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A Useful Principle in Solving Differential Equations

1. THE IDEA.

Consider a first-order differential equation

(1) y′ = F (x, y).

As we have seen, this is in general satisfied, not just by one functiony = f (x), but by a family of

functions. Acase of this phenomenon that we are long familiar with is when (1) has the form

(2) y′ = F (x).

Then we know that the family of solutions has the form

(3) y = G (x) + C,

where G (x) is any antiderivative of F(x), and C ranges over all real numbers. Since we have learned

many techniques of integration (finding antiderivatives), it is useful to have techniques that reduce the

solution of other sorts of differential equations to that case. One situation where we have seen that we can

do so is when the given equation is separable.

Another very wide class of cases is based on paying attention to how the solutions of our given

equation relate to one another. Here is the general principle.

(4)

Given a differential equation(1), examine the way different solutions must be

related, and look for achange of variables that will turn the solutions of(1) into

a family of functions related to one another simply by addition of constants, as

in (3). After this change of variables, the differential equation(1) will reduce to

one of the form(2), and hence can be solved by integration.

In the next two sections, we will develop a standard technique for solvingfirst-order lineardifferential

equations, using the above principle as one of the paths leading to that technique.

2. FIRST ORDER HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS.

A first-order differential equation (1) is said to belinear if F (x, y) is linear as a function ofy; in

other words, if the equation has the form

(5) y′ = P (x) y + Q (x).

Note that in this equation, the termsy′ and P (x) y are of degree 1 iny and its derivative, while Q (x)

is of degree 0 in those variables. Anequation is calledhomogeneous in a set of variables if all the terms

have the same degree in those variables. Thus,(5) is homogeneous of degree 1 iny and its derivative

only if Q (x) = 0; i.e., if the equation has the form

(6) y′ = P (x) y.

In this section we will see how to solve homogeneous equations (6).In the next section we will climb

on the shoulders of that result, and solve nonhomogeneous equations (5).

I claim that the solutions to (6) are
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(7) y = c e∫ P (x) d x,

for real numbersc . That is, if A is any antiderivative of P (x), then the solutions to (6) are the

functions

(8) y = c eA (x).

It is easy to check that these functions do indeed satisfy (6). But how could we have discoveredthis

solution? Hereare three independent approaches, each of which gives us a different bit of insight into

differential equations generally.

Motivation #1. Our general principle (4) says that we should look at how different solutions to (6) are

related to one another. Clearly, if y = f (x) is a solution to (6), then so isy = c f (x) for every real

constantc. Hence (4) says that we should look for a change of variables that will turn solutions related

in this way into solutions related by an additive constant. Multiplying a function by a positive constant

corresponds toaddinga constant to its logarithm; so let us make the substitution

(9) u = ln y; equivalently, y = eu.

When we put this into (6), that differential equation becomesu′ eu = P (x) eu, which simplifies to

u′ = P (x). This is, as we hoped, a differential equation of the form (2), hence we can solve it by

integration, getting u = ∫ P (x) dx + C, i.e., A (x) + C, for A (x) an antiderivative of P(x).

Substituting this into the right-hand equation of (9), we get (8), wherec = eC.

Actually, this only gives the case of (8) wherec is positive, since our substitutionu = ln y only

makes sense for positive-valued functionsy. Howev er, once we have found this family of solutions, it is

easy to see that zero and negative values of c also give solutions to (6). So if we think of our general

principle (4) simply as a guide, it has indeed guided us to the solution (8).

Assuming the domain of definition of our functions is an interval (possibly infinite), (8) in fact gives

all solutions to (6).To see this, letz = eA (x) and let y be any other solution to (6).We want to show

that y /z is constant. If we differentiatey /z, and use the fact that bothy and z are solutions to (6), we

get

(y /z)′ = (y′z − yz′ ) /z2

= ((P (x) y) z − y (P (x) z)) /z2

= 0/z2 = 0.

So y /z is indeed a constantc, so y = c z = c eA (x).

Let us now look at a different way we could have discovered the solution (8) of (6).

Motivation #2. Notice that the equation (6) isseparable, as defined on p.594 of our text. Hence

following the method shown there, we divide by the function ofy appearing on the right-hand side

of (6), in this casey itself, getting

(10) y′ /y = P(x),

and integrate both sides of this equation, getting
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(11) lny = ∫ P (x) dx + C.

To get y we exponentiate, which again gives (7). (The same comments about negative c and

uniqueness given in Motivation #1 apply here.)

