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SOME EMPTY INVERSE LIMITS
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To the memory of Leon Henkin, 1921-2006

Abstract. A simplified proof is given of L. Henkin’s result that every directed partially ordered set I of
uncountable cofinality indexes a system of nonempty sets and surjective set maps with empty inverse limit.

Strengthening a result of N. Aronszajn, rediscovered by G. Higman and A. H. Stone, it is then shown that

a large class of such partially ordered sets index systems with these properties in which the sets occurring
are countable. Examples are also given of groups G admitting ω1-indexed systems of transitive G-sets

with empty inverse limits, whence their group rings kG admit systems of cyclic modules with surjective
homomorphisms and zero inverse limits. Several questions are posed.

1. Introduction, definitions, and overview.

Recall that a partially ordered set (I,≤) is said to be (upward) directed if

(1) for all i, j ∈ I, there exists k ∈ I with k ≥ i and k ≥ j,
and that an inversely directed system (or inverse system) of sets indexed by the directed partially ordered
set I means a family (Xi, Xji) such that

(2) for all i ∈ I, Xi is a set,

(3) for all i ≥ j in I, Xji is a set map Xi → Xj ,

(4) for all i ∈ I, Xii is the identity map of Xi,

(5) for all i ≥ j ≥ k in I, one has Xki = Xkj Xji.

In this situation, the inverse limit of this system is defined to be the set

(6) lim←−i∈I Xi = {(xi)i∈I ∈
∏
i∈I Xi | ∀ i ≥ j, Xji(xi) = xj}.

(I generally prefer to reverse the inequalities in (1)-(6), and thus index inverse systems by downward
directed sets, since the standard way to make a partially ordered set into a category is to have morphisms
go from lower to higher elements, and it is preferable to have functors covariant when there is no intrinsic
reason for the opposite choice. However, in most of the explicit examples in this note, this would require
introducing the opposites of familiar partial orderings, leading to awkwardness in interpreting inequality
signs. So, reluctantly, but in conformity with the notation of [3] and [5]-[7], I am using the above definitions.)

It is well known and easy to show (by compactness, in one form or another) that the inverse limit of an
inverse system of finite nonempty sets is always nonempty. It is also well known that without the hypothesis
of finiteness this fails. For instance, suppose S is a set and I some family of subsets of S which forms a
directed set under inclusion, and we define an inverse system by letting Xi = S− i (the relative complement
of the subset i in S), and for i ≥ j ∈ I letting Xji be the inclusion of Xi in Xj . We see that lim←−I Xi

can be identified with the intersection
⋂
i∈I S − i, so that if, for instance, S is infinite and we take I to

consist of its finite subsets, the Xi are all nonempty but have empty inverse limit. (The above is the one
example in this note where it would have been more convenient to use the opposite of the present convention
on ordering; we could then have taken I to consist of the cofinite subsets of S, and Xi = i.)

In fact, every directed partially ordered set I with no greatest element indexes a system of nonempty
sets Xi and inclusion maps Xji with empty inverse limit, defined by taking Xi = {j ∈ I | j ≥ i}.
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In the above examples, it is the nonsurjectivity of the Xji that leads to the empty inverse limits, so we
might hope for better behavior in systems with surjective maps. Henkin [3] analyzes this situation, and
shows that a directed partially ordered set I has the property that every inverse system of nonempty sets
and surjective maps indexed by I has nonempty inverse limit if and only if I has cofinality ℵ0 or 1. The
hard part of that result is a construction associating to every I of uncountable cofinality an inverse system
with surjective maps but empty inverse limit; I will give a simplified version of the construction below.

The sets Xi of that construction (in both [3] and my version) are uncountable. This, and the fact that no
such example can occur with finite Xi, leads to the question of whether it can occur with all Xi countable.
Examples have been given showing that this, too, can happen. Taking them in reverse chronological order,
W. Waterhouse, in the 4-sentence paper [6], notes that we can get an example by taking any uncountable
set S, letting I be the set of finite subsets of S ordered by inclusion, letting Xi, for each i ∈ I, be the
set of one-to-one maps of i into ω, and letting the Xji be the restriction maps. Higman and Stone [5] give
a more complicated example, recalled below, with I = ω1, the first uncountable ordinal, and show that the
properties of this index set allow one to obtain from that example inverse systems of nontrivial groups, rings,
etc., with surjective maps but trivial inverse limits. I am grateful to P. B. Levy for pointing out that Higman
and Stone’s result, minus the algebraic applications, was anticipated in the 1930’s by the construction of
“Aronszajn trees” in [4], namely, trees (there called “tableaux ramifiés”, i.e., “branched diagrams”) of height
ω1 (there denoted Ω) in which every element has elements above it at every height, yet there are no branches
of full height ω1. (G. Kurepa [4, p.132] says the construction was communicated to him by N. Aronszajn
around 1936. It is much lengthier than the later construction of Higman and Stone, and I confess that I
have not read it.)

