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m-"-Introdﬁction'?s;

- Ve sh#li here be ooﬁcerned r&therrexclusively with one aspect of the-j{:?f"
_‘éheory of transcendental numbers ’ the "constructlve" 'bheory » which da.tes
; 'fgh’ ' :frqm the Liouville construction. The main result-wa—shall prove is equivaleﬁt ;
to §E§E_§ of Scnne1éer, fi]. 1f, 1ike the ohemlst, we adcpt a..

-l-struotural terminology, then, as. we' shall see, this should ‘be called the

-
._‘("'

e T

: 'Liouvi113—Thue-iiegel-Rot

Schneider Theorem. _
Schne der-—Mahl } . : L

; : r_j'ff. ;1l' In sections 1 .and 2. we' dis#uss; and giveHAPpiications of, some of the  “
| 1.;¥ aarlier results 1eading up. to this theorem,_:ln section 5 we' atate ‘the ii_-f . 
.'f.thsorem and the two 1emmas we ahall use: in proving it. In sections 4, 5 and
e we prm th;theorem,-a.-nd then tho two 1emmas used. Seotlon 7 oonsists of
;*7.ff 8 hurried discussion of several toplcs related to the theorem and the construotlve:
fn‘study of transcendantal nuMbers in general In section 8 we 1ist the most
fﬁfiaf*important results from the rest of the theory of transcenﬁental numbers.
e Our principal innovatlons here are (1) to shaw that Schne1der's §f§fil§
:15 equivalent tow fbrmally stronger statement* and (2) to glve & more

TR o .natural proof of the lemin on generalized Wronsklans“ " Ve have also introduced'

‘gome - terminology maklng it eaaier to state and compara this type af results,
_:and have sharpened the estimates in some of-the lemmas used. On tha other hamd,_
our attempts to reorganize proofs S0 as, to be oonceptual]y'clearer may have
. made soms of them computationﬂlly messier.'

One thing I have lezrned from this work is that I hed better have. my

'typewrlter rehanled before doing the fipel copy of my ma jor thasis.

The word "integer™ is:here:used“to'mean-ﬁmember of 2 unless we specify -

_“algebfaic iﬁteger“ or "integer in the field EK".

*Schneider's Satz 6, though stated somewhst dlfferently, is essentially what
we have left to prove after we have made the first two reductlons of Step 1
in the proof of our Theorem. S .
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§1 Li ouvil 1e-'.I‘hue-S ie gel -Roth

J Liouv:Llle initiated the "eenetructive" study ef trs.nscendental numbers
';in 1844 mth the follow ing observation- o - ,
| _Let o3 be _'e.n irrational e_lg_ebrel_e real"'nt_nnber;;'- sey .8 r'eot;-of‘:;the’ifredﬁeible
- _ﬂ.p_oly'nezlniel‘. P o-f _d'egre__e n>1 ;ﬁifh in‘tegrei. .ceei.‘ficienfe. | Suppose p/q ’is L
. ratiene.'i ‘fra‘etrien-neelr'--te o< Then P(p/q) can he written as K re.t:.onel frection o

'wr!;h denominaﬁor q » hence hag e.'bsolute value > q'n. If c is an upper bound ;

e

o fer the derivative oi‘ Pin sdme fixed neighborhood of Ay sa.y (n{—l ,vc+1), we

' i'-r.'can see thet ]eg- E] cunnot be Iess than 1/Cq (for p/q in this neigh‘norhood.

L If we. 'bake the bound c to 'be > 1 this will eleerly also be true for p/q

. ou‘bside (q\!-l “&1) ) Tetes :_ oF 1"* :“-'.i:’-s.(—}’ '_‘_ :

I_ Thet is, ¢ cannot be the l.unl’c of 8 sequence of rationel fractions whlch

ﬂ

'7 e:enVergee too’ repidly, compared with the r-l-g';—b at wh:l.ch the deneminators increase. |
"'.-P'-‘I‘o set up & preeise terminolegg , let f be an nen—-nege.t:.ve real-valued funetion
' "'on the posrblve ini:egers, end let us say sey that e. real num'ber c:e 1s :
.:__!‘(q)-appronmeble ifr it is 'bhe 11mit of o sequence of rationﬁl I‘reo‘tions pn/qn
I"..wi‘bh [oz.-p /q I = f(q ) * Clearly, we can s:.milarly define the statement
‘;,‘bl'at 2 number is O(f(q))-anproximable, or e(f(q))-apprbxlm‘ble. ‘Then Llouville'
-.:"reeult is that an algebraic number of' degree n>1 o&nnot be o(q'n)-approximated.
LIE roilows thet an: irretienel num‘ner whlch is o(q )—epproxime.ble for elln "
- .must be treneeendental Such numbers are celled Liouville nmnbere. 'Exampl-es-.‘
: ereZa ‘1; and 1/a + l/at + l/a!! Heiig where & is‘an integer >1.. (The |
letter exemple is, in fact, 2/q '—epproxime.ble ) It is olear thet we oan ot
more Iiomrllle nunbers by gwing 'bhe terms of elther of these ‘series integral
ceefficlente > with very geherous beunds on their megnitud.es; in fac‘b s W oan get. _
: uncountably many dletlnet Lieuville numbere,using 0 and 1! 88 coefﬁoients. .
_ *When we 5peak of an eppro:nmetlng sequence of rationel numbers pi/ql, we -
.- shall understend the mumerators P; end’'the denominators q; to be speo:.fled,
" not Just thelr retio, We do not requlre them to be rela“t;lvely pri:ne » but

we do require q4 > 0.
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| One. m.ight expect t’nat the sum of‘ two Liouville numbers would still be
o Va.. Liouville number unless 11: was. ratione.l But considar the i‘ollowing L
eounterexa.mpla.' We sha.ll form two numbars e and b usmg the decimal ex'oans:ton
of V%-as folloWs- ths initial digits of & will be 0.0, and thoaa of b 1.4;x =
for 1ntegers m>1, if m sa.tisfies ineqmlities (2}:—1)! < ~u€2&)' Por- Boné X,

» then the mth dlgit oi‘ a-to: the -right- of the deciml point- will be '!:e.ken to__ ba
the corresponding digit of /2,: while the mt;‘ digi‘h of b will bo 0; ft_ar m
satisfying (21:)3«;111{(3&1)!, the reverse mll hold, ' o N i B

. Wé note 'bh.xb for s.ny k>0, the I‘lrst (2{)' dig:_ts of a give an &pproximation o o

of a which is rationa.l with denomnator 10(2‘:) *but aetually gives 8l to 10(2]& 1) o

et

ey - k+1
pI‘gces_.' Calling this Pk/qk (q = 10( k)1 ), we have fa:a pk/q f<1o (2 )‘
S q;_zk"l - o(q 1) for any n. Hence a is a Liouville number - The same clearly

- applie.g to b. But their sum is \/2 by construct:.on (whieh is not ewn -‘;*.rc;::.:-s.

o(q~ 2)-a.pproximble, by Liouv:.lle s argment) R _ N
In 1909 Thus strengthened Liouvillé% result, showing tet an algebraic : 
. number of dsgree n is not q -approx:lmable for any }p- 2 -l?l_._' Gi'Ven tao f.‘unctmns
f and & simultaneously approaching 0 let us write g = oo(f) ir ther'e ex1sts 2

j constant &>0 such that ’g[ 18 eventually < [fllq' " Then Thue's result was that

an algebrazc number of degree n is not oo(q'n/ 2 =1 )-approxlmablo

Note that this implies -bha.t nn algebralc number of degree n>2 i3 not:

- o(q )-npproximble._. We can now work Liouville's pump backm.rds- if P."'il_a‘_

B the minimal polfnomial of this number, we see that P(p/q )== cannot heve

infinltely many solutions (near to this root, nt least But the. ‘other roots

behave similarly.) Thus, if we write r(p,q) for- the: homogeneous form q“P(p/q),

_.'t‘(ph;'q)b“*. 1 '.has only finl’cely many solutions in integers. We could obtain

. stro_n_ger 1mplication§, but we shall leave thls “topie- until sec’cion 7.




: Siegel and Dyson were able to reploce the funetion §+ 1 by still smaller

:'funotions of n in this result Finally, in 1955, Roth showed that no. irratlonol

ialgebraie number is oo(q 2)-approximable.- Thls allows us- to oonatruet larger

r.olasses of transeendental numbers thon the Liouv111e numbers. For-ins*anoe

.fbr 2 &n integer >1, E::a will be transcendental, since it is 0(q )-

'approximable. @learly, 1t was not constructed R L Liouville number, the |

-problem of proving that such & nuMber is actually not & Liouville number —

.. ig not . difficult, but

o we should expect that it is not even o(q's)aapproxiﬁeble -— will not be dealt

: with here. The reader will find suoh 2 proof for the exomple to be given in

- the next sectlon in Schneider [1] last part of Sotz 9 )

s shown by the following observetlon' S

| That Roth's result is the best p0531ble concerning thapproxlm&bllity“ L

' Lewmna 1 Every reol numberez 13 q 2-approximable‘ in faot I/h(q+1)—anproximab1e.

"'Proof ‘Given n:-o, oon31der the images of the numbers o,:x, Ed,..., nx in the '

o group I&/ﬂ; thougnt of as & closed ourve of length 1 _ Then some two of them, . 

’ aq.and (a+q)x “must 1de within <:1/(n+1) of each other. Hence tha image of qa

will lie within 1/(n+1) of 0. Henoe 1nIR, qm wil’ lie wzthin 1/(n+1) of some-

' integor p. Then ]q—p/hl 1/§(n+1) 1/@(q+1) Sinoe this difference is also

(1/(n+1), we can, by taking n suffioiently large, get suoh fracﬁmns p/h to ':..

e approach <, ]

o I we limit ourselves to approximations of 5 ﬁy fractions p/h f’d, however,

.'we find thab the above argument fails preoisexy Af o is a: rational number, while

o Liouville's original argument now holds for n*l ‘and shows us that c& is not even

-

- —

o(q l)-approximable. So the ratlonols are in one sense the eesiagt and. in another

tho hardest numbers to approximate hy rat10nnls.
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‘ §2 Sehneider-lﬁahle:" T

- 1t ie cleer ‘che.t ree’l numbers ca.nnot in generel be as. quiol‘cly approximated

‘by fre.ctions whose denominators ere requlred to be powers of a flxed :m'beger

b> 1 as by fractions with erbitrary denominetor. In contre.st to Lermne 1 s the

o beat result hare is tlrat any real number can be %q 1-approximated by such a

- sequence as we can see for the cese «'b==10 by' looking a.t decimal expansions,
- end for other b simlarly.

