
Math 140. Solutions to homework problems.

Homework 1. Due by Tuesday, 01.25.05

1. Let Dd be the family of domains in the Euclidean plane bounded
by the smooth curves ∂Dd equidistant to a bounded convex domain
D0. How does the perimeter Length(∂Dd) depend on the distance d
between ∂Dd and D0?

Solution 1. Use the result from class: Area(Dd) = Area(D0) + d ·
Length(∂D0)+πd2. This implies Length(∂D0) = d Area(Dd)/d(d)‖d=0.
Since any of the domains Dd can be taken on the role of D0, we find
Length(∂Dd) = d Area(Dd)/d(d) = Length(∂D0) + 2πd.

Solution 2. Use the method from class. For convex polygons, Length(∂Dd) =
Length(∂D0) + 2πd by direct observation. We obtain the same result
for arbitrary convex domains D0 by approximating them with polygons
and passing to the limit.

Solution 3. Avoid limits and polygons. Let s 7→ r(s) be the counter-
clockwise arc-length parameterization of ∂D0. Then ∂Dd can be pa-
rameterized by adding to r(s) the d-multiple of the (unit) vector dr/ds
rotated 90 degrees clockwise (we denote the rotation by J : s 7→ fd(s) :=
r(s) + d · Jdr(s)/ds. The velocity vector dfd(s)/ds = dr/ds + d ·
Jd2r/ds2 = (1 + d · k(s))dr(s)/ds because the acceleration d2r(s)/ds2

of the original curve is proportional to −Jdr(s)/ds with the propor-
tionality coefficient k(s) (by the very definition of curvature k). Since
|dr/ds| = 1 and k > 0 (convexity), we have

Length(∂Dd) =

∮

|dfd(s)|ds =

∮

ds+d·
∮

k(s)ds = Length(∂D0)+2πd.

2. Verify the invariance of the arc length
∫ b

a

√

ẋ2(t) + ẏ2(t) dt under
reparameterizations t = t(τ ).

By the chain rule, and the variable change law in integrals, we have
∫ β

α

√

(
dx

dτ
)2 + (

dy

dτ
)2 dτ =

∫ β

α

√

ẋ2(
dt

dτ
)2 + ẏ2(

dt

dτ
)2 dτ

=

∫ β

α

√

ẋ2 + ẏ2 | dt

dτ
| dτ =

∫ t(β)

t(α)

√

ẋ2 + ẏ2 dt.
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3. (a) Prove the formula k = (ẍẏ− ÿẋ)/(ẋ2 + ẏ2)3/2 for the curvature
of a regular parameterized plane curve t 7→ (x(t), y(t)).

The determinant (ẍẏ − ÿẋ) is (up to a sign, which actually should
be reversed to agree with our orientation conventions) the area of the
parallelogram spanned by the velocity ṙ and the acceleration r̈ and thus
equals |ṙ| × |an| (“base times height”). The curvature k = |an|/|ṙ|2 is
therefore obtained from the area by dividing it by |ṙ|3 = (ẋ2 + ẏ2)3/2.

(b) Compute the curvature of the graph of a smooth function y =
f(x).

Parameterizing the graph as t 7→ (x, y) = ((t, f(t)), we obtain k(x) =
f ′′(x)/(1 + f ′(x))3/2.

(c) Take f = xa/a and find the limit of curvature at x = 0 for
a = 5/2, 2, 3/2, 1, 1/2.

At the origin, the curve y = x5/2 has the curvature 0 (since it is
best approximated by the parabola y = kx2/2 with k = 0); the curve
y = x2/2 is the parabola with k = 1; the curve y = x3/2/(3/2) has the
curvature (according to part (b)) k(x) = x−1/2/2/(1 + x1/2)3/2 which
tends to ∞ as x approaches 0; y = x is a straight line and has k = 0;
and y = x1/2/(1/2) means y2/4 = x, which is a parabola again with
the curvature at the origin equal to 1/2.

4. Draw the typographic symbol ∞ (“infinity” or “figure eight”)
increased 100 times and then draw an equidistant curve as follows:
orient all normal lines to the large figure eight in a continuous fashion,
and connect all points removed 1 cm from the large figure eight in the
positive normal direction. Which curve is longer — the large figure
eight or the curve equidistant to it?

Using any of the methods from Problem 1 (e.g. approximating the
curve with polygons) one concludes that

Length(∂Dd) = Length(∂D0)+2πd× (rotation index of the tangent line).

Since the tangent line to “figure eight” makes 0 number of turnes, the
equidistant curve has the same length as the “figure eight”.
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Homework 2. Due by Tuesday, 02.01.05

1. Show that maps R2 → R2 : x 7→ y which preserve all Euclidean
distances are given by linear inhomogeneous functions, namely by com-
positions of translations with rotations or reflections.

Solution. Any isometry F maps a triangle ABC to another triangle
A′B ′C ′ with the same pairwise distances between the vertices. The
“side-side-side proposition” in elementary Euclidean geometry guaran-
tees that the triangle ABC can be identified with A′B ′C ′ by a suitable
composition G of translation with rotation or reflection. Thus the
composition J = G−1 ◦ F is an isometry fixing the vertices: J(A) =
A, J(B) = B, J(C) = C . We claim that any isometry J fixing three
non-colinear points A, B, C is the identity, and thus F = G. To justify
the claim, note that a point P and and its image P ′ = J(P ) have the
same distance to the fixed points A, B, C of the isometry J . If P 6= P ′

then all points equidistant to them are situated on the line perpendic-
ular to the segment PP ′ and bisecting it. Since A, B, C are not on the
same line, we have P = J(P ) for all points P .

2. Compute the curvature of the ellipse

x2

a2
+

y2

b2
= 1

at the point (x0, y0) = (0, b).

Solution. The best approximation of the ellipse near (0, b) with a
parabola of the form Y = kX2/2 can be computed from the esllipse’s
equation:

b−y = b−
√

b2(1 − x2

a2
) = b−b

√

1 − x2

a2
= b−b(1− x2

2a2
+...) =

b

a2

x2

2
+...

Thus X = x, Y = b− y, and the curvature in question is k = b/a2.

3. Let t 7→ (x(t), y(t)) be a closed regular plane curve. Let t 7→
(ẋ(t), ẏ(t)) be the closed regular plane curve formed by the velocity
vectors. Prove that the integral

1

2π

∮

ẋdẏ − ẏdẋ

ẋ2 + ẏ2

is an integer. Point out geometric interpretations of this integer in
terms of the velocity curve and of the original curve.

