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A Useful Principlein Solving Differential Equations

1. THE IDEA.
Consider a first-order differential equation
1) y' = FXxy).
As we hae sen, this is in general satisfied, not just by one funcyon f(x), but by afamily of
functions. Acase of this phenomenon that we are long familiar with is when (1) has the form

) y' = F(x).
Then we knw that the family of solutions has the form
®3) y =GKx)+C,

where G(x) is awy antiderivative d F(x), and C ranges wer al real numbers. Since we Y& learned
mary techniques of ingration (finding antidevitives), it is useful to hae techniques that reduce the
solution of other sorts of ddrential equations to that case. One situation where wedan that we can
do so is when the gén equation is separable.

Another very wide class of cases is based on paying attentionwtghleosolutions of our gen
eqguation relate to one anothétere is the general principle.

Given a diferential equation(1), examine the way d#rent solutions must be
related, and look for @hange of variables that will turn the solutions dfL) into

(4) a family of functions related to one another simply by addition of constants, as
in (3). After this diange of \ariables, the dierential equation(1) will reduce to
one of the fornf2), and hence can be solved by integration.

In the next tw ctions, we will deelop a standard technique for solvifiiggt-order lineardifferential
equations, using the ab®pinciple as one of the paths leading to that technique.

2. FIRST ORDER HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS.

A first-order differential equation (1) is said tolbeear if F(x,y) is linear as a function of; in
other words, if the equation has the form

®) y = PXy+Q(Xx).

Note that in this equation, the ternys and P(x)y are of degree 1 iry and its denative, while Q (x)

is of dagree 0 in thoseariables. Arequation is callethomogeneousin a set of variables if all the terms
have the same degree in thosariables. Thus(5) is homogeneous of degree 1ynand its derative
only if Q(x)=0; i.e., if the equation has the form

(6) y' = P(X)y.

In this section we will see loto lve homogeneous equations (8 the next section we will climb
on the shoulders of that result, and salenhomogeneous equations (5).

| claim that the solutions to (6) are



(7) y — CEIP(X)dX,

for real numbersc. That is, if A is ary antiderivative d P(x), thenthe solutions to (6) are the
functions

(8) y = ceP®

It is easy to check that these functions do indeed satisfy (6). Butdwdd we hae discoveredhis
solution? Heraare three independent approaches, each of whiels gs a dferent bit of insight into
differential equations generally.

Motivation #1. Our general principle (4) says that we should look at tiéferent solutions to (6) are
related to one anotheClearly, if y = f(x) is a ®lution to (6), then so isy = cf(x) for every real
constantc. Hence (4) says that we should look for a changeadfbles that will turn solutions related
in this way into solutions related by an additiconstant. Multiplying a function by a positie onstant
corresponds taddinga mnstant to its logarithm; so let us neatke substitution

(9) u=Iny; equivaently, y = eY.

When we put this into (6), that differential equation becornes” = P (x)e!, which simplifies to
u' = P(x). Thisis, as we hoped, a tifential equation of the form (2), hence we can esdtvby
integration, getting u = J’P(x) dx + C, i.e., A(x) + C, for A(X) an antidervative d P(x).
Substituting this into the right-hand equation of (9), we get (8), whereC.

Actually, this only gires the case of (8) where is positive, since our substitutionu = Iny only
makes sense for posig-valued functionsy. Howeve, once we hae found this family of solutions, it is
easy to see that zero andyaeve values of ¢ also gve lutions to (6). So if we think of our general
principle (4) simply as a guide, it has indeed guided us to the solution (8).

Assuming the domain of definition of our functions is an interval (possibly infinite), (8) in fast gi
all solutions to (6).To e this, letz = ") and lety be awy other solution to (6).We want to shar
that y/z is constant. If we diérentiatey/z, and use the fact that both and z are solutions to (6), we

get
v/2) = (yz-yz)iz®
= (PXY)Z-y(P(X)2)/2°
= 0/2° = 0.
So y/z isindeed a constart, so y=cz=¢c¢ SO,
Let us nav look at a different way we couldVexdscovered the solution (8) of (6).

Motivation #2. Notice that the equation (6) eparable as dfined on p.594 of our e Hence
following the method shown there, we divide by the functionyofppearing on the right-hand side
of (6), in this casey itself, getting

(10) y'ly = P(x),

and integrate both sides of this equation, getting



(12) Iny = IP(x)dx +C.
To get y we exponentiate, which againvgs (7). (The same comments aboutgaive ¢ and
unigueness gen in Motivation #1 apply here.)