In 1938, Sohneider sketehed e proof tPaat no 1rratione1 elgebraie

T rnumber can be ov(q '1)-approxlmeted by 8 sequence pi/qi in which the qi heVe

C the form b i, and do not 1ncreaee too repiély — expllcitly, I_ }1 1+1/)‘i <,

- For hﬂ 10 s thls means thet a number o( is tranecendental if w6 ean :E‘ind

o integers ) </ul < 7\ < ;J«z S such that the de01m1 expansion of 0( has S

?'-:'_'_a straight string of £eroes or 9's from ). to /«41, frcm ); to /“2 etc., where

.”'-r-_'the ’u\i/} “have lower bound greater ths.n 1 (essentially, 't;he +e in our.

| 'definit:.on of oo(q 1), and the - }i+1/‘*i are bounded ebove. Examnles of numbers -

%

o 4
to whieh thi.s ‘epplies are z"('.?/m)S1 “":s_"' 10 [(g) ], end Z 107 i (where []

ia the greetest 1nteger" function, and fi the Fibon&cci series )

In 1937 Me.hler proved & strengthened vers:Lon of Schneider's result:

" the denominetors could viow he of the form bkigi, where l is as a'bove, end

g --'_-the Ch are arb:.trary integers with log g; = o(zi) !.s an amusing applicet:.on, .

~' he proved thet if we teke eny nonnegative integral-velued polynemiel function
' -:_.P(x), and fom a deeimal (mnre genemlly» 'n-ary) fraction by juxtaposing the
.deoimal expreeaions of P(l), P(2), .00 (written as bloeks of d:.gits not’ begizming

with zero) 0 P(l)P(Z)D(S)..., the" resul'bing real num‘ber is transeendental

The key fect he used is that for enj integrel-valued pol,rnomal P of degree '

'n, the series )_ ‘P(j)x converges- for x>l 46 @ rational function of x: with -

.t.._-..-l

| integral coefficlents and denominator (x~ 1)n+1 * Beceuse our dee-lm_a.l- et
. _ S

'*_'I‘-hie is eesiiy seen if we Ire.ca.li that 5— (-g_)x-j.s {x-1 )-n-l.




o -'exl‘nressior-x.:’broaks up Iinto "runs“ Vof r.apidly increasing 1ength whioh can be
o written &5 sums. E::P(j)(lo ) j, wo can get good. rational approximations b
o o(., We shall illustrate the argumont for P(;})= ;j, whenoe = '
."0 123455789101112131415... - ) h

.‘_ We first note that o oan be approxlmated to essentlally ) plaoes by _
10/(10-1)2. = 10/81 - 12345.., .z J10-d, Aotuﬂlly, the error is slightly

'i_ > 10 -10 because in tﬁe axpanszon of 10/81, s 1 is carried from the 10""'h placo -

“ But the error is <?-10 ~10 -. ‘ | " _. .;, :

. Ifwe look st the next ninet‘y 2-digit units, 10 11 12 ... 99, we find that
h:'iithey must agree with the corresponding digits of e certain fraction of denomlnator
'_992; Adding to this s fraction with denomlnator 109, we oan also make the flrst
‘f”:nine diglts agroe with thosa of °", Hence we have approximated m:to essentially

| ;f9+2 +90 places (aotually 9 - + 2490 =1) by 8 fraotion w1th donominator 10 .992
. In ganeral 1et us write'rki= 9+ 2'90 + :..+ 1(10 -.10 '1) Then we 7
:flnd that o<oan be approxlmated to within 10 hi+1 by Y froctlon with denomanator
~(1oi-1)2 Since \ +1/hi approaches 10 from above, this gives us & g1
?.approximatlon of cx. The denominators do not inorease too fast “and 1og qi
.1:‘ 2-)og (10 -1) = O(i) = o(}i) So Mahler’s result is applioable,, (Roth'
. result, which had not beon proved then, is also applicable, but fhils when - )

we use base-z expansioné') '

83 Schneider'o-genéralizotion. N

Th, Sohneider, in [1], extends Roth's proof to get a result 1noluding

SN e
i3

W

' ':Mﬁhler's * His statement is eouivalant to the follow1ng= ;;‘_;.@.ioy 3;;";fz@

[

Theorem Let 2 real number u be the 1imit of 2 sequenoe of ratlonal fraotions _
'.'.Pk/qk pk/qqu . where the q]c have e.ll their prime d1visors in & fixed f‘inlte-'

. -2
:set, Suppose 0 <! &= pk/§k| = oo(qk qlc }. Then o{is-transoendental.

,5".—- LR ..‘ - . s L "‘-—. - T ha : . - -
¥Tt is not clear whother Mahler s result"originally requirod tha approxlmating
fraections to have the gteted proverties when in lowest terms or not, If: not;hit:

-4s not ;quite ineluded ik Sohnéider's: originel result, which did require this, es

_is olear from the proof though not from the statemsnt. However for our restatement,
lowest terms are. clearly 1mnaterio1, 50 we seo that Mahler 8 result 1§ xgglied




el

v :‘j_'_.'details to the reader. Let u be eny. nonzero elemen‘b - : : ,
:-"of IR>0 Wo note as ahown in tho dlagram at right ' Rt i T

that the get of elements of the. form x = )|u+ 8 wlth

| V'lul‘f O“ézko) will contain all but e bounded : st HE :’_ T
portlon of & convex "cone™ of elements. Ga.ven an;,r 2 e e
- i T |: I _3‘5— .M&.’:’E £ /’!511!:
ray through 0, it is easy %o flnd & point u of the . h““ e R R ey
' lattice desor:.bed An. the hypothasis with which we can 2 e : E. :
associate anc open cone’ containing this ray.' By the - Hmapcty o 2
' 'compa.ctness of proaective n—l-space, i‘initely many Bt SEee: FH R ' s

Indeed, if we mke the qk=1 this is Roth's result while if - we make

the qk small and 'bhe qk powers of soma b, it is- Mahler 's.

Schneider statad the resulb with tha assump’cion that the qk fre powers

of.a fixed_integar. The equivalence of the a_bpve sts.,tement tq___his::r.esul:bsr-_

 from tﬁé:--fonowing lé'mma‘-. (actually;: the' corollary), which allows us to plok
from & seqwence wmth our more general property a: subsaquence that approxzmatel‘y

satisﬁes hls condit:.on, and cen be transformed into one that does 80 precisely.

Let ]R>0 denote the nonnegative real nmnbers, 1et n be . positive integer .

"j_and let us. partially order R)O by' writing (ul,...,u )>(v1,...,v ) 11‘ evcry o
.'uk';vk. Let '(u ,...,u )! deaignate Z“i‘ ' SR
* Lemma 2 Let cl,....c be positlve real :constants, E an arbltrarily small

o "'positiva real number, and x an unbounded set 1n ‘]R _Then there exists an

>0

R element w of the f‘orm (alcl,...,a ) (a. «:EZ 0) and an unbounded sequence e

(x ) of. elements of X such thet every xi can be wrztten }\iu + ei, with Iail/[?\iu|<

such cones covar]?sto Hence we oan ohoose & 's.equence from x‘approachi-ng inﬁfﬂty

and lying in one such cone . A1l but finitely many of- its terms (which we deleta)

will be of the desired form with respect to u.l "

' Proof We shall gwe the geomatrio 1dea, .and leave the T 1 :_!_ ] g;g
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°

B such 'b"w.t overy sy can-be’ factored " b"ifi with f <

COrollary Let be aﬁ arbitrarily—small positivo number, and Y en infinite

sot- of po sitive integers having all their prlme divisors in & common finite -

,.set;‘ Then there exists & positive 1nteger b and an infinite sequence (yi) in

"’3\15 g

X Proof Lét:the: finite set consist of n prlmes, pl,...,pn ' Letfﬁs-map=Yfinto

LS k, :
]%>0 hy semﬁing pll,..p to (k In Pl""' k ln Pn) Note that if y goes

Cto’ stg>d we have y = exp ]x| Let us also choose oj- In pﬂ, and applj the
3aBOVG lemma. It is clear tbat each of the remalnder terma °i ve get will
" rra1so hnve jth coordlnate 8 multiple of 1In Pj for all j Taking b* exp. lu],

'Hf;fia exp |e1], we gat the deslred decomp051tion.[_-'

Whon_wa apply this to our series of approximntions, with Y ths sat

*-_of qi s, we shall see “that the terms f oan be “transferrad“ to- the ql.

S SR
EE PR

Let us now preview the essentlal idea of the prcof of tho theorem.

7. If is hased on tno 1emmas st&ted at the end of thls sectlon, which we shall
-put off prov1ng untll lator. The flrst says that given Y f:xed algobra:a
 f'number c(, we can con;truct 2. polynomial in a 1arge number of indetenminates,
' '_with 1ntegra1 coefficienta, satisglng bertain boundsron thu degrees and

~ magnitudes Qf tho terms appearing,'mhich vanishes to a high order in an

approprlate sense at @N,..,,«) The second says that & poiynomial sat;sﬁyzng

such bourds cannot vanish to too high &n order at B point having rational

'coordinates with very large denommnators. 7

ﬁb now oonsiger:a: polynomial gotten frum.the first lemma abon point

‘,(plfhl"“’Pm/h ) .whose coordlnates are sppropriately chogen from our

lsequonce of aporoximatlons * Slnce it cannot vanish to too high an order

e

at this point we can, hy applying an appropriate mixed parbial deriv&téve,

'take it to be nonzero there, whlle s5till vanishing to a high.order at Gx,...,d)

- *Throughout our proof, uheneVer we nmodify our sequence qr choose a subsequence,.