Solution. Taking P = −ẏ/(ẋ2 + ẏ2) and Q = ẋ(ẋ2 + ẏ2) (where ẋ, ẏ
are just names of independent variables), we find Qẋ = Pẏ. Thus,
by Green’s Theorem,

∫

∂D
(Pdẋ + Qdẏ) = 0 over the boundary ∂D of
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any region D on the (ẋ, ẏ)-plane which does not contain the origin.
This implies that the integral over a simple closed curve going counter-
clockwise around the origin is equal to the similar integral over a small
circle centered at the origin. The latter integral can be computed
using the parameterization ẋ = ǫ cos t, ẏ = ǫ sin t and is equal to 2π
(regardless of the radius ǫ). Generalizing the concliusion to closed non-
simple curves (i.e. those which are allowed to self-intersect), we can
partition them into simple parts between self-intersections and arrive
at the conclusion that

∮

(Pdẋ + Qdẏ) is an integer multiple of 2π.
On the other hand, Qẋ = Pẏ mean that, at least locally, there is

a function with the partial derivatives P and Q, and knowing this it
is not hard to guess the function. Namely, differentiating θ(ẋ, ẏ) =
arctan(ẏ/ẋ), we find dθ = P dẋ + Q dẏ. Therefore the integral

∫

dθ
computes the increment of the polar angle of the vector (ẋ, ẏ). Thus the
above integer is interpreted as the total number of turns the velocity
curve makes around the origin, or equivalently, as the rotation number
the oriented tangent line of the original closed curve t 7→ (x(t), y(t)).

4. Compute the cutvature and torsion of the parameterized space
curves (t, t2, t3), (t, t2, t4), (t, t3, t4) at t = 0.

The curve (t, t3, t4) has an inflection point at the origin and thus has
at this point curvature k = 0 and torsion τ undefined.

The other two curves have the osculating plane z = 0 at the origin
and project to this plane to the parabola y = x2 with the curvature
k = 2.

To compute the torsion of the curve r(t) = (t, t2, t3), we find its
velocity ṙ = (1, 2t, 3t2), acceleration r̈ = (0, 2, 6t), and the binormal
vector

b =
ṙ × r̈

‖ṙ × r̈‖ =
(6t2,−6t, 2)√
4 + 36t2 + 36t4

= (0, 0, 1) + t(0,−3, 0) + ...

Therefore at the origin we have db/ds = (db/dt)(dt/ds) = (0,−3, 0)
since dt/ds = ‖ṙ(0)‖ = 1. Thus db/ds = −3n, and τ = −3.

A similar computation for the curve (t, t2, t4) will inevitably yield
τ = 0 since near the origin the curve differs from a plane curve only by
the 4-th order terms t4.
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Homework 3. Due by Thursday, 02.10.05

1. Prove that a space curve with the identically zero torsion is
contained in a plane.

Solution. Let k(s) > 0 be the curvature of the space curve as a
function of the arc length parameter s ∈ (a, b). By the fundamental
theorem for plane curves there exists a plane curve with this curva-
ture function. Considered as a space curve, this curve has the same
curvature function and identically zero torsion. By the fundamental
theorem for space curves, this plane curve can be identified with the
original space curve by a rigid motion of the space. Thus the original
curve is contained in a plane.

bigskip
2. The inner product 〈·, ·〉 on Rn is related to the length ‖ · ‖ by

means of the polarization identity:

〈x, y〉 =
1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2).

Prove this identity, and deduce from it that if T : Rn → Rn is any
length-preserving linear transformation, then T preserves the inner
product, i.e.

〈T (x), T (y)〉 = 〈x, y〉
for all x, y ∈ Rn.

Solution. The polarization identity follows from bilinearity and sym-
metry properties of the inner product

‖x+y‖2 = 〈x+y, x+y〉 = 〈x, x〉+〈x, y〉+〈y, x〉+〈y, y〉 = ‖x‖2+2〈x, y〉+‖y‖2

and expresses the inner product in terms of the vector sum and length.
Since T (x + y) = Tx + Ty (by linearity of T ), the lengths of x, y, x + y
coincide respectively with those of Tx, T y, Tx + Ty, and therefore the
inner products 〈x, y〉 and 〈Tx, T y〉 coincide too.

3. Let A(t) be an anti-symmetric n × n-matrix depending continu-
ously on t, and U0 be an orthogonal n × n-matrix (i.e. A∗ = −A, and
U∗

0 = U−1
0 , where ∗ means transposition).

Consider the system Ṁ = A(t)M of n2 linear ordinary differential

equations in the space R
n2

of n × n-matrices M .
Prove that the solution t 7→ M(t) to this system satisfying the initial

condition M(t0) = U0 consists of orthogonal matrices M(t).
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Solution. Since M∗(t0)M(t0) = U∗
0 U0 = I , it suffices to prove that

M∗(t)M(t) does not depend on t. Differentiating, we find

d

dt
M∗M = Ṁ∗M+M∗Ṁ = (AM)∗M+M∗(AM) = M∗(A∗+A)M = 0.

4. Does there exist a closed space curve with constant nonzero cur-
vature and (somewhere) nonzero torsion?

Solution. The answer is “yes”. For a regular space curve, having
somewhere non-zero torsion is the same as not fitting any plane. To
have the constant curvature k = 1, a space curve s 7→ r(s) parame-
terised by arc length must have unit acceleration ‖d2r/ds2‖, or equiv-
alently, the velocity curve s 7→ v(s) = dr/ds mast be parameterised by
the arc length too. Reformulating the problem in terms of the velocity
curve, we are therefore looking for a closed curve on the unit sphere
with the center of the sphere being the mass center of the curve with
respect to the mass distribution proportional to the arc length, and
require that the curve does not fit a plane passing through the origin,
i.e. it is different from an equator. To construct such a curve, make
a “bump” somewhere on the equator and repeat the bump centrally
symmetrically on the opposite side of the equator to guarantee that
the mass center is at the origin.

Homework 4. Due by Thursday, 02.17.05

1. For each of the 5 Platonic solids (tetrahedron, cube, octahedron,
icosahedron and dodecahedron), compute the angular defect at each
vertex, i.e. the difference between 2π and the sum of face’s angles
adjecent to this vertex. What do the angular defects of all vertices add
up to?

Solution. Vertices of T, O, I are adjecent to respectively 3, 4, 5 faces
which are regular triangles with the angles π/3. Thus the vertices
of T, O, I have angular defects respectively 2π/2, 2π/3, 2π/6. When
multiplied by the number of vertices 4, 6, 12, these yield 4π. At each
of the 8 vertices the cube has the angular defects 2π − 3π/2 = π/2
which add up to 4π. The dodecahedron has 20 vertices each adjecent
to 3 pentagonal faces with the angles 3π/5. Thus each angular defect
is 2π − 9π/5 = π/5, and the total defect is 4π again.
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2. Given two skew-lines in R3 (i.e. two straight lines which are not
parallel and have no common points), rotate one of them about the
other, find the equation of the resulting surface of revolution and show
that the surface is a hyperboloid of one sheet.

