
Math 104: Introduction to Analysis

SOLUTIONS

Alexander Givental

HOMEWORK 1
1.1. Prove that 12 +22 + · · ·+n2 = 1

6
n(n+1)(2n+1) for all n ∈ N.

Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem
holds true for n = 1. To prove the theorem, it suffices to assume that
it holds true for n = m and derive it for n = m + 1, m = 1, 2, 3, ....

We have

f(m + 1) − f(m) =
1

6
(m + 1)[(2m + 3)(m + 2) − m(2m + 1)]

=
1

6
(m + 1)(6m + 6) = (m + 1)2.

By the induction hypothesis, f(m) =
∑m

k=1 k2, and therefore

f(m + 1) = f(m) + (m + 1)2 =

m+1
∑

k=1

k2.

1.9 Decide for which n the inequality 2n > n2 holds true, and prove
it by mathematical induction.

The inequality is false n = 2, 3, 4, and holds true for all other n ∈ N.
Namely, it is true by inspection for n = 1, and the equality 24 = 42

holds true for n = 4. Thus, to prove the inequality for all n ≥ 5, it
suffices to prove the following inductive step:
For any n ≥ 4, if 2n ≥ n2, then 2n+1 > (n + 1)2.

This is not hard to see: 2n+1 = 2 · 2n ≥ 2n2, which is greater than
(n+1)2 provided that (n+1) <

√
2n i.e. when n > 1/(

√
2−1) =

√
2+1,

which includes all integers n ≥ 4.

1.12bc. Put
(

n
k

)

:= n!/k!(n − k)!, prove (a)
(

n
k

)

+
(

n
k−1

)

=
(

n+1
k

)

for

k = 1, ..., n, and (b) derive the binomial theorem by induction.
(b) Note that

1

k
+

1

n − k + 1
=

(n − k + 1) + k

k(n − k + 1)
=

n + 1

k(n − k + 1)
.

Therefore

n!

k!(n − k)!
+

n!

(k − 1)!(n − k + 1)!
=

n!

(k − 1)!(n − k)!

[

1

k
+

1

n − k + 1

]

=
n!

(k − 1)!(n − k)!

[

n + 1

k(n − k + 1)

]

=
(n + 1)!

k!(n − k + 1)!
.

(c) For n = 1 we have (a + b)n = a + b =
(

1
1

)

a +
(

1
1

)

b.
1
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Suppose for some n ≥ 1

(a + b)n =

n
∑

k=0

(

n

k

)

akbn−k.

Then

(a + b)n+1 = (a + b)
n

∑

l=0

(

n

l

)

albn−l =
n+1
∑

k=0

[(

n

k − 1

)

+

(

n

k

)]

akbn+1−k

=

n+1
∑

k=0

(

n + 1

k

)

akbn+1−k.

2.5. Show that [3 +
√

2]2/3 does not represent a rational number.
Suppose it does represent a rational number q. Then q3 = [3+

√
2]2 =

9+6
√

2+2 = 11+6
√

2. Then
√

2 = (q3−11)/6 ∈ Q, which contradicts
irrationality of

√
2.

HOMEWORK 2
3.6b. Use induction to prove

|a1 + a2 + · · ·+ an| ≤ |a1| + |a2| + · · · + |an|
for n numbers a1, a2, . . . , an.

1◦ For n = 1, we need |a1| ≤ |a1|, which is true tautologically.
2◦ Suppose the required inequality is true for n = k. Then for

n = k + 1, using the triangle inequality, we obtain:

|a1 + · · ·+ak +ak+1| ≤ |a1 + · · ·+ak|+ |ak+1| ≤ |a1|+ · · ·+ |ak|+ |ak+1|.
Thus the required inequality holds true for any n = 1, 2, . . .

