George M. Bggman Mathl10, 113, 104 or 185 Supplementary material

Some notes on sets, logic, and mathematical language

These are “generithotes, for use in Math 110, 113, 104 or 185.

These pages do not\d#op in detail the definitions and concepts to be mentioidtt is done, to arious
degrees, in Math 55, Math 74, Math 125 and Math 1BBope you will n&ertheless find these notes useful and
thought-preoking. | recommend working thexercises for practice; but damhand them in unless there listed
in a homavork assignment for the course.

1. Set-theoetic symbols
Symbol.  Meaningusage, xamples, discussion.

N, Z Here N denotes the set of alatural numbersi.e., {0, 1, 2, 3,.}, while 7 (from “Zahl”, German for
“number”) denotes the set of aitegers {...,-3,-2,-1,0, 1, 2, 3,.}.
(Many older authors started the natural numbers with 1, but it is preferable to start with 0, since
natural numbers are used to count the elements of finite sets, and the set with no elements is a finite set.)

Q, R, C Ofthese, @ (for “quotient”) denotes the set of alhtional numbersi.e., fractions that can be written
with integer numerator and denominat®, denotes the set odal numbersand C the set otomplex
numbers
(The five ®ts just named used to be, and often still are, denoted by bold-face Mtt&rs Q, R
and C. The formsNN, ...,C arose as quick ways to write these boldface letters on the blackboard. Since
it is corvenient to hae dstinctive ymbols for these important sets, printed forms imitating the
“ blackboard bold’symbols were then designed, and areiiequently used, as shown.)

O “ls a member df. E.g., 3[Z.

{} “The set of all! Thisis often used together with(1” or **:” (different authors use one or the other),
which stand for “such thdt’ For instance, the set pbsitiveintegers can be writtefl, 2, 3, ..} or
{n0Z On>0} or {n:n[Z,n>0}. The set of all square integers can be writ{én1, 4, 9, ...r,12, ..} or
{n2 OnZ}. Note also that{nZDn 7z} = {m2 Om7z} = {m2+ 2m+10m0O7}. (Why?)

O The empty set; i.e., the set which contains no elements.
O “Isasubsetdf. Eg., O O{1}ONOZOROC. {nZDn 07}y 0{nZ0On=0}. 7O Z.
O or I *Is a proper subset bf that is, a subset that is not the whole $er instance,Z JR . In fact, all the

formulas used abe o illustrate “C0” r emain true withg in place of ] exceptforZ [1Z. Since a
proper subset is, in particujar s1bset, one may useél even when Q is true; and one generally does so,
unless one wants to emphasize that a subset is pfBpebavare: some authors (especially in Eastern
Europe) usel] for “is a subset of.

O, [, etc.  Obvious variants of the ab® ymbols: A0 B meansB [0 A; x [IX meansx is not a member ok;
Al B meansA is not a subset oB; etc..

Warning: Thephrases A liesin X” and “A is contained inX” can each mean eithek (X or
AUOX. (The former phrase more often meaf$1X and the latterA X, but this is no guarantee.) So
in your writing, if there is danger of ambiguigither use the symbol, or use the unambiguous phrase “is
a member of or "is a subset df.

N Intersection:An B = {xOboth x CA and x (B are trug. For instance,
{x7z Ox>9} n {xOR Ox<12} ={10, 11, 12.
N Intersection of an inded family of sets.For instance, ifAO, Al, ... aresets, thenn n=01 _._An, aso
written N nonAn N ?IOZOAI"I and AgnApn..nAgn ..., means{xx is a member of all QAO,
Aq, ecl}.
11

In an intersectionni Ol Ai , | does not hee o be a st of integers; it can be et such thatAi is



defined for each 0. When a setl is used in this way to inddi.e., list) other entities, it is called an

index set.

O Union: AOB ={x0OxOA or xOB}. Forinstance {x [Z [Ix>0} 0 {x [Z [x<12} = 7. Note that if
AOB thenAOB=B and AnB=A.

U Union of an indeed family of sets. Thudd _o, A, = O o0 A, = UR=pA, =

AgOA, O...0A,O.... Example: O, o {i ONDi<n} = N.

Often, when the intent is clear from context, thevabmtations are abbvaated. for instance, if we
know that we hae e setAi for eachi in a certain index-set, then instead oﬂ]i Ol Ai , we may
write [, A, or [J; A orjust LJA . Likewise, if we hae a ®t X, for each positie integern, the
intersection N ‘r’]°:1Xn may be writtenn , X, or simply N X,.