Solution. Let the axis of rotation be the z-axis, and the other line
be z = kx, y = b. Rotating the points (x, y, z) = (t, b, kt) through the
angle φ around the z-axis we obtain our surface of revolution parame-
terized by (t, φ):

x = t cos φ − b sinφ, y = t sinφ + b cos φ, z = kt.

To eliminate t and φ, we find x2 + y2 = b2 + t2 = b2 + z2/k2 and finally

x2

b2
+

y2

b2
− z2

(kb)2
= 1,

which is the standard equation of a one-sheeted hyperboloid of revolu-
tion.

Monic degree-3 polynomials P (x) = x3 + ax2 + bx + c form a 3-
dimensional space with coordinates (a, b, c). In this space, consider the
discriminant ∆ — the surface formed by those polynomilas which have
a multiple root. Such polynomials have the form P (x) = (x−u)2(x−v)
which provides a parameterization of ∆ by (u, v).

3. (a) Sketch the section of the discriminant by the plane a = 0.
(b) Show that the transformation P (x) 7→ P (x + t) defines a (non-

linear) flow in the space of polynomials which preserves ∆ and trans-
forms the plane a = 0 to a = 3t. Use this to sketch ∆.

Solution. The identity x3 + ax2 + bx + c = (x−u)2(x− v) yields the
parameterization of ∆:

(*) a = −2u − v, b = u2 + 2uv, c = −u2v.

When a = 0, we have v = −2u, and the section of the discriminant
becomes the semi-cubical parabola b = −3u2, c = 2u3 on the (b, c)-
plane.

The translation x 7→ x + t transfroms (x− u)2(x− v) into (x− (u−
t))2(x − (v − t)) with shifted but still multiple roots. Therefore the
corresponding flow

(a, b, c) 7→ (P ′′(t)/2, P ′(t), P (t)) = (3t+a, 3t2 +2at+b, t3+at2 +bt+c)

in the space of polynomials preserves ∆ and maps the plane a = 0
to a = 3t. Thus the sections of ∆ by the planes a = const are also
semi-cubical parabolas subject to non-linear changes of variables on
the (b, c)-plane depending on the const. We can conclude that ∆ looks
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like the cartesian product of the semi-cubical parabola and the line but
distorted by a non-linear change of coordinates.

4. (a) Show that singular points of ∆ form the curve C consisting
of polynomials (x − u)3 with a triple root, and show that ∆ is the
osculating surface of C (i.e. is swept by tangent lines to C).

(b) Sketch the osculating surface of the curve (t, t2, t3) together with
its osculating plane at t = 0. (Hint: the curve can be identified with
C by stretching the coordinates.)

Solution. Computing the Jacobi matrix of the parameterization (*)
and equating its 2 × 2-minors to zero we find

(au, bu, cu) × (av, bv, cv) = (−2, 2u + 2v,−2uv)× (−1, 2u,−u2) =

= (2u2v − 2u3, 2uv − 2u2, 2v − 2u) = (0, 0, 0)

and conclude that singular points of ∆ have v = u and form the curve
(x − u)3 with (a, b, c) = (−3u, 3u2,−u3). The tangent line to this
curve at the point P = (x − u)3 is spanned by the velocity vector
dP/du = −3(x − u)2 and can be parameterised by t as

(x−u)3−3t(x−u)2 = (x−u)2(x−u−3t) = (x−u)2(x−v) if v = u+3t.

Thus the union of the tangent lines coincides with ∆.
The answer to 4b is shown on Figure 1.

Figure 1
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Homework 5. Due by Thursday, February 24.

1. Show that the Riemannian area
∫ ∫

D

√
AC − B2 dUdV

of a region D on the plane equipped with a Riemannian metric

A(U, V )(dU)2 + 2B(U, V )(dU)(dV ) + C(U, V )(dV )2

is invariant with respect to changes of variables U = U(u, v), V =
V (u, v).

Solution. Under the change of variables we have

dU = Uudu + Uvdv, dV = Vudu + Vvdv,

and respectively AdU2+2BdUdV +CdV 2 = adu2+2bdudv+cdv2, where
a = AU2

u +2BUuVu +CV 2
u , b = AUuUv +B(UvVu +UuVv)+CVuVv, c =

AU2
v +2BUvVv+CV 2

v . We compute: ac−b2 = (AC−B2)(UuVv−UvVu)
2.

Let D′ denote the region D in the new coordinates. Then
∫ ∫

D′

√
ac− b2dudv =

∫

D′

√
AC − B2(U(u, v), V (u, v)) |UuVv−UvVu| dudv

=

∫ ∫

D

√
AC − B2(U, V ) dUdV

due to the rule of change of variables in double integrals.

2. (a) Compute the Riemannian metric, induced by the standard
embedding of the sphere of radius r into the Euclidean 3-space, in
terms of spherical coordinates.

(b) Using (a) compute the Riemannian area of the spherical triangle
bounded by the equator and by two meridians making the angle Φ to
each other.

Solution. On the sphere of radius r we have x = r cos θ cos φ, y =
r cos θ sin φ, z = r sin θ, and

dx = −r sin θ cos φdθ−cos θ sinφdφ, dy = −r sin θ sinφdθ+cos θ cos φdφ,

dz = r cos θdθ. Respectively,

dx2 + dy2 + dz2 = r2dθ2 + r2 cos2 θdφ2.

The triangle

∆ = {(θ, φ)|0 ≤ θ ≤ π/2, 0 ≤ φ ≤ Φ}
has the area

∫ ∫

∆

√
AC − B2dθdφ = r2

∫ π/2

0

cos θdθ

∫ Φ

0

dφ = r2Φ.
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3. In cartography, a popular way to obtain a plane image of the
Earth’s surface is based on the projecting the sphere x2 + y2 + z2 = r2

onto the cylinder x2 + y2 = r2, |z| ≤ r by rays in the planes z = const
radiating away from the z-axis:

(x, y, z) 7→ (x
√

r2 − z2, y
√

r2 − z2, z).

Show that this projection of the sphere to the cylinder preserves areas.
Is this projection an isometry, i.e. preserves lengths of all curves?

Solution. Since rotations about the z-axis preserve the sphere, the
cyclinder and the projection, the factor by which the projection stretches
areas is independent of the sperical θ but could be a function of φ. Solu-
tion to Problem 2 shows that a narrow annulus bewtween φ and φ+∆φ
on the sphere has the area 2πr2∆φ cos φ. Its projection to the cylinder
has width r∆φ cos φ and length 2πr and thus has the same area for any
φ. Thus the area-stretching factor does not depend on φ either and is
equal to 1.

The map is not an isometry (e.g. parallels are shorter on the sphere
than on the cylinder).

4. Compute the geodesic curvature of the circle z = r/2 on the
surface of the sphere x2+y2+z2 = r2 and compare it with the curvature
of the same circle considered as a curve in the space.