4.4. Find infima of sets:

(a) inf[0, 1] = 0 (b) inf(0, 1) = 0
(c) inf[2, 7] = 2 (d) inf{π, e} = e
(e) inf{ 1

n
: n ∈ N} = 0 (f) inf{0} = 0

(g) inf[0, 1] ∪ [2, 3] = 0 (h) inf ∪∞
n=1 = [2n, 2n + 1] = 2

(i) inf ∩∞
n=1[− 1

n
, 1 + 1

n
] = 0 (j) inf{1 − 1

3n : n ∈ N} = 2
3

(k) inf{n + (−1)n

n
: n ∈ N} = 0 (l) inf{r ∈ Q : r < 2} = −∞

(m) inf{r ∈ Q : r2 < 4} = −2 (n) inf{r ∈ Q : r2 < 2} = −
√

2
(o) inf{x ∈ R : x < 0} = −∞ (p) inf{1, π

3
, π2, 10} = 1

(q) inf{0, 1, 2, 4, 8, 16} = 0 (r) inf ∩∞
n=1(1 − 1

n
, 1 + 1

n
) = 1

(s) inf{ 1
n

: n ∈ N is prime} = 0 (t) inf{x ∈ R : x3 < 8} = −∞
(u) inf{x2 : x ∈ R} = 0 (v) inf{cos πn

3
: n ∈ N} = −1

(w) inf{sin πn
3

: n ∈ N} = −
√

3
2
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4.12. Prove that given a < b, there exists an irrational x such that
a < x < b. Hint: first show that r +

√
2 is irrational when r ∈ Q.

Following the hint, we prove by contradiction (reductio ad absurdum)
that r +

√
2 is irrational when r ∈ Q. Indeed, if for a rational r, the

number x = r +
√

2 were rational, then
√

2 = x − r would have been
rational, which is false.

Now, using density of Q in R, find a rational r such that a −
√

2 <
r < b −

√
2. Then x = r +

√
2 is irrational, and such that a < x < b.

4.14b. For bounded subsets A, B ⊂ R, and S = {a+ b : a ∈ A, b ∈
B}, prove that inf S = inf A + inf B.

For any a ∈ A and b ∈ B, we have:

a ≥ inf A, b ≥ inf B, and hence a + b ≥ inf A + inf B.

Therefore x := inf A + inf B is a lower bound of S.
To prove that x is the greatest lower bound, let us show that for any

ǫ > 0 we can find s ∈ S such that x ≤ s < ǫ (which would guarantee
that no lower bound of S greater than x exists). For this, find a ∈ A
and b ∈ B such that inf A ≤ a < ǫ/2 and inf B ≤ b < ǫ/2. Then
s = a + b ∈ S will satisfy x ≤ s < e indeed.

4.15. Let a, b ∈ R. Show that if a ≤ b+ 1
n

for all n ∈ N, then a ≤ b.
Let us argue by reductio ad absurdum. Suppose that a > b. Then

a − b > 0, and therefore, by the Archimedian property of R, there
exists n ∈ N such that a − b > 1

n
. For this n, we have: a > b + 1

n
,

which contradicts the hypotheses.

HOMEWORK 3
8.7. Show that sn = cos(nπ/3) does not converge.
For n = 1, ..., 6 the terms of the sequence are 1/2, −1/2, −1, −1/2,

1/2, 1, which then repeat periodically. Thus for any number s, and any
N one can find n > N such that sn = 1, hence sn+3 = −1, an therefore,
by the triangle inequality, either |sn − s| ≥ 1, or |sn+3 − s| ≥ 1.

8.8.c Prove that lim[
√

4n2 + n − 2n] = 1/4.

√
4n2 + n − 2n =

n√
4n2 + n + 2n

=
1

2
√

1 + 1
4n

+ 2
.

For any 1 < a, we have 1 < a < a2, and therefore

1 ≤ lim

√

1 +
1

2n
≤ lim

[

1 +
1

2n

]

= 1 + 0 = 1.
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Applying other theorems about behavior of limits under arithmetic
operations with sequences, we conclude that

lim
1

2
√

1 + 1
4n

+ 2
=

1

2 · 1 + 2
=

1

4
.