- we ghall understand that al terns ere relabeled so that our chosen termsg
- are called Pl/hli""' : :




We now uae the fact that (p /ql,....p /q ) lies very close to (o(,.. 2ol o

_ From. tho fact tha'l: our polynomial vomshes to 8 high order at the latter point,'.
‘we: deduce that it vmll take on a very smll value at the fomo/r point But'

_ working with tha denomnators of Pl/ql"“’Pm/q ’ end bounds on tho degreos

of the torm of our polynomial e g;et an upper bound on the denomnator of © |
'.ithe value of our polynomial st this point from whioh we ooncludo that this'-_' L
‘_:‘.-'mluo canno‘b be as small as we had concluded g:r.'nng & oontre.diotion. : -

A notowor'bhy o.apect oi‘ 'l;he proof is. the way in whmh we weight the o

: ?--:, va.riables, both in counting the degreo of our polynomal,,and 't;he order to
which it \mnishes at point The! earliar coordinates are given lower.weig]ﬁto ,

| and: thus tend t° -appear: with hlgher expononts. Thus the terms which aprroxlmate o

N4 more roughly N and have smallcr denominators, appear to higher powers than

the finer approximations mth 1arger denominators s and so, both in our ostlma.'be _

'-__..of the value of tho polynomial et (pqul,...,pm/q ), and our ostimate of th,e

. denomlnator, ths rough and find appronmatmns are. made ‘bo oontributo more
or 1ass oqually! B . Y

Thero rem&ins tho qua'bion of how 'l:he q i and qi parts of‘ our denomnntor g _'

- come to behavo dif.‘farcntly. The idea is tha’c we put a bound on the to’cal

"(welg;htod) degree of our polynomial which glvos us & bound ‘on. the to’c&l powor -
ﬁ"'oi‘ b that the q;' s cen bring :Ln‘bo 'bhe donomina'{:or of ey tarm. But vrhen we .

work wﬂ;h thc qi, tho bost we can do for a common dcnomlnator is the produo‘b

-1

oi‘ the highost powors to which each ocours. _»— ‘o Ao ;',.":*_x': i r-..}.r;:o;* ~-‘
_ Tho two lemmas we shall use are: : | _ T 7
: _,._,I,omma 3 (Schnoider's Hilfsatz 11) Lot = be an algebraic number of degroo s> 0,
'.Let £ be s real numbor with 04 E(l/'c‘ ard m & positive integer such that ?f
1/% > 2s+l, Lo't rl,...,r be positive in’cegers. _ |
- Then thcre exists a polynomia.l M"l‘“'"‘m) such thats
: _e.) When 4} 15 expanded ebout (a(,...,ol), 2ll terms (xl o() ...(xm-.p&) with nongero .

o
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" ecoefficient havé:’_'l_ ti/%i 1 for all g '___,' .¥¢  R ¢ B
| (—-e)m <Ef=i/r < (-+e)m Y €5 PR €'
_b) If $ is expanded about 0, the coefficlents 119 in Z and have absolute
"3 o | velues lesa than K 1 "ffrz_‘lb where K is_-a con;tant depending only on c; .
’ . Note that conditions (1) and (3) ’ g;iving upper bounds, do nct depend on’

- R the point we are expanding about. Thay are bounds to the nrious deg;rees of ¢,
| " and we have re;‘erred to them in tems uf (a.& ,...,Qz) Only o ge'b e more compa.c'b
..‘".statement COnditmn (2), orr 'bhe o‘l:her hand, says tha’c 4) vamshas to a. h:lgh o
| (weighted) order at (u,...,c:) R - | Sl ol |
_ Beh‘ind thn.s lemma is the obsex'vation tha-b if we choose.m ‘random. num‘bars
be'!:ween 0: and 1 *t;heir sum will, on the average, 'be close to 2m (In fe.ct, &g

i any statistmian oan tell us, and as we shall 1earn in lemm 3.3, p. s it's

' distance ﬁ'om %’l will tend to 'be on the order of m.l/2 ) Hanee (2) z‘i'f_"

| ._1mposes relatively f'ew cond:.t:.ons compared w:.th the number' of mriables we: have
e a:railable. .' It was Schneider vrho o‘bserved t-hat adding eond:;tion {3). would also
= : i

.not greatly disturb things ’ _bu'!: weuld cut the conurzbution of the q:,L to ‘t:he

S denominator dlsoussed befom essentially in half

: _Lenm 4 ‘et m be e posit:we integar j and t,ﬂ posit:we oonstan‘hﬁ Then there '
7l '

ex‘lst posit:ve cons'bants Cl, C, wrl:h the followmg properties-

| Let rl,:..,r be pos:.tlve integers suoh that ri °1"i+1 (i==1,...,m-1), B o
L ' and Pl/ql"“’ Pm/‘lm reftional fractions in lowest terms such tha.t q1>,02, ' )
S rifey ‘ o

and for 21l i qi> ql . Then there exists no nonzero polynomial @(xl,...,xm)

. - . such that e

o a.) 1f q) is expanded about (pl/ql""’P /q ), a1l terms (x —pqul) ...(xm-p /q ) m

S ,'_with nonzero coefflomnts heve: o 1/1' ' - )

'-b) If(b is expanded about 0, the coefﬂcients lie in Z‘I and are less tha.n or equal




’

§4 Proof of the Theorem - S T

.fStep 1 Reductlon to the case where the approximating fractions are in lowest

terms, the q1 are of the form b 1, and the raties lcg qi / log qi and

10g qi / log qi epprosch constank values. )

)
it

Thé properties.of our hypothcsis ere clearly preserved if we reduee

'a11 membera of our sequence to lcwe;t terms and fagtor our denominators in _

..:such 2 way that the ”new“ qi and qi respeotively dlvide the ”old“ factors.  '.

_ Since ]Ewpi/hi]=oc(q; }q; 2) 34 will alsoﬁ §or sufficiantly small E,

7 ber on((q"q'z)'l'f’) (675 baking stioh s 5; &nd essumiig the qjrere T
i_unbcunded, let us. apply Lemma 2 %o them, getting decompositions q1 = q”fi .

':f-where qi is aﬁpower of & constant b, for a eertain subsequence of the qi

' ‘Let We also define for the corresponding ternm,qi = 'iqi,_so that qiqi is

'._just another factorization of ql. Wb find that qi .V&ifiq ;?i”_

o g » +
-"and, using tha inequality fi\ qifa f, we see that thls is (q1 2)(1 ?)

.T.It follows that we will h&ve F(-pi/hif oo(qi” “ ) Eﬂindexing our subsequence,
and rolaboling our qi end q 28 qi and qi’ we ' have reduced to the caso where .

 the q; ere a1¥ powers of 4 constant b.%  If ‘bhe qi are bounded, on the other

-'_: hand, we esn take & subsequence on which they have s constant value b,

Finally,® let us teke a subsequence such that the ratid log qi /iog q;

i ‘f"approaches 8 limlt ﬂ Then 1og qk / log qk w111 anproach 1-q

) ﬁ., o

: ?TEKs msﬁhodtuseSvstfongly the - faot that we are working with &.cruds; type
of inequality, oury™oo®, 2otunllyy - lemma2:ig Justea-convénience, and if
we could not afford to introduce ﬂactors ry thet are this large, we could
beifaore ¢cdhomical: we would 8plit qi into prime~power factors qil),,..,

' qgn s &nd then, in plece of the last step on this page, tako 2 gu sequence

- ifi which log” q£l s «eay . log qin and log qi "a1l epproach a constant

© ratio to 1og 94, and then handle each of the §I37 in the proof &5 we here

hendle g7 ,
é Lemma 2 does is approximate Sonme cluster point of the ratior of -
_thohexponents of the- primcs tin 9 by = rational ratio.. o

Fo




i
1
3
i

| require, first of a11 that 9 be 1arge, namaly; ql, 02, qlJ K, and |

ifwe take our., p/q s far enough out in our serles, Iog qi/log q1 end log qi/‘log ay

' wﬂl 'be as near. a5 we wish to eons‘ban’cs, hence with tbe :"i ‘as above, we vrlll : o

constan‘bs.. In particul&r s WO can a5 suwne that tiwy not e:rcede by more 'bhan E, . R o

- ror any 5. 'bheir valve for i=1:. &' 105 qi - rllog ql)/rllog ql & thus

EEETY S B TV (P Sor B3 1 S0 ply Lir WL POl SIS ST STy

:qi's 't:o g_;row suffmien‘bly rapldly, we can also avsume:

N
2N
-

step 23 We ohoose L. tbousand and one 1tems

Lssume o), is algebraic, of degree s, Le‘b 4 be the cOnstant of Lemma 3, | 1”65
f . - Ef : {
Let us chooae positive f, 1 Buf‘ficiently small so that lm-pi/qi] {(qi lqi 2) .

kY

for all but fimtely rany 1. This we can do 'by our Mool 1 .“._I-,E:'.:.':.:"'.i'ﬂi’f..’*

RN T

hypothesm. We etn ‘further assume that the given inequahty holds for 811 1, i

dropping some ‘Eerms from our sequence ir neoess&ry'. (We shall no‘c need this

unwieldy proPert.y of G, £111 the end of the proof, ) Let us elso assume E-.l/sz,

‘8o that the terh (1+16:)/(1-4%) is <1/2. 1 /s
Let m be a “positive 1n‘beger such 'bhat 2m / 8 > 2s+1 (as. in Lemma 3)

Let °1- and ng be, the constan‘bs given by Lemma 4 with 'bhe above m, and '
%3 A

t—* eml U R e e

Ve sh&ll now choose m. terms from our series oi‘ a.pproximatlons of o\.:

For convenience of termnology, we she.ll stlll oall them pl/ql,...,pm/qm."_' Wel o

4(1-!-]»-&‘!3!( . Yow whatever. valubs. we choose for Pl/ql""’P /qm, it
is clear that .wa ean ohoose positnve integ;ers rl,...,r such that the terms

rilog qi/rllog ql are all greater than l 'but a.s close to 1 85 we wish. Alao,

also ha.ve rilog qi/frllog ql ’“ and r logqi /r log ‘:]l 2 e mear-8s we: wish 'bo

log qi - —:-:log qlﬁ -;log; q-_,_, or, in expcnential form;

o gry/rs - .
_ qi<q11/riq /75 sy
o and similerly . q:.L < ql /ri erlﬁi ST i (8) . .
' A‘lso recall our- orig;inal asswnption on the r's' q1> 9 1/1'1 ' ' (7) - a

Fimlly , since we hr.ve chosen the Ii s so that -hheir ratios are very near

to tha inverse of the ratios of the log q4's, it is clear tbat if we take the |

‘;13: 01:" 1‘+1 (}_*1.,.”._.,:351)‘._” . _(*_3)._";3“ |




'.:‘.'-"-0.: Precisely N when ‘the above different1a1 operator is applied to x,° ...x:lm,

L gves (2D

' '.-'..'-xma.c{, the sum of the a,'bsolute values of: the ooefﬁeients is (1+!ﬂ|) 1... 1+!m{')