“ Complement of: A means{xOx [JA}.
But {xOx [JA} makes no sense if we dosay whatx’s are allaved! Sothe notation“A is used
only when discussing subsets of a fixed $et. instance, if we are discussing subsets of the integers, then
{even integer$ = {odd integerl while if we are considering subsets®f, then “{even integer}
denotes the set consisting of all odd integers and non-integer ratidodds.more precise, we can use
the next symbols:

—or\ A-B (or A\B) means{x A [B}. E.g., Z — {even integer} = {odd integers. Note thatA—-B is
defined gen if B is not a subset oA. For instance,Z — {negative real numbers=IN.

f: X - Y This indicates thaf is a function (also called a ‘map’ or ‘mapping’) from the ¥eto the setY. (In
reading the symbol out loud, one can use words such as “thef rfrapm X to Y”, or “f sendingX to
Y”.)

Such anf is said to bene-to-on€or injective) if for every two distinct elementsx,, X, UX, the
elementsf(x;) and f(x,) of Y are also distinctFor instance, the operation of cubing an integer is a
one-to-one functiorZ - 7; but the squaring map istone-to-one, because—n)2 =n2.

The functionf: X - Y is said to bento Y if every element ofY equalsf(x) for somex X. For
instance, the squaring and cubing mdps. 7 are not onto, since not all integers are squares or cubes.
On the other hand, the cubing m&oy - R is both one-to-one and onto.

Given f: X - Y, the setX is called thedomainof f. What about the set at the other end of the
arrov? Acomplication is that iff is not ontoY, then Y and { f(x) Ox OX} are different sets.
Traditionally, these were called the “rangand the “image’ of f respectiely, but the usage was not
firm; “range” was often used as a synonym for “imdgéiencenowvadays, the unambiguous term
“ codomain”has been introduced to describe A function is callecbntoif it is ontoits codomain; a
synonymous term is “surjec” (from French “sur’ = ‘‘onto”).

A map f: X - Y that is both one-to-one and onto has aerse mapg: Y - X, taking eachy OOY
to the unique element OX such thatf (x) =y. Thus, f may be thought of as defining a matching
X — Y, under which each element &€ is matched with a unique element ¥fand vice versa; such a
matching is called ane-to-one correspondenbetweenX and Y. So the phrases “one-to-one and onto
function”, “in vertible function’ and “one-to-one correspondentall describe the same thing; still
another term for this islfijectivemap’ (“ bijective” m eaning “both injectre and surjectve” ).

This symbol is used ithree different wayswhich are related, but not quite the samed.ot of confusion
can result if thg are not distinguished. First, if is one-to-one and onto, thefn_1 denotes thnverse
of f, discussed ab@. Secondlyif f: X - Y is ary map, andS is ary subset of Y, then f _1(8)
denotes{x [OX Of (x) OS}, called theinverse imge (or preimage) of S underf. When f is invertible it
is not hard to check that this is precisely the image of th&setder the imerse functionf Ly.x.



However, this definition of f _1(8) makes senseven when f is not irvertible. Finally, for y OY, the
symbol f_l({y}) is dten abbreviated td _l(y). Hencewhen the symbol i s wsed, you must
check whether the context indicates tfidt an irvertible function. If so, you can be confident thfatt
denotes the irerse function; if not, therf ~1 does not stand for a function, but is a way of writing
inverse images of sets or elements untler

(Note also that the symbcﬁl(x)_l, which can turn up whet is, say a real-valued function, means
something unrelated to the afeahree concepts: it denotes the multiplicatinverse of the real number
f(xf. If, in such a situation, you want to refer to the function that takés f(x)_l, you cant call it
f~ but you could write it1/f.)

- While the ordinary arne referred to abee is used to sher what the domain and codomain of a function
are, the “flat-tailed’arrow shows which element is carried to which. Thdsx - x% means thaf is
the squaring function, defined byx) = x2. We an use this kind of areto describe a function without
denoting it by a lettee.g., “the function x - X2 (which can be read “the functiongoes-toxz" or
“the function takingx to x2” ).

X If A and B are sets, AxB means the set of ordered pair&, b) Ja OA, b(OB}. | won't discuss here
precisely hav an adered pair is defined; simply think of it as a “ligif |ength 2. Note that a functioh
of two variables, oné-valued and on8-valued, which takes values in a g8t can be thought of as a
map f: AxB - C. For example, addition of integers isa méax 7 — 7, given by (m,n) - m+n,
while exponentiation of real numbers using natural numbers as exponeetdagi(x, n) - x", is a
map R xN - R.

Likewise, AxBxC denotes the set of ordered 3-tuplgg, b, ¢ Oa OA, b(B, cC}, and one
defines a function of three variables as a map on such a triple product-set; and so on.

The setAxB is called thegroduct(or direct produc) of the setsA and B because ifA and B are
finite, A having m members andB having n members, therAx B will have mn members. In
analytic geometry one gerds the setR xR of pairs of real numbers as labeling the points of the plane.
The numbers so used are called the “Cartesian coordinattése points, after Rérieesarteswho
discovered this approach to geometrilence one often calls the direct produck B of two sets their
Cartesian product

If f:X - Y isafunction, then{(x, f(x)) Ox X} O XxY, is alled thegraphof f — agan, the idea
comes from analytic geometry.