9.5. Let t1 = 1 and tn+1 = (t2n + 2)/2tn for n ≥ 1. Assume that tn
converges and find the limit.

Suppose that t := lim tn exists. Then lim tn+1 = t as well. For
all n, we have: 2tntn+1 = t2n + 2. Passing to the limit and using
theorems about limits of sums and products of sequences, we conclude
that 2t2 = t2 + 2. (In other words, the limit t if exists, must be a fixed
point of the function tn+1 = (t2n + 2)/2tn, namely: t = (t2 + 2)/2t.) We
find therefore t = ±

√
2. Since the sequence tn with the initial value

t1 = 1 stays positive for all n, the limit has to be +
√

2.
Remark. Trying this method of computing

√
2, we find: t1 = 1,

t2 = 3/2, t3 = 17/12, which is already a good approximation, since
(17/12)2 = 289/144 = 2 1

144
.

9.12. Assume all sn 6= 0 and that the limit L = lim |sn+1/sn| exists.
Show that if L < 1, then lim sn = 0.

Pick a such that L < a < 1. For ǫ = a − L > 0, there exists N such
that for all n ≥ N the ratio sn+1/sn differs from L by no more than ǫ,
and hence |sn+1/sn| < L + ǫ = a < 1. In particular, |sN+1| < a|sN |,
|sN+2| < a|sN+1| < a2|sN |, and so on, i.e. by induction, |sN+n| < an|sN |
for all n ∈ N. We conclude:

lim
n→∞

|sn| = lim
n→∞

|sN+n| ≤ lim
n→∞

an|sN | = |sN | lim
n→∞

an = 0

when |a| < 1.

9.15. Show that limn→∞
an

n!
= 0 for all a ∈ R.

Put sn = an/n! and find that sn+1/sn = a/(n + 1) tends to 0 as
n → ∞. Therefore, by the previous exercise, lim sn = 0. (In other
words, n! grows faster than any exponential sequence an.)

HOMEWORK 4
10.6. (a) Let (sn) be a sequence such that |sn+1 − sn| < 2−n for all

n ∈ N. Prove that (sn) is a Cauchy sequence and hence a convergent
sequence.

For any m > n, we have

|sm − sn| ≤
∑

n≤k<m

|sk+1 − sk| <
∑

n≤k<m

2−k = 2−n+1 − 2−m < 2−n+1.
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Therefore, for any given ǫ > 0, choosing N such that 2−N+1 < ǫ, we
will have |sm − sn| < ǫ for all m ≥ n ≥ N . Thus (sn) is a Cauchy
sequence.

(b) Is the result (a) true if we only assume that |sn+1 − sn| < 1/n
for all n ∈ N?

No. To construct a counter-example, let us prove first that

∞
∑

n=1

1

n
= ∞.

Indeed, for each k, there are 2k −2k−1−2k = 2k−1 numbers of the form
1/n between 1/(2k−1 + 1) and 1/2k. Each of them is at least as large
as 1/2k, and hence they and up to 2k−1/2k = 1. Thus the sum of the
first m such groups is at least m/2, i.e.

2m

∑

n=2

1

n
≥

m
∑

k=1

1

2
=

m

2
.

Thus the sum of finitely many many terms of the series becomes greater
than any positive integer m when the number of the summands in-
creases.

Now, put sn :=
∑n

k=1
1
k
, so that lim sn = ∞, but

|sn+1 − sn| =
1

n + 1
<

1

n
for all n ∈ N.

10.7. Let S be a bounded non-empty subset of R, and suppose
sup S /∈ S. Prove that there is a non-decreasing sequence (sn) of points
in S such that lim sn = sup S.

For each n ∈ N , construct sn ∈ S such that sup S − sn < 1/n
and sn > sn−1 for n > 1. Then (sn) will be an increasing sequence
converging to sup S.

Start by picking s1 ∈ S such that sup S − s1 < 1. This is possible
since otherwise sup S−1 < sup S is not an upper bound of S. Proceed
by induction: suppose that s1 < ... < sn−1 with required properties
have been found. Since sup S /∈ S, we have sn−1 < sup S. Therefore
there exists sn ∈ S such that

sup S ≥ sn > sn−1 and sup S − sn < 1/n,

which is possible since neither sn−1 < sup S nor sup S − 1/n < sup S
is an upper bound of S.
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12.3. Let (sn) and (tn) be the following two sequences that repeat in
cycles of four:

(sn) = (0, 1, 2, 1, 0, 1, 2, 1, ...), (tn) = (2, 1, 1, 0, 2, 1, 1, 0, ...).

