
George M. Bergman Supplementarymaterial

Some notes on sets, logic, and mathematical language

These are ‘‘generic’’ notes, for use in Math 110, 113, 104 or 185.
These pages do not develop in detail the definitions and concepts to be mentioned.That is done, to various

degrees, in Math 55, Math 74, Math 125 and Math 135.I hope you will nevertheless find these notes useful and
thought-provoking. I recommend working the exercises for practice; but don’t hand them in unless they are listed
in a homework assignment for the course.

1. Set-theoretic symbols

Symbol. Meaning, usage, examples, discussion.

N, Z Here N denotes the set of allnatural numbers, i.e., {0, 1, 2, 3, ...} , while Z (from ‘‘Zahl’’, German for
‘‘ number’’) denotes the set of allintegers, { ... , − 3,− 2, −1, 0, 1, 2, 3, ...} .

(Many older authors started the natural numbers with 1, but it is preferable to start with 0, since
natural numbers are used to count the elements of finite sets, and the set with no elements is a finite set.)

Q , R, C Of these,Q (for ‘‘quotient’’) denotes the set of allrational numbers, i.e., fractions that can be written
with integer numerator and denominator,R denotes the set ofreal numbers, and C the set ofcomplex
numbers.

(The above five boldface letters are generally shown on the blackboard by writing the given letter with
one main stroke doubled: , , , and . Since it is convenient to have distinctive symbols for
these five important sets, printed forms imitating these symbols have been created, generally called
‘‘ blackboard bold’’, which are now used in many works. However, in handouts in this course, I will
follow our text and use regular boldface symbolsZ, Q etc.)

∈ ‘‘ Is a member of’’ . E.g., 3∈Z .

{ } ‘‘ The set of all’’. This is often used together with ‘‘ ’’ o r ‘‘ : ’’ ( different authors use one or the other),
which stand for ‘‘such that’’. For instance, the set ofpositiveintegers can be written{1, 2, 3, ...} or
{n ∈Z  n > 0} or {n : n ∈Z , n> 0} . The set of all square integers can be written{0, 1, 4, 9, ... ,n2, ... } or
{n2 n ∈Z } . Note also that{n2 n ∈Z } = {m2 m ∈Z } = {m2+ 2m+ 1 m ∈Z } . (Why?)

∅ The empty set; i.e., the set which contains no elements.

⊆ ‘‘ Is a subset of’’ . E.g., ∅ ⊆ {1} ⊆ N ⊆ Z ⊆ R ⊆ C. {n2 n ∈Z } ⊆ {n ∈Z  n≥ 0} . Z ⊆ Z .

⊂ or ⊂≠ ‘‘ Is a proper subset of’’ ; that is, a subset that is not the whole set.For instance,Z ⊂≠ R. In fact, all the
formulas used above to illustrate ‘‘⊆’’ r emain true with⊂≠ in place of ⊆ except for Z ⊆ Z . Since a
proper subset is, in particular, a subset, one may use⊆ ev en when ⊂≠ is true; and one generally does so,
unless one wants to emphasize that a subset is proper. But beware: some authors (especially in Eastern
Europe) use⊂ for ‘‘is a subset of’’ .

⊇, ∈, etc. Obvious variants of the above symbols: A ⊇ B meansB ⊆ A; x ∈X meansx is not a member ofX;
A ⊆ B meansA is not a subset ofB; etc..

Warning: Thephrases ‘‘A lies in X ’’ and ‘‘A is contained inX ’’ can each mean eitherA ∈X or
A⊆ X. (The former phrase more often meansA ∈X and the latterA⊆ X, but this is no guarantee.) So
in your writing, if there is danger of ambiguity, either use the symbol, or use the unambiguous phrase ‘‘is
a member of’’ o r ‘‘is a subset of’’ .

∩ Intersection:A∩ B = {x both x ∈A and x ∈B are true} . For instance,
{x ∈Z  x > 9} ∩ {x ∈R  x ≤ 12} = {10, 11, 12} .

∩ Intersection of an indexed family of sets.For instance, ifA0, A1, ... aresets, then∩n=0, 1, ...An , also
written ∩n ∈N An , ∩∞

n= 0 An and A0∩ A1 ∩ ...∩ An ∩ ... , means{x x is a member of all ofA0,
A1, etc.} .
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In an intersection∩i ∈I Ai , I does not have to be a set of integers; it can be any set such thatAi is
defined for eachi ∈I . When a setI is used in this way to index (i.e., list) other entities, it is called an
index set.

∪ Union: A∪ B = {x x ∈A or x ∈B } . For instance,{x ∈Z  x > 0} ∪ {x ∈Z  x < 12} = Z . Note that if
A ⊆ B then A∪ B = B and A∩ B = A.

∪ Union of an indexed family of sets. Thus∪n=0, 1, ... An = ∪n ∈N An = ∪∞
n =0 An =

A0∪ A1 ∪ ...∪ An ∪ ... . Example: ∪n ∈N {i ∈N  i <n } = N.
Often, when the intent is clear from context, the above notations are abbreviated. For instance, if we

know that we have one setAi for each i in a certain index-setI , then instead of∪i ∈I Ai , we may
write ∪I Ai or ∪i Ai or just ∪ Ai . Likewise, if we have a set Xn for each positive integer n, the
intersection∩∞

n=1 Xn may be written∩n Xn or simply ∩ Xn .
c ‘‘ Complement of’’ : cA means{x x ∈A} .