Exercise 1.Let X and Y be sets. Find conditions on a sub&if X xY that are necessary and
sufficient for S to be the graph of a functioK - Y. (l.e., necessary and sufficient conditions®n
for there to exist a functioffi: X — Y such thatS is the graph off.) If these conditions hold, wils
uniquely determine the function?

In view of the answer to the abe execise, set-theorists oftatefinea function from a seiX to a set
Y as a subset oKxY having the appropriate properties.

The setsAxA, AxAxA, €c. are often WrittenAZ, A3, etc.. Also,if A and B are sets, the set of
functions from A to B is often written BA, gnce if A is a finite set withm elements an®B a finite
set with n elements, this set of functions willan™ elements.

2. Logical connectives

Let us begin by noting that there is a kind ofeise relation between statements and possibilities —
the more statements we make, the more we limit the set of possibilities; the more possibilities there are,
the more limited is the set of true statements.

For instance, suppose we are considering an integer-valued vaxiabieve require thatx be



positive, then the set of possibilities we are considering forms théls&, 3, ..}. If instead we had

stated thatx is even, then the set would @ keen{...,-4,-2,0,2,4...}. If we imposeboth

conditions, then the only possibilities far are thepositive evelintegers, a proper subset of each of those
sets. Moregenerallyif P and Q are ay two conditions, and we assume thatand Q hold, then the

set of cases we are allowing is theersectionof the set of cases allowed B alone and the set of cases
allowed by Q alone. Thiswill help you remember the next symbol, which is similarto

“And”: If P and Q are two gatements, then we defin®T]Q” t o hold if and only if P and Q both
hold. For example, the condition Ox <1 is an d&breviation of (&x) O(x<1). Theoperation O is
called “conjunction”.

On the other hand, if we want to consider all cases allowed by a conBitermdalsoall cases
allowed by Q - the union of the te sets of cases - then we are considering the condiforof Q
holds’. Thisis a weaker condition than eith& or Q, in line with the “inverse relatiori’noted abwe
between statements and cases. The symbol used is similar tamely

“Or”:. If P and Q are two gatements, we say thaPTJQ” holds in a situation ifP holds or if Q
holds (possibly both)For instance, for all real numberss we have (x<10) (x> 0). Thecondition
X<y is equvalentto k<y) d(x=y). Asanother example, for all integees b we hare
(a=0) 0(b=0) O(ab=1). Theoperation [ is called “disjunction”.

The “inverse relation’between statements and possibilities that vwe mentioned is sometimes a
cause of confusion. Marprecalculus students, when asked to say what real numbeadisfy x2>1,
will describe these as the set»fsatisfying “x>1 and x<-1". Whatthey mean is that the sebnsists
ofall x satisfying x>1 andall x satisfyingx<-1. Thecorrect way to express this union of cases is
not by the conjunctionX>1 and x<-1", but by the disjunction Xx>1 o x<-1". Thatis:

{x Dx2>1} = (—o0,-1)0 (1, +0) = {x[Ox<-1} O{xOx>1} = {x0O(x<-1)O(x>1)}.

“Not”. E.g., «(x=y) meansxz#y.

“Implies’. For instance, ifx R, then x>2 = x>0.

If P and Q are statements, theP“= Q" i s a $atement which is considered to be true in all cases
except those wherd is true butQ is false. P = Q may also be expressed in words ‘# then Q” or
“Q if P". Forinstance, the true statement*2 = x>0" can expressedx>0 if x>2".

There are certain cgentions in the geryday (nonmathematical) use of words such as ‘and “if"’,
which we follav unconsciouslybut need to becomenare of so as to understand thatytlue notapply to
mathematical usage.

In everyday life, we generally use the word “bonly when we daot knowwhich of the two
possibilities is true. E.g., if a letter comes in the mail and you‘3éys is either from John or
Stephanie”, you are asserting that it is from one of them, but also, implibalyyou do not yet know
whichone. Therare variants on this ceention: If you say “I am holding a penrin either my right
hand or my left hand”, theyouknow which hand it is in, but the person you are speaking to does not.
On the other hand, a mathematical statentenlQ is considered to be trugen when wedo know
which of P or Q holds. Fr instance, we ha& roted that for all real numbers, (x<10) O(x>0). So
in particular the statemen{100 < 10)J(100 > 0) is true, and so ig5 < 10)[1(5>0), and so is
(0<10)d(0>0). Of course, a mathematician does pointlesslywrite down “P 00Q” w hen he or she
and the reader both kwahat P is true, or both knw that Q is true, ag more than a nonmathematician
would. Butit must be understood th& [JQ is truein such cases, in order that the truth of a
mathematical statement not be lost when our knowledge increases.