Then:

(a) lim inf sn + lim inf tn = 0 + 0 = 0,

(b) lim inf(sn + tn) = 1,

(c) lim inf sm + lim sup tn = 0 + 2 = 2,

(d) lim sup(sn + tn) = 3,

(e) lim sup sn + lim sup tn = 2 + 2 = 4,

(f) lim inf sntn = 0,

(e) lim sup sntn = 2.

Problem. Let pn denote the semiperimeter of a regular 3x2n- gon
(i.e. 3-angle, 6-gon, 12-gon, 24-gon, etc.) inscribed into a circle of
radius 1. Prove that the sequence pn converges, and that the limit
(commonly called π) is greater than 3.
Solution. When the number of sides of a regular polygon doubles,

each side of the m-gon is replaced by a broken line consisting of two
adjacent sides of the 2m-gon connecting the same endpoints. Since, by
the triangle inequality, a broken line is longer than the straight segment
connecting the same endpoints, we conclude that the sequence pn of
semiperimeters is increasing. It is easy to see from elementary geometry
that the side of a regular hexagon inscribed into a unit circle has length
1, and therefore p1 = 3. Thus, it suffices to show that the sequence pn is
bounded above, to conclude that the limit π exists and is greater than 3.
In fact it is not hard to show that the perimeter of any convex polygon
does not exceed the perimeter of any polygon containing it. To see
this, go around the convex polygon clockwise and extend each side of
it forward up to its first intersection with the boundary of the enclosing
polygon. Then write down the “triangle” inequality estimating above
each of the extended sides by the length of the broken line connecting
its endpoints and consisting of the extending segment of the previous
side, and a part of the perimeter of the enclosing polygon. Summing
up all these inequalities, we obtain the required inequality between the
perimeters of the enclosed and enclosing polygons (since the extending
segments occur on both sides of the inequality and thus cancel out).
This implies that each pn is smaller than the semiperimeter of any
polygon enclosing the unit disk, (e.g. the square of size 2 × 2, whose
semiperimeter equals 4). In particular, we conclude that π < 4.
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HOMEWORK 5

Problem. A set is called closed if it contains all its subsequential
limits (see p. 72). A set is called open if its complement is closed.
Prove that a set is open if and only if together with any point, it contains
some open interval containing this point.

Suppose that x ∈ S is not contained in S together with any open
interval. Then for any n ∈ N there exists xn /∈ S such that |xn − x| >
1/n. The sequence (xn) is in the complement of S and converges to
x, which is not in the complement. Thus the complement of S is not
closed.

Vice versa, suppose the complement of S is not closed, i.e. there
exists a sequence (xn) in the complement of S which converges to x ∈ S.
Then any open interval containing x will contain some elements of the
sequence (xn) and thus will not lie in S.

11.9b. Is there a sequence (sn) such that (0, 1) is its set of subse-
quential limits?

No, the set of subsequential limits of any set must be closed, but the
interval (0, 1) (not including its endpoints) is not closed.

12.10. Prove that (sn) is bounded if and only if lim sup |sn| < +∞.
If lim sup sn = +∞, then there exists a subsequence (snk

) such that
lim |snk

| = +∞, and therefore this subsequence is unbounded. Vice
versa, if (sn) is unbounded, then for any k ∈ N there exists snk

such
that |snk

| > k. We may assume that n1 < n2 < ... < nk < ..., and thus
get a subsequence (snk

) such that lim |snk
| = +∞, i.e. lim sup |sn| =

+∞.

14.4b. determine if the series
∑

[
√

n + 1 −√
n] converges.

Partial sums of the series are√
2−

√
1+

√
3−

√
2+ ...+

√
n−

√
n − 1+

√
n + 1−

√
n =

√
n + 1−

√
1,

and form a sequence that tends to +∞. Thus the series diverges.

14.10. Find a series
∑

an which diverges by the Root Test, but for
which the Ratio Test gives no information.