Solution. Expanding the metric found in Problem 2 in spherical
coordinates near the origin θ = 0, φ = 0, we find

r2dφ2 + r2(1− θ2/2 + ...)2dθ2 = d(rθ)2 + d(rφ)2 + terms of order ≥ 2 ,

i.e. the coordinate system (u, v) = (rθ, rφ) is planar (in fact at every
point of the equator θ = 0. Rotating the sphere we can transform the
section z = r/2 into x +

√
3z = r passing through θ = φ = 0. It has

the equation

1 = cos θ cos φ +
√

3 sin θ = (1 − θ2

2
)(1 − φ2

2
) +

√
3θ + ...

Neglecting with terms of order > 2 we obtain in the coordinate system
(u, v)

0 = 2
√

3ru − v2 − u2 = 3r2 − (u −
√

3r)2 − v2,

which is a circle of radius
√

3r. Thus the geodesic curvature is equal
to 1/

√
3r. This is half the curvature in the space of the same curve

(which is a circle of radius
√

3r/2).
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Homework 6. Due by Tuesday, March 8.

1. Perform the parallel transport around the loop on the sphere
x2 + y2 + z2 = r2 cut out by the plane z = r/2. Find the area enclosed
by this curve on the sphere.

Solution. The angle between a transported vector and the direction
of the curve along which it is transported (counted from the vector to

the direction) is increased with the rate equal to the geodesic curvature
kg of the curve (because this is true in planar coordinates). Thus
the rotation angle φ (from the vector to the direction of the curve
at the reference point) under the parallel transport around a smooth
closed curve C is equal to minus the total geodesic curvature of the
curve: φ = −

∫

C
kgdLength. In Problem of Homework 5 we have found

kg = 1/
√

3r, and the length of the circle equals
√

3πr, so that φ = −π.
Thus as the result of the parralel transport along this curv, all vectors
reverse their direction.

The area enclosed by this curve can be computed by pojecting the
region to the cylinder as in Problem 3 of Homowork 5 and is found to
be the quarter of the total surface area of the sphere, i.e. πr2. For
r = 1 the answer is π. Is this just a coincidence?

2. Prove that meridians on a surface of revolution are geodesics. Are
all paralleles geodesics too?

Solution. It is easy to see that the sign of geodesic curvature (prop-
erly defined the same way as on the Euclidean plane) is reversed under
the change of orientation of the surface.

The reflection about the plane containing the meridian preserves the
surface of revolution and leaves all points of the meridian fixed. Thus
the signed geodesic curvature of the meridian at each point satisfies
kg = −kg, i.e. kg = 0.

Moreover, the same is true for any fixed point curve of an isometric
reflection on a Rienan surface.

Parallels are typically not geodesics (e.g. non-equatorial parallels on
the sphere are not).

3. Express the rotation angle under parallel transport around a
curvilinear triangle on a Riemannian surface in terms of angles at the
vertices of the triangle and the total geodesic curvature of its sides.

Solution. Reasoning as in Problem 1 about the angle between the
transported vector and the direction of sides of the triangle δ we con-
clude that the transport angle (which is defined modulo 2π anyway) is
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equal to (s is the arc length parameter on ∂∆)

φ∆ = α + β + γ − 3π −
∫

∂∆

kg(s) ds.

Similarly, for a curvilinear n-gon P with the angles α1, ..., αn the answer
will be

φP =
∑

αi − nπ −
∫

∂P

kg(s) ds.

4. Prove the n-dimensional version of the Key Lemma: Any Rie-

mannian metric in Rn near any point is Euclidean modulo terms of

order ≥ 2 in a suitable local coordinate system, which is unique up to

linear orthogonal transformations and modulo terms of order ≥ 3. De-
duce that Riemannian metrics do not have local invariants depending
only on the derivatives of the metric of order ≤ 1.

Solution. Applying the change of variables

dUk = uk +
∑

ij

ak
ijuiuj + (terms of order ≥ 3), k = 1, ..., n,

(where ak
ij = ak

ji) to te Riemannian metric

(dU1)
2 + ... + (dUn)2 + (terms of order ≥ 2) ,

we find
∑

(duk)
2 + 2

∑

i

ui

∑

jk

ak
ijdujduk + · · · .

Thus the null-space of the linear map from the space of n-tuples of
quadratic forms in ui with coeffcieints ak

ij to the space of n-tuples of
quadratic forms in duk (i.e. the n linear terms of the metric) consists
of solutions to the system of linear equations

ak
ij + aj

ik = 0, ak
ij = ak

ji, ∀i, j, k = 1, ..., n.

Fir each i, j, k these equations imply

ak
ij = −aj

ik = −aj
ki = ai

kj = ai
jk = −ak

ji = −ak
ij,

and therefore ak
ij = 0. Since an injective linear map between spaces

of the same dimension is an isomorphism, we conclude that any linear
terms of a Riemannian metric (expanded near a point by Taylor’s for-
mula) can be obtained from a metric which is Euclidean modulo terms
of order ≥ 2 by a change of variables U(u) = u + ... with uniquely
determined quadratic part.
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Homework 7. Due by Tuesday, March 15.

1. Show that the Gaussian curvature K(p) at a point p on a Riemann
surface depends only on the derivatives of order ≤ 2 of the Riemannian
metric at this point.

Solution. As we have shown in the class, the Gaussian curvature
K(p) of a Riemannian metric depends only on the 2nd derivatives of
the coefficients of the metric with respect to a coordinate system planar
at p. (This is because higher order terms of the metric contribute to
the parallel transport angle around a parallelogram of size ≈ ǫ only in
the order ǫ3 and higher.) On the other hand, the coefficients of the
metric in a coordinate system planar at p depend on the coefficients of
the metric in the original coordinate system and the 1st derivatives of
the functions defining the change of variables. According to the Key
Lemma, Taylor expansions of these functions up to order 3 inclusively
(and therefore Taylor expansions up to order 2 of their 1st derivatives)
are determined by the values at p of the 1st (and 0) order derivatives
of the coefficients of the metric.

2. Let us call a coordinate system (u, v) on a Riemann surface
Gaussian with respect to the point (0, 0) if the Riemannian metric has
the form

(du)2 + (dv)2 − K

3
(udv − vdu)2 + (terms of order ≥ 3).

Show that the coefficient K equals the Gaussian curvature of this Rie-
mannian metric at the origin.