Below, I show that Higman and Stone’s method leads to examples of the same phenomena with a much
larger class of index sets, properly including all directed partially ordered sets of cofinality ℵ1. I also note
examples showing that in the nontriviality result for inverse limits of finite nonempty sets, one cannot
replace “finite set” with “transitive G-set” or “finitely generated module”; and I record some questions that
our results leave open.

In its present form, this is a discussion paper. If I submit it for publication, I probably should drop some
of the commentary, as well as the proof of the Aronszajn-Higman-Stone result (Theorem 2), which does not
improve on Higman and Stone’s proof, as well as any other results that I learn are not new; and, perhaps,
familiar definitions and examples. I welcome readers’ thoughts on what to keep.

2. Main results.

In what follows, we will regard a partially ordered set (I,≤) as a category with morphisms going from
larger to smaller elements (the opposite of the standard convention), so that we can call a system of sets
and morphisms as in (1)-(5) a functor X : I → Set.

Recall that for I a partially ordered set, a chain in I means a totally ordered subset, and a down-set
means a subset which, if it contains an element, contains all smaller elements. By a “down-subset” of a
subset x of I, we will mean a subset y ⊆ x which is a down-set within x (but not necessarily within I);
i.e., such that if i ∈ y, and j < i with j ∈ x, then j ∈ y.

Here, now, is our simplified version of Henkin’s construction.

Theorem 1 (Henkin [3]). Let I be a directed partially ordered set of uncountable cofinality. Then there
exists a functor X : I → Set such that the sets Xi are all nonempty, and the morphisms Xji are surjective,
but lim←−X is empty.

Proof. For each i ∈ I, let Xi be the set of all finite chains x ⊆ I with the property that one and only
one element of x (necessarily the greatest) is ≥ i. Given x ∈ Xi and j ≤ i, let Xji(x) ∈ Xj be the
down-subset of x gotten by dropping from x all but the smallest of the elements ≥ j.

It is immediate, without any assumption on the cofinality of I, that the sets Xi are nonempty, and that
the Xji satisfy (3)-(5) and are surjective. Now suppose that x = (xi)i∈I ∈ lim←−I X. Since I is directed, for

all i, j ∈ I there exists a common upper bound k for these indices; it follows that the chains xi and xj
are down-subsets of the common overchain xk. Hence one of xi, xj must be a down-subset of the other;
hence the set of chains {xi | i ∈ I} is totally ordered by inclusion; hence their union is a chain x∞. In
x∞, every element belongs to a down-subset xi which is finite, hence distinct elements have distinct (finite)
numbers of elements below them, so x∞ is countable. Moreover, for every i ∈ I, the set xi, and hence also
x∞, contains an element ≥ i, so the countable chain x∞ is cofinal in I. Thus, the existence of an element



SOME EMPTY INVERSE LIMITS 3

x ∈ lim←−IX implies that I has countable cofinality; so if I has uncountable cofinality, lim←−IX is empty, as

claimed. �

(The converse result, that if X is an inverse system with surjective maps, indexed by a directed partially
ordered set I of countable cofinality, then lim←−I X maps surjectively to each Xi, is standard and easily

proved; cf. [3] and [7, Lemma 7].)
T. Kepka (personal communication) calls an inverse system with nonempty objects and surjective maps

but empty inverse limit (or, in the case of systems of algebras, the same with “nonempty” and “empty”
replaced by “nontrivial” and “trivial”, in the sense appropriate to the sort of algebra in question,) a “Henkin
spectrum”. (He uses “spectrum” for “inverse system”.) Naming the phenomenon after Henkin is appropriate
if it proves important enough to have a name; but my preference is always to minimize the burden of
definitions on the reader, so for now, I will continue to refer to such objects by stating the properties in
question.

Now for the Aronszajn-Higman-Stone result.

Theorem 2 (Aronszajn [4]; proof following Higman and Stone [5]). There exists a functor Y : ω1 → Set
such that the sets Yi are all nonempty and countable, and the morphisms Yji are all surjective, but lim←− Y
is empty.