Consider the series
∑

an :=
∑

2(−1)nn. Applying the Root Test
we get the sequence |an|1/n = 2(−1)n

which consists of two constant
subsequences 2 and 1/2, and therefore has lim sup |an|1/n = 2 > 1.
Thus the series diverges. Applying the Root Test we get the sequence
|an/an−1| = 2(−1)n(2n−1) which consists of two subsequences: 22n−1 for
even n, and 1/22n−1 for odd n, converging respectively to +∞ and to
0. Thus

lim inf |an/an−1| = 0 < 1 < +∞ = lim sup |an/an−1|,
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i.e. the Ratio Test is inconclusive.

HOMEWORK 6

(a)
∑

n≥1

1
√

n(n + 1)

converges by the comparison test: 1/n(n + 1) < 1/n2 for all n ∈ N.

(b)
∑

n≥1

(n!)2

(2n)!

converges by the ratio test: lim |an/an−1| = lim n2/2n(2n− 1) = 1/4 <
1.

(c)
∑

n≥1

n!

nn

converges by the ratio test: lim |an+1/an| = lim(1 + 1/n)−n = e−1 < 1.

(d)
∑

n≥1

(n!)2

2n2

converges by the ratio test: lim |an/an−1| = lim n2/22n−1 = 0 < 1.

(e)
1000

1
+

1000 · 1001

1 · 3 +
1000 · 1001 · 1002

1 · 3 · 5 + · · ·

converges by the ratio test: lim |an/an−1| = lim(1000 + n)/(2n + 1) =
1/2 < 1.

(f)
∑

n≥1

(21/2 − 21/3)(21/2 − 21/5) · · · (21/2 − 21/(2n+1))

converges by the ratio test: lim |an/an−1| = lim(21/2 − 21/2n+1) =
√

2−
1 < 1.

(g)
∑

n≥1

n2

(2 + 1
n
)n

converges by the root test: lim |an|1/n = lim n2/n/(2 + 1/n) = 1/2 < 1.

(h)
∑

n≥1

nn+ 1

n

(n + 1
n
)n

diverges since lim an = lim n1/n/(1 + 1/n2)n > 1/e > 0.

(i)
∞

∑

n=1

an where an :=

{

1/n if n = m2

1/n2 if n 6= m2.
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Partial sums of this series form an increasing sequence which is bounded
by the sum of

∑∞
n=1 1/n2 with

∑∞
m=1 1/m2. Thus the series converges.

(j)
√

2 +

√

2 −
√

2 +

√

2 −
√

2 +
√

2 +

√

2 −
√

2 +

√

2 +
√

2 + · · ·

converges by the ratio test. Indeed, an =
√

2 − bn, where b0 = 0,
bn =

√

2 + bn−1 > 0 for n > 0. Then

an =

√
2 − bn

√
2 + bn√

2 + bn

=

√

4 − b2
n√

2 + bn

=

√

2 − bn−1√
2 + bn

=
an−1√
2 + bn

.

Thus lim sup |an/an−1| ≤ 1/
√

2 < 1.

HOMEWORK 7

17.7b. Prove that |x| is a continuous function on R.
Solution. |x| is continuous at any x 6= 0 since it coincides with x

for x > 0 and with −x for x < 0. At x = 0, the function f(x) = |x|
is continuous because for any ǫ > 0 we have: |x − 0| < ǫ implies
|f(x) − f(0)| = |x| < ǫ.

17.8c. Prove that if f and g are continuous at x0, then min(f, g) is
continuous at x0.
Solution. According to 17.8a, min(f, g) = 1

2
(f + g) − 1

2
|f − g|,

and therefore continuity of min(f, g) follows from the property of the
absolute value function (17.7b) and the sum, difference, scalar multiple,
and composition of continuous functions to be continuous.

17.12b. Let f and g be continuous real-valued functions on (a, b)
such that f(r) = g(r) for each rational number r in (a, b). Prove that
f(x) = g(x) for all x ∈ (a, b).
Solution. For any x ∈ (a, b) there exists a sequence of rational

numbers rn such that lim fn = x. Then f(x) = lim f(rn) = lim g(rn) =
g(x).