But {x x ∈A} makes no sense if we don’t say whatx’s are allowed! Sothe notationcA is used
only when discussing subsets of a fixed set.For instance, if we are discussing subsets of the integers, then
c{ev en integers} = {odd integers}, while if we are considering subsets ofQ , then c{ev en integers}
denotes the set consisting of all odd integers and non-integer rationals.To be more precise, we can use
the next symbols:

− or \ A − B (or A\ B) means {x ∈A x ∈B} . E.g., Z − {ev en integers} = {odd integers} . Note thatA − B is
defined even if B is not a subset ofA. For instance,Z − {negative real numbers} = N.

f : X → Y This indicates thatf is a function (also called a ‘map’ or ‘mapping’) from the setX to the setY. (In
reading the symbol out loud, one can use words such as ‘‘the mapf from X to Y’’ , or ‘‘ f sendingX to
Y’’ .)

Such anf is said to beone-to-one(or injective) if f or every two distinct elementsx1, x2 ∈X, the
elementsf (x1) and f (x2) of Y are also distinct.For instance, the operation of cubing an integer is a
one-to-one functionZ → Z ; but the squaring map isnotone-to-one, because(−n)2 = n2.

The function f : X → Y is said to beonto Y if every element ofY equals f (x) for somex ∈X. For
instance, the squaring and cubing mapsZ → Z are not onto, since not all integers are squares or cubes.
On the other hand, the cubing mapR → R is both one-to-one and onto.

Given f : X → Y, the setX is called thedomainof f . What about the set at the other end of the
arrow? A complication is that iff is not ontoY, then Y and { f (x)  x ∈X } are different sets.
Traditionally, these were called the ‘‘range’’ and the ‘‘image’’ of f respectively, but the usage was not
firm; ‘‘range’’ was often used as a synonym for ‘‘image’’. Hencenowadays, the unambiguous term
‘‘ codomain’’ has been introduced to describeY. A function is calledonto if it is onto its codomain; a
synonymous term is ‘‘surjective’’ ( from French ‘‘sur’’ = ‘ ‘onto’’).

A map f : X → Y that is both one-to-one and onto has an inverse mapg : Y → X, taking eachy ∈Y
to the unique elementx ∈X such thatf (x) = y. Thus, f may be thought of as defining a matching
X←→ Y, under which each element ofX is matched with a unique element ofY and vice versa; such a
matching is called aone-to-one correspondencebetweenX and Y. So the phrases ‘‘one-to-one and onto
function’’, ‘‘in vertible function’’ and ‘‘one-to-one correspondence’’ all describe the same thing; still
another term for this is ‘‘bijectivemap’’ ( ‘‘ bijective’’ meaning ‘‘both injective and surjective’’ ).

f −1 This symbol is used inthree different ways, which are related, but not quite the same.A lot of confusion
can result if they are not distinguished. First, iff is one-to-one and onto, thenf −1 denotes theinverse
of f , discussed above. Secondly, if f : X → Y is any map, andS is any subset ofY, then f −1(S)
denotes{x ∈X  f (x) ∈S}, called theinverse image(or preimage) of S under f . When f is invertible it
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is not hard to check that this is precisely the image of the setS under the inverse function f −1: Y → X .
However, this definition of f −1(S) makes sense even when f is not invertible. Finally, for y ∈Y, the
symbol f −1({y} ) is often abbreviated tof −1(y). Hencewhen the symbol ‘‘f −1’’ i s used, you must
check whether the context indicates thatf is an invertible function. If so, you can be confident thatf −1

denotes the inverse function; if not, thenf −1 does not stand for a function, but is a way of writing
inverse images of sets or elements underf .

(Note also that the symbolf (x)−1, which can turn up whenf is, say, a real-valued function, means
something unrelated to the above three concepts: it denotes the multiplicative inv erse of the real number
f (x). If, in such a situation, you want to refer to the function that takesx to f (x)−1, you can’t call it
f −1; but you could write it1/ f .)

→ While the ordinary arrow referred to above is used to show what the domain and codomain of a function
are, the ‘‘flat-tailed’’ arrow shows which element is carried to which. Thus,f : x → x2 means thatf is
the squaring function, defined byf (x) = x2. We can use this kind of arrow to describe a function without
denoting it by a letter, e.g., ‘‘the function x → x2’’ ( which can be read ‘‘the functionx-goes-to-x2’’ o r
‘‘ the function takingx to x2’’ ).

× If A and B are sets,A× B means the set of ordered pairs{ (a, b)  a ∈A, b∈B} . I won’t discuss here
precisely how an ordered pair is defined; simply think of it as a ‘‘list’’ of l ength 2. Note that a functionf
of two variables, oneA-valued and oneB-valued, which takes values in a setC, can be thought of as a
map f : A× B → C. For example, addition of integers is a mapZ × Z → Z , giv en by (m, n) → m +n,
while exponentiation of real numbers using natural numbers as exponents, given by (x, n) → xn, is a
map R × N → R.

Likewise, A× B×C denotes the set of ordered 3-tuples{ (a, b, c)  a ∈A, b∈B, c∈C}, and one
defines a function of three variables as a map on such a triple product-set; and so on.