Proof. We start by defining a functor W : ω1 → Set having weaker properties. For each i ∈ ω1, let Wi

be the set of all one-to-one maps y of i into the set Q of rational numbers, such that the image of y is
bounded above in Q. For i ≥ j, let Wji be the restriction map from functions on i to functions on j; these
maps Wji are easily seen to be surjective; but a member of their inverse limit would determine a one-to-one
map ω1 → Q, which is impossible, so that inverse limit is empty.

The sets Wi are uncountable, but I claim we can find a subfunctor, i.e., a system of subsets Yi ⊆ Wi

respected by the maps Wji, such that each Yi is countable, and the restrictions Yji of the maps Wji are
still surjective; in fact, such that given any i > j in ω1, any y ∈ Yj whose image is bounded by a rational
number r, and any ε > 0, we can find y′ ∈ Yi carried by Yji to y, such that the image of y′ is bounded
by r + ε.

Indeed, let i ∈ ω1 and suppose subsets Yj ⊆ Wj have been defined for all j < i so that the above
conditions hold for these subsets. If i is a successor ordinal i = j+ 1, then we construct Yi simply by
choosing, for each y ∈ Yj , each rational upper bound r for the image of y, and each rational number ε > 0,
an element y′ extending y, by sending j ∈ i to any rational number in the interval (r, r + ε); and we let
Yi consist of the countably many elements so chosen. If i is a limit ordinal, then since it is countable, we
can write it as the supremum of an ω-indexed chain of smaller ordinals, j0 < j1 < · · · < jn < · · · . Now for
every n ∈ ω, every y ∈ Yjn , every rational upper bound r for the image of y, and every rational number
ε > 0, let us write yn = y, then lift this to an element yn+1 ∈ Yjn+1

whose image is bounded above by
r + ε/2, as we may by our inductive hypothesis; then lift that to an element yn+2 ∈ Yjn+2

whose image is
bounded above by r + 3 ε/4, and so forth. Since each yn+m is an extension of the one before, their union
will be a one-to-one map y′ : i→ Q whose image is bounded above by r+ ε. Making one such construction
for each choice of y, n, r and ε, we get countably many such elements y′, and we again define Yi to be
the set consisting of these.

The resulting subfunctor Y inherits from W the property of having empty inverse limit, and by con-
struction, the sets Yi are countable and the maps between them surjective, as claimed. �

(In [5] Higman and Stone used, in place of our Wi, the set of all isotone bounded embeddings of i into the
real numbers, getting emptiness of the inverse limit from the fact that the real line has countable cofinality.)

We shall now extend this result to systems indexed by certain not necessarily totally ordered sets, with
the help of part (i) of the next lemma. Part (ii) is recorded for its interest as a partial converse to (i). The
lemma seems likely to be known; I hope that anyone who recognizes it will let me know.

Lemma 3. Let κ be an infinite cardinal, and I a directed partially ordered set of cofinality κ. Then

(i) There exists a surjective isotone map I → κ.

(ii) There does not exist any surjective isotone map from I to a regular cardinal > κ.

Proof. To show (i), it suffices to find an isotone map f : I → κ whose image has cardinality κ, since that
image will be order-isomorphic to κ.

By assumption, there exists a set map g : κ → I with cofinal image. For each i ∈ I, let f(i) be the
least α ∈ κ such that g(α) ≥ i. The map f : I → κ is clearly isotone. Moreover, every i ∈ I is majorized
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by g(f(i)), hence the image set gf(I) is cofinal in I, hence it has cardinality ≥ κ. Hence f(I) ⊆ κ has
cardinality ≥ κ, hence equal to κ, as required.

To get (ii), suppose f is an isotone map from I into a regular cardinal λ > κ, and J ⊆ I is a cofinal
subset of I of cardinality κ. Then f(J), being a subset of the regular cardinal λ having cardinality < λ,
is bounded above by some α ∈ λ. Since J is cofinal in I, the image under f of any element of I is also
bounded by α; so f is not surjective. �

The above lemma will be used in combination with the next result, which is well-known in the case where
I is a subset of J with the induced ordering, and f : I → J is the inclusion; I would be interested to know
whether it has been noted in more general contexts. We state this lemma in its natural category-theoretic
generality, though we will only use the case C = Set, and, as sketched in the first paragraph of the proof,
the general case actually reduces to that one.

