
George M. Bergman Mathematical Induction Fall 2016

1. The idea, starting from an example.

Let me introduce the idea of Mathematical Induction using a bit of math that you already know. Imagine,
however, that you were discovering it for the first time.

Suppose you and a friend start calculating the sums of reciprocals of powers of 2:

1/2 = 1/2,

1/2 + 1/4 = 3/4,

1/2 + 1/4 + 1/8 = 7/8,

1/2 + 1/4 + 1/8 + 1/16 = 15 / 16 .

You notice a pattern: In each of the above cases,

(1) 1/2 + 1/4 + 1/8 +... +1/2n = (2n − 1) /2n.

The two of you wonder whether this will continue to be true for all positive integersn. Your friend spends a
few days checking this all the way up ton = 100, addingthe terms up for each case, and finds itdoeswork in all
these cases. Then your friend says, ‘‘I’m tired.You take over!’’

You could add up the 101 terms for the next case,1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2101. But it occurs to you:
Most of that work is unnecessary. Your friend has already added up the first 100 of these terms.All you have to
do is add on the next one. And you find that quite easy algebraically:

1/2 + 1/4 + ... + 1/2101

= (1/2 + 1/4 + ... + 1/2100) + 1/2101 (bringing together the 100 terms your friend has added up)

= (2100− 1) /2100 + 1/2101 (using the result of your friend’s calculation).

Writing the above to the common denominator1/2101, you get

= (2101− 2) /2101 + 1/2101

= (2101− 2 + 1) /2101

= (2101− 1) /2101.

So you’ve sav ed yourself a long, step-by-step addition, and verified that equation (1) also holds forn = 101.
What about the next case?Obviously, rather than starting from scratch, you can similarly make use of the

n = 101 case. You do so, and find that the calculation works out the same way, giving equation (1) forn = 102.
The pattern is clear, and the going becomes very quick:Copying the computation forn = 102, andjust

changing the exponents at the high end by1, you get the casen = 103. Doingthis again, you get the case
n = 104; thenn = 105, ... .

But is there any point in copying the calculation over and over? Surelyyou can do it once and for all. If at
some step you have verified (1) for n equal to some valuek, then in the next case you will have

(2)

1/2 + 1/4 + ... + 1/2k+1

= (1/2 + 1/4 + ... + 1/2k) + 1/2k+1

= (2k − 1) /2k + 1/2k+1 (by the casen = k )

= (2k+1 − 2) /2k+1 + 1/2k+1

= (2k+1 − 2 + 1) /2k+1

= (2k+1 − 1) /2k+1.

So there’s no need to do any more calculations for particular values ofn. Each later case indeed follows from
the case before it, so equation (1) holds forall positive integersn.
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2. Two more examples.

The kind of situation illustrated above comes up frequently. Let’s note two more cases, before we abstract the
general principle.

Many examples, like the one above, inv olve summation. For instance, suppose you try summing the first few
odd integers:

1 =  1,

1 + 3  = 4,

1 + 3 + 5  = 9,

1 + 3 + 5 + 7  = 16.

The sums are the first few squares, and these examples suggest the general formula

(3) 1 + 3 + ... + (2n−1) = n2.

Is (3) true for all n? Again, if we have checked a given case n = k, then checking the next case reduces to a
quick calculation:

(4)

1 + 3 + ... + (2(k+1) −1)

= (1 + 3 + ... + (2k−1)) + (2(k+1) −1)

= k2 + (2k+1)

= (k+1)2.

which is the n = k+1 caseof (3). So since thek = 1  case is true, and each case implies the next, the result is
true for all positive integersk.

For a slightly different sort of example, note that if we differentiate a function the formx f (x), weget

(x f (x))′ = f (x) + x f ′(x).

If you differentiate this again, then differentiate the result, and so on (try a few steps!), you will see a pattern:

(5) (x f (x))(n) = n f (n−1)(x) + x f (n)(x).

To check whether that pattern will continue indefinitely, suppose the result true forn equal to some value k.
Then one gets

(6)

(x f (x))(k+1)

= ((x f (x))(k ))′
= ( k f (k−1)(x) + x f (k)(x))′ (because we’ve assumed (5) forn = k )

= k f (k )(x) + ( f (k)(x) + x f (k+1)(x)) (usingthe law for differentiating a product)

= (k+1) f (k )(x) + x f (k+1)(x),

which is then = k +1 case of (5). So the pattern does indeed continue indefinitely.