17.13b. Let h(x) = x for all x ∈ Q and h(x) = 0 for all x ∈ R−Q.
Show that h is continuous at x = 0 and no other point.
Solution. For any ǫ > 0, if |x − 0| < ǫ, then |h(x) − h(0)| is

either 0 (if x is irrational) or |x| (if x is rational, and thus in both
cases is smaller than ǫ. This proves continuity of h at x = 0. For any
other x, consider two sequences with the limit x, one (rn) consisting
of rational numbers, and another xn consisting of irrational numbers.
Then lim h(xn) = 0, and lim h(rn) = x 6= 0. This proves discontinuity
of h at x 6= 0.
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17.14. For each rational number x write x = p/q where p, q are
integers with no common factors and q > 0, and then define f(x) = 1/q.
Also define f(x) = 0 for all x ∈ R − Q. Show that f is continuous at
each point of R −Q and discontinuous at each point of Q.
Solution. For a rational x = p/q (as above), find a sequence xn

of irrational numbers such that lim xn = x. Then lim f(xn) = 0, but
f(x) = 1/q 6= 0, i.e. f is discontinuous at x. For an irrational x, and
any ǫ > 0, let δ > 0 be the distance from x to the closest irreducible
fraction p/q with the denominator q ≤ 1/ǫ (there are at most finitely
many such fractions on any bounded interval). Then for any x′ such
that |x′−x| < δ we will have |f(x′)−f(x)| < ǫ. This proves continuity
of f at x ∈ R − Q.

HOMEWORK 8
17.6. Prove that every rational function is continuous.
Solution. A rational function is obtained from constants and the

identity function y = x by the operations of multiplication, addition,
and division. Since the identity and constant functions are obviously
continuous, the result follows from the theorems about continuity of
sums, products, and ratios of continuous functions.

18.2. Where does the proof of Theorem 18.1 (p. 126 of the textbook)
break down if the domain of the function is an open (rather than closed)
interval (a, b)?
Solution. The limit x0 (or y0) of the subsequence xnk

∈ (a, b)
(resp. ynk

∈ (a, b)) may be an endpoint a or b of the interval and thus
lie outside the domain of the function.

18.4. Let S ⊂ R be not closed. Show that there exists an unbounded
continuous function on S.
Solution. Let x0 /∈ S be such that there exists a sequence (xn) in S

which converges to x0 (such a number x0 exists since S is not closed).
Then the function f(x) = |x−x0| (i.e. the distance to x0) is continuous
and strictly positive on S. Thus 1/f is well-defined and continuous on
S. It is unbounded since lim 1/|xn − x0| = ∞.

18.6. Prove that x = cos x for some x on (0, π/2).
Solution. Indeed, f(x) := x− cos x is continuous on [0, π/2], nega-

tive at x = 0, and positive at x = π/2. Therefore, by the Intermediate
Value Theorem, there exists an x ∈ (0, π/2) such that f(x) = 0.

18.10. Suppose that f is continuous on [0, 2], and f(0) = f(2).
Prove that there exist x, y ∈ [0, 2] such that |x − y| = 1, and f(x) =
f(y).
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Solution. Put g(x) = f(x + 1) − f(x). Then g is defined and
continuous on [0, 1], g(0) = f(1)−f(0) = f(1)−f(2) = −g(1). By the
intermediate value theorem, there exists x ∈ [0, 1] such that g(x) = 0,
i.e. f(x + 1) = f(x).

HOMEWORK 9
19.2b. Verify uniform continuity of f(x) = x2 on [0, 3].
Solution. For a given positive ǫ, take δ = ǫ/6. then for any x, y ∈

[0, 3] such that |x − y| < δ, we have |f(x) − f(y)| = |x2 − y2| =
|x + y| · |x − y| < (3 + 3)δ = ǫ.

19.4a. Prove that a function uniformly continuous on a bounded
set is bounded.
Solution. Suppose that f is uniformly continuous but unbounded.

Then there exists a sequence (xn) in the domain of f such that |f(xn)| ≥
n. Since the domain is bounded, the sequence contains a convergent
subsequence (xnk

) (by the Bolzano-Weierstrass theorem). A convergent
subsequence is Cauchy, and therefore the sequence of values f(xnk

) is
Cauchy by the property of uniformly continuous functions. But the
sequence |f(xnk

)| ≥ nk is unbounded — contradiction.