Lemma 4. Let f : I → J be an isotone map of directed partially ordered sets such that f(I) is cofinal in
J, and let Y : J → C be a functor. Then lim←−I Y ◦ f = lim←−J Y, in the sense that if either limit exists, so

does the other, and the natural morphism lim←−J Y → lim←−I Y ◦ f is an isomorphism.

Proof. By definition, lim←−I Y ◦ f and lim←−J Y denote representing objects for certain contravariant “set-of-

all-cones” functors on C, so what must be proved is that those two functors are isomorphic. The descriptions
of the values of those functors at an object of C are equivalent to the concrete description (6) of the limits
of certain Set-valued functors on I, respectively J. Examining these, one finds that the general case of the
lemma reduces to the case C = Set; so we shall assume Y a Set-valued functor.

Now every element x = (xj)j∈J ∈ lim←−J Y induces an element x ◦ f = (xf(i))i∈I ∈ lim←−I Y ◦ f ; what we

have to show is that this map −◦ f : lim←−J Y → lim←−I Y ◦ f is bijective. Given x = (xi)i∈I ∈ lim←−I Y ◦ f, let

us define x′ ∈ lim←−J Y as follows. For each j ∈ J, we can, by hypothesis, find i ∈ I such that f(i) ≥ j;

let x′j = Yj,f(i)(xi). To show this well-defined, suppose f(i) and f(i′) both majorize j. By directedness
of I, we can find i′′ ∈ I majorizing both i and i′. Since x ∈ lim←−I Y ◦ f, we have xi = Yf(i),f(i′′)(xi′′)

and xi′ = Yf(i′),f(i′′)(xi′′), so the two candidates for x′j namely Yj,f(i)(xi) and Yj,f(i′)(xi′), both reduce to
Yj,f(i′′)(xi′′), and so are equal. It is straightforward to verify that the element x′ = (x′j)j∈J indeed lies in
lim←−J Y, and that this construction gives, as required, a two-sided inverse to −◦ f : lim←−J Y → lim←−I Y ◦ f. �

We can now get our main result.

Theorem 5. Let I be any directed partially ordered set which admits an isotone map onto ω1 (for instance,
by Lemma 3, any partially ordered set of cofinality ω1). Then there exists a functor X : I → Set such that
the sets Xi are countable and nonempty, and the morphisms Xji are surjective, but lim←−X = ∅.

Proof. Let X = Y ◦ f, where f : I → ω1 is a surjective isotone map, and Y : ω1 → Set is the functor of
Theorem 2. By Lemma 4, lim←−I X = lim←−ω1

Y = ∅. �

3. Remarks and questions.

The construction of Theorem 2 begins, as we saw, with a functor W whose values, like those of the
functor X of Theorem 1, are uncountable sets. What property of W allowed us to “cut it down” to a
countable-set-valued functor, while preserving surjectivity of the connecting maps? If for each r ∈ Q and
i ∈ ω1 we let Wi(r) denote the subset of Wi consisting of those maps whose images are bounded above by
r, we can express the property we used as saying that W is the union of a Q-indexed chain of subfunctors
W (r), such that

(7)

Whenever i ∈ ω1 is the supremum of an ω-indexed chain j0 < j1 < · · · < jn < · · · , and s ∈ Q
is the supremum of an ω-indexed sequence r0 < r1 < · · · < rn < · · · , then any element of
lim←−n∈ωWjn(s) whose image in each Wjn lies in Wjn(rn) arises from an element of Wi(s).

If we had started with a functor on ω1 with the simpler property

(8)
Whenever i ∈ ω1 is the supremum of an increasing chain j0 < j1 < · · · < jn < · · · , the natural
map Wi → lim←−n∈ωWjn is surjective,

this would have been too strong: It would have implied that the maps lim←−ω1
W → Wi (i ∈ ω1) were all

surjective, by essentially the same “successive lifting” argument that shows that for any set-valued functor
X with surjective connecting maps on a directed partially ordered set of countable cofinality, the maps
lim←−X → Xi are surjective, using (8) to carry us past the limit ordinals. So lim←−ω1

W would not have been
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empty, which was one of the key ingredients of the construction. The weaker statement (7) allowed us to lift
elements past any countable number of limit steps, without forcing the same sort of lifting to work through
all ℵ1 steps.

In the system X of Theorem 1, on the other hand, there is no evident way to find an analog of the family
of subfunctors W (r). So we ask

Question 6. Does the functor X given by the I = ω1 case of the proof of Theorem 1 have a subfunctor
Y with all Yi countable and nonempty, and all Yji surjective? Does it in fact have a Q-indexed chain of
subfunctors satisfying (7)?