Solution. As we have shown in the class, the Gaussian curvaure K(p)
depends linearly on the 2nd derivatives at p of the metric in a coordi-
nate system planar w.r.t. p. (This is because the dimension length−2 of
the Gaussian curvature coincides with the dimension of the 2nd deriva-
tives of the metric’s coefficients.) On the other hand, we proved in the
class existence of a Gaussian coordinate system for each point p and
found in the proof that the local invariant K of the metric is equal to the
value at (u, v) = (0, 0) of the linear combination Buv−Avv/2−Cuu/2 of
the metric’s coefficients in a planar coordinate system. In a Gaussian
coordinate system, the 2nd derivatives of the metric’s coefficients are
proportional to K, and thus the Gaussian curvature K(p) has to be
proportional to K with the proportionality coefficient independent on
metric. Thus to find the coefficient it suffices to consider one example
with K(p) 6= 0. We take the unit sphere in spherical coordinates to
find the metric (dθ)2 +cos2 θ(dφ)2 = (dθ)2 +(dφ)2−θ2(dφ)2 + ... planar
w.r.t. the point θ = 0, φ = 0, i.e. Buv = Avv = 0, and Cuu = −2. Thus
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K = 1 which coincides with the Gaussian curvature of the unit sphere.
Therefore K = K(p).

3. Show that in a Gaussian coordinate system geodesics passing
through the origin coinside with straight lines up to order 3, i.e. not
only have r′′(0) = 0 but also r′′′(0) = 0.

Hint: check that any straight line through the origin is a symmetry
line of the metric (du)2 + (dv)2 − K(udv − vdu)2/3 (without higher
order terms).

Solutions. The reflection about any line throught the origin preserves
(udv − vdu)2, and hence the line is a geodesic of the metric (du)2 +
(dv)2−K(udv−vdu)2/3. When terms of order ≥ 3 are in presence, their
contribution to the parallel transport angle α along the line from the
origin to a point distance ǫ away is estimated as α ≈ Const

∫ ǫ

0
x2dx =

constǫ3.] This characterizes the direction r′ of the geodesic tangent to
the line at the origin as deviating only to order ǫ3 from r′(0), which
correponds to r′′(0) = r′′′(0) = 0.

4. Show that any quadratic form ax2 + 2bxy + cy2 on the plane can
be transformed by a linear change of coordinates to one and only one
of the following six forms

0, X2, −Y 2, −X2 − Y 2, X2 − Y 2, X2 + Y 2.

Solution. An elementary solution can be obtained by “completing
squares”. Let a 6= 0 or c 6= 0. Switching if necessary the roles of
x and y, we may assume without loss of generality that a 6= 0. We
rewrite: ax2 + 2bxy + cy2 = a(x + by/a)2 + (ac − b2)y2/a. Assuming

that ac 6= b2 and taking X =
√

|a|(x + by
a
) and Y =

√

|ac−b2|
|a|

y for the

new variables, we transform the quadratic form to one of the forms
±X2 ± Y 2. When ac = b2, we have ax2 + 2bxy + cy2 = ±X2 with the
same X as above and Y = y. If both a = 0 and c = 0, but b 6= 0, we
put x = (x′ + y′), y = (x′ − y′) and reduce the problem to the previous
case. The remaining case a = b = c = 0 is among the 6 normal forms.

Finally, to see that the 6 normal forms are non-equivalent, we note
that they have the following characteristic geometric properties which
are preserved by linear changes of coordinates: (X2 + Y 2) is positive
outside the origin, −X2−Y 2 is negative outside the origin, ±(X2−Y 2)
(which are equivalent to each other by switching the roles of X and Y )
are positive in some sector and negative in another one, X2 is positive
outside a line, −Y 2 negative outside a line, and 0 is zero everywhere.
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Homework 8. Due by Tuesday, March 29.

1. Classify plane curves given by quadratic equations

ax2 + 2bxy + cy2 + dx + ey + f = 0

(a) up to rigid motions of the plane;
(b) up to affine (i.e. linear inhomogeneous) transformations on the

plane.

Solution. By the orthogonal diagonalization theorem, the quadratic
function ax2 + 2bxy + cz2 + dx + ey + f can be brought to the form
AX2 + CY 2 + DX + EY + F by a suitable rotation of the coordinate
system. When A 6= 0 (resp. C 6= 0) the linear term DX (resp. EY )
can be eliminated by translations of the origin (“completing squares”).
Using also the operations of renaming X and Y , changing their signs,
and dividing the function by a non-zero constant, one can bring the
equation of the curve to one of the following normal forms:
x2

α2 + y2

β2 = 1 (ellipse with semiaxes α ≥ β > 0,
x2

α2 − y2

β2 = 1 (hyperbola), x2

α2 − y2

β2 = 0 (intersecting lines)

y = x2

2α2 (parabola), x2

2α2 = 1 (two parallel lines), x2

2α2 = 0 (a double line)
x2

α2 + y2

β2 = 0 (a point), x2

α2 + y2

β2 = −1 or x2

2α2 = −1 (the empty set).
If also rescaling of the coordinates is allowed, the equations of qua-

dratic curves fall into fewer equivalence classes:
X2 + Y 2 = 1 (circle), = 0 (point), = −1 (empty), X2 − Y 2 = 1

(hyperbola), = 0 (intersecting lines), X2 = Y (parabola), X2 = 1
(parallel lines), = 0 (a double line), = −1 (empty).

2. Show that the directions of meridians and parallels at every point
on a surface of revolution are principal, and compute the Gaussian
curvature of the surface obtained by rotating the graph of the function
x = f(z) about the z-axis.

Solution. The reflection in the plane passing through the axis of rev-
olution and a meridian is an isometry of the surface of revolution and
preserves the meridian pointwise. Thus at each point of the merid-
ian this reflection preserves the 1st and the 2nd fundamental forms.
Therefore the direction of the meridian is a principal axis of this pair
of quadratic forms. The direction of the parallel is also principal as a
direction perpendicular to a principal one. The curvatures k1(z) and
k2(z) of the meridian and the parallel are k1 = f ′′(z)(1 + f ′(z)2)−3/2

and k2 = 1/f(z) and thus the Gaussian curvature is

K = k1k2 =
f ′′(z)

f(z)(1 + f ′(z)2)3/2
.
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3. Let C be a regular curve on the surface of the unit ball, and let
S be the cone over C with the vertex at the center of the ball. Find
principal directions, principal curvatures and the Gaussian curvature
of S at regular points.

Solution. The cone is developable, i.e. can be isometrically de-
veloped to the plane (or, equivalently, “made of a piece of paper”).
Thus its Gaussian curvature K = 0 everywhere. By the Gauss The-
orem Egreguim, at least one of the principal curvatures k1, k2 at each
point equals 0. Therefore at a typical point of the cone (where, say,
k1 6= 0, k2 = 0) curves of all directions except the 2nd principal one
have non-zero normal curvature. It is clear now that the 2nd princi-
pal direction is the direction of the generator of the cone (= the ray
from the center of the ball) passing through this point (because straight
lines in the space have zero normal curvature on any surface containing
them). Thus the rays form one family of curves of curvature, i.e. curves
having principal direction at each point, while the intersections of the
cone with concentric spheres form the other such family (because the
latter curves are everywhere perpendicular to the former ones).