The setA× B is called theproduct(or direct product) of the setsA and B because ifA and B are
finite, A having m members andB having n members, thenA× B will have m n members. In
analytic geometry one regards the setR × R of pairs of real numbers as labeling the points of the plane.
The numbers so used are called the ‘‘Cartesian coordinates’’ of the points, after Rene´ Descarteswho
discovered this approach to geometry. Hence one often calls the direct productA× B of two sets their
Cartesian product.

If f : X → Y is a function, then{(x, f (x))  x ∈X } ⊆ X×Y, is called thegraphof f − again, the idea
comes from analytic geometry.

Exercise 1. Let X and Y be sets. Find conditions on a subsetS⊆ X×Y that are necessary and
sufficient for S to be the graph of a functionX → Y. (I.e., necessary and sufficient conditions onS
for there to exist a functionf : X → Y such thatS is the graph off .) If these conditions hold, willS
uniquely determine the function?

In view of the answer to the above exercise, set-theorists oftendefinea function from a setX to a set
Y as a subset ofX×Y having the appropriate properties.

The setsA×A, A×A×A, etc. are often writtenA2, A3, etc.. Also,if A and B are sets, the set of
functions from A to B is often writtenBA, since if A is a finite set withm elements andB a finite
set with n elements, this set of functions will have nm elements.

2. Logical connectives

Let us begin by noting that there is a kind of inverse relation between statements and possibilities −
the more statements we make, the more we limit the set of possibilities; the more possibilities there are,
the more limited is the set of true statements.
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For instance, suppose we are considering an integer-valued variablex. If we require thatx be
positive, then the set of possibilities we are considering forms the set{1, 2, 3, ...} . If instead we had
stated thatx is even, then the set would have been { ... , − 4,− 2, 0, 2, 4, ... } . If we imposeboth
conditions, then the only possibilities forx are thepositive evenintegers, a proper subset of each of those
sets. Moregenerally, if P and Q are any two conditions, and we assume thatP and Q hold, then the
set of cases we are allowing is theintersectionof the set of cases allowed byP alone and the set of cases
allowed by Q alone. Thiswill help you remember the next symbol, which is similar to∩.

∧ ‘‘ And’’: If P and Q are two statements, then we define ‘‘P ∧ Q’’ t o hold if and only if P and Q both
hold. For example, the condition 0≤ x ≤ 1 is an abbreviation of (0≤ x) ∧ (x≤ 1). Theoperation ∧ is
called ‘‘conjunction’’.

On the other hand, if we want to consider all cases allowed by a conditionP andalsoall cases
allowed by Q − the union of the two sets of cases − then we are considering the condition ‘‘P or Q
holds’’. This is a weaker condition than eitherP or Q, in line with the ‘‘inverse relation’’ noted above
between statements and cases. The symbol used is similar to∪, namely

∨ ‘‘ Or’’: If P and Q are two statements, we say that ‘‘P ∨ Q’’ holds in a situation ifP holds or if Q
holds (possibly both).For instance, for all real numbersx, we hav e (x< 10) ∨ (x> 0). Thecondition
x ≤ y is equivalent to (x < y) ∨ (x = y). Asanother example, for all integersa, b we have
(a≥ 0) ∨ (b≥ 0) ∨ (ab≥ 1). Theoperation ∨ is called ‘‘disjunction’’.

The ‘‘inverse relation’’ between statements and possibilities that we have mentioned is sometimes a
cause of confusion. Many precalculus students, when asked to say what real numbersx satisfy x2>1,
will describe these as the set ofx satisfying ‘‘x>1 and x< −1’’. What they mean is that the setconsists
of all x satisfying x>1 andall x satisfying x< −1. Thecorrect way to express this union of cases is
not by the conjunction ‘‘x>1 and x< −1’’, but by the disjunction ‘‘x>1 or x< −1’’. That is:

{x x2>1} = ( − ∞, −1)∪ (1, +∞) = {x x< −1} ∪ {x x> 1} = {x (x< −1) ∨ (x> 1)} .

¬ ‘‘ Not’’. E.g., ¬(x = y) meansx ≠ y.

−−> ‘‘ Implies’’. For instance, ifx ∈R, then x> 2 −−> x> 0.
If P and Q are statements, then ‘‘P −−> Q ’’ i s a statement which is considered to be true in all cases

except those whereP is true butQ is false. P −−> Q may also be expressed in words ‘‘IfP then Q’’ o r
‘‘ Q if P’’ . For instance, the true statement ‘‘x> 2 −−> x> 0’’ can expressed ‘‘x> 0  if x> 2’’ .

There are certain conventions in the everyday (nonmathematical) use of words such as ‘‘or’’ and ‘‘if ’ ’,
which we follow unconsciously, but need to become aware of so as to understand that they do notapply to
mathematical usage.

In everyday life, we generally use the word ‘‘or’’ only when we donot knowwhich of the two
possibilities is true. E.g., if a letter comes in the mail and you say, ‘‘This is either from John or
Stephanie’’, you are asserting that it is from one of them, but also, implicitly, that you do not yet know
whichone. Thereare variants on this convention: If you say ‘‘I am holding a penny in either my right
hand or my left hand’’, thenyouknow which hand it is in, but the person you are speaking to does not.
On the other hand, a mathematical statementP ∨Q is considered to be true even when wedoknow
which of P or Q holds. For instance, we have noted that for all real numbersx, (x< 10) ∨ (x> 0). So
in particular, the statement(100 < 10)∨ (100 > 0) is true, and so is(5 < 10)∨ (5 > 0), and so is
(0 < 10)∨ (0 > 0). Of course, a mathematician does notpointlesslywrite down ‘‘P ∨Q’’ w hen he or she
and the reader both know that P is true, or both know that Q is true, any more than a nonmathematician
would. Butit must be understood thatP ∨Q is true in such cases, in order that the truth of a
mathematical statement not be lost when our knowledge increases.