It would also be interesting to know whether in Theorem 2, and hence in Theorem 5, one can replace
ω1 with other uncountable regular cardinals. I twice believed I could prove that theorem with ω1 replaced
by any infinite successor cardinal κ+, and “countable set” replaced by “set of cardinality ≤ κ ”. The idea
was to replace the set Q by a totally ordered set Qκ having cardinality κ and no greatest element, such
that every open interval in Qκ had a subset order-isomorphic to κ. (This is not hard to construct.) If for
each i ∈ κ+ one then lets Wi denote the set of maps i→ Qκ whose image is bounded above in Qκ and if
one defines the subsets Wi(r) (r ∈ Qκ) as above, one does get the analog of (7) for sequences indexed by
cardinals ≤ κ. However, if one attempts to construct subsets Yi by a recursive process analogous to that
used in the proof of Theorem 2, a problem arises whenever i has uncountable cofinality. The analog of the
ω-indexed chain j0 < j1 < · · · < jn < · · · with supremum i will be a chain indexed by card(i), and the
process of lifting our element through this chain is not as easy as before: there are uncountably many limit
steps along the way. Though at each such step we can lift a sequence of previous choices to get an element
of Wj(rj), I see no way of assuring that this limit could be taken to lie in Yj(rj). So we ask

Question 7. Does the analog of Theorem 2 hold if one replaces countable sets, and ω1, by sets of cardinality
≤ κ, and κ+, for an arbitrary infinite cardinal κ, or at least for some such cardinals other than ω ? Can
we perhaps even replace ω1 by other regular cardinals without weakening the condition “countable”?

The directed sets to which Theorem 5 is applicable as it stands, namely those admitting isotone maps onto
ω1, already form a much larger class than those of cofinality ω1. An easy class of examples with cofinalities
> ω1 is gotten by taking the direct product of ω1 with any directed set of larger cofinality, under the
product ordering (componentwise inequality). For a less obvious case, let κ be any cardinal > ω1, and I
the partially ordered set of all countable subsets of κ, ordered by inclusion. The cofinality of I is at least
κ (since if we merely seek to majorize the singleton elements of I, no element of I majorizes more than
countably many of them, hence at least κ elements are needed). However, for any i ∈ I, the order-type of
i as a subset of κ is the order-type of a unique element f(i) ∈ ω1; and this function f is easily seen to be
an isotone surjection I → ω1.

4. Inverse limits of algebras.

Let V be a variety of algebras in the sense of universal algebra, with all operations finitary, and let

(9) F : Set → V

be the free V-algebra functor. Assume that

(10) if V has any constant derived operations, it has zeroary operations.

In this situation, we can associate to each element a of a free algebra F (S) its “support”,

(11) supp(a) = the least subset A ⊆ S such that a ∈ F (A) ⊆ F (S),

a finite subset of S.
This operator has the rather eccentric property that given a set map u : S → T and an element a ∈ F (S),

the set u(supp(a)) is not a subset of supp(F (u)(a)), but a superset thereof,

(12) u(supp(a)) ⊇ supp(F (u)(a)).

This inclusion can be proper, since elements of u(supp(a)) may “vanish” from supp(F (u)(a)) as a result of
cancellations that occur when elements of S fall together under u. Hence, given an inverse system X in Set
and an element a = (ai)i∈I ∈ lim←−I F (Xi), it will not in general be true that the finite sets supp(ai) ⊆ F (Xi)

(i ∈ ω1) form a subfunctor of X. If it were, then in the case where lim←−I Xi = ∅, we could deduce that

lim←−I F (Xi) was the algebra F (∅), thus getting “trivial” algebras as inverse limits of free algebras subject

to the same sorts of conditions under which we got ∅ as an inverse limit of sets.
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Nevertheless, Higman and Stone [5] note that if X is an inverse system of sets indexed by ω1 and having
empty inverse limit, and we apply F to it, we do get an inverse system of algebras with inverse limit F (∅).
To see this, consider, more generally, any inverse system X of sets whose index set I has the property that
every countable subset of I has an upper bound in I, and suppose a ∈ lim←−F (Xi). If the set of integers

card(supp(ai)) (i ∈ I) were unbounded, then letting j be an upper bound for some countable set on which
they assumed arbitrarily large values, we would get a contradiction to the statement that supp(aj) is finite.
Hence those cardinalities must, rather, assume a maximum value at some i0 ∈ I. We then see from (12)
that on the set {i | i ≥ i0} ⊆ I, the maps Xij (i0 ≤ i ≤ j) carry supp(aj) to supp(ai) bijectively, and
it follows that every element of supp(ai0) induces an element of lim←−I Xi. We deduce that if that limit is

empty, lim←−I F (Xi) is indeed F (∅).
Combining this construction with Lemma 4, we get