4. Show that a regular surface near a non-umbilical point (i.e. a
point where the two principal curvatures are distinct) posesses a local
coordinate system such that both the 1st and the 2nd fundamental
forms are diagonal:

I = A(u, v)(du)2 + C(u, v)(dv)2, II = a(u, v)(du)2 + b(u, v)(dv)2.

Solution. In a sufficiently small neighborhood of a non-umbilical
point, there are exactly 2 perpendicular principal directions in each
tangent plane to the surface. The directions form two smooth fields of

directions on the surface. By the Uniqueness and Existence Theorem
for solutions of Ordinary Differential Equations, the surface is locally
filled-in with a 1-parametric family of non-intersecting curves tangent
to a given field of directions. Applying this to the two fields of principal
directions we conclude that the surface is lically filled-in with two per-
pendicular 1-parametric families of curves of curvature (see Solution to
Problem 3). Let u and v be parameters parameterizing curves of cur-
vature of each of the two families. The fact that the directions du = 0
and dv = 0 are perpendicular means that the 1st fundamental form
contains no dudv-term, and the fact that the directions are principal
implies that the 2nd fundamental form contains no dudv-term.
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Homework 9. Due by Tuesday, April 5.

1. Let V, E, F denote the numbers of vertices, edges, faces of a
combinatorial surface (i.e. a “polyhedron” whose edges and faces are
allowed to be curved), and let χ = V − E + F denote its Euler char-

acteristics.
(a) Verify additivity of the Euler chracteristics in the following form:

let X and Y be two combinatorial surfaces whose intersection Z is a
combinatorial sub-surface in each of them. Then χ(X ∪ Y ) = χ(X) +
χ(Y ) − χ(Z).

(b) Show that the Euler characteristics of closed regular surfaces
(spheres, projective planes and Klein botles with g handles) are re-
spectively

χ(S2
g) = 2 − 2g, χ(P 2

g ) = 1 − 2g, χ(K2
g ) = −2g.

Solution. (a) In fact the additivity obviously holds true for the num-
bers of vertices, edges and faces separately: by adding these in X and
Y we are counting twice those which are in both.

(b) Thanks to topological invariance of the Euler characteristic (for
closed oriented surfaces it follows from the Gauss-Bonnet theorem), it
suffices to compute E − V + F for any particular combinatorial struc-
ture. Moreover, one can find this way that the Euler characteristics
of the disc, circle, cyclinder and Möbius strip are equal respectively
to 1, 0, 0, 0 and then use additivity. Namely, sphere is 2 discs glued
along a common circle, thus χ(S2) = 1 + 1 − 0 = 2. Similarly (see
the next problem), χ(P 2) = 1 + 0 − 0 = 1 (disc plus the Möbius strip
minus circle), and χ(K2) = 0 + 0 − 0 (2 Möbius strips glued along a
circle). Adding a handle consists of detaching 2 discs and attaching a
cylinder along 2 circles (−2 + 0 − 0 − 0) and thus decreases the Euler
characteristic by 2.

2. Show that gluing a disc and a Möbius strip along their boundaries
results in the projective plain P 2. Identify the surface obtained by
gluing two Möbius strips along their boundaries.

Solution. Cutting a Möbius strip along the middle circle yields a
cylinder. The reverse procedure consists in identifying pairs of opposite
points on one of the boundaries of the cylinder. Attaching a disc to the
other boundary results in a (larger) whose boundary’s opposite points
to be indetified. This is one of our models of P 2 which is thus glued
from a Möbius strip and a disc.

Just like any other bottle, Klein’s one has a plane of symmetry.
Cutting it in half along this plane yields two “half-bottles”. Each one
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is a rectangular strip with two opposite sides identified in a perverse
way, i.e. as in the Möbius strip.

3. Let Σ be a connected regular surface containing a Möbius strip.
Show that detaching 2 discs from Σ and replacing them with 2 Möbius
strips is equivalent to attaching a handle to Σ (i.e. that the resulting
two surfaces are homeomorphic).

Solution. We may assume that the 3 Möbious strips M1, M2, M3 are
attached near 3 points p1, p2, p3 which belong to the same disk D ⊂ Σ.
Let us instead attach to D a handle H near p1 and p2. The resulting
surface remains homeomorphic to itself when the point p2 is moving
continuously on the surface. We let it move along the middle circle
of M3 and then come back to the original position p2. Since M3 is
one-sided, the resulting handle H is now attached to D near p1 and p2

from opposite sides. Thus D2 (which can be thought of as the sphere
minus a disc) together with this disorienting handle is the same as K2

minus the disc. Let us now think of K2 as M1 and M2 glued along an
intermediate cylinder. Detaching the disc from the cylinder results in a
disc with two holes glued in by M1 and M2. Reminding ourselves about
M3, we conclude that the disc D with M3 and H is homeomorphic to
the disc D with M1, M2 and M3.

4. Show that any closed regular surface in R3 has elliptic points.
Can it have no hyperbolic, parabolic points? How does the answer
depend on the genus?

Solution. Since the surface is compact, it contains a point p furthest
from the origin. The sphere centered at the origin and passing through
p encloses the surface and touches it at p. Respectively, the paraboloid
osculating the sphere at p encloses the paraboloid osculating the surface
at p. Thus both principal curvatures of the surface at p are minorated
by 1/r > 0, where r is the radius of the sphere. Therefore p is an
elliptic point on the surface, i.e. K(p) > 0.

On the other hand, the Gauss-Bonnet theorem guarantees that the
integral

∫ ∫

KdA = 4π(1 − g) ≤ 0 when the genus g of the surface is
positive. Since K > 0 in a neighborhood of p, K must be negative
elsewhere and pass through 0 somewhere in between. Thus a closed
surface of genus g > 0 must have elliptic, hyperbolic and parabolic
points.

The example of the standard sphere shows that a closed genus 0
surface may have all points elliptic.
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Homework 10. Due by Thursday, April 14.

1. Angular defects of all vertices of a convex polyhedron (with linear
edges and faces this time) in R3 add up to 4π. Prove this statement
and its generalization to polyhedra homeomorphic to other (than S2)
closed surfaces following the argument in the proof of the Gauss-Bonet
theorem.

Solution. Let the faces of the polyhedron be ni-gons Pi, i = 1, ..., F .
The angle sum of Pi is π(ni − 2). Summing all angles of all the faces
we therefore get π

∑

ni − 2πF . The face Pi has ni sides, and each out
of E edges of the polyhedron occurs as a side in exactly 2 faces. Thus
π

∑

ni = 2πE. On the other hand, all the angles groupped by the
V vertices of the polyhedron with angular defects δ1, ..., δV , add up to
∑

(2π − δj) = 2πV − ∑

δj. Thus the total sum of angular defects

V
∑

j=1

δj = 2π(V −E + F ) = 2πχ.

2. (a) Express the total Gaussian curvature of a Riemannian metric
on the disc D in terms of the geodesic curvature of the boundary ∂D.

(b) Generalize the Gauss-Bonnet theorem to compact surfaces with
boundaries.