19.6a. Show that f(x) =
√

x is uniformly continuous on (0, 1] al-
though f ′ is unbounded.
Solution. The derivative f ′(x) = 1/2

√
x tends to ∞ as x → 0, and

is therefore unbounded. However, since f is continuous on the closed
interval [0, 1], it is uniformly continuous on [0, 1], and therefore on the
subset (0, 1] as well.

20.18. Show that limx→0(
√

1 + 3x3−1)/x2 exists, and find its value.
Solution. We have:

√
1 + 3x2 − 1

x2
=

(1 − 3x2) − 1

(
√

1 + 3x2 + 1)x2
=

−3√
1 + 3x2 + 1

,

which is a composition of continuous functions (the polynomial x 7→
1 + 3x2, y 7→ √

y, addition of 1, inversion, multiplication by 3), well-
defined near x = 0. Thus, the function has a limit as x → 0, equal to
the value of the function at x = 0, i.e. to −3/2.
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19.10. Show that the function g such that g(x) = x2 sin 1/x for
x 6= 0, and g(0) = 0, is continuous on R, and find out if it is uniformly
continuous.
Solution. The limit

lim
x→0

g(x)

x
= lim

x→0
x sin

1

x
= 0,

i.e. g is differentiable at x = 0 (and g′(0) = 0). At x 6= 0,

g′(x) = 2x sin
1

x
+ x2 cos

1

x
· (− 1

x2
) = 2x sin

1

x
− cos

1

x
,

which is bounded. Indeed, since | cos y)| 6= 1, and | sin y| ≤ |y| for any
y, and hence for y = 1/x, we have:

|2x sin
1

x
− cos

1

x
| = |2

y
sin y − cos y| ≤ 2 + 1 = 3.

Thus, g′ is defined and bounded on R, and therefore g is uniformly
continuous.

HOMEWORK 10
28.15. Prove Leibniz’ rule: (fg)(n) =

∑n
k=0

(

n
k

)

f (k)g(n−k).
Solution: Induction on n. For n = 1, Leibniz’ rule turns into the

“product rule” 9fg)′ = f ′g + fg′.
Suppose that Leibniz’ rule holds true for a given n = m. Then

(fg)(m+1) = (f ′g + fg′)(m) =

m
∑

k=0

(

m

k

)

f (k+1)g(m−k) +

m
∑

k=0

(

m

k

)

f (k)g(m+1−k)

=

m+1
∑

k=0

[(

m

k − 1

)

+

(

m

k

)]

f (k)g(m+1−k)

=

m+1
∑

k=0

(

m + 1

k

)

f (k)g(m+1−k),

where the last equality is due to the defining property of Pascal’s tri-
angle:

(

m+1
k

)

=
(

m
k−1

)

+
(

m
k

)

.

28.4c. For g(x) = x2 sin 1/x at x 6= 0, and g(0) = 0, show that g′ is
not continuous at x = 0.
Solution. According to the solution to 19.10, g is differentiable

everywhere, g(0) = 0, and g′(x) = x sin 1/x − cos 1/x at x 6= 0. The
summand x sin 1/x tends to 0 as x → 0, and cos 1/x has no limit at
x = 0. Thus the sum g′(x) has no limit at x 6= 0, and hence g′ is
discontinuous at x = 0.
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29.10. For f(x) = x/2 + x2 sin 1/x at x 6= 0, and f(0) = 0, show
that f ′(0) > 0, but f is not increasing on any interval containing 0, and
compare this result with the theorem 29.7 (i) saying that a function is
increasing on a given interval if it has positive derivative on it.
Solution. We have:

f ′(0) = lim
x→0

f(x)

x
= lim

x→0

[

1

2
+ x sin

1

x

]

=
1

2
+ 0 > 0.

On the other hand, at x 6= 0, we have

f ′(x) = 2x sin
1

x
+

1

2
− cos

1

x
.