3. The formal statement.

In each of the above examples, we dealt with an infinite family of statements, one for each positive integer n .
(In the first case, these were the equations (1), in the second, the equations (3), and in the third, the equations (5).)
In each case, we verified the first few of these statements, then did a general calculation that showed that thek-th
statement implied the (k+1)-st; and we concluded from this thatall of our statements held.

To get this conclusion, there was actually no need to check the firstfew cases − the very first case, together
with the calculation showing that each case implied the next, would have been enough. (But the calculation of the
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first few cases still served an important purpose: It suggestedwhat we should try to prove, without which we
could not have set up the general calculation.)

To discuss this situation in the abstract, we need to give a name to the ‘‘n-th statement’’ of a pattern. Letus
use the symbolP (n), where P stands for ‘‘proposition’’, a logician’s term for a statement.We can now
formulate the

Principle of Mathematical Induction. Suppose P(1), P(2), P(3), ... , P (n), ... are mathematical statements,
and suppose we know that

(i) P (1) is true,

and that

(ii) for all positive integers k, P(k) implies P(k+1). (I.e., if P(k) is true, then P(k+1) is true).

Then P(n) is true for all n≥ 1.

This principle can be used with various degrees of formality. In simple situations, one often uses it without
calling it ‘‘mathematical induction’’. For instance, when one deduces from the formula for the derivative of the
sum of two functions the corresponding law for the derivative of the sum ofany finite numberof functions,
mathematical induction underlies the reasoning, but the reasoning is clear enough that it does not have to be
spelled out. (So in that sense, you have been using mathematical induction for a long time.)

In less trivial situations, if one has a statement that one wants to prove for all n, one often shows that it is true
for n = 1, shows that then-th statement implies the (n+1)-st, and then says, ‘‘Hence, by induction, the statement
holds for all n’’ . In particular, it often happens that in the midst of a proof, one needs a statement which can be
proved by induction. Onemay then say something like, ‘‘We claim that for all n ≥ 1, such-and-suchis true.
Indeed, it is true forn=1 because .... Now assume inductively that it is true for n = k.’’ One then shows why
this implies that it is also true forn = k+1, andconcludes, ‘‘Hence, by induction, it is true for alln’’ , and goes on
to use the fact in question. Note the words ‘‘assume inductively’ ’, which signal that Mathematical Induction is
going to be used.

Finally, if the situation is complicated enough (or if one is learning the use of induction, and needs to show
that one understands it), one may explicitly say, ‘‘For each n, let P (n) be the statement that ...’’ . One then
gives an argument showing thatP (1) is true, and an argument showing thatP (k ) implies P (k+1), and
concludes, ‘‘Hence, by Mathematical Induction,P (n) is true for all n’’ .

4. Variants.

There are many slight variants to the version of the Principle of Mathematical Induction stated above.
The statement I gav e started with n = 1. Clearly, the same reasoning would apply if we had a family of

statementsP (n) starting with n = 0, and we proved that P (0) held,and that eachP (k) implied P (k+1): we
could then conclude thatP (n) held for all n ≥ 0. In some situations we might want to start with still another
integer n0, and our conclusion would be thatP (n) held for all n ≥ n0. (But 1 and 0 arethe commonest
cases.)

These slightly modified versions of induction can be proved from the version I gav e. For instance, if we are
given statementsP (n) for all n ≥ 0 as above, we could define new statementsQ (1), Q (2), ... by lettingQ (n)
be P (n−1). Thenour original version of induction, applied to the statementsQ (n), yields the desired result
about P (0), P (1), ... .

Sometimes one may only have finitely many statements, sayP (1), P (2), ..., P (N ) for someN. In that case,
if one can prove P (1), andshow that P (k ) implies P (k+1) for 1 ≤ k < N, then one can conclude that all of
P (1), P (2), ... ,P (N ) are true.
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In another direction, the use of the distinct symbolsn and k in the formulation of the Principle of
Mathematical Induction is common, but not really necessary. It allows one to talk about ‘‘the casen = k ’’ and
‘‘ the casen = k +1’’ ; but one can equally well formulate condition (ii) of that statement as, ‘‘for all positive
integersn, P (n) implies P (n+1)’’, without switching to the letterk.

Note that the Principle of Mathematical Induction is specific to the integers. Itis not true, for instance, that
given a family of statementsP (x), one for eachreal number x, such that P (1) is true and P (x) implies
P (x+1) for all x, we can conclude thatP (x) holds for all real numbers≥ 1. (For instance, the statement ‘‘x is
an integer’’ has those properties, yet is not true for all real numbersx ≥ 1.)