Similarly, in nonmathematical usage we generally make statements of the form ‘‘IfP then Q ’’ only
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when there is some uncertainty as to whether the statementsP and/or Q hold; but again, to make
mathematical usage consistent, we must accept ‘‘P −−> Q ’’ as true in all casesexceptwhen P holds and
Q does not.

Note also that in nonmathematical usage, ‘‘P or Q’’ sometimes means ‘‘P or Q, but not both’’.
(E.g., in the ‘‘John or Stephanie’’ example and the ‘‘which hand’’ example above.) In mathematical
usage, the meaning of ‘‘or’’ is not restricted in that way; so(5 < 10)∨ (5 > 0) is a true statement.

<−−−−>, iff P <−−−−> Q means (P −−> Q ) ∧ (Q −−> P ), i.e., ‘‘P is true if and only ifQ is true’’. Thus,‘‘ <−−−−>’’ i s
synonymous with ‘‘if and only if’’ , often abbreviated by mathematicians to ‘‘iff ’ ’.

The next two exercises give some practice with the logical connectives described in this section.

Exercise 2. Supposex is an element, andA, B are sets. Find, for each statement in the left-hand column
below, the logically equivalent statement in the right-hand column. (There is one statement in the right-hand
column not equivalent to any of the statements in the left-hand column.)

x ∈A∪ B (x ∈A) ∧ (x ∈B)
x ∈A∩ B (x ∈A) −−> (x ∈B)
x ∈ cA (x ∈A) ∧ (x ∈B)
x ∈A \ B  x∈A

(x ∈A) ∨ (x ∈B)

Exercise 3. SupposeP and Q are two mathematical assertions. (Examples might be ‘‘n> 0’’ and ‘‘n is
ev en’’ if we are talking about an integern.) Find,for each statement in the left-hand column below, the
logically equivalent statement in the right-hand column. (There are two statements in the right-hand column
not equivalent to any of the statements in the left-hand column.)

P ∧ Q Q −−> P
P ∨ (¬Q ) Q ∧ P
P (¬P ) −−> Q
P ∨ Q (¬P ) ∧ (¬Q )
¬(P ∧ Q) (¬P ) ∨ (¬Q )

¬P
¬¬P

General warning: Donot confusestatements(called by logicianspropositions) with sets. For instance, ifX
is a statement, e.g., ‘‘a> 10’’, then it makes no sense to write ‘‘u ∈X’’ o r ‘‘a ∈X’’ . And if X and Y are sets, then
‘‘ X −−> Y ’’ makes no sense.

There are, of course, important relations between statements and sets.For instance, ifX and Y aresets,then
X⊆Y is astatement, while if P(x) is astatementabout a real numberx, then {x ∈R  P(x)} is aset.

3. Quantifiers

Here are two symbols that are extremely important in constructing mathematical statements.

‘‘ For all’ ’ or ‘ ‘for every’’. If we are referring to real numbers, thenx, (x+1)2 = x2+ 2x+1 isa true
statement; so is x, (x< 0) ∨ (x= 0) ∨ (x> 0). Referringto integersn, the statement n, (2n− 1)2> 0
is true, though it is not true for real numbers.

To make such formulas precise, we should show what class of possible ‘‘n’’ w e are talking about.We
can do this by writing, for instance, n ∈Z , (2n− 1)2> 0. For greater clarity parentheses may be
introduced, e.g., ( n ∈Z ) (2n− 1)2> 0  or ( n ∈Z ) ((2n− 1)2> 0).

−−− ‘‘ There exists ... such that’’, or ‘‘for some’’. For example, (−−− x ∈Z ) x> 10 says that there exists an
elementx belonging to the set of integers, and such thatx> 10; orbriefly ‘‘There exists an integer
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greater than 10’’. Similarly, (−−− x ∈R) x2= 3  means ‘‘There exists a real number whose square is 3’’.
(Both of these are true statements.) Still another way of reading (−−− x ∈R) is ‘‘For at least one real
number x it is true that’’.

(Some people also write−−− ! or −−−1 to mean ‘‘For exactly one value’’, or equivalently, ‘‘There exists a
unique value such that’’; but we will not use this notation here.)

Exercise 4. SupposeP(x) and Q(x) are statements about an integerx. (Examples of such statements are
‘‘ x> 0’’ , ‘‘x is odd’’, ‘‘x≠ 55’’, ‘‘ x = x’’ , etc..) Ineach of the cases below, if you believe that the equivalence
asked about holds, say briefly why, while if you decide that two statements are not equivalent, try to find an
example of propositionsP and Q for which one of the statements is true, and the other is not.
(a) Is ( x) P(x) equivalent to ¬ (−−− x) (¬P(x)) ?
(b) Is (−−− x) (P(x) ∧ Q(x)) equivalent to ((−−− x) P(x)) ∧ ((−−− x) Q(x)) ?
(c) Is ( x ∈{1, 2, 3}) P(x) equivalent to P(1) ∧ P(2) ∧ P(3) ?
(d) Is ¬( x) P(x) equivalent to ( x) (¬P(x)) ?