While the first term tends to 0 as x → 0, the last term oscillates
between −1 and 1 infinitely many times in any neighborhood of x = 0.
Since 1/2 − 1 < 0, in any neighborhood of x = 0, the derivative f ′

stays negative on some intervals. By the result of Theorem 29.7, the
function f is decreasing on these intervals. Thus f is not increasing in
any neighborhood of x = 0.

If f ′ were continuous at x = 0, then it would remain positive in some
neighborhood of x = 0 (since f ′(0) = 1/2 > 0, and thus f would have
been increasing in that neighborhood. Thus this counter-example is
due to discontinuity of f ′ at x = 0.

29.15. Show that for r = m/n, the derivative of the function f(x) =
xr (in the appropriate domain depending on m and n) is equal to rxr−1.
Solution. Since (xm)′ = mxm−1 for m ≥ 0 (induction on m based

on the product rule), 1/x)′ = −1/x2 (the theorem about derivatives of

reciprocal functions), and (x1/n)′ = x
1

n
−1 (derivatives of inverse func-

tions), the derivative of the function xm/n := (xm)
1

n can be computed
by the chain rule:

d

dx
(xm)

1

n =
y

1

n
−1

n
|y=xm · mxm−1 =

m

n
xm( 1

n
−1)xm−1 =

m

n
x

m

n
−1.

29.18. Prove that a sequence (sn), defined recursively by the rule
sn+1 := f(sn) and a choice of s0, converges provided that f is a function
differentiable on R with the derivative bounded in the absolute value
by a number a < 1.
Solution. By the mean value theorem, for each n > 0, we have:

|sn+1 − sn| = |f(sn) − f(sn−1)| = |f ′(y)(sn − sn−1| ≤ a|sn − sn−1|.
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By induction, this implies: |sn+1 − sn| ≤ an|s1 − s0| for all n > 0.
Furthermore, for any m ≥ n > 0, we have:

|sm+1 − sn| ≤
m

∑

k=n

|sk+1 − sk| ≤ (s1 − s0)

m
∑

k=n

ak.

Since the geometric series
∑

ak with a < 1 converges, its partial sums
∑n

k=0 ak form a Cauchy sequence. The previous estimate implies there-
fore that (sn) is a Cauchy sequence, and hence converges by the com-
pleteness property of R.

HOMEWORK 11
We have 1/ tan(y + π/2) = 1/ cot(−y) = − tan y = −y + o(|y|), and

1/ tan(3y + 3π/2) = 1/ cot(−3y) = − tan 3y = −3y + o(|y|). Therefore

(a) lim
x→π/2

tan 3x

tan x
= lim

y→0

− tan y

− tan 3y
=

y + o(|y|)
3y + (|y|) =

1

3
.

Furthermore, we have tanx = x + x3/3 + o(|x|3), sin x = x− x3/6 +
o(|x|3). Therefore
(b)

lim
x→0

3 tan 4x − 12 tanx

3 sin 4x − 12 sinx
= lim

x→0

12x + 64x3 − 12x − 4x3 + o(|x3|)
12x − 32x3 − 12x + 2x3 + o(|x|3) = −2.

Since limx→0 sin bx/ sin ax = b/a, we have by l’Hospital’s rule:

(c) lim
x→0+

ln(sin ax)

ln(sin bx)
= lim

x→0+

a cos ax/ sin ax

b cos bx/ sin bx
=

a

b

b

a
= 1.

Next, limx→0 x ln x = 0 (by l’Hospital’s rule, or just because x = e−t

decreases much fastes as t → ∞ than ln x = −t grows in the absolute
value). Therefore xx = exp(x lnx) tends to 1 as x → 0+. Hence
xx lnx = ln xxx

tends to −∞ as x → 0+, and thus xxx

tends to 0. We
conclude

(d) lim
x→0+

(xxx − 1) = 0 − 1 = −1.

By l’Hospital’s rule,

lim
y→∞

y2n

ey2
=

nyn−2

ey2
,

if the latter limit exists. Since e−y2

tensd to 0 as y → ∞, we conclude
by induction on n ≥ 0 that the limits exist and are equal to 0. Taking
y = 1/x we conclude that

(e) lim
x→0

e−1/x2

x100
= 0.