Similarly, in nonmathematical usage we generally mdltements of the form “IfP then Q" only
when there is some uncertainty as to whether the staterReatgl/or Q hold; but again, to make



mathematical usage consistent, we must acdep‘Q ” as true in all casesxceptwhen P holds and
Q does not.

Note also that in nonmathematical usage,dr Q” sometimes meansP or Q, but not both”.
(E.g., in the “John or Stephaniexample and the “which handxample abee.) In mathematical
usage, the meaning of “ors not restricted in that way; s < 10)[J(5 > 0) is a true statement.

<>, iff P<>Q means P=>Q)0(Q=>P), i.e.,, ‘P istrueifand only ifQ is true’. Thus,“<>"is
synonymous with “if and only if, often abbreviated by mathematicians td™if
The next tvo exercises gre sme practice with the logical connees described in this section.

Exercise 2. Supposex is an element, and\, B are sets. Find, for each statement in the left-hand column
belaw, the logically equialent statement in the right-hand column. (There is one statement in the right-hand
column not equidlent to ary of the statements in the left-hand column.)

x OAOB (x OA) O(x OB)
xOANB (x DA) = (x OB)
x O A (x OA) O(x [B)
x OA\B XA

(x[OA) O(x OB)

Exercise 3. SupposeP and Q are two mathematical assertions. (Examples might be 0" and “n is
even” if we are talking about an integearn.) Find,for each statement in the left-hand column belbe
logically equidlent statement in the right-hand column. (There aedatements in the right-hand column
not equvalent to ary of the statements in the left-hand column.)

POQ Q=P

PO(-Q) Qap

P (=P)=>Q

POQ (-P) O(-Q)

-(PUQ) (ﬂPP) 0(=Q)
_|_|P

General varning: Donot confusestatementgcalled by logiciangropositiong with sets For instance, ifX
is a statement, e.g.a> 10", then it makes no sense to write [1X” or “a0X”. And if X and Y are sets, then
“X =Y" makes no sense.

There are, of course, important relations between statements anBaeétsstance, ifX and Y aresetsthen
XOY is astatementwhile if P(x) is astatemenabout a real numbex, then {x OR OP(x)} is aset

3. Quantifiers

Here are tw symbols that are extremely important in constructing mathematical statements.

v “For al’’ or “‘for every”. If we are referring to real numbers, therx, (x+1)2 = x2+ 2x+1 isatrue
statement; so isy x, (x<0) O(x=0) O(x>0). Referringto integersn, the statement/n, (2n— 1)2> 0
is true, though it is not true for real numbers.

To make auch formulas precise, we should shehat class of possiblen” w e ae talking about.We
can do this by writing, for instance/n 07, (2n— 1)2> 0. For greater clarity parentheses may be
introduced, e.g.,\{n07) (2n— 1)2> 0 o (vnlzZ)((2n- 1)2> 0).

- “ There exists ... such that”, or “for someFor example, & x[17) x>10 says that there exists an
elementx belonging to the set of integers, and such tvatlO; orbriefly “There exists an integer
greater than 1Q’ Similarly, (3 x0OR) x“=3 means “There exists a real number whose square is 3".



(Both of these are true statements.) Still another way of readindIR ) is “For at least one real
number x it is true that”.

(Some people also writéd! or 31 to mean “For exactly one value”, or equaently, “There exists a
unique value such that”; but we will not use this notation here.)

Exercise 4. SupposeP(x) and Q(x) are statements about an integer (Examples of such statements are
“x>0", “x isodd”, “x#55", “ x=x", ec..) Ineach of the cases beloif you believe that the eqwialence
asked about holds, say briefly yhvhile if you decide that tevsatements are not egualent, try to find an
example of proposition®® and Q for which one of the statements is true, and the other is not.

(@) Is (vx) P(x) equivalent to = (3 x) (-P(x)) ?

(b) Is @x) (P(x) UQ(x)) equiaentto (@ x) P(x)) U((3x) Q(x))?
() Is (vx[X{1,2,3) P(x) equivdlent to P(1) OP(2) OP(3)?

(d) Is =(\vx) P(x) equivalentto (vx) (=P(x))?

Exercise 5. To show that the statementi [17) x2=x is true, it is enough to g the single examplex=0.
SupposeP(x) is a satement about an elemert and we want to pree e of the statements belo In which
cases can this be done by giving just a singgenple? Ireach such case, say what the nature of the example
must be.

(@) 3x)P(X) (©) (vx)=P(x)
(b) (vx) P(x) (d) ~(vx) P(x)

Exercise 6. SupposeA and B are sets.Translate each of statements (a)-(b) elshich are expressed using
the symbolsy and 3, into a statement abo and B expressed using only the set-theoretic symbols
discussed in the first section of this note.