T T sl " N ST L T SR S e v elpa T . P I -
; {Prom mow on 1h 18 shrelzhh remsopizg, with oo nore \:.z,-g_?,\,.ila LePE for el
o e ETVT R : .
3 ey e f131 _:.:..} _ :

b

Step 3 _!_Lpplication of Lemmes . 3 a.r&l 4

7

By our assmnp‘bion that < 15 algebmie of degree 8, a.nd our choice of ’y o '
we cen apply Lomme 3 and get a polynomial 1)(:: ,...,x } whose terns satisf‘y |
' (1), (2) and (3) (p. 11), and whose coefficients are 1ntegers with absolute | _: R
value less than 1{’1*--- Kmrl By our choice of 5, this is ';q’ié‘?l, IR
"’ Let us now apply Lemmsa 4 to this polynomn.alz we have chosen the r'a anﬁ g's o
_"-.rappropriately, ccmdition (1) holds by lemma 3, and conditlon () holds -’seeme R
- :ﬁe—hﬁd—ﬁm Hence (4) must fail- there must be 8 'term - ’
Fl.‘-(xl-pl/ql) "'(xn“Pm/qm)am with nonzero coeffhent such the.t L.. i/r,_g L= sm, : o

S‘aep 4 A rew polynomial |

e BT
alz... a al.-- ﬂ amq}(xl,. c,xm)

s Let F(xl,’;-chm)
This polynom:n.al will still have integral ooei‘fmian‘bs when expanded about

el
Py e
A The coefficzan'b 1n this term ig an 1nteger

' ‘-'7'_5.'2"51_”3%, whioh in our oase mekes 1% g2t ,' Ty 50 we ohn 1ncrease

ours ear}.ier bound on the coafi‘mlents of 4) by this factor to. g;at 8 bouml N
forthoseofF. - . " o i '
How 1e't; us consider t"xe mag,r:ﬁ.'tudes of the cosffioien‘as we- get when we | B
expand F about (of.,...,«) When we expand X ',.‘...,:vs11 in powers of xl Bpesey
= (1+ [q]) “,'.H;m < (1+ k| )r1+...+i-";;n The mumber of terms in our originel .
. .polynomial wes' <(r1+1)...(r +m)-<2 ...Zrm Combining this with thq-preceding

obsemtiOns, we see that the sum of the absolute mlues of the ooefflclents




af’ 4 "'*rm(1+|*-‘f| )r1+"'+r’jt<(4(1+|s&|% 1, By good for‘-:une, wo had ohosen ql :
K*umn- .

,so “I':hs.‘t this will be - £9y 1,

We also note tha’c the applwat:.on cf our differenti&l opera‘bor will not

- 'have disturbed condi'bions (1) end (3) which ¢ satisf:l.ed , and c&nno‘a have |

for all terms (xl-ug) 3—...(::1’-&)1;“ with nonzero coafficlent in F, wo hzwe )

'bi/ri <1 for all 1, and (ﬁ-zg)ca ti/ri\ (-+§..m : (1), (z ). (3)

. _' Step 5 ‘I'he denominator of F(pl/ql,...,pm/qm

We can g;et an upper bound on the denomlnator.of the non#m’o rafional
- - :number F(pl/qlqg,,.,..p /qmqm) by multiplying together the: highest powers to
| .',:_.“hi"h q]_:---,q ooour, and multipljing thls hy an upper bound on all produots
' ":_';}»;bf powars of,ql,...,q that ocour. (Since *!:hese are a.ll powars of one integer, I_

L least upper: bound = 1east common multiple')

For the i‘:u'st as'bimta s We take 'n' q‘ i. . a.nd . s.pplying (6), find that _
; : R it is bounaed hy qimr]_qliwl. For the sacond, take, over all Herms. xl "'x:xm o
tha‘b occur in F, supTTq"ti BY (8) this iB {’sup TT- q., tirl/rl vtirl/'fl

= _estimting 'bha f:lrst term, we recall 'bhat Z‘bi/ri is always .:.'m(-“l-f) In't'he'

'-E | "-jseoond case, we simply use. ‘bi/ri We ‘bhen 5et for 2 bound q”m(%+“)rIQ“ml
Bringing 'bhese teorms torether » We see ‘bhat our denomina'bor will be
Ssrl " T UNPC RO U 9

SETHEY ,.l’ W "
- EEEET R H —":.
J' PRTARE 2
Lo

decres.sed the 1ower 'bound (2) by more than z_ a.i/r < em. So we can ooncluda.




Step 6 _F(bl/ql:-ivst/qxg')_ is t9° small

o

 Let (x -a:-) ...(x -;:)t“ be any'tem appearing with ?nonz ef'o coéffioient in
- !‘, expandwd about (a,,...,a,) If we evaluate it at (pqul,...,pm/q ), we :E‘lnd

|(11"‘“) '"(%n"“) | o
1+.1§?_.,

ey :;-2_31;“‘)??‘? BR

: hy our initiel cholos of &1 e o o ERARCE
o agtima'be this in terms of" ql and ql, 'let us square rala‘bion (_’f) (pu‘bting;

. " » ~_ r -{r , .
jqiwiqi) and diﬁde by (5). setting qi 2. (qlq 2y 1/1'1 at 1L . Yo suppose ,  |

i we substi tuta this inbo the above. In: ’che case of vthe ”mjor" (non—&) 'berm,
| "I‘we a.pply the fa.ct th&t ti/r is a'b 1east m(--za), 5et~bing 8 covﬂ:ribution | o
')_~=cq1-1q'“2)“‘(2'2”r-‘"¢€" e (qra =B ETY (q;q;,_”) ?%1 T he Fatnor® torms wo.
trea:b mach les%“ 'dellcately- we no‘ce t}nt ra.ised to ths -4:1 power, such & tarm

.13 <q€'T1 so th total roduct is -»qg“m'l Tha Bﬁcp'oneni: (1+165) (1—4¢) is <2 -
1 P 1 : : 3

50 this brings 11: up to no more then qzm""L f *I “So. ot whole te;‘m

'_-_;...-u:-comes 'I:o Ieas than or equal to (q‘i’q’z) %mrqlem?z Mul%iplying by the swn of the "

Aee T

)

B absolute values of the coeffieients or 211 ‘berms, of.‘ F,' which we had found

E ztmr N a . )
éql =t We oonclude that- [F(pl/qlu...pm/q )] q (qlql} ql m{' Bub this _

' 1s less than the reciprocal of the bound wo obtamed for the denominator of thls

- ratioml number! COntrad:Lction‘ _
| ‘8o our a.ssumption tha'b'w{ we.s algebre.:i.c is false.‘ ]
o The read;r ma._,r prefer the following_; simplifled ‘version of the proof- at the

'baglnning! we: qse an exponent (1+}I:)/(1-4<-_), rathar th.anﬂ (1-1-165)/(1-4 ’), where Nois .

left to be specified In the course of the proof we make use of the symhol A £ B

ko mean A*‘Bq %1 ibr ‘BOMmO nonstant n 1nde endent of €5, eto..' This ‘saves us T,
_ - P

HE TS

'_--carrying around 8.11 the terms oi‘ this-sort, and: baing distracted from the 1mportant
torms. . At 't:he last step, we get |#| & |denom, of F[ N mrl. Thus we know that ¥
cen be appropriately selected a‘b thsa berinning of the proof to 551: 2 'l:rue inequality

:_---here . and a contradictlon. '

"'. .




$§ Proof ofiLemm 3

The proof . is baseci on a. resuit c.oncernmg :Lni:eo*fal solutz_ons of' _
_'underdetermlned sy.:tems of llns ar equamons, of a sort much used in Jcha
_ study of tr&nscendertal numbers. - . L 7 _
s .Lenma 3.1 Let £ m‘*-—-—> - be & 11hear i‘unc'blon, mthwr>1u1, glven by 5 ma‘br:.x.

whose coeffmlenfs have absolute value sohe’. constant A Let 'ﬁ.a NO¥HL::

P bothRNand ]RM by seﬁt:.ng [|(x )]I sup [x |, Let X be any poaltlve

'N
1

: —mteger.:. Th@n there exists nonzers: xezwwl‘th f[ |[ X such thet ”f(x}”(l\AX M
' Proof Cons:Lder polnts of: JRN havn.ng all coordmateﬂ in 'the set {-—- "--+1

: %-'.L‘, X} There are (K--l)T of them, and slnce each sa‘blsfms ][x[[<x/2 thsn.r

,na-;

images w:.ll cTearly ssﬂalsf‘y !]f(x)ﬂ(.I‘IAX/Z If these 1mages are dlu’clnct let

_byen opnn 'Lu‘oe of radlus £/2 (a "ball“ under our metrlc) These cubes are .
'dlsao:u.n't by chozce of 8, and t‘lelr un:x.on 1195 w:ubhlq the cube centered 2t 'the

5 . S B orig:!.n, pof rs'd:uus (MXH,)/B By conpar:l.ng volumes, we see tha‘b- :

(N.'uc*re)"’I eM(Xﬂ)N o _ FE
N, fI nr/M

mx+ £ = g(x-ﬂ) > X +f (bec&use N/M> I)

But recall:mg that £= "f(x) f(*c )[[ ”f(x—-x )I,, and notlng_; tha‘b x-x"

o mll have 1ntegra1 coordlnates, we see ‘cha'b we. F.?a.ve o'btan.ned uhe des:Lrled re_s_wif.l -

Now le't; X be 8 f:,nlte algebra:.c extens:Lon of‘ the rat:.onals .of deg,ree S.,
"Ne shall not for the momen"a, cons:r.der K as a subfléd of 'bhe ccmplexes, bu‘b

“shall embed it im IRsas follows-- K has s f:l.eld homomorphlsms into the complex

—— "{

numbers.. If t of these, ‘?1,..., <? » have 1ru=ges in R, then let the first n

: componen‘bs of our embeddlng be given by these meps, The remalnlng homomorp‘usms

will fall 1nto complex conjugate pairs: CP-HI’ ‘?.t.,.z qi’.t.,.l, eres Pgu1s Fg =g __1.

‘ 8 be the mnlml value of Hi‘(x)-f(.x )" for xj—’x . Le't.' us surround each po:Lnt f(x} .