Here is a brief sketch of a third avenue leading to (8):

Motivation #3. Assume we want to solve (6) on some interval [a, b]. We may subdivide [a, b] using

points a = x0 < x1 < ... < xn = b, and think of P (x) as approximately constant on each interval

[xi −1 ,xi ], with some constant value P (xi* ) (xi−1 ≤ xi* ≤ xi ). Then on that interval, (6) can be

approximated by the equationy′ = P (xi* ) y, for which we know the general solution is any constant

times the exponential functioneP (xi* ) x (§3.8 of Stewart; also pp.580 and 606 [2]). Hence, asx moves

from xi −1 to xi , the value of y will be multiplied by approximatelyeP (xi* ) ∆xi , where ∆ xi =

xi − xi −1 . So as x goes all the way froma to b, y is multiplied by approximately

eP (x1* ) ∆x1 . eP (x2* ) ∆x2 . . . . . eP (xn* ) ∆xn

= eΣi P (xi* ) ∆ xi .

As our subdivision of[a, b] becomes finer and finer, this should approache∫a
b
P (t) dt. Replacing the

upper index of integration by the variablex to get a function, we see that it will have the form (7).

The above discussion is too sketchy to be a proof; but again, it guides us to the solution (7), which we

can then verify by substituting it into the given equation.

Here are some examples of this method.

Example 1. Solve y′ = y sinx. Find the particular solution for whichy = 1  when x = 0.

Solution. An antiderivative of sin x is − cosx, so (7) gives the general solutiony = c e− cosx.

To find the particular solution withy = 1  when x = 0, we substitute x = 0, y = 1, getting 1 =

c e− cos 0= c e− 1. So c = e, so the particular solution isy = e.e− cosx = e1 −  cosx.

Example 2. Solve y′ = − y x.

Solution. An antiderivative of − x is −x2/2, so the expression (7) gives y = c e− x2/2.

Example 3. Solve y′ = r y /x, where r is any real number.

Solution. An antiderivative of r / x is r ln |x|, so(7) gives y = c er ln |x| = c |xr | .

3. THE NONHOMOGENEOUS CASE.

We are now ready to tackle the more general equation (5),

y′ = P (x) y + Q (x).

Our general principle (4) says that we should look at the relationship among solutions to this equation.

So supposey1 and y2 are two solutions to (5); i.e., that

y1′ = P (x) y1 + Q (x),

y2′ = P (x) y2 + Q (x).

If we subtract these equations, we get
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y1′ − y2′ = P (x)( y1 − y2).

This says thaty1 − y2 is a solution to thehomogeneousequation (6),

y′ = P (x) y,

which we learned how to solve in the preceding section. It is not hard to check by turning the above

calculation backward that, conversely, if we add to any solution to our nonhomogeneous equation (5) a

solution to the homogeneous equation (6), we again get a solution to (5).

So if we let g(x) be any nonzero solution to (6), i.e., any nonzero function satisfying

(12) g′(x) = P (x) g(x),

then the solutions to (5) will differ among themselves only by constant multiples ofg(x). The

principle (4) now tells us to make a change of variables that will transform these into functions that differ

among themselves by addition ofconstants. To do this we should clearly divide byg(x); i.e., let

(13) u = y /g(x), equivalently, y = u g(x).

Principle (4) says that this substitution should change (5) into a differential equation that can be

solved by integration. To see whether this works, let us substitute (13) into (5), and simplify.

(u g(x))′ = P (x) (u g(x)) + Q (x)

u ′g(x) + u g(x)P (x) = P (x) u g(x) + Q (x) (by (12))

u ′g(x) = Q (x)

u ′ = Q (x) /g(x).

So we can indeed now find u by integrating Q (x) /g(x) .  We then gety by multiplying u by g(x)

(see (13)). In summary,

(14)

To solve a nonhomogeneous linear differential equation(6), first find a nonzero

solution g(x) to the corresponding homogeneous linear differential equation(7).

Then make the substitutiony = u g(x) in (6), getting an equation that can be

solved by integration, and substitute back to obtain y.

The resulting family of solutions is described by

y = g(x) ( ∫ (Q (x) /g(x)) dx + C).

You might prefer either to learn the substitution used in the above procedure, or to memorize the final

formula, or both. If you memorize the formula, be careful to remember thatg(x) denotes a solution to

the corresponding homogeneous equation.

Example 4. Solve y′ = x y + x3.

Solution. We must first find a nonzero solutiong(x) to the corresponding homogeneous equation, i.e., a

function satisfyingg′ = x g. The method of §2 tells us that such a solution ise∫ x dx = ex2/ 2. (Since we

only need one such solution, we have left out the constant ‘‘c’’ o f the formula in that section.)The

formula at the end of (14) now giv es
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(15) y = ex2/ 2 ( ∫ (x3/ex2/ 2) dx + C).

Writing the integral as∫ x3e− x2/ 2dx, we make the substitutionu = − x2/ 2, getting ∫ 2u eudu.