Here is a brief sketch of a thirdenue leading to (8):

Motivation #3. Assume we want to sav(6) on some intea [a,b]. We may subdiide [a, b] using
points a = X5 < X; < .. <X, = b, and think of P(x) as gproximately constant on each intarv
[%_1,%], with some constantalue P(x*) (Xx_; < X" < x). Thenon that interval, (6) can be
approximated by the equatiop’ = P (xi*)y, for which we knwv the general solution is grconstant
times the exponential functioa” 04°) % (83.8 of Stavart; also pp.580 and 606 [2]). Hence, asmaves
from x_, to x;, the value ofy will be multiplied by approximatelyep(xr)AXi, where Ax; =
X; —Xj_q- S0 a x goes all the way frona to b, y is multiplied by approximately

i
eP(xi)Ax1 P (X3) DXy | o eP(xr’;)Axn
— eZi P(xi*)Axi'

As our subdivision of[a, b] becomes finer and finethis should approacfeffp(t)dt. Replacing the
upper ind& of integration by the variabl& to get a function, we see that it willleathe form (7).

The abwe dscussion is too gkchy to be a poof; but again, it guides us to the solution (7), which we
can then verify by substituting it into thevgn equation.

Here are some examples of this method.

Example 1. Solve y' =y sinx. Find the particular solution for whiclg=1 when x=0.

Solution. An antideriative o sin x is —cosx, so (7) gives the general solutiory = ce™ “©°5%,

To find the particular solution withy=1 when x=0, we dubstitute x=0, y=1, getting 1=
ce ©S0=ce™1l 55 c=e, o the particular solution is = e- e~ ©SX = g1 = 0SX

Example 2. Solvey' = - yx.

2
Solution. An antidervative d —x is —x2/2, 0 the expression (7)ggs y=ce * 12,

Example 3. Solve y' =r y/x, wherer is ary real number.

rin|x| -

Solution. An antidervative d r/x is rIn |x|, so(7) gves y=ce c|x"|.

3. THE NONHOMOGENEOUS CASE.
We ae nav ready to tackle the more general equation (5),
y' = P(X)y+Q(x).
Our general principle (4) says that we should look at the relationship among solutions to this equation.
So supposey; andy, are tw solutions to (5); i.e., that

y1 = P(X)y; +Q(X),
yo = P(X)y, +Q(X).
If we subtract these equations, we get



y1—Y2 = P(X)(yp ~Y2):
This says thaty; -y, is a solution to theoma@eneousequation (6),
y' = P(X)y,
which we learned hw to solve in the preceding section. It is not hard to check by turning theeabo
calculation backward that, coarsely, if we add to aiy solution to our nonhomogeneous equation (5) a

solution to the homogeneous equation (6), we again get a solution to (5).
So if we letg(x) be any nonzero solution to (6), i.e., gmonzero function satisfying

(12) g'(x) = P(x)9(x),
then the solutions to (5) will differ among themsaslvonly by constant multiples o§(x). The
principle (4) nav tells us to ma& a dhange of ariables that will transform these into functions thaedif
among themselves by additionaifnstants To do his we should clearly divide bg(x); i.e.,let
(23) u =y/gx), equvdently, y = ug(x).

Principle (4) says that this substitution should change (5) into a differential equation that can be
solved by intgration. © se whether this works, let us substitute (13) into (5), and simplify.

(ug(x)) = P(x)(ug(x)) +Q(x)
u'g(x) +ug(x)P(x) = P(xug(x)+Q(x)  (by (12)
u'g(x) = Q(x)
u' = Q(x)/g(x).
So we can indeed nofind u by integrating Q (x)/g(x) . We then gety by multiplying u by g(x)
(see (13)). In summary,

To lve a nonhomgeneous linear dferential equation(6), first find a nonzey
solution x) to the corresponding horgeneous linear ditrential equation(7).
Then mak the substitutiony = ug(x) in (6), getting an equation that can be
solved by integration, and substitute bao dotain y

The resulting family of solutions is described by

y = 9(x)(f(QRKX)/g(x))dx + C).

You might prefer either to learn the substitution used in the@lpmcedure, or to memorize the final
formula, or both. If you memorize the formula, be careful to rememberghgt denotes a solution to
the corresponding homogeneous equation.

Example 4. Solvey' =xy+ x3,

(14)

Solution. We nust first find a nonzero solutiog(x) to the corresponding homogeneous equation, i.e., a
function satisfyingg' = xg. The method of 82 tells us that such a solutimaefiédX = eX2/2. (Since we
only need one such solution, wevhdeft out the constantc” of the formula in that section.Jhe
formula at the end of (14) nogives
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(15) y = X712 J‘(x3/eX2/ 2 dx + C).