(@) (vx) (xOA) = (x[IB)) (©) (Vx) (xOA)
(b) (vx) (xTA) <= (x1IB)) (d) (3x) (xEA) O(x 00B))

Exercise 7. Supposer, Al, A2, ... aresubsets of a seX.

(a) Matcheach set on the left with the set on the right that is equal to it.
Ui o A {x OXO(F i ON) (x OA )}
NN A {x OXO(V i ON) (x CA))}-

(b) Shav that one has the equalifx CX T(3 i ON) (x 0A; )} = {x OX O(v i ON) (x A )} if and only if the
sets AO, Al, A2, ... areall equal.

Note: TheEnglish word “any’ sometimes means/, and sometimess; we wually understand which is
meant from contd. Thus,if you say “| wonder whether anyone knows”, you are asking whether
(3 x) (xknows) is true. Buthe sentencéA nyone you ask will be able to tell yomeans “(v x) (If you askx,

x can tell you). Hencein learning to use the mathematical symbgisand 9, you must pay attention to the
meaningf statements, not just the English words used.

. Boundand free variables
Suppose we write an equation suchx@s= x. There are various things that we may mean:

(i) x may represent a definite number that we are considering, e.g., the height of a certain bridge in meters, or
the greatest common divisor oP21 and B-1. Inthis case,x5 =X is an assertion about that numb@&his
assertion is either true or false.

(i) We may rggad x°=x as aconditionon integersx. This is then satisfied by some integers, and not by

others. Bken by itself, it is neither “truehor “false”.

(i) We may be asserting<5 =x as andentity. E.g., if we are considering integers, then }b?/z X we would



really mean Y x [7) X2 = X, which is flse. Orthe other hand, in Math 113 one encounters the 7iggand
x°=x is a valid identity in that ring; i.e.,W(x [Z) x° =X is true.

(iv) We may use the equatio»a5 =X in the proposition {x [7) X° =X (which is true).

(v) We may use the equatiom5 = x in defining the se{x [1Z Ox° = x} (which equals{-1,0, 1}).

In use (i), x is aconstant it represents a specific number we are talking abeeh we don't know its
vaue), and as we ra sid, the statement® = x is then true or false.

In uses (ii)-(v), X is avariable. But there is a difference between (ii) and the other cases. Irx?ii;:,x isa
condition in which we may substitute different valuesxpfmaking the condition true or falses is called dree
variable. In (iii) and (iv), the variable iboundby the quantifiery or 4. One cannot ask whether the statement
(3x07) X2 =X is “true for x=3" , dthough one can ask wheth&P = x is true for x=3. Similarly, it makes no
sense to ask whethek/k 07 ) x°=x is true forx=1 o for x= 2, because it is not a statement about a single
integer x, but a statement whose validity is determined by substitatingtegers forx in the statemenk® = X,
and seeing whether it holds iveey case. (It doesn’t, so as mentioned in (i) edo'(\vV x [07) X°=X"is false.)

One could &oid the ambiguity of %0 =x m eaning either (i), (ii) or (iii) by insisting that different letters be
used for constants and variables, and that the symlxdlIX be written wheneer it is meant. V¢ dhall not
impose such strict rules, but we shoul¥als understand what we meaand be explicitvhen necessary for
clarity.

A bound variablds an example of the more general conceptaiiramy variable This is a variable symbol,
say X, which occurs within an expression, but such that the expression is not a funckipmather the value of
the expression is determined by some process tavas considering different values af We haveseen how
this is so in (iii) and ). The x in (v) is also a dummy variable, because the set in question is determined by
looking over all values of x in 7, and collecting those which satisb;(5 =X. You hare ®en similar situations in
calculus: recalthe difference between formulas li and anl n2. The first is a function oh, while the
second represents a specific numiB85, computedvith the help of the first function. Léwise, in the
expression =0 X dx, x isa dumn%y variable.

(There is a sixth meaning that™ = x” can hae, which one learns about in the latter half of Math 113.
Under this interpretationy is anindeterminateén a polynomial rin% such a®&[x]. | will say no more about this
here, except that so interpreted, the equaﬁgw X is false, sincex™ and x are different polynomials; and that
this interpretation is li& () in that x is a particular element rather than a variable.)

Exercise 8. (a) Gve ax dementary description ofx R O(FyOR) x <y < x2}, and prove that your
description indeed describes the set.

(Suggestion: Firdigure out by experimentation which real numbers belong to that set, then think about
how to prove the answer you geflo do 0, you will need to pree wo ts equal, namely the sevgi above,
and the set you describ&wo sets X and Y are equal if and only ifwery element ofX is an element ofy,
and vice ersa. Sdo prove 2ich an equalityone can begin “Letr [0X,” and deduce from what is known that
r Y, and then turn around and say “Wdet r [1Y,” and deduce from what is known that1X.)