"
i
;
i
i
|
|
;
1
i




i '-':proof The By 3 deflne a m:a.p ei‘ ]RN 1n"ao FM whlch wo have en‘nedded in IIRHS

Let us 1den’61fy the las‘i: s—-‘b ooozdlrataa of IRn with’ ﬂ(s"t)/z, and let us |
mé.p K-to these coord:.na‘bes by‘ RS @t_,_l,.\ﬂ 'b+3""‘ \/2‘{95_1. |

I we norm m*f as ebove, then the 1rduced norm on K rela’ces %o ths more
commonly used i‘unc‘hlon lx] sup [ﬁ’ (x]] by the :Lnequal:.’cles |x| £ ]]xﬂ(x/z!x '
(Because for any complex number o, |q[ [hfzd[[<\/2[g{| } In par'blcular, for
= & nonzéro’ integer of K, Hw !_1>l._ Note, similarly: I]a(lu ||rx|| ”,5“

.Lem 3.2 A system oi‘ M l'.mear equatlons '.m ¥ tmknowns AT

: :'-'.Wh.ef‘é the 9«13 are mtegem Of a field K. Of degree s over the ratlonals Wlth Iia ” LA

. énd where 1\T> Ms, hes & nonzeio: solut:.on XEENWJ.’Gh []xl] < (TEA)MS/(N"MS

,clearly A bounds the: absolu-be values of ’she coefflc:.en’cs. If we se”b X =

(}.A) s /(1= “Hs) -(mm)l/ (r['g-- 1) Ixamma 31 says 'Ima‘t for soma nonzsro xsmm “m.th

A

o ;I]xﬂ()ﬁ, ]]f(x)[]<1 Slnce f(x) isian 1n'beger of K, i'h m‘gst 'be O l on ;‘if’.‘:c_‘.i"_

b3 Fe . R B

In order to apply thls to the coef‘flclen'!:s oi‘ the polynomlal we wish

"bo construct we need an estzrﬂate of the number of‘ terms satls"‘ying c:ondltlons
(1) and (3), and the number sa‘hlsfya.ng (1) ard (2)-w1th-:.nequa11ty reversed,

' tGecmuatrlca11.y, we .can’see’ by synmetry 'bhat bhe- nmnber eEnsbe ! gc’cten i‘rom the"

| o‘cherrby subtracﬁmg from the total number of lattlce points sat:.sfylng (1)

pert of the
The problem is essentlally that of estlmatlng the volume of the unit n-cubeLéut

' --Off by the hyperplene E X3 . This haimod cenapit The ....Cr"l' N |

Ju,

Yemmn 1353 Leo mwand rl,...,r 1he: posi:t:;va 1ntegers, and: g, & positive numbar. T?._,

ol

- Thei’ tb.e Humbsrr of: m-tuples of integers: (tl ) ..,ﬂin) satlsfy‘mg. " sg hrol
:Ei.—.;_";" (,, \‘77 -v‘:‘;-:. : _ ] 0’ £ tl/r .{1 (1 1,| qo’m) ) ) N (1)‘ .
,M) }‘_‘t,&- m(z-f}) | . IR C ) B

is loss than or ,:.-':-_L::;‘ Jr "1/2 l(r1.+-l). ...(rm+1)’r.




.:Proof* La‘b‘ us changs varlables for more convenmn‘b computatn.on- Let 8y = '

l/r é;' Thuu (1) a110fs 51 %0 go from -1/2 to +1/2 by Jumps of 1/} , 8 3

| ‘behavior we shallrabbrev:.ate " si_ = (1' )1 Let 1]* m&‘ Then ( 2) 'becorles-'

| | EH'; o (-

and we Wish to show tha number of p01nts wlth thls property "( ém q'l(qfn (r+1}
| By ( -2* ), at least helf the (r +1). .(r +1) p0351ble p01nts zre excluled,

80 the result w111 clsarly be true whenever q‘<1n /2.' In the case m.l tbls

proves our result (and in fact for m~2 3 4 as well — for by ( 2” ), t e result :

"13 also; vaouous for q >m/2 ) So we can assume y]>-ml/2, axd work by 1nduct10n

":from.m—l ﬁ |

_ . For each value of s = 2(r )2,'the numoer of values of sl,...,sm 1'_i

i.'satlsfylng (~2" )'wlth the glven S w111 by 1nduct1ve hypoth931s, be _

1/2..

..(m..1)2(,].a.s Y (r +1)...(rmn 1+l) ('Note 'bhat v]+s >O because )7>m >1 ) .
'.Hence summlng over sy s the to’cal number o;f' solutlons of ( 2 ) is less *bhan- 7
E:;: 1

72 rm

To evaluate the ‘sum on the rlght, mﬁ note that by SJmmetry 1t equals

'ZZ(r}+s) 1_‘_(“‘“5) | 22 2‘)(“2“32) __,frlz(l_ n)—l q-l(r +1)(1-—! )—1

. . , : ia -
Ncw ;since q>n97ka We have \1 ;lﬁ >—l~§m -1 > (l =1 1) /? -{m 1)1/3/§1/3 S

o Substltutlng thﬂs 1nto the above, and tpﬂu 1ntc the precedlng formula, we get_

.*Let us compare thls result w1th a rough qualltaﬁlve analysls of the 51tuat10n.
" Toke rq=,.)=r 515 then we are looking for the number of vertlces of our unit
-.eube w%ose coordlnates sum to less than some constent x.” The number whose
coordinstes sum to. exactly n 1s( ) This'gives.a:Grussian bells, Ig orlng the
- fector 2=(rq+1Y...(r,#1), it s given, apnrox1mat°1j, byaﬁe‘ﬂx'm/é Now -
hemmd 2,3 anne&rs to ‘gorrespond t6 the resulf’ of estimdting’ this by the very erude .
bound m. /2/[(x—m/2)zjﬂ =% /(x=/2)2, Integréting from-m 0 m(l/?-;) gives -
m=1/2& -1, which is essentially our formula.,
Schneider says that Roth says that the proof of’ Lemma. 3e3 glven in the toxt
- goes beck to Davenport., I have improved his result by a fector of 2, The
 estimate can, in fact, be further divided by \/2 without changing 57%;m06f-j The
'range of B for which the result is *tlear” then. becomes q-<1/ (2y2)Ym*/%, and at the
end of the proof we ostimate 1 1/4.-;2 by 1~ (1/2)m-1> (1 —1) 1/2 R

p .




E ’eo (1/2)m1/2q 1(1‘ -l-l)...(r +1) |

R (r +1) | P\rb'bing (r +1)...(r +1)= c, and applying the hypothesis 2nt

o :ﬂ, Sof Lem s, we 53'!; M<c/(2s+1), n:- Ce 25/(234-1) _ So N> 2}.15 ‘aend Ms/(N—Ls) <1,

LAY

..t};e bound, (1/2)(”1“1 )1/2(r1+1)_.,(r +1} r\ (3' +1)m1/2/(m 1)1/2. 'wh:.ch reduces Co

f!e-cnn ﬁdw ‘prove;L.ema"S | Let u# first assume e( an algebrnic 1ntegar i Pu'b K=@(m)
_ If we let N be the number of m-tupi;s tl""’ satisfyiug (1) and (:5)_.

 and M the number satuf’ying (1) and not (2), t&wn e :wish 'ho choose ¥ integers,

‘ not &1l zero, 'bo he ’che coefficien'!:a of . @ expanded a.bout zero, uch that ‘the _

¥ numbera: which are the coeff:.e:.en’cs, in the ezpam;mn ebout (o(,...,o(), of: terms L

no't: aatisfying (2) a.re all 0. " ' : ‘:_;'7‘:;,1,-;'_ S . .

When we go from the expansion a.bout 0 '!:o the expansion about (s{ ....,o{),

av - ’ ‘

;
;
i
1
i
v
|
|
|
b
L
I
1
|
§

: t
‘ the coefﬁcienﬁ of :1513'...:!:{:m uppee.rs in ‘bha'b of (x -p:) ves xm-gc{) wli;h cofactor

( )"'(tm) ttl'tl)‘”'"'"(tm m) If we cnll this term a, e see 'l:.‘na‘c ||al{\ :

Ry ty~ti+ . . bt ,‘;'.+;-"
_a-:-l---e ol 2 g ’“

‘ Now by Lemma S 5, M <3 "1/25"1(:' "‘1).&.(1‘ +1}, and l\I > (1— -m'1/2 1)(r1+1)... .

1/ 25 >25+1

Applying Lemma 3..., we soe wé oan get e solution x. with |]x"< (N[I&]Ir1+"'+rm)
Noting thet by &efinition, N{(r1+1)...(r +1) ’1...271‘*, ﬁ'e oan rem'ite this

- ..+
| bowd o5 Héfrfll rn..

Finally, auppose :IE“ of the fom {’/n, t:-‘ an al.gebraic integer, nez .
h By the above, ve con construct S polynomial ﬁ antisf}*img 111 our eonditlons mth
respect o expansion ebout (p....,b) Then 4) 'b(nxl.....nxn) setisfies ‘che

' r e,
. same conditlons st o, and 1ts coefi‘iclents ere < [nf 1

+rn '!:imes those of ;(T,
: hence are bounded by “4n{3[|r1+"° rf’“."..] |

: | Inoidentally, the reader can essily chack that the Lemma a.lso holds with

: (3) replaoed by Tt /ri-cl/z if we merely strengthen ths assumption Eml/f> ?.s-!-l

tom /2$ > 28, (As & lower bound for W, we use -(r1+1)...(r +m), while we

w

~ keep the same .upper_bound for M.)




&

§6 Proof of Lemma 4

We ‘stated- the Iema in t‘ne oPerative form we needed for our Theorem. Yhet

¥ shall prove is Y more explioit result 5 simplifled versi.on of Schneider 's

o

' Hzlfsata 9:

E "Lemma 4° Let m be & positivs in‘begar, and g B oonstant m‘bh O(m&c 1. Let - - *

H
i
i
H
¥
i
i
1
i

: -rl,...,r be positive 1ntegers such the.t‘

R

Let plfql,..., pm/q be ratienal i‘raotlona in lowast terms such tha'bo

Lo ) R - . . o 2

Lo | . (10)‘ -
‘ Then there exists no- nonsero polynomial ¢(x1....,xm) in m inde‘berminates
-'_such that- B ' ' - SN _ _ . _

a) 16 ¢, 13 expmded about (Pl/ql,,,,,pm/qm), a11 terms (z -pl/ql) xm-pm/qm t‘m
. with nanzero ooefﬁcien‘as have- i/r N ‘- - L (1)
; . '. 61:152 < Z tj,/ri _ ‘. : (12)
b .‘b) If' 4) ig expanded about o, ’che coeffioients lié i.n z and are less than or

- -

equal ‘o qf i

[

LAY,
o

: .2&‘:.{;‘.. .

‘ Indeed to prove the orlg1na1 Lermm 4 from this, given m, L aﬂm wo M CS

', sufficiently small 50 that sm 62_ £ ¢ s We’ then take Cl- E 1 ami“- “
2§ -1 o
cz 22m g « We then clearly get the result originally stated.