Exercise 5. To show that the statement (−−− x ∈Z ) x2= x is true, it is enough to give the single examplex= 0.
SupposeP(x) is a statement about an elementx, and we want to prove one of the statements below. In which
cases can this be done by giving just a single example? Ineach such case, say what the nature of the example
must be.

(a) (−−− x) P(x) (c) ( x) ¬P(x)
(b) ( x) P(x) (d) ¬( x) P(x)

Exercise 6. SupposeA and B are sets.Translate each of statements (a)-(b) below, which are expressed using
the symbols and −−− , into a statement aboutA and B expressed using only the set-theoretic symbols
discussed in the first section of this note.

(a) ( x) ((x ∈A) −−> (x ∈B)) (c) ( x) (x ∈A)
(b) ( x) ((x ∈A) <−−−−> (x ∈B)) (d) (−−− x) ((x ∈A) ∧ (x ∈B))

Exercise 7. SupposeA0, A1, A2, ... aresubsets of a setX.
(a) Matcheach set on the left with the set on the right that is equal to it.

∪i ∈N Ai {x ∈X  (−−− i ∈N) (x ∈Ai )}

∩i ∈N Ai {x ∈X  ( i ∈N) (x ∈Ai )}.

(b) Show that one has the equality{x ∈X  (−−− i ∈N) (x ∈Ai )} = {x ∈X  ( i ∈N) (x ∈Ai )} if and only if the
sets A0, A1, A2, ... areall equal.

Note: TheEnglish word ‘‘any’’ sometimes means , and sometimes−−− ; we usually understand which is
meant from context. Thus,if you say, ‘‘I wonder whether anyone knows’’, you are asking whether
(−−− x) (x knows) is true. Butthe sentence ‘‘A nyone you ask will be able to tell you’’ means ‘‘( x) (If you askx,
x can tell you)’’. Hencein learning to use the mathematical symbolsand −−− , you must pay attention to the
meaningsof statements, not just the English words used.

4. Boundand free variables

Suppose we write an equation such asx5 = x. There are various things that we may mean:

(i) x may represent a definite number that we are considering, e.g., the height of a certain bridge in meters, or
the greatest common divisor of 25− 1  and 28− 1. In this case,x5 = x is an assertion about that number. This
assertion is either true or false.

(ii) We may regard x5 = x as aconditionon integersx. This is then satisfied by some integers, and not by
others. Taken by itself, it is neither ‘‘true’’ nor ‘‘false’’.
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(iii) We may be assertingx5 = x as anidentity. E.g., if we are considering integers, then byx5 = x we would
really mean ( x ∈Z ) x5 = x, which is false. Onthe other hand, in Math 113 one encounters the ringZ5, and
x5 = x is a valid identity in that ring; i.e., (x ∈Z5) x5 = x is true.

(iv) We may use the equationx5 = x in the proposition (−−− x ∈Z ) x5 = x (which is true).

(v) We may use the equationx5 = x in defining the set{ x ∈Z  x5 = x} (which equals{ −1, 0, 1} ).

In use (i), x is aconstant; it represents a specific number we are talking about (even if we don’t know its
value), and as we have said, the statementx5 = x is then true or false.

In uses (ii)-(v),x is avariable. But there is a difference between (ii) and the other cases. In (ii),x5 = x is a
condition in which we may substitute different values ofx, making the condition true or false;x is called afree
variable. In (iii) and (iv), the variable isboundby the quantifier or −−− . One cannot ask whether the statement
(−−− x ∈Z ) x5 = x is ‘‘true for x= 3’’ , although one can ask whetherx5 = x is true for x= 3. Similarly, it makes no
sense to ask whether (x ∈Z ) x5 = x is true for x= 1  or for x= 2, because it is not a statement about a single
integer x, but a statement whose validity is determined by substitutingall integers forx in the statementx5 = x,
and seeing whether it holds in every case. (It doesn’t, so as mentioned in (iii) above, ‘‘( x ∈Z ) x5 = x’’ i s false.)

One could avoid the ambiguity of ‘‘x5 = x’’ meaning either (i), (ii) or (iii) by insisting that different letters be
used for constants and variables, and that the symbolx ∈X be written whenever it is meant. We shall not
impose such strict rules, but we should always understand what we mean, and be explicitwhen necessary for
clarity.

A bound variableis an example of the more general concept of adummy variable. This is a variable symbol,
say x, which occurs within an expression, but such that the expression is not a function ofx; rather, the value of
the expression is determined by some process that involves considering different values ofx. We hav eseen how
this is so in (iii) and (iv). The x in (v) is also a dummy variable, because the set in question is determined by
looking over all values of x in Z , and collecting those which satisfyx5 = x. You have seen similar situations in
calculus: recallthe difference between formulas liken2 and Σ10

n= 1 n2. The first is a function ofn, while the
second represents a specific number, 385, computedwith the help of the first function. Likewise, in the
expression∫

1

x= 0
x2dx, x is a dummy variable.

(There is a sixth meaning that ‘‘x5 = x’’ can have, which one learns about in the latter half of Math 113.
Under this interpretation,x is anindeterminatein a polynomial ring such asQ [x]. I will say no more about this
here, except that so interpreted, the equationx5 = x is false, sincex5 and x are different polynomials; and that
this interpretation is like (i) in that x is a particular element rather than a variable.)