(b) Give aa dementary description ofx OR O(dy 0Z) x <y < x2}, and again pree it is correct.

. Order of quantifiers

If we take a £ntence about integersyolving afreevariable x, and attach to it one of the predix @ x [17)
or (vx0OZ), thenwe have £en abwe that we get a e statement, in whichx is aboundvariable.

Now consider a sentence with tvree variables, such as= x2, acondition on a pair of integers and y.
Suppose that we add to this the prefixx(1Z), gettingthe statementix [7Z)y = x2. Then x has been bound,
and the result is a condition on the integer-valued varigblen words, “y is a squaré’ For some values of/
this is true, namely 0, 1, 4, 9,...For other values it is false.



In particular since the set ofy for which this condition is satisfied is nonemptys true that
(dydz)(dxOz)y= x2. Since the set does not contailh integers, it is false thatyly 0Z)(dx0Z) y = x°.
These examples illustrate the process of addingagprefixes to a statement, so as to sucedgdiind several
variables.

Consider nw the statement about twntegersx and y: x >y. Note that the statement X 0Z) x >y is
true for all y, because there is no largest integerHence

(Vytz)(FxUzZ) x>y
is a true statement. On the other hand, the statenygnilf) x >y is not true for apintegerx; if it were, then
x would be an integer larger than all integers (including itselfl) Hence

@Ax0z)(vyOz)x>y
is a false statement.

Since one statement is true and the other falsg dineot mean the same thing; so a change irotter of
the prefixesi x 07 and vy [Z can change the meaning of a statement!

Exercise 9. Consider the sentence, “There is someone at the hotel who cleans each Ebgniain two ways
this sentence can be interpreted, and translate them iotguamtifications of the relation X cleansR)”.
Which words in the sentence correspond 18 i‘'n the translation, and which toy” ?

Ambiguities in the meanings of English sentencestike one in the alwe execise are generally cleared up
by contet. Sol repeat what | said at the end of section 3: in translating a sentence into symbols, we must look at
the idea, not just the words, to seeviibe quantifiers should be used.
Some mathematicians treay™ simply as an abbreviation of the words “for all”, and put it whereythéght
put those words in a sentence, writing thinge lik+1 >n\vn” . | strongly advise against this; under that usage,
aformula 4 x P(x,y) Yy has exactly the ambiguity illustrated in the abexecise, since one might “brackeit
either as3 x (P(x,y) Vy) oras (3x P(x,y)) Vy. Rather | recommend putting quantification symbbifore
the statement being quantified, as in the examples gbove.
In the next gercise, you will get practice with quantifiers by using them to write symbolically some
definitions that were gen with the help of words in freshman calculus.

Exercise 10.Let f: R — R be a real-valued function of one reariable. Tanslate conditions (ii)-(vi) listed
below into symbols. Since all variables here are real-valued, you may drfiit™. Part (i) is done for you, as
an example.

In your answers, do not use symbols such ag, lim f(u), or d/dx, since these are the concepts you are
trying to define. Use only basic operations and relations of the real numbers, stickas [x|, >, < etc..
(In this eercise, dont even use in later parts concepts yowhakfined in earlier parts; rathef appropriate,
incorporate the symbols of the earlier translation into the later one.)

You may use letters such asand ¢ for some of your variables; but do not write thingeIfko(x)"” to
mean “a numberd which may depend ox”, or, by the same token, f'(x)”". Rather the order of quantifiers
in your answers should slwavhat can and what cannot depend on what.

(i) fisbounded. Answer:(3M)(vx)|f(X)| <M.
(i) f is continuous at the point R .

(ii) f is everywhere continuous.

(iv) f hasalimitasx — +co.

(v) f is differentiable atx = 5.

(vi) f is everywhere differentiable.

We end with a quick self-test on material from this and preceding sections.



Exercise 11.Mark the following true ordlse. (Answerat the bottom of page.)

(@) NLCZ. M (@Ex00)(vybR) x=y.
(b) NOZ. (@) @Ax00) (vydR) xzy.
() zOQ=Q. (h) (vxOQ)(dyOR) x=y.
(d ZnN=IN. () (vxOQ)(dyOQ) xzy.
(e) IfsubsetsA and B of a setX satisfy () (@x0O0)(vyDz) xzy.

AnB=0, thenA=X-B.