Solution. Using the result of Problem 3 from Homework 6 and fol-
lowing the proof of the Gauss–Bonnet theorem for closed surfaces based
on partitioning the surface into F faces by E curvilinear edges and with
V vertices, we obtain

∫ ∫

Σ

KdArea +

∫

∂Σ

kgdLength = 2π(V − E + F ) = 2πχ(Σ).

3. Show that the total Gaussian curvature of the surface x2 + y2 −
z2 = r2 does not depend on r and compute it.

Solution. We apply the result of the previous problem to the surface
SigmaM with boundary which is the part of the hyperboloid x2 + y2 −
z2 = r2 satisfying |z| ≤ M , and pass to the limit M → ∞. Since
the χ(ΣM) = 0, we have

∫

ΣM
KdArea = −

∮

∂ΣM

kgds. When z →
±∞, the hyperboloid asymptotically approaches the cone x2 +y2 = z2.
Developing the cone to the plane, we find that the geodesic curvature of
each circle z = ±M on it is equal to 1/

√
2M . Thus when M → ∞ the

total geodesic curvature of ∂ΣM tends to 2×2πM/
√

2M = 2
√

2π. Thus
the total Gaussian curvature of the hyperboloid is equal to −2

√
2π, and

in particular does not depend on r.
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4. Let P (z) and Q(z) be relatively prime polynomials of degree p and
q with complex coefficients. Consider the rational function P (z)/Q(z)
of a complex variable as a map from S2 = C ∪∞ to S2 = C ∪∞ and
compute the degree of this map.

Hint: First consider the operation C → C : z 7→ (a + bi)z of multi-
plication by a given complex number as a linear map from the plane
C = R2 to itself and compute its determinant.

Solution. Expanding the rational function F = P/Q near a point z
we find

F (z + ∆z) = F (z) + F ′(z)∆z + o(δz).

Thus the linearization of the map z 7→ F (z) at the point z is the
linear map C → C given by ∆z 7→ F ′(z)∆z, i.e. multiplication by
the complex number a + bi = F ′(z). Following the hint, we find in
real coordinates ∆z = x + yi the linear map is (x, y) 7→ (ax− by, bx +
ay) with the determinant a2 + b2. Thus the Jacobian determinant of
the map given by F is non-negative (and vanishes only when F ′(z) =
0). This implies that each preimage z ∈ F−1(c) of a regular value
c contributes +1 to the degree of the map. To find the number of
preimages we need to solve P (z)/Q(z) = c, or equivalently P (z) −
cQ(z) = 0. This is a polynomial equation of degree m = max(p, q). By
the Fundamental Theorem of Algebra (and Sard’s Lemma) it has m
simple distinct solutions for almost all c. Thus the degree of the map
is m = max(p, q).
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Homework 11. Due by Thursday, April 21.

1. Describe the spherical image of the surface x2 + y2 − z2 = r2

under the Gauss map and find its signed area. Compare the result
with the total Gaussian curvature found in problem 1 of the previous
homework.

Solution. The surface is a one-sheeted hyperboloid of revolution
asymptitically approaching the cone x2 + y2 = z2 whose generators
make the angle π/4 with the axis z of revolution. The normal unit
vectors to the cone form two circles z = ±1/

√
2 on the unit sphere

x2+y2+z2 = 1. By inspection, the region |z| < 1/
√

2 on the unit sphere
between these two circles is the spherical image of the hyperboloid,
while the Jacobian of the Gauss map is negative. Thus the signed area
of the spherical image is equal to −4π/

√
2 = −2

√
2π. This agrees with

result of Problem 1 from Homework 10.

2. Angular defects of all vertices of a convex polyhedron (with linear
edges and faces this time) in R3 add up to 4π. Prove this statement
by mimicking the proof of Gauss-Bonnet theorem based on the Gauss
map.

Solution. Consider the unit exterior normal vectors fi to the faces
of the polyhedron as points on the unit sphere. When two faces (say
i and j) share an edge, connect fi and fj with an equatorial arc on
the unit sphere (the arc is perpendicular to the edge and imitates the
range of the Gauss map for the surface obtained from the two faces
by smoothening over the edge). The construction results in a combi-
natorial structure on the unit sphere dual to the original polyhedron
P . The vertices are fi; they correspond to faces of P . The equatorial
arcs connecting the vertices correspond to the edges of P . The arcs
partition the sphere into regions which correspond to the vertices of
P . (The regions mimick spherical images of neighborhoods of the ver-
tices after smoothening of P ). We claim that the spherical area of each

region is equal to the angular defect of the corresponding vertex of P .

Since the regions add up to the whole sphere, this would imply that
the angular defects add up to 4π.

To justify the claim, consider a polyhedral cone with faces (in cyclic
order) F1, ..., Fn and unit exterior normal vectors f1, ..., fn. The plane
spanned by fi−1 and fi is perpendicular to the common ray of Fi−1

and Fi, and similarly the plane of fi and fi+1 is perpendicular to the
common ray of Fi and Fi+1. This implies that the angles between these
two planes and between these two rays add up to π. Considering now
the spherical n-gon formed by the vertices fi, we find αi+βi = π, where
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αi is the angle at the vertex fi of the n-gon, and βi is the angle in the
face Fi of the cone. By the local Gauss-Bonnet theorem for spherical
polygons we find that the area of the spherical n-gon f1...fn is

Area =
∑

αi − π(n − 2) = 2π −
∑

βi = δ,

i.e. exactly the angular defect of the polyhedral cone.

3. (a) Show that the torus and the Klein bottle can be equipped
with a Riemannian metric of zero curvature.

(b) Are all tori of zero Gaussian curvature isometric to each other?

Solution. (a) Gluing tori and Klein bottles from a square can be
understood as factorizaion of the Euclidean plane R

2 by the action of
a group of rigid motions generated (for tori) by two non-colinear trans-
lations, and (for Klein bottles) by a translation and another transla-
tion composed with reflection, e.g. (x, y) 7→ (x, y + 1) and (x, y) 7→
(x+1,−y). The resulting quotient surface inherits from R2 a Riemann-
ian metric of zero Gaussian curvature.

(b) Multiplying the metric in R2 by a constant we equip the quotient
torus with a zero curvature metric of a different total area. [A less
obvious way to construct non-isometric zero curvature tori is to glue
them from Euclidean parallelograms (rather than squares) of different
shapes.]

4. In the Minkovsky 3-space, consider three planes passing through
the origin and intersecting pairwise along three lines situated on the
light cone. The there planes cut out a triangle on the “upper” sheet of
the Minkovsky sphere of radius R. Find the Riemannian area of this
triangle.