In a systematic development of the properties of the integers, certain axioms about their ordering and
arithmetic are introduced, and the Principle of Mathematical Induction is deduced from these.(If you’d like to
know more about this, ask me at office hours.) Some other sets, which satisfy some but not all of the properties of
the integers, satisfy interesting variants of the Principle of Mathematical Induction.

One important variation on the method of Mathematical Induction, which again applies to the positive
integers, and which can be proved from the usual form of Mathematical Induction, is called Complete Induction.
Here we again deal with statementsP (1), P (2), ..., P (n), ...; but rather than having to deduceP (k+1) from
P (k ) alone, as in condition (ii) above, we are allowed to use all ofP (1), ... ,P (k) in proving P (k+1). I won’t
discuss it in detail here, but you can expect to see it in future math courses.

5. Circular reasoning?

A Teaching Assistant once described to me her experience teaching Mathematical Induction in first-year
calculus. Berkeley was on the Quarter System then, so the courses were Math 1A-1B-1C.‘‘ In 1A, when you give
an example of Mathematical Induction, some student is sure to say, ‘But teacher, you must be making a mistake.
You’re assuming what you’re trying to prove!’ Then, in 1B, when you come to Mathematical Induction, someone
will again say, ‘Something’s wrong. You’re assuming what you’re trying to prove.’ Finally, in 1C when you come
to induction, they say, ‘Why are you spending time on this?We know it already!’ ’’

Well − when we ‘‘assumeP(k )’’ in a proof by induction, are we, or aren’t we, assuming what we are trying to
prove?

First note that we are not ‘‘assuming’’ P (k ) in the sense of taking for granted that it is true.Rather, we are
saying, ‘‘If it is true ...’’ , and seeing what consequences that would have. Moreover, we are not arguing that
P (k ) implies P (k ), whichwould be trivial, and the use of which to establish that allP (n) hold would indeed
be circular reasoning.Rather, we are showing thatP (k ) implies P (k+1). If this is so, and ifP(1) istrue, then
we can correctly conclude by a ‘‘domino’’ effect that allP (n) are true.

6. Errors to watch out for.

There are several errors I have seen among students learning to use Mathematical Induction.
The first is to check a result forn = 1, for n = 2, and maybe for a few more values, find that it is true in these

cases, and say, ‘‘Therefore, by induction, it is true for alln ’’ . This is not valid unless one can come up with a
precise argument showing why the truth of the statement for each value ofn (not only those one has checked)
implies its truth for the next value.

Second, a student will sometimes formulate a conditionP (k ), prove P (1), andthen say, ‘‘By Mathematical
Induction, P (k ) implies P (k+1), hence P (n) is true for all n’’ . Such a student has gotten it backwards:
Mathematical Induction does not tell us thatP (k ) implies P (k+1); rather, it says thatif , using facts about the
subject in question, we can show that P (k ) implies P (k+1), andthat P (1) is true, thenwe can conclude that
P (n) holds for all n.

Students sometimes get the idea that any result that is to be proved for all n should be proved by induction.
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Mathematical Induction is relevant in cases where there is a natural connection (other than analogy) between the
statement for one value ofn and the statement for the next. This is so for equations (1) and (3) above because
the sum ofn+1 terms is obtained from the sum ofn terms by adding on the next term, and for (5) because the
(n+1)-st derivative is obtained by differentiating then-th derivative. An example where Mathematical Induction
is not relevant is if one is asked to prove that for every positive integer n one has(n3)3 = n9. The operation of
cubing n+1 does not build on the operation of cubingn.

Here, finally, is a kind of error that does not come up often, but which makes an interesting brain-teaser. It is a
well-known ‘‘proof ’’ that all horses have the same color:

Let P (n) be the statement that in every set of n horses, all the horses have the same color. Clearly P (1) is
true. Now suppose inductively that P (k ) is true, for some positive integer k. Giv en any set of k+1 horses, we
can write it as the union of two sets of k horses, having k−1 horses in common. By our inductive assumption,
all the horses in the first set have some common color, C1, and all the horses in the second set have some
common colorC2. But the k−1 horses that the two sets have in common are simultaneously of colorC1 and
of color C2; so C1 = C2; so our k+1 horses all have the same color, completing our inductive proof.

Can you find the fallacy?