-




_ and s thc set of operators of the form

5

Tho sztuatlon for polynomnals in one 1ndaterm1na%e is qulte sample-‘
Lerma 4, 1 If ﬁ(x) is & nonzero polynomlal in one 1ndetern1nate, with 1ntegralf

coefflclents, Whlch has a zero of order n at a polnt p/ﬁ, p and q relatlvelf

prlma 1ntegers, then the maxlmum of thc absolute values of the cocfflclents

Y. b is >'q .

e

" Proof ¢ mnst be lelslble by (qx-p)n hence thc 1ead1ng ooefflclent of ¢ is

;nd1v131ble by qn [

Note that we have not had to a.85ume q larga, or put any upper bound on

the. degree of @ In the 31tuatlon of Lemma .o with mfi, withoub: assumlng Go)or ( 1y

s ;(@q) and(diare vacuous for m—l), and. woakenlng ﬁhe lower bound in (ﬂﬂ to &,

'Hz.lwe see that G!) says @ has & zero of order >-r‘% at p/h, whence condltlon (b)

is 1mpossxble, and the Lemma holds.

For nbl bounds on the degree of @ are neoessary, for polynomlals such

: as xl xz oan have 26T 005 of hlgh order at p01nts (pl/hl,pz/bz) with large

denomlnators, w1thout hav1ng large ooefflolents. The proof of the general ------ _

-easa: is by 1nduction, Though 1ngenoous, it 1s fax from stralghtforward, and

 _.w111 eventaallj be found

- One of tne tools we shall need is a result on datermlnants 1n functlons

" of several varlables analogous to the V%onsklan determlnant

Let A bo the - rlng of analytlo funcUlons on a connocted open subset of c” -

s 51]_ 'aan

on A, The number 8 a?

Bxlal .%xrlan .o . l o . n

© will be called: tno degroe of md1p\operatorf

:
H
1
!
i
1}
i
|




 Lemms. 4 2 Let FQ""’Fh & A 'bo 13.near1y 1ndependen": over ¢, " The=n"fﬁbhéro exi..S'bi-"’; R
: DQ""-'Dh in § such that dct(ﬁ) F ) is not :Lden‘c:\.ca.lly 0. Thesé:*caﬁfi)e-'chosonu
such tha'b sach D- is of degree <1. (T’ﬁo leentlty' operetdr” thus be:mmqhosen for DO)

'-Proof Clearly, det® ((D F ) Twill be, equa,l ‘bo do‘o ((D.F )) 11:‘ each Fa is.-of the

.ﬁform F +Z °:|.3 3 (c 6@!) “Hene_ in: 'the :coirse: of ~the: proof we. may modli‘y AN
. A4 . . : o o
B by 2 11near combln&tlon of: the preoedmg F's._ ;:-;i=?_-‘:‘.:~:~ ‘:_-T'U’-', S<is i
| I.at p be any point of our domain. By analgtlc:.ty 5 there wikl: oxist - 2:', .

s@~ &h ;'-’

D D¢ S such that D Fd(p)#o. Y (We put no oondrb:l.on ofyits’ dt;groq s _) Now _

"'-__jfmodifymg FI’" "’Fh by approprlate multlples of FO_, we can .\assume EOF}_(p)—.’..—D@Fh(p)—O.
' The modlfled F's wlll still be llncarly 1ndependen‘:; hence nonzero, 7
hence there w111 sxls‘t Diss such DiFi(p)‘?O Agaln, modlfylng F;,...,F by
,multioles of Fi'-- which will not disturb owk prov1ou.. aesnmotlons ahout ‘the .
) i ._ ‘DGF. - we can- a.s5ume Din(p) .se Dth(p)—O.i conulnu:t.ng; tha.s process, we et
A..'Db,--"ﬁh guch -t-.ha’c clearly, 'bhe ﬁmcﬁblon de‘f;((]) F ) is nonzero a'b P. _
0 s shows that the st SF cAh"'&f wctors DI-“ s (Dzs@,...,lﬁ‘ﬁ’h) (Dcs) contiains .
:.'-::fsa'l; oi“_hi‘li menbers 11nearly 1ndependent over A. . '
. ﬂcrw 1et us pJ ck & new famlly Do,...,D as i‘ollows-'“ Taklng d Q l,..., chooae '
-successway as many opora‘cors D of degroo d ag-iss poasable nf ~z -
such that oach -DF- 48 A—llnearly 1ndependent of those chosen before (1n the same
or 10";'3-1:' degrees) 5 contlnuung; untll We have i‘ound Tl sachopcrators, s we. know
- of"a vector. space .
we ‘cin, (by umqueness of bas1s num‘oor over A's f‘:.eld of fractlons } Tow we clazm 7
that until we have obtalned our h-i-loperators s HE w111 get et least one in every
with . - A-linesrly. :
ndcgree. “For if all DF, D" of degree d, wére. dependenu on terms D ?wrch D’ m::;de,gr_ce
d-l ‘bhen, applying to sur relﬂtlon of llneﬂr deoendenée an arbrbrary |
opera‘bor E of degres, 1, wel ge‘b g’ relatlon of dependence of- @:D)F on: the elements
ED F, D’F, DE of deg;recs <4d, henee EDF w:.ll in fael be dependen’b on clenents )
of degree d 1 FD is & typieal- eleviens -of S;..of-degree a+1;j-_f90nt1nu1ng'::

s

A LI ST N L S I TS Y BT . eRR T . LI R
4riap I S T e Tl At T c Ty g O L Stoma i
AT TS e e L I W R G T T ORI N S PO &1 Al P A S
h g AT ¥ . H . . IR - L3 e e .




'-Cicarly; &,...,D chosen as above willjséﬁlsﬂy our conclus1on f

' (This.r§§H1§;b;£jB§.oBtaigc&:iﬁﬂal;orélééﬁéfél éigebgalc contcxﬁ; Ifof ”L

_ e *_;r;,?fﬁ" S o without Zero~divisorg A B o
o theﬁf@rstzstatempnt;iw;ﬁﬁakg aﬁﬁalgeb?a Aoner asfi§1d K€ withlan_augmcntat;on |
.75 A-s ¥ (correspondlng to cvaluaflon at p), and a famlly § of K%veeﬁor-spaco,‘
}'homomorphisms A-Q*A such that ¥ ?Eéﬁﬁj :ﬂ Dﬁs E(D(k))fb If‘A is not  ; o

1commutative, we cannot use determlnants, And:must_speakiig térms.of righﬁ*i;ﬁeéf.

i.-;independence-iéddiﬁ;ﬁnai hypofhgseé afg*tﬁéﬁheé@édi#ﬁ:#&é&ﬁée that llnear
.g'lndapendenee of g(DlF),..., g(DhF) 1mplles 1hdependence of DiF,.;.,D F, )

- For the second statement, we need S to be a semlgroup under comp031tlon,.:

: w1th & genaratlng set Sl, and ‘degree deflned 1n terms of’mlnlmum nunOer of __f

'-c.&ctorsiﬁ 8, qecded to represnnt D. Wé must also assume so conslsts of derlvatlons
B © that its members : .

' .f‘  or at lﬂast sqtlsfy some 1dent1tles that mlll allow ua to go from a. depeﬁdencé

:3]Qf relatlon for DF to one for EDF waever 'they.neednoﬁ'bé'cbmmuFing.deriVations,

a’facf of §igﬁificance for appllca£i0n35£05analytlc funétiong 25 well, )
. wa.i@t;m:bé a p051t1vea;nueger, erd S the sot of’opsratnfs of the form
Co e - ko
D=~ 2 EndQ (k—o 1,...) the operator 1 e
'a‘-s,.’a.:' .'éx‘al 3 SR o BV gk T e

?’qut defihed; for fuﬁptionsiof;gigz,.,fmzigisinceﬂlts members differ onLy
by noﬁzero congtanﬁ factorS'from,thosé'bf the_old S.: The advantage of thls_-
_functlon 13, of course, that it is more ”consérvative w1th respect to

magnltudes of coefflclcnts

The fDllOdlng lenma w1ll allow us to maké the inductive reduction in

.the proof of Lemm& 4:
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!
1
1
{
i
g

Lem'-é..;s. let b ﬁe a 'polypbﬁlial in %y 2 f.‘..'l’xm wit'h' -ireal coeffiéien’cs,‘of." -
- dsgree r.m in xm Then thers exists h<r§f», ‘and Dos...,nh in s, w:.th D; of degree
- i‘degree 41, such thet. det(( D,C, (fb))) (i k= 0,...,11) mUa. nonzero poljnom,al z :_"_; i‘.f-'i:".;:':

- _.‘wh:Lch can’ e, factored U(xl,...,xm_ )V(xm)

'._P‘s and Q‘s gre polynonlals, and.- h\rm, for :Lnstance, ‘by us:Lng; Q 3. _'.‘1"-

o Df degree <1a so that. ‘thls detcrminan’c is nonzero. ; ’ G
._b:.;;;é,;f'_ By the l-varla'ble Wronsklan result (con'bal nexd :m our resul‘t), we also
know that V(x ) = det ({ CyR )) is nonzero.‘ :

o =det .((-D c .‘?))-'l

‘-ﬂ'k-,'-_aek& of: comutatlve algebras over a ficld k w1th respectlvc sets, s and 8% of

~ cases vie could, as above et a bound based_ on e “degrec" funct’ion.‘on A or A"..}.

..f

o
?

Proof We ean decompose “the polypomisl Q as }: P (xl,...,xm_l)qa(xm), where -bhe
- w1th retional doefficients

|

J
;
i
i
|
i
i
i
i
i
1
|

E )

h

| _ Let us takn ‘the decompos:Ltlon Z P Q wh:.ch mmmlzes h Then tha h-r~1 polynomlals
;PJ must be 11%:::arly 1ndcpendent (over 'bhe rata.onals), for otherw1se one,usay Ph, could 'be
R wrlt'ben 8BS & 11near comblnatlon of the res'b and’ we could eas:Lly reduce our sum .