6. Somemathematical language

There are seal turns of phrase used in mathematical writing that one generally picks up by seeitigo
are used. But it can be helpful tovieaexplanations wailable, so | gie kelow (at the suggestion of John Peloquin)
a gossary of some of these phrases.

necessary and sufficient conditiongo say that a statemeri is necessary and sufficient for a statemBnt
to hold simply means thah <= B. For instance, ifx is a real number recessary and sufficient condition for
lim,  , x"=0 toholdis that k|<1

In this usage, “sufficientt efers to the forward implicatio = B, and “necessary'to the reverse
implicationA < B. These words can also be used separaf&dyin considering whether a sum of integenst n
is even, we see that sufficientcondition is that bothm and n be even, but it is not necessary; while fon +n
to be odd, amecessargondition is that at least one ofi and n be odd, but it is not sfifient. Whenone praes
a datement of the formA <> B by proving the implication first in one, and then in the opposite direction, the
proof that A = B is often called the proof @ufficiency and the proof thatA <= B the proof ofnecessity

A necessary and sufficient condition for something to be true is cadieaon for it to be true; one also
speaks of “necessary criteri@nd “sufficient criteria”, which just go one wayor instance, most of the tests for
convergence of a serieg a, that one learns in calculus aefficient criteriafor corvergence; but the statement
that for Za,, to corverge ane must hee lim, _ ., a, =0 is anecessargriterion.

If one praves a recessary and sufficient condition for an elemerib have a @rtain propertythis is called a
characterizationof the elements that e that property.

to identify. To “identify’’ two rrathematlcal objects means tgaa them as the samé&or mstance when
we consider the geometry of the plarrRa ={(x,y g Ox,yOR} and of three-dimensional spaéé ={(x,y20 O
X,y zOR}, we dten regard R 2 asa subset oR ~, by identifying each pointx,y) of the plane with the point
(x,y,0) of 3-space; we thuslentify R 2 with the Q( y)-plane {(x,y,z) 0z=0} in R 3

How one justifies rgarding two different things as the same, in a precise logical science such as mathematics,
takes some pondering. In exampleglite abwee, it can be thought of as a notational shorthand; we can say that
when we speak about points and subsets of the pﬂ?a%eas Iylng in 3-dimensional space, we do not mean those
points themselves, but their images under the maﬁ ~ R3 defined by#((x,y)) = (X, Y, 0); andbecauseg
preserves geometric structure (e.g., distance, the property of lying in a straight line, etc.), geometric statements
about points ofiR 2 remain true of their images under.

Some other uses of the term are a littléedént. For instance, the unit circle, parametrized by radian measure,
is sometimes described as “the in@nf0,27] with the two ends 0 and 2 identified’. | will not go into how
to think of this sort of identification here.

wdl-defined. When one gies a satement that is supposed to be a definition, it is sometimes necessary to
verify that it really does precisely define some mathematical obfextinstance, if we tried to define a function

Answers to Exercise 11: (@) ) T. ) T. @) T e)F OF. @ FE )T () T. () T.
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a from positive rational numbers to posit rational numbers by saying that wheeer = m/n with m and n
positive integers, we lea(r) = (m+1)/(n+1), wewould face the problem that a poséirational number can be
written in more than one way as a ratio of pesiintegers; e.g.2/3 = 4/6; so we would need to kn@ whether
our definition depended only on thevgi rational numberr, or on the way we chose to write it as a ratio/n.
In fact, we see thaf2 +1) /(3+1) and (4+1)/(6+1) arenotthe same rational number; so theabs ot a
usable definition. On the other hand, if fo=e m/n we defineb(r) = m2/n2, we find that this rational number
doesnotdepend on our choice of Wwdo write r as a ratio. (In factp(r) = r2.) If some entity we hae defined
is indeed determined by the rules wedaated, rather than varying with choices implicit in our definition, we
say that it isvell-defined

Proofs of well-definedness become essential in areas of mathematics where certain entities are defined as
equivalence classed other entities, and operations on them are defined by choosing “represshaitt hese
eguialence classes, performing operations on these representati taking the equalence class of the
resulting element. This is not the place to go into those constructions; but you will see proofs of well-definedness
coming up frequently when you study such topics.

unique. Theuniqueelement having a property means timy element with that property(Thus, in
mathematics, the word “uniques always used relate © the statement of some property — often mentioned in
the same sentence, but sometimes implicit in the xbntBor instance,2 is the unique real numbex such that
x3 = 8; so that equation hasumnique solutionn [R. On the other hand, the equatio«% =4 does not hee a
unigque solution inR, since both2 and -2 ae solutions.