Exercise 8. (a) Give an elementary description of{x ∈R  (−−− y ∈R) x < y < x2}, and prove that your
description indeed describes the set.

(Suggestion: Firstfigure out by experimentation which real numbers belong to that set, then think about
how to prove the answer you get.To do so, you will need to prove two sets equal, namely the set given above,
and the set you describe.Tw o sets X and Y are equal if and only if every element ofX is an element ofY,
and vice versa. Soto prove such an equality, one can begin ‘‘Letr ∈X,’’ and deduce from what is known that
r ∈Y, and then turn around and say ‘‘Now let r ∈Y,’’ and deduce from what is known thatr ∈X.)

(b) Give an elementary description of{x ∈R  (−−− y ∈Z) x < y < x2}, and again prove it is correct.

5. Order of quantifiers

If we take a sentence about integers, involving a freevariable x, and attach to it one of the prefixes (−−− x ∈Z )
or ( x ∈Z ), thenwe have seen above that we get a new statement, in whichx is aboundvariable.

Now consider a sentence with two free variables, such asy = x2, acondition on a pair of integersx and y.
Suppose that we add to this the prefix (−−− x ∈Z ), gettingthe statement (−−− x ∈Z ) y = x2. Then x has been bound,
and the result is a condition on the integer-valued variabley; in words, ‘‘y is a square’’. For some values ofy
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this is true, namely 0, 1, 4, 9, .... For other values it is false.
In particular, since the set ofy for which this condition is satisfied is nonempty, it is true that

(−−− y ∈Z )(−−− x ∈Z ) y = x2. Since the set does not containall integers, it is false that (y ∈Z )(−−− x ∈Z ) y = x2.
These examples illustrate the process of adding several prefixes to a statement, so as to successively bind several
variables.

Consider now the statement about two integersx and y : x > y. Note that the statement (−−− x ∈Z ) x > y is
true for all y, because there is no largest integery. Hence

( y ∈Z )(−−− x ∈Z ) x > y

is a true statement. On the other hand, the statement (y ∈Z ) x > y is not true for any integer x; if it were, then
x would be an integer larger than all integers (including itself!) Hence

(−−− x ∈Z )( y ∈Z ) x > y

is a false statement.
Since one statement is true and the other false, they do not mean the same thing; so a change in theorderof

the prefixes−−− x ∈Z and y ∈Z can change the meaning of a statement!

Exercise 9. Consider the sentence, ‘‘There is someone at the hotel who cleans each room’’. Explain two ways
this sentence can be interpreted, and translate them into two quantifications of the relation ‘‘(X cleansR)’’.
Which words in the sentence correspond to ‘‘−−− ’’ i n the translation, and which to ‘‘’’ ?

Ambiguities in the meanings of English sentences like the one in the above exercise are generally cleared up
by context. SoI repeat what I said at the end of section 3: in translating a sentence into symbols, we must look at
the idea, not just the words, to see how the quantifiers should be used.

Some mathematicians treat ‘‘’’ simply as an abbreviation of the words ‘‘for all’’, and put it where they might
put those words in a sentence, writing things like ‘‘n+1 >n n’’ . I strongly advise against this; under that usage,
a formula −−− x P(x, y) y has exactly the ambiguity illustrated in the above exercise, since one might ‘‘bracket’’ i t
either as−−− x (P(x, y) y) or as (−−− x P(x, y)) y. Rather, I recommend putting quantification symbolsbefore
the statement being quantified, as in the examples given above.

In the next exercise, you will get practice with quantifiers by using them to write symbolically some
definitions that were given with the help of words in freshman calculus.

Exercise 10.Let f : R → R be a real-valued function of one real variable. Translate conditions (ii)-(vi) listed
below into symbols. Since all variables here are real-valued, you may omit ‘‘∈R ’’ . Part (i) is done for you, as
an example.

In your answers, do not use symbols such as limu→ x f (u), or d /dx, since these are the concepts you are
trying to define. Use only basic operations and relations of the real numbers, such as+, −, ., |x|, >, <, etc..
(In this exercise, don’t even use in later parts concepts you have defined in earlier parts; rather, if appropriate,
incorporate the symbols of the earlier translation into the later one.)

You may use letters such asε and δ for some of your variables; but do not write things like ‘‘ δ(x)’’ to
mean ‘‘a numberδ which may depend onx ’’ , or, by the same token, ‘‘f ′(x)’’. Rather, the order of quantifiers
in your answers should show what can and what cannot depend on what.

(i) f is bounded. Answer: (−−− M )( x) | f (x)| < M.
(ii) f is continuous at the pointx ∈R.
(iii) f is everywhere continuous.
(iv) f has a limit asx → + ∞.
(v) f is differentiable atx = 5.
(vi) f is everywhere differentiable.

We end with a quick self-test on material from this and preceding sections.
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Exercise 11.Mark the following true or false. (Answersat the bottom of page.)

(a) N ∈Z.
(b) N ⊆ Z.
(c) Z ∪ Q = Q.
(d) Z ∩ N = N.
(e) If subsetsA and B of a setX satisfy

A∩ B = ∅, then A = X − B .