S ‘to one us:mg, Po,...,Ph 1. Slmlarly, ‘che Q are 1ndependent

Now let U(xl,..., 1) det (( D )) » where the D: ES are’ chosgn, respectlvcly

Hencc 071 Uv det ((D P, ))(( CkQ )) de£ (( Z(D P. )(CLQ ))) det (( Dick}:PJQ ))

(The general algebralc version of thls lemma would concern ) tensor produc'b

k—llnear maps satlsfylrg ’che concluslon of 'l:hc preccd:t.ng; lemma In place of B !
the dcgree of (b An xm, we would in general use the “rank” of ¢) in. A@A s

'fshad: isyl i, . the mmmal number of terms P@Q needed to represent it In sbmc R

L3

We our now ready to prove the general case of Lcmma @ Let m>1 and '?.,"

1""”‘1111’ Pl/ql,...,pm/q e b(xl,...,x ) satlsf‘y all the condltlens of the

Pt

(x-l--g.-pl/ql ovs x,,i-p /q | a'ppearing with nonzero. cogfficignt i.n 4’,: of ): ti/r_i'

A




I
i
i

3
3
i

_"Thls will be called the index of- b Wlth respect to rl,...,r at

‘. '. fpl/q‘l, P .,p /q We must prove (;n 5 L Ly ;\

dOos, by 1ts determnan‘b representat:mn. * Now,'l:o work

i . Step l Estlmatlon of the coeff‘lolen"bs oi‘ UV : ,l,".;';-'—r..'

but whlch in a_ny case, has coéf‘flclen‘o <2 l.. 2bm _ Hence in applylng such

) operators to P, we do uot J.ncrease the max:.mum of the coefnclents of the 'berms -

: by more than 2

o '-.-.j‘:'and tho TSuin of: the- absol—ute values 0f the coefflolents will: ba{{nr?li.ﬂ(rmﬂ)z

of‘ our geter minant, “the sum of the absolute values of the coenicie’n’cs,'and thus

LA T WAL Ll

It ig cloar that for a.ny poln'b of ¢™. ands any ‘Positive cons’caﬁts rl,'.":.,r 53,
r ;o-o'r

."cho 3.ndex at that: po:u,n‘b VEER r»speet to I\ constltutos ¥ gonnegat:we-real-valued

r.';valgatlon of thewring. o polynomlals in m: 1ndeterm1nates xl"”’xm'

We shell. 1nduc*t:1ve1y ‘&ssume Lemma 4 to hold for m-l o
For our 'E,lven polynomlal ¢, 1o'!: us ob’caln h DO""’Dh’ U, v Bs 1n;bho L

precedlng lenma A U and v can be taken to have 1n1:egral ooef‘floicnts bocauseUV

.4;5 BN ﬂq ae sl Ry e
' '1' aal D am'l JK

s T """E 1s applled to
.. Y &Xf’l Sy G -

’When an: operator D Ck
b T ‘f\_'_‘ '

"b]_

\'hi .

1. o

& term 1 ...%m, e get (a]]:)...(km) bl_al blf_" s wl‘n.ch is zero lf any a;>b,,

.l.+
I.‘m\ T2 1; 8O for D CkP 'bh:i.s max:.mun w:l.ll be -s;2mr1 51‘1

(r +l)m2m'lqr11< (2~ 1)m2mr1qu {(2?m5)r1 "Hence 1n each o t&_a?‘ (h+1}1 terms L .

'''''

tho me.x:.mmn of these values will be <(2 )rl(h+l) Mult:.plylng 'oy the numbe e

_ r{{htl -
of terms, (?h+1)"~(h-rh.‘L)l’l"'l'< 2 1( _), we see that tHe maxlmum of the absolute values

ry(h+l
of the éoefi‘lclen'bs oi‘ UV and hanae of each of T and V is <' (2231'"1 5) 1( )

Step 2 Es ulma'b:a.or of the indices.of VU and Vs by 1nduct1ve hypotb931s.

Tow let us define rl,...,rm_i by r{ = (h+l)r g+ and 8= §-<(1+1)£

Ve shall applv Lemma 4’ for m—l to U u31ng these r’ 's and 6

s *In faot the P's end Q's of the proof_‘ of Lemma 4.3 can bo chosen to heve integral =

coaffmlonts if d} does, though the proof as. given does not show this. The fact

which must be used is thet if PO,...,Ph ere a lineerly dependent family of polynomialsg

over the integers, there exists an invertible matrlx over the integers such that
(P 2eeesPp Jo¢  has last « scompohent 0, Seewmy major thesis, Theorem 1, Then we

oan wrlte Q) (P)c{ o (O), which is ef‘fectlvoly an h-ternm representatloh.




- (10 3o -1} ,,ag‘qlx wnieh Selice

pomt w;th resoeot "co rl,.. .,r ‘1!111 'be 46

‘and henca the operators D3 of our d:e‘t:ermlnant w:Lll decrease -rt bJ a'l; mosgt «

e

All the cond:.t:.ons of the 1ema through (\l) clearlg hold 2) avd (o3

LCREELE from ul"p datermnan’c expzesslon that U w:.ll have degree <(h+1)r1 in
A

__ each xi' sb (l) is satlsfled o prova copdltlon (b) from’ our £bove es‘blmate

2+l S)rl(hﬂ) ,5.._’

of 'bhe coeff‘lc:.ents of U, we need to snow (2 oot Removing

" " the. common sxponent rl = ry(hed);- and raismg *t;o the: m—»lst power 'y t:h:.s begomes;. |

k "é?ml )(m—l) E(m-l)é 9y Sm W o q S b 2( 2m4-1)(m 1) which follows ﬁrom‘hypothesis

E ":;

BRI

6)1 .

Hence 1ook1ng at: condl‘l‘;lon (;1) we conclude tha'[: ‘bhe index of ‘U a't; our

-m-'vl : :
- -1 '62 - This’ means that the

U , : v prenTik] - m-l-l
el :mdex w1th respec‘b to rl,..., 1 wa.ll be < (h+1 é;n 152 : s_,(h+l)2 Gm 152 _

To deal with V’, le'b s use len:m 4.1'.' Slnce V's. coeff:m:xen‘bs do not”
(using (%))

s

. ekddde: qi ;,5 qugrl(h"'l),g ngrm(h-l*l) 1'!:. cannot néve &b pk/tha zZero of orc‘zer _
- '-_more 'I;hnn 2Ix‘m(1'ri-l) Honce 1ts J.pdex w:tth i‘espect to rm is: <2f§(h+l) 8o the '
A":.ndex of T 1ss(hﬂ}(2 6”‘152 +23) R

e step 3 Reletlon between index of UV and 8"1ndex of ¢

;An operator —é- mll decrease the :mdex of 8 polynomal by at mOS't:
Ox:

1/rl. | (I‘b nay decrsase :Lt by less than ‘&h:.s, or. even J,ncrease 1{; ir some |

V.terns g0 to zero, ) In parulcular, 1t wn.ll decre'\se 11: by at most 1/rm 1 11‘ 1-{m o 7

:_.

m-l\ h/rm 1‘\rm/rm 1.& g. (Wpothesls (3)) ‘Hence the mdex of D Ck¢

- ,"mlll be at leas‘b 8 - 'E:/rm - 5 The :mdex oi‘ e.ny of the (h+1)' terms in out
) h

determlnan’c express:mn for UV w111 thus be et least }___ e - k/r - B But
=)

‘we also know that no term chk® can have 1ndex leus than 0- hence we can- improve

h

,the above estlmte to Z+(e k/r = 5), where Z+ meens that: “the: Suiis taken over

..> thoss terms whlch are nonnegatlve. Thls, 1n tarn, ig >(L3(,e-k/r }=- (h+l)<€)

S il T ipund ne R




step 4 The result:mg bound on - e. :

4.

CDmparlno* the tv\,o above results on the :Lndex of UV, we see tha’c

':g(e-k/srm) L )6 ¢ EiedI ST, 28). Fencs Zl_e—k/r

. =C&36 1ot e> h/I' 'li»::"i: :r:':-_:j.%-_ "l‘.:.; - - S _ : 7 .'.f‘-_

o *"a.verage value of the terms ig 2 L e, hence the sum is , -9(h+1), so

‘; E —G(h-i'l) (h.'"l) 3.6]1_1 5 2 m+1
r C&se 2 a <h/rm. .

. : Henee the nu:*lber of tsrms Wlll be > er - and the sum: mll 'be > }ée-erm--; :2921} 2’1&62(}14-1).

- the least va.lue I we oould get w1thout dolng any "’arltl’metlc ,' It could easllv. _
be replaced oy % 13? in evaluatlng the coefflclents of U we. hounded % 2 “nel by
v2eg

s (h+1)(z gl &Tm 1+ 55)<(h+1) 5%6‘“‘1’53'*’3*3 1.' (Clearly 354 am'léz'm*l ) a3

w@w To BV&luate e from 'bhls, wWe, must dls’c:.ngu:l.sh( be‘bween tha case -"wha'fe'e'
. h ’ ] f"‘"'*"" ’,' =

A

nur summata.on S actually .goes fr-om (} 'bo h and the case where :Lt ‘hag a smaller range-

tdl

-

Then bur E_,, isc the sum of E.n arlt}metlc progression of h+l terms. The

.—_‘2

alt.

94’6 6’“152 < nézm oo

whlch is

N Then the sum w:Lll run: from 0 to *the greates’c 1nteger contalrned in erm,b>er -1, :

en L¢.

‘. _c, LNI 492(}1-':1) (h-i'l) 3 6m -1 52 nl-l | SR
o e e T \/(12.6111_1 )\/(5? m-rl - L R
4& 52— QEDI, |

é\?ote on the basem"ﬁ" occurrlng, in: condltlon (;2) e ;.:n'!‘.,i".ei‘ o -

G oTeny ;L.-c:a'-..rld- ‘!23.'-:'-_1.'.-:3:-"?‘;5-; 4 '!,-'-fjl‘{:}" RV Cn

2oy oG, We chose 6 as

o=l ~m+1

- 36 ab the top of thls page. By usmg dl‘ff‘ertent argumén%s for small wnd lhrge m,

“weridan: probably replace 511: by &, functlon 1ncreasing otinuch’ i‘aster “Than" th

e

' The W2 M come’s ¢ fron case 1 onl th1° page. cesldoreiong Ly ;::‘r_:i.ﬁ_?;l;:' & i‘uhc‘l;io;n

'iﬁﬂr

- ¢._';l-l.