(I have actually used the word “uniquef our times in the preceding pages of this note, trusting that most
students either kmeits mathematical meaning, or would recognize what | meant.)

up to ... . This phrase allows one to modify a statement so as W altoe leavay. For instance, ifa is a
positive real numberthen the equatiorx2 =a has a real-number solution whichuisique up to sign This
means that ifx; and x, are both solutions to that equation, we do not assertthatx, (as we would if we
simply said that the solution was unique), but, ratihett x; = +x,. Likewse, if f(x) is a @ntinuous function
on the real line, then there is a functignwhose desative is f, and this g is unique up tqor determined up tp
an additve onstant. IrHigh School geometryhen one learns that a triangle is “determined by side-angle-
side”, i.e., by the lengths of mwddes and the value of the angle between them, a fuller statement would be that
the triangle is determinagp to congruencby this data. In other words, triangles that agree in this data must be
congruent, but need not actually consist of the same points of the plane. (The fact that most geometry textbooks
donotadd “up to congruencefo such statements means that in these statemengsaréndentifyingcongruent
triangles.)

without loss of generality.In giving a mathematical proof, if we say that “without loss of generalitg’may
assume that some conditiof holds, this means thiétwe can establish the result in the case whérbolds, we
can deduce from this that it holds in general. After saying this, one usually assum¥shblals for the rest of
the proof.

For instance, in proving a theorem about a functioon a closed inteal [a, b], anauthor might say,
“Without loss of generalityve may assume g, b] = [0, 1]". Typically, the reason is that if is a function on
[a, b], thenthe functiong on [0,1] definedy g(x) =f(a+(b—a)x) has properties closely corresponding to
those of the original functior. (For instance,g(0) =f(a), g(1) =f(b), g is differentiable if and only iff is
differentiable, etc..) Depending on the theorem one is trying tepone may be able to see that knowing the
theorem is true for the abe function g implies that it is true forf. In that case, it suffices to go through the
details of ones proof for functions on[0,1]; and.,if this makes the proof easier to write out or to fallone may
say “Without loss of generalitywe dhall assume ¢, b] = [0, 1]", and complete the proof under that assumption.

Of course, whether it is “cledithat knowing a result in one case implies that it is true in other cases depends
on the situation, and on the mathematical background of exalership. Ifthe author of a text you are reading
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says, without further explanation, that without loss of generality some assumption may be made, this means that
he or she judges that the reduction to that case should be straightforward for studentsehiathsheh the text
is aimed; and you should &kip te challenge, and see whether you can supply the reason. If you can't, you
should ask your instructotin other cases, an author may say explicitlyya “without loss of generality”
statement is justifiedYou should then look carefully at the arguments by which he or she reduces the general
case to the special case.

(Mathematicians writing for other mathematicians often abbreviate “without loss of genktality.l.0.g.” ;
but this abbreviation seldom appears in undergraduate textbooks.)

The turns of phrase listed alebae ones that | hae sen students ke a geat deal of trouble with. The next
couple haen't led to problems as often, but ytere also worth noting.

maximal. This is a term that is used in the context of sets that &mong their members a relation of some
being “greater than'others. Thids not the place to discuss the various ways in which such relations arise, so |
will just talk about one case: sets, with the “greater thaation being the relation of one set having the other
as a subset.

S0 supposeS is some set of subsets of a 3ét Then an elemenA IS is said to benaximalin S if no
othermember of S has A as a subset.

For instance, if we takeX ={1, 2, 3,4, %, and let S consist of all subsets o that do not contain grtwo
adjacent integers (integers that are “nextdéach other in the listl, 2, 3, 4, 5),then {1} Q{l, 3 Q{l, 3,3 are
members ofS, and these inclusions imply thdtl} and {1, 3 arenotmaximal elements 0. You might
check for yourself thaS has exactly four maximal elemenift, 3,3, {1,4, {2,4 and {2,5.

An element in such a set which contains all other elements is caledtastlement of the set. If a set has a
greatest element, that will also be a maximal element, but as the example of the preceding paragraph shows, not
evey maximal element is a greatest element; theSsef that paragraph does notieaa geatest element. An
example of a set that has no maximal elements (and hence also no greatest element) is the set of all finite subsets
of IN.

Reversing the order-relations in the algo dscussion gies the concepts ahinimal elements antkbast
elements.

by choice of ...This is best illustrated by axample. Ifin an argument one has said “Suppose the
polynomial f(x) has a positie root r”, then if one later says that something is true “by choice”qfthis means
it is true because is a root of f(x), orbecauser is positve, or because both these statements are true; in other
words, because of one or more assumptions we made when we specifiedhe phrase “by choice of'.is a
signal to look back at the point where an element was introduced, and see what was assumed about it.

Let me end with avarning about an incorrect use of words Meadten seen students makIf one wants to
describe{n2 On 07}, itis not correct to call this “the set containing all squares of integers”, because there are
mary sets that fit those @rds. for instance, the set of all integers, and the set of all real numbergonddimall
squares of integers (along with other elements). The correct descript{an% afn [7} is “the set of all squares
of integers’. If, for some reason, one wants a more explicit word tiediHi,‘'one may say “the set consisting of
all squares of integers”, or “the set whose members are all squares of integers”.