2
Writing the integral as_[x3e_x /2dx, we make the substitutionu = —x2/2, getting IZu e'du.
Integration by parts ges 2ue" 5 2e' = 2(u-1 e“'.2 Expressing this in terms ok, we find that our
integral equal2 (-x2/2-1)e X 12 = —(x2+2) e *"'2, Thus, (15) gies

2 2
= —x2-2+ce’2

After all this computation, it is worth checking that these functions do indeed satisfyvime gi
differential equation.You will not find it hard do so.

Remark: In Stevart and mamg other texts, first-order linear @&rential equations are written with the
P (xX)y on the left side of the equation instead of on the right as in (5) and (6):

(16) y+PXy = Q(X) (nonhomogeneous),
a7 y+PX)y=0 (homogeneous).
This is because tlgewill eventually be looked at in the context of higher order equations,
(18) Py (Y™ +P 100y T+ +Po0)Y = Q).

| used the forms (5) and (6) because | wanted to discuss these equations as instancéherfe(is.
no essential difference in the method of solution (and in real life, such equations are at leabt t@s lik
appear in this form as the other). But note that becdusg effectively has opposite signs in the aw
formulations, the expression (pr(x)dx of our development corresponds to itsvierse in Stevart’s

development; so corresponding to the final formula of our solution (14)eBtgets a formula in which
onemultipliesinside the integral andividesoutside the integral byefp(x)dx.

4. ANOTHER APPLICATION OF OUR GENERAL PRINCIPLE.

In the two cases with which we la ilustrated the general principle (4) alepthe change of
variables that we made replaced the dependamnae y by a nev dependent &riable u, but kept the
independentariable x unchanged. Thmethod is not limited to such casdgive belaw a rice class of
examples of a different sort.

This section is not required reading for Math (H)1B; in fact, the method it leads to is part of the
curriculum of Math 54. But since (4) is an important tool in the theory éérdiftial equations, it is
instructive O e a variety of applications.

Suppose a differential equation has the form

(29) y' = F(y/X).
Notice that this means that the slope of the direction field is constant along all lines through theorigin:
each liney = cx, the slope shown by the direction field \&gwhere F (c).

It is not hard to see from this that the operationxpl@ding or shrinking the picture ofyasolution-
curve by a fked nonzero &ctor r (i.e., multiplying both coordinates o¥&y point by the same constant
r) will give the picture of another solution-cexv Thatis, if the cune y = f(x) is ane solution to the
equation, then for annonzero r, another solution will be the cuevy/r = f (x/r); in other words



y =r f(x/r).

How do we make a dange of variables that will turn this system of curves into curves tffiet dif
additive mnstants?

Well, the process oféxpanding or shrinking'a solution as described abe akes a cure cntaining
a pint (x,y) to a awrve mntain the point(rx, ry). Solet us start by going to coordinates in which
(x,y) and (x,ry) havethe same value of the independeatiable. V¢ can achige tis by letting our
new independent variable be

(20) u = y/Xx.
We @n then tak x as our n& dependent variable, and eliminaye using (20) in the formy = ux. To
express (19) in terms of ourwevariables, it is easiest to pass to differential notation:

dy/dx= F(y/x)

dy = F(u)dx

(21) d(ux) = F(u)dx
udx + xdu = F(u)dx
xdu = (F(u) —u)dx
dx/du= x/(F(u) —u).

The original ‘expanding or shrinking’operation, which leaes our nev independent ariable u
unchanged, still multiplies our wedependent ariable x by the constant; so (as in 82) we can cwoert
it into addition of a constant by taking Exithms. Thuslet us pass to a nedependent ariable v = In x,
i.e., let x = e¥. The last line of (21) then becomgslv/du)e? = eV/(F(u) — u), i.e., dv/du=
1/(F(u) — u). Thiswe can at last sotvby integration, gettingv = Idu/(F(u) - u) + C. We then
substitute back, to get an equation relatingnd y.

The abwe dscussion points us to a somewhat more detailed description of the procedure (4) for cases
where our system of transformations do not, initjgligsenre the independent variable:

Given a diferential equation(1), find a family of transformations of the plane

which carries solution-curves dfl) to other solutions-curves ¢1). Then mak

a change of wariables so that all these transformations preserve the ne
(22) independent variable Finally, choose a n@ dependent variable so that the

transformations @& gven by addition of a constant to that variabl&he

differential equatior(1) will then reduce to one that can be solved by integration.

The transformations we @ dscussed in this note, that carry solution-curves to solution-curves, are
called by specialists in the theory of differential equatEyrametriesf the gven equation. (AGoogle
Book search for'symmetries’ together with ‘differential equationsgives, at the moment, 791 results,
for your reading pleasure.)

The ideas of this handout are also used in connection with Fogter differential equations, where
families of symmetries can be used to reduce higher-ordfaretitial equations to a combination of
integrations and the solving of lower-order differential equations.



