.

P’’

O’

O

F

P

P’ F’

F’’

Fig. 4 Osculating paraboloids

Corollary. Elliptic Keplerian orbits with a fixed length of their major axis cor-

respond to the sections of the cone by planes tangent to the same paraboloid of revo-

lution inscribed into the cone (and the length is equal to the distance from the focus

to the directrix of the paraboloid).

Indeed, the major axis has length equal to the sum of the distances to the foci.

We will see that the same condition characterizes orbits with a fixed period of

revolution, and a fixed value of total energy.

Exercise. Extend the proof and the corollary to hyperbolic orbits.
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7. Kepler’s 3rd law. The period T of revolution can be found as the ratio of the area

enclosed by the orbit to the sectorial velocity. The latter is µ/2m, and the square of

it µ2/4m2 coincides with kl/4 (in our earlier notation). The area of an ellipse with

semiaxes a ≥ b is equal to πab. Combining, we find a geometric expression for the

square of the period:

T 2 =
4π2

k

a2b2

l
.

The farthest from and closest to the Sun positions of the planet are called the aphelium

and perihelium respectively. Denote by r1 and r2 the respective distances to the Sun,

and examine Figure 5A showing the axial cross-section of the cone over the major

axis of an elliptic orbit.
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Fig. 5 Arithmetic, geometric, and harmonic means

Proposition. The major (a) and minor (b) semiaxes of an elliptic orbit, and

the altitude (l) of the corresponding secting plane over the vertex of the cone are

respectively the arithmetic, geometric, and harmonic means between the aphelium

(r1) and perihelium (r2) distances:

a =
r1 + r2

2
, b =

√
r1r2, l =

2

1/r1 +1/r2
.

Proof. The first is obvious. The second is standard (see Figure 5B): By the

Pythagorean theorem, since the half-distance f between the foci equals (r1 − r2)/2,

we have b2 = a2 − f 2 = (r1 + r2)
2/4− (r1 − r2)

2/4 = r1r2. Lastly (see Figure 5A),

the area r1r2 of the right triangle KOM equals the sum of the areas lr1/2 and lr2/2

of the triangles into which the angle bisector OL divides the triangle KOM. Thus the

length l of the bisector equals 2r1r2/(r1 + r2). ⊓⊔
We have al = b2: the geometric mean between two quantities is the geometric

mean between their arithmetic and harmonic means. Thus, b2/l = a, and

T 2 =
4π2

k
a3.

This is Kepler’s 3rd law: The squares of the periods are proportional to the cubes of

the orbits’ major semiaxes.
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8. The total energy. The sum of the kinetic and potential energy

E := m
|ṙ|2
2

− mk

|r| ,

is conserved, as it is readily verified by differentiation.

On the other hand, at the aphelium and perihelium, where the velocity vector ṙ is

perpendicular to r, we have (from conservation of sectorial velocity) |r| |ṙ| = µ/m.

Excluding the velocities, we obtain the following quadratic equation for r = r1 and

r = r2:

µ2

2m

(

1

r

)2

−mk

(

1

r

)

−E = 0.

By Vieta theorem, we have

2

l
=

1

r1
+

1

r2
=

2km2

µ2
, and r1 + r2 =−mk

E
.

The first equality shows (again) that at a fixed value of sectorial velocity the secting

planes hit the axis of the cone at the same point. The second equality implies that

elliptic orbits have negative total energy, and that the value of E/m is determined by

the major semiaxis of the orbit.

Corollary. Orbits with a fixed value of the total energy (as well as orbits with

a fixed period of revolution) correspond to sections of the cone by planes tangent to

the same paraboloid of revolution inscribed into the cone.

α

Fig. 6 The effect of the angular defect

9. The gravity of curvature. The Keplerian dynamics lifted from the plane to the

cone x2 + y2 = r2 can be considered as Lagrangian dynamics on the cone itself with

potential energy −mk/r, where however the distance r to the vertex of the cone, as

well as the kinetic energy, are dictated by the metric on the cone obtained from the

degenerate metric (dx)2 + (dy)2 + 0(dr)2 in 3-space, induced by the projection of
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the space to the plane. Consider now how the dynamics changes when the metric on

the cone is induced from a more general metric of the form (dx)2 +(dy)2 + ε(dr)2,

Euclidean for ε > 0 and Minkovsky for ε < 0 (but > −1 so that the cone remains

Euclidean). When cut along a generator, the cone can be developed isometrically to

the plane. The development covers a sector which for ε 6= 0 differs from full angle 2π

by the angular defect α (easily computed as α = 2π(
√

1+ ε − 1). The ratio α/2π

can be interpreted as the amount of the Gaussian curvature of the cone accumulated

at the vertex. This curvature has the following effect on the Keplerian dynamics (see

Figure 6): the usual Keplerian orbits on the development plane jump from one edge

of the cut to the other and proceed along the trajectory rotated through the angle α .

This results in the rotation of the perihelium by α radians per revolution — somewhat

similar to the rotation of the perihelium of Mercury explained by the general theory

of relativity.

Fig. 7 Two beads on the strings

10. An exercise on hidden symmetries. The integrability of Kepler’s problem is

based on the law of conservation of angular momentum, which, in full agreement

with E. Noether’s theorem, is due to the rotational symmetry (isotropy) of space. In

the following problem, the isotropy is explicitly broken:

Two identical beads slide without friction along two perpendicular strings (Fig-

ure 7) and interact with each other gravitationally, i.e. by central attracting force

proportional to the inverse square of the distance between the beads. Describe the

motion of this system (assuming that each bead crosses the other bead’s string with-

out collision).
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