(f) (−−− x ∈Q) ( y ∈Q) x = y.
(g) (−−− x ∈Q) ( y ∈Q) x ≠ y.
(h) ( x ∈Q) (−−− y ∈Q) x = y.
(i) ( x ∈Q) (−−− y ∈Q) x ≠ y.
(j) (−−− x ∈Q) ( y ∈Z ) x ≠ y.

6. Somemathematical language

There are several turns of phrase used in mathematical writing that one generally picks up by seeing how they
are used. But it can be helpful to have explanations available, so I give below (at the suggestion of John Peloquin)
a glossary of some of these phrases.

necessary and sufficient conditions.To say that a statementA is necessary and sufficient for a statementB
to hold simply means thatA <−−−−> B . For instance, ifx is a real number, a necessary and sufficient condition for
limn→ ∞ xn = 0  to hold is that |x | < 1.

In this usage, ‘‘sufficient’’ refers to the forward implicationA −−> B , and ‘‘necessary’’ to the reverse
implicationA <−− B. These words can also be used separately. So, in considering whether a sum of integersm + n
is even, we see that asufficientcondition is that bothm and n be even, but it is not necessary; while form + n
to be odd, anecessarycondition is that at least one ofm and n be odd, but it is not sufficient. Whenone proves
a statement of the formA <−−−−> B by proving the implication first in one, and then in the opposite direction, the
proof that A −−> B is often called the proof ofsufficiency, and the proof thatA <−− B the proof ofnecessity.

A necessary and sufficient condition for something to be true is called acriterion for it to be true; one also
speaks of ‘‘necessary criteria’’ and ‘‘sufficient criteria’’, which just go one way. For instance, most of the tests for
convergence of a seriesΣ an that one learns in calculus aresufficient criteriafor convergence; but the statement
that for Σ an to converge one must have limn→ ∞ an = 0  is anecessarycriterion.

If one proves a necessary and sufficient condition for an elementx to have a certain property, this is called a
characterizationof the elements that have that property.

to identify. To ‘‘identify’ ’ two mathematical objects means to regard them as the same.For instance, when
we consider the geometry of the plane,R2 = { (x, y)  x, y∈R} and of three-dimensional spaceR3 = { (x, y, z) 
x, y, z∈R}, we often regard R2 as a subset ofR3, by identifying each point (x, y) of the plane with the point
(x, y, 0) of 3-space; we thusidentify R2 with the (x, y)-plane { (x, y, z)  z = 0} in R3.

How one justifies regarding two different things as the same, in a precise logical science such as mathematics,
takes some pondering. In examples like the above, it can be thought of as a notational shorthand; we can say that
when we speak about points and subsets of the planeR2 as lying in 3-dimensional space, we do not mean those
points themselves, but their images under the mapϕ : R2 → R3 defined byϕ((x, y)) = (x, y, 0); andbecauseϕ
preserves geometric structure (e.g., distance, the property of lying in a straight line, etc.), geometric statements
about points ofR2 remain true of their images underϕ.

Some other uses of the term are a little different. For instance, the unit circle, parametrized by radian measure,
is sometimes described as ‘‘the interval [0,2π] with the two ends 0 and 2π identified’’. I will not go into how
to think of this sort of identification here.

well-defined. When one gives a statement that is supposed to be a definition, it is sometimes necessary to
verify that it really does precisely define some mathematical object.For instance, if we tried to define a function

Answers to Exercise 11: (a) F. (b) T. (c) T. (d) T. (e) F. (f) F. (g) F. (h) T. (i) T. (j) T.
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a from positive rational numbers to positive rational numbers by saying that whenever r = m /n with m and n
positive integers, we leta(r ) = (m+1) /(n+1), wewould face the problem that a positive rational number can be
written in more than one way as a ratio of positive integers; e.g.,2 /3 = 4/6; so we would need to know whether
our definition depended only on the given rational numberr , or on the way we chose to write it as a ratiom /n.
In fact, we see that(2 +1) /(3 +1) and (4+1) /(6 +1) arenot the same rational number; so the above is not a
usable definition. On the other hand, if forr = m /n we defineb(r ) = m2/n2, we find that this rational number
doesnotdepend on our choice of how to write r as a ratio. (In fact,b(r ) = r 2.) If some entity we have defined
is indeed determined by the rules we have stated, rather than varying with choices implicit in our definition, we
say that it iswell-defined.

Proofs of well-definedness become essential in areas of mathematics where certain entities are defined as
equivalence classesof other entities, and operations on them are defined by choosing ‘‘representatives’’ of these
equivalence classes, performing operations on these representative, and taking the equivalence class of the
resulting element. This is not the place to go into those constructions; but you will see proofs of well-definedness
coming up frequently when you study such topics.

unique. Theuniqueelement having a property means theonlyelement with that property. (Thus, in
mathematics, the word ‘‘unique’’ is always used relative to the statement of some property − often mentioned in
the same sentence, but sometimes implicit in the context.) For instance,2 is the unique real numberx such that
x3 = 8; so that equation has aunique solutionin R. On the other hand, the equationx2 = 4  does not have a
unique solution inR, since both2 and −2 are solutions.