=13
Also, in ‘eondikion” (8);" ﬁcan be' replaced hy 52

Livgp,” si:ep 5, snd’fthe laﬁer?fate Stbhe! 5 Wh_'l_ch there ariges. )

. re.thsr th?r\ 252- » a.nd were . s:.mlarly carei‘ul in our treatmen’c of

_ —IL
L YoF éven’ 1n1’(1 61'6 z

SR i e o e e e ettt o




o @7 Further observations and genei-alizatlons o - L o

f ‘_a ', R LeVeque [2[ generalizes Ro'hh s result to deal 'with approximation by algebraic

numbers in a fixed number field In place of the magmitu&e of the denom:.nator s ho -
uaes the ‘heighﬂ’ func'b:lon* I;(ﬁ) s maic’i-mum- aﬁsblﬁté.fvét_lu'e- of coeffi'cients_ 'of minimal

i '_polynomial of ~§ over m, --a.nd' shows._ ‘that no. algebra‘i-c number Ac_:a.n be approaahedef-_by‘.r-r )

. of Q, such 'bha{: [o{ :S | = oo(H(‘j ) ) Though I have net gone through hig pfobf in

: E 'rull detail ‘it may- be: passibla to geneculiz_:g‘:...’f.'b-.-:l‘:fi':mSohnéider' *technique Hoi |

'i give the reault- ir  oan 'be approached by = -seqﬁanc-e S;;gi ,Sg@é,. -of‘.elenggx"(x_‘!_:;_g_; _

901‘ e ﬁ.xed extensionKof L where the 31 belong '!:o & fixed fin:.tely generri}:e - .
_,, multiphcative semgrovp in K guch that [t‘?t- gi':’i’ = oo(H(‘P"‘)‘lH(3 )' 2 The one __

B B c}:lff:lculty may lie in getting an analog to &k

: Thia weg needed beeause the: hypothesis:‘:of:-I;e:muéE‘:4--ﬁéeér£:_loweéﬁ-;t‘erms; ,dé:;omi'_

- '_"'olose to H(ﬁ”‘)ﬁ(?i)._ Sl e e ,
' B _ An: importan'& clasa ‘0L a.pplioations nf 'f:he Thuensiegel-noth theorem is bo:

‘,"-:Diophan"aine equations “The. ,fél--J_._mvixg_g,._x'faﬁ‘sul-t"!is:sjeséeﬁtiallyl‘..'meorem'?é-'s-_ls -of ]2’,

" Theorem 'Let_' P(x,y) be & pol'ynomial 'in.'two iridefse_rmiﬁateg v{i{:h ihﬁegz;él coefficients .

. ef degree‘n, such that the “leading form" U(x,¥) (homogené ous of degree n) ha.s .'

____nqrmult‘i_ple ‘faotora, and such 'b_hat P has no tarms of degree n-1 or n=2; i.e..vi i}

_‘;v(x,y) = P(x,v)-U(x,y) had degree n--5 or 1ess. Suppose, flnally f:hat P has no |
: '. ) hnmogeneous faotors; i.e., that U and YV are relatiVely prime. Then P(x,y)=0

i | Iden o.t‘.'}.’rorg_i: Suppo:ae wo had ~infiﬁi_tély' meny solutions '(in ’qi) wlth say, q;>p, } _
T Fow U(Pj,'qi) - C)(q‘,l ), henoe. V(Pisqi)“'U(P-:qi) O(Qn 3). hénce by homogeneity, S
' 1 = -3 ‘ AT i 4'; T i -
. V(Pi/qia ) 0(? ) Take g subsequence of’ pi/qi whioh converges. C’l’eéii'ly;'
- ':_ Rust oon\rerge to” a root of- V(x,l), and from the faot th .

L we oan deduce that i'l: 0{g

"3)-approximates this root COntradiction [
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One may take s the basic prlnclpal in the eonstructive study of transcendental._-

£

| numbers that any a.lgebraic number » w:.th resPec{: -i;o an arithmetlo property, m.ll

either behave very specially. (e g, the deoir:,al expansion and approximtion

| -'properties of & rational nmnber, thie: continued frac‘bion expansicn of 2, quadrat:lc
"--'irrats.onality), i this is implied by :lts alge‘oraic equation, ‘or else behava -
-' "like Y typical random number (e.g 8t apparently, the deciml expanaion of &n
"_:_algebraic nmn‘ber of degrea :nl and the continued f'rs.c*mn expansion of e number '

. of degree >2.) SO far, the only type of arithmetlc propertiea for which WE

seem to be able 'bo prove such results are approximation-propertias._ We make e

crude estinnte of how olosely a certain type of axpress:ton can approx;mate en o

arbitrary num‘oer, and prove that an@* munber which can ‘be better approximted
: must be tranaoenéental For eanple- }Iow elosely can & number be approximi:ed

| 'by e n-place decirml‘? To within lo’n, certainly.‘_ I{ow mnch batter*mll & random

mmber be approxima’ole, for optimm choioe of large n"s‘ In other vrords s (}.imiting

- ."-'7_"_.ourselves to approximations i‘rom beiow, for simphcity), wha-!: 1engbh strings of
: 0'8 are 1ie.‘o1e to occur in’ & random sequence of 0'3, l's,..., dn& 9t In the B
o ﬁrst N digi.'hs, we con expec"a the 1ongest such sequerce to }Eve 1ength ebout

' logm}f (for ¥ larg;e) Hence we' can expect to find arbitrarily large n such tha‘b

the n-place expansion of our number is e.ctually i'bs n-slogl -place expans jon .'

o Lo q}, .e., appmxmates it to withln n-}1072, and not much bet‘t:er. In othez;
‘ ‘more or less '

‘ words 3 8. random number is (q logloq )'1 approximble by a declmal fra.cﬁion, and

' (onoe we get this formule e:xac"b) we should expeot that any better-epproximsble .

numher is either rational or tran&ceﬁéezﬂsal. The oo(q"l)-rssult given by the

E Thaorem proved a'bove is a weak version of this.

Anothar natural sort of oonjecture is that in the decimal expansion of

an irrational algebraic nlmber s each d1git should appear with 1imi'bing frequsney

110, This is éasl}y seen to be s property of all ron nunbers excep‘b for & set

4.
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.-.But ths tems in 'bhe emansion of e-l are 1 1,2, 1 1 .,,1,1,6 1,1,... (see Lang;, Intro 1o ;

",Biophantine épprozizm‘blons) Thus & result 'bo the effect that algebraic

Cof measure o; s::iﬁile.r cons.iaerat'ions should be é.pplicstblg to the continued

. fraction expansions of a.lgebralc numbers of degree >2 It &ppearls that the

o

'1nteger n should appear S.n'&ze oont:lnued fraction expansmn of S random number

(avzy number riot in a aet of measure 0) with frequency somethzng lilce 1 /n2

-.':numbars have erl;her ternﬁnating, per:.odic, or. stat:.stical" partml fra.ction . '_

xpanslons would g:we a new proof of the transcezﬂeme of e,

‘n digits in tlme O(n) Suoh L statement depem’is 0n tha type of cumputing

machme one allows. “so far, bo he.s proved 1t only for (! very Specglal 'l:ype of machzne > !

_'of “transcendance measurea“, expressing how “badly a}i?'nmnber fails to be
' s.lga'braic — how hard it is to appranma‘be it by algebraic numbers. | Ideally,

.. .such a measura would glve us & I‘lltra't;ion of tha complexes by algebraically

: '--have been obtamed but it has BO far not pro'md poss:.bla to: a.pply them -bo _

- ~problem of prov:mg tha‘b various mmbers that ariss. in elementary e.nalysis are

: worl:ing on, proving tha’c no irxﬂational alge‘nra::.c numberﬁis "raal-'bime computable“' N

thet s that d:here i no algor thn 'bhzxt wlll Bllcv: one- to compute the first '

closed sub:{‘:.elds ) 50 that a family of: elements s no two of wh:.ch heve the same

. measure . would i)e algebralcally independent Theoretlcal results in "chis flald '

outstanding questlons such as the e.lgebraic independence of ® and 8. ' o o ‘

I em "aold ‘that someone .’m the Dapartment oi‘ Applied Mathemtlea here is
has « binery expansion that is '

g 2!1
but his results mclude the transoendeme of : 1/2

':'.E isrm

Another line of 1nvestigat:mn in thJ.s field has been '!:he eonstruction

3

n

) If;l 1
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The analytic th:a'ory of 'brslns’oe-nderr!:al nUmbei'a

transcendental, and vihen’ possxble R algebraically independent of one ano'bher.

The basie pr:.ncipal here iz that no number is algebraic — a:d, more generally s

- The min stream of" 't'.ha theory oi‘ tmnscendental numbers hes been the

A



: no aet of numbers satisfies en- algebraio relatlon -— unless they have en obvious

" reason to * The- main results here arez
’ '

(1) Lindemann's Theorem.- It is. obvlous that if real nmubers :cl,...‘,::.!1 ere
:1inearly dependent over~the-integers, then e 1,..., ezh'will be algebraioally
f';dependent over %he rationals, satisfying an equation (e l) ,...( zn) ] where

_~the ey are integers (not neoessarily all nonnegatdve but not all- zero)

' V'Lindemann's theorem;says that fbr algebraic exponegts, easentiallywnonrelatione

L~

o hold hut these._ That is, if xl,...,xh ere algebraio numbers linearly independent _

g

d'over the integers, then exl,...,exn are algebraically independent over the

d,d:rationals. Equivalently, the homomnrphism from the group algebra on the additive_ |

group of algebreic numbers into the complexes, sending the generator of the S

."group algebra corresPQnding to x to o~, is an embedding.._'

Obv1ous ex&mples are the transoendence cf'e, eVE, etc.. Turning the ‘theorem

_areund we see that all numbers whose ezponential is algabraic (and which eonaitute

'Hlinaarly 1ndependent aingletons — 1.e., f 0) ere transcenéental., Thls glves us

~; %he natural loza tims of all the integers and also 1ri hence \?.‘ But note ﬁhet_

we do not get eh Andependente résult for logarithms,
Siegel extended this result to - apply to the values of functions satisfying

L _certain different:al equations, though they are not 80 simple as the above. The 1

most notable functions to which they apply e.re 'bhe Weierstra]$ }a-ﬁmction, and .

;Bessel functions. : T ) L
.1;f1(2) Gelfond showed in 1934 that if a and b are algebraic nwbers , wmth af 0, 1
and b not ratlonal then ab is transcendental This had been Hllbent's 7 th
proﬁiem ”hb“ here ‘mééns iy expression 608, where! u is e logarithm.of a,
 Taking a-l, us 27, b= -1/2, we see ‘that o™ is transcendental

o (S)f An outstanding conjecture, proved "By Mehler this year (according to =

;ietter,from-an &cquaintance of =Oort's) was the transcendentality of the Euler contant.f. ;

*The algebraiciﬁy ef o™ is not really a counterexanple. For though it was for a
o long time not obvious that one could define complex exponentiatlon, when it finally
';__was defined, this was one ofte most inmediste results.
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