Integration by parts gives 2u eu − 2eu = 2(u−1) eu. Expressing this in terms ofx, we find that our

integral equals2 ( −x2/ 2 −1)e− x2/ 2 = −(x2+ 2) e− x2/ 2. Thus, (15) gives

y = ex2/ 2 ( − (x2+ 2) e− x2/ 2 + C )

= −x2 − 2 + C ex2/ 2.

After all this computation, it is worth checking that these functions do indeed satisfy the given

differential equation.You will not find it hard do so.

Remark: In Stewart and many other texts, first-order linear differential equations are written with the

P (x) y on the left side of the equation instead of on the right as in (5) and (6):

(16) y′ + P (x) y = Q (x) (nonhomogeneous),

(17) y′ + P (x) y = 0  (homogeneous).

This is because they will eventually be looked at in the context of higher order equations,

(18) Pn (x) y(n) + Pn−1(x) y(n−1) + . . .  + P0(x) y = Q (x) .

I used the forms (5) and (6) because I wanted to discuss these equations as instances of (1).There is

no essential difference in the method of solution (and in real life, such equations are at least as likely to

appear in this form as the other). But note that becauseP (x) effectively has opposite signs in the two

formulations, the expression (7)e∫ P (x) d x of our development corresponds to its inverse in Stewart’s

development; so corresponding to the final formula of our solution (14), Stewart gets a formula in which

onemultipliesinside the integral anddividesoutside the integral bye∫ P (x) d x.

4. ANOTHER APPLICATION OF OUR GENERAL PRINCIPLE.

In the two cases with which we have illustrated the general principle (4) above, the change of

variables that we made replaced the dependent variable y by a new dependent variable u, but kept the

independent variable x unchanged. Themethod is not limited to such cases.I giv e below a nice class of

examples of a different sort.

This section is not required reading for Math (H)1B; in fact, the method it leads to is part of the

curriculum of Math 54. But since (4) is an important tool in the theory of differential equations, it is

instructive to see a variety of applications.

Suppose a differential equation has the form

(19) y′ = F (y /x).

Notice that this means that the slope of the direction field is constant along all lines through the origin:on

each liney = c x, the slope shown by the direction field is everywhere F (c).

It is not hard to see from this that the operation of expanding or shrinking the picture of any solution-

curve by a fixed nonzero factor r (i.e., multiplying both coordinates of every point by the same constant

r ) will give the picture of another solution-curve. Thatis, if the curve y = f (x) is one solution to the

equation, then for any nonzero r , another solution will be the curve y /r = f (x /r ); in other words
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y = r f (x /r ).

How do we make a change of variables that will turn this system of curves into curves that differ by

additive constants?

Well, the process of ‘‘expanding or shrinking’’ a solution as described above takes a curve containing

a point (x, y) to a curve contain the point(r x, r y). So let us start by going to coordinates in which

(x, y) and (r x, r y) hav ethe same value of the independent variable. We can achieve this by letting our

new independent variable be

(20) u = y /x .

We can then take x as our new dependent variable, and eliminatey, using (20) in the formy =  ux. To

express (19) in terms of our new variables, it is easiest to pass to differential notation:

(21)

dy /dx = F (y /x)

dy = F(u) dx

d(ux) = F (u) dx

u dx + x du = F(u) dx

x du = (F (u) − u) dx

dx /du = x /(F (u) − u).

The original ‘‘expanding or shrinking’’ operation, which leaves our new independent variable u

unchanged, still multiplies our new dependent variable x by the constantr ; so (as in §2) we can convert

it into addition of a constant by taking logarithms. Thus,let us pass to a new dependent variable = ln x,

i.e., let x = e . The last line of (21) then becomes(d /du) e = e /(F (u) − u), i.e., d /du =

1/(F (u) − u). This we can at last solve by integration, getting = ∫ du/(F (u) − u) + C. We then

substitute back, to get an equation relatingx and y.

The above discussion points us to a somewhat more detailed description of the procedure (4) for cases

where our system of transformations do not, initially, preserve the independent variable:

(22)

Given a differential equation(1), find a family of transformations of the plane

which carries solution-curves of(1) to other solutions-curves of(1). Then make

a change of variables so that all these transformations preserve the new

independent variable. Finally, choose a new dependent variable so that the

transformations are given by addition of a constant to that variable. The

differential equation(1) will then reduce to one that can be solved by integration.

The transformations we have discussed in this note, that carry solution-curves to solution-curves, are

called by specialists in the theory of differential equationssymmetriesof the given equation. (AGoogle

Book search for ‘‘symmetries’’ together with ‘‘dif ferential equations’’ giv es, at the moment, 791 results,

for your reading pleasure.)

The ideas of this handout are also used in connection with higher-order differential equations, where

families of symmetries can be used to reduce higher-order differential equations to a combination of

integrations and the solving of lower-order differential equations.