(I have actually used the word ‘‘unique’’ f our times in the preceding pages of this note, trusting that most
students either knew its mathematical meaning, or would recognize what I meant.)

up to ... . This phrase allows one to modify a statement so as to allow more leeway. For instance, ifa is a
positive real number, then the equationx2 = a has a real-number solution which isunique up to sign. This
means that ifx1 and x2 are both solutions to that equation, we do not assert thatx1 = x2 (as we would if we
simply said that the solution was unique), but, rather, that x1 = ± x2. Likewise, if f (x) is a continuous function
on the real line, then there is a functiong whose derivative is f , and this g is unique up to(or determined up to)
an additive constant. InHigh School geometry, when one learns that a triangle is ‘‘determined by side-angle-
side’’, i.e., by the lengths of two sides and the value of the angle between them, a fuller statement would be that
the triangle is determinedup to congruenceby this data. In other words, triangles that agree in this data must be
congruent, but need not actually consist of the same points of the plane. (The fact that most geometry textbooks
donotadd ‘‘up to congruence’’ to such statements means that in these statements, they are identifyingcongruent
triangles.)

without loss of generality.In giving a mathematical proof, if we say that ‘‘without loss of generality’’ we may
assume that some conditionX holds, this means thatif we can establish the result in the case whereX holds, we
can deduce from this that it holds in general. After saying this, one usually assumes thatX holds for the rest of
the proof.

For instance, in proving a theorem about a functionf on a closed interval [a, b], anauthor might say,
‘‘ Without loss of generality, we may assume [a, b] = [0, 1]’’. Typically, the reason is that iff is a function on
[a, b], thenthe functiong on [0,1] definedby g(x) = f (a+ (b − a) x) has properties closely corresponding to
those of the original functionf . (For instance,g(0) = f (a), g(1) = f (b), g is differentiable if and only iff is
differentiable, etc..) Depending on the theorem one is trying to prove, one may be able to see that knowing the
theorem is true for the above function g implies that it is true forf . In that case, it suffices to go through the
details of one’s proof for functions on[0,1]; and,if this makes the proof easier to write out or to follow, one may
say, ‘‘Without loss of generality, we shall assume [a, b] = [0, 1]’’, and complete the proof under that assumption.

Of course, whether it is ‘‘clear’’ that knowing a result in one case implies that it is true in other cases depends
on the situation, and on the mathematical background of one’s readership. Ifthe author of a text you are reading
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says, without further explanation, that without loss of generality some assumption may be made, this means that
he or she judges that the reduction to that case should be straightforward for students at the level at which the text
is aimed; and you should take up the challenge, and see whether you can supply the reason. If you can’t, you
should ask your instructor. In other cases, an author may say explicitlywhya ‘‘without loss of generality’’
statement is justified.You should then look carefully at the arguments by which he or she reduces the general
case to the special case.

(Mathematicians writing for other mathematicians often abbreviate ‘‘without loss of generality’’ to ‘ ‘w.l.o.g.’’ ;
but this abbreviation seldom appears in undergraduate textbooks.)

The turns of phrase listed above are ones that I have seen students have a great deal of trouble with. The next
couple haven’t led to problems as often, but they are also worth noting.

maximal. This is a term that is used in the context of sets that have among their members a relation of some
being ‘‘greater than’’ others. Thisis not the place to discuss the various ways in which such relations arise, so I
will just talk about one case: sets, with the ‘‘greater than’’ relation being the relation of one set having the other
as a subset.

So supposeS is some set of subsets of a setX. Then an elementA ∈S is said to bemaximalin S if no
othermember ofS has A as a subset.

For instance, if we takeX = {1, 2, 3, 4, 5}, and let S consist of all subsets ofX that do not contain any two
adjacent integers (integers that are ‘‘next to’’ each other in the list1, 2, 3, 4, 5),then {1} ⊂≠ {1, 3} ⊂≠ {1, 3, 5} are
members ofS, and these inclusions imply that{1} and {1, 3} arenotmaximal elements ofS. You might
check for yourself thatS has exactly four maximal elements:{1, 3, 5}, {1, 4}, {2, 4} and {2, 5}.

An element in such a set which contains all other elements is called agreatestelement of the set. If a set has a
greatest element, that will also be a maximal element, but as the example of the preceding paragraph shows, not
ev ery maximal element is a greatest element; the setS of that paragraph does not have a greatest element. An
example of a set that has no maximal elements (and hence also no greatest element) is the set of all finite subsets
of N.

Reversing the order-relations in the above discussion gives the concepts ofminimal elements andleast
elements.

by choice of ...This is best illustrated by an example. Ifin an argument one has said ‘‘Suppose the
polynomial f (x) has a positive root r ’’ , then if one later says that something is true ‘‘by choice ofr ’’ , this means
it is true becauser is a root of f (x), or becauser is positive, or because both these statements are true; in other
words, because of one or more assumptions we made when we specifiedr . So the phrase ‘‘by choice of...’’ i s a
signal to look back at the point where an element was introduced, and see what was assumed about it.

Let me end with awarning about an incorrect use of words I have often seen students make. If one wants to
describe{n2  n ∈Z} , it is not correct to call this ‘‘the set containing all squares of integers’’, because there are
many sets that fit those words. For instance, the set of all integers, and the set of all real numbers, bothcontainall
squares of integers (along with other elements). The correct description of{n2  n ∈Z} is ‘‘the set of all squares
of integers’’. If, for some reason, one wants a more explicit word than ‘‘of ’ ’, one may say ‘‘the set consisting of
all squares of integers’’, or ‘‘the set whose members are all squares of integers’’.