Solution. By the local Gauss-Bonnet theorem, the total curvature
KA of a geodesic triangle with the angles α, β, γ and area A on a
surface of constant Gaussian curvature K is equal to α + β + γ − π.
On the Minkovsky sphere of radius R, we have K = −1/R2, and thus
A = R2(π−α−β− γ). The “tiangle” described in the problem has its
vertices at infinity and is the limiting case of a geodesic triangle with
α, β, γ → 0. Thus A = πR2.
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Homework 12. Due by Thursday, April 28.

1. Show that all plane elements tangent to a given space curve C
form an integral surface LC ⊂ Q5 in the quadric of all plane elements.

Solution. Let (v(t), ω(t)) be a family of plane elements tangent to
C . Then ω(t) is a plane containing the tengent line to C at the point
v(t) ∈ C , and v̇(t) is tangent to C at v(t). Thus v̇(t) ∈ ω(t), as required
in the definiton of integral curves and integral surfaces.

2. A surface is called ruled if together with each point it contains
a straight line passing through this point. Prove that the surface
S∗

C ⊂ V ∗, obtained from the curve C ⊂ V by projecting to V ∗ the
corresponding integral surface LC ⊂ Q5 ⊂ V × V ∗, is ruled.

Solution. The projection S∗
C consists of all planes tangent to C . Let

ω be such a plane, tangent to C at v. Then it containes the line l
tangent to C at v. All planes containing l ⊂ V form a line l∗ ⊂ V ∗.
This line is contained in S∗

C and passes through ω ∈ S∗
C .

3. Let the space curve C in Problem 1 be the circle x2 + y2 =
r2, z = 1. Let LC ⊂ Q5 be the corresponding integral surface LC ⊂ Q5.
Compute the surface S∗

C ⊂ V ∗ obtained by projecting of LC from
Q5 ⊂ V ×V ∗ → V ∗. Show that S∗

C is a quadratic surface and indentify
it.

Solution. A plane αx + βy + γz = 1 is tangent to the circle at
the point (x, y, z) = (r cos t, r sin t, 1) if αr cos t + βr sin t + γ = 1, and
βr cos t−αr sin t = 0. To eliminate t, we square and add the equations,
and obtain r2α2+r2β2 = (γ−1)2. This surface in the (α, β, γ)-space is a
cone of revolution about the γ-axis with the vertex (α, β, γ) = (0, 0, 1).

4. Let S ⊂ V = R3 be a quadratic surface given by the equation
(Av, v) = 1 where A is a symmetric 3 × 3-matrix, and (·, ·) is the
dot-product in R3. Compute the dual surface S∗ ⊂ V ∗.

Solution. The differential of the quadratic function (Av, v) is (Av, dv)+
(Adv, v) = 2(Av, dv). Therefore the plane given by the equation (ω, x) =
1 with ω = Av is tangent to S at v. Thus the equation (Av, v) = 1
for v = A−1ω transforms into the equation (ω, A−1ω) = 1 of the dual
surface S∗.
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Homework 13. Due by Thursday, May 5.

1. Show that a ruled surface cannot have positive Gaussian cur-
vature, and give an example of a ruled surface of negative Gaussian
curvature.

Solutions. A straight line on a regular surface has zero normal (as
well as any other) curvature. Therefore the 2nd fundamental form of
a ruled surface cannot be sign-definite. A hyperboloid of one sheet is
an example of a ruled surface which has negative Gaussian curvature
(e.g. because there are two straight lines through each point).

2. A regular curve C on a regular surface S ⊂ R3 is called asymptotic

if the 2nd fundamental form of S vanishes on the tangent lines to C .
(a) Show that each point on a hyperbolic (K < 0) surface is contained

in two asymptotic curves.
(b) Prove that the geodesic curvature of an asymptotic curve C on a

surface coincides with the curvature of C considered as a space curve.

Solution. (a) The 2nd fundamental form of a hyperbolic surface
vanishes on a crossing pair of tangent lines. This defines locally on
the surface two fields of asymptotic directions. By the Existence and
Uniqueness Theorem for solutions of Ordinary Differential Equations,
each of the fields of directions can be locally integrated: the surface
is filled-in with a 1-parametric family of non-intersecting curves every-
where tangent to the field of directions. The curves of each family are
therefore asymptotic.

(b) The normal curvature kn of a curve on a surface is given by
the value of the 2nd fundamental form on the unit velocity vector of
the curve. By definition, asymptotic curves have therefore kn = 0.
The relationship k2

n + k2
g = k2 between normal, geodesic, and space

curvature of the curve shows that asymptotic curves have |kg| = k.

3. Show that if a regular curve C is asymptotic on a regular surface
S, then C∗ is contained in S∗ and is asymptotic on S∗ (at non-singular
points). Vice versa, when the images in S and S∗ of the same curve in
LS = LS∗ ⊂ Q5 happen to be dual curves C and C∗, then these curves
are asymptotic respectively on S and S∗.

Solution. By Problem 2, the acceleration vector of a naturally pa-
rameterized space curve C asymptotic on a regular surface S has no
normal component. Therefore osculating planes of C are tangent to
S. Thus the dual curve C∗ ⊂ V ∗ formed by the osculating planes of
C is contained in the dual surface S∗ formed by tangent planes to S.
Vice versa, the points representing C ⊂ S on the dual surface are tan-
gent planes to S at C . If they form the dual curve C∗, this means
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that tangent planes to S at C are osculating planes of C . In other
words, the acceleration vectors of C are tangent to S, i.e. the normal
curvature of C vanishes, and therefore C is asymptotic on S. Using
C = C∗∗ and reversing the roles of C and C∗ we conclude that under
the circumstances C∗ is asymptotic on S∗ as well.

4. Describe regular surfaces S ⊂ V whose tangent planes form in
V ∗ a plane curve.

Solution. Let P ∗ ⊂ V ∗ be a plane passing through the origin. The
condition 〈v, ω〉 = 0 for all ω ∈ P determines a line L ⊂ V passing
through the origin. Next, planes containing the line l∗ ⊂ P ∗−0 passing
through two points ω1, ω2 ∈ l∗ form the line l ⊂ V − 0 determined by
two equations 〈v, ω1〉 = 〈v, ω2〉 = 1. The line l is parallel to L because
for v1, v2 ∈ l we have 〈v1−v2, ωi〉 = 0 for i = 1, 2. When tangent planes
to S ⊂ V form a curve C∗ ⊂ P ∗, the surface SC∗ ⊂ V containing S is
formed by those planes in V ∗ which contain a tangent line to C∗. Thus
SC∗ is ruled by lines l parallel to L and is a cylindrical surface in V .

Suppose now that tangent planes to S form a curve C∗ contained in
a plane P ′ not passing through the origin (and is given therefore by
the equation 〈v′, ·〉 = 1). The surface SC∗ ⊃ S is still ruled by straight
lines l formed by planes in V ∗ containing a tangent line l∗ to C∗. Since
P ′ is one of such planes, the lines l pass through v′. Thus SC∗ is a
conical surface with the vertex v′.