Corollary 8. If I is a directed partially ordered set admitting an isotone map onto ω1, and V a variety
of finitary algebras satisfying (10), then there exists a functor X : I → V such that the Xi are free algebras
on nonempty countable sets, and the homomorphisms Xji are surjective, but lim←−X is the free algebra on
the empty set. �

This leaves unanswered

Question 9. Suppose I is a directed partially ordered set of uncountable cofinality (but not assumed to have
upper bounds on countable subsets), and V a variety of finitary algebras satisfying (10).

(i) If X : I → Set is a functor having empty inverse limit, and F : Set → V is the free V-algebra
functor, must lim←−I F ◦X

∼= F (∅) ?

If the answer to (i) is negative, we may still ask,
(ii) Does there exist some functor X : I → V such that the connecting morphisms Xji are all surjective,

but the natural maps from lim←−X to the algebras Xi are not all surjective?

One approach I thought might be applicable to (i) above is the following. Assume we have an element
a ∈ lim←− F (Xi) whose image in some F (Xi0) does not lie in the subalgebra F (∅). Then let us associate to

every i ≥ i0 the finite nonempty set given by the support of the image of a in F (Xi), and try to find a
subsystem of this system of finite sets consisting of singletons, thus obtaining an element of lim←−X.

Unfortunately, there may not be such a subsystem – even if I is finite! For instance, let V be the
category of groups, let I be the 4-element lattice 2 × 2, let the set associated with the top element be
{x, y, z}, and in the free group on that set, let a = xy−1z. Let the sets associated with the two elements
at the middle level of I be obtained from the top set by the identifications x = y and y = z respectively,
and let the bottom set be obtained by identifying all three generators. Then we see that the support of a
is {x, y, z}, while we find that the supports of its images in the other three groups are the singletons {z},
{x}, and {x = y = z}; so there is no element of supp(a) that is mapped to members of all these sets.

(In this example, the “disappearance” of generators from our support-sets was based on those generators
falling together with other generators. But an element can also disappear because two different elements
fall together. E.g., taking xyz−1x−1y in the free group on {x, y, z}, if y and z fall together, then x is
lost from the support.)

Here is an example of an inverse system of sets with surjective maps and empty inverse limit, together
with a family of finite subsets of the members of this inverse system, which we might try to realize in this
way as supports of elements of free algebras. Let us take any uncountable set S, let I consist of the finite
subsets of S, and, as in [6], let each Xi (i ∈ I) be the set of one-to-one maps from i to ω. Within each
Xi, let Yi be the finite set consisting of those maps whose image is an initial segment of ω (necessarily, the
natural number card(i)). Then the maps Xj → Xi indeed take each Yj to a superset of Yi. This example
itself can’t be realized as desired, because when j contains just one more element than i, the map Xj → Xi

happens to be one-to-one on elements having images in Yj ; so we have elements “vanishing” without any
elements “falling together”, which doesn’t happen to supports of elements of free algebras. However, by
slight modifications of this example – e.g., restricting I to sets i of even cardinality; or keeping I as above,
but weakening the restriction defining the elements of Yi to say that their images lie in the initial segment of
ω of cardinality 2 card(i) – one gets cases for which it seems plausible that the system could be so realized.

5. G-sets and R-modules.

Tomáš Kepka (personal communication) has asked whether an inverse limit of nonzero finitely generated
modules and surjective homomorphisms can be the zero module. We shall obtain examples of this by first
constructing analogous examples for group actions.
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Recall that a G-set is transitive if and only it is generated by a single element.

Lemma 10. There exists a group G and an inversely directed system of transitive G-sets and surjective
G-set homomorphisms, indexed by ω1, having empty inverse limit. Moreover (with considerable additional
work), G can be taken abelian.

Proof. Example 1, nonabelian, easy to describe. We start with a variant of the set-theoretic construction
of [6]: Let X : ω1 → Set carry every i ∈ ω1 to the set of all one-to-one functions i → ω whose images
are not cofinite, and let the Xji (i ≥ j) be the restriction maps. Clearly, this set-valued functor again has
surjective maps Xji, but empty inverse limit.

Now let G be the symmetric group on ω (the group of all permutations of that set). Then G acts
naturally on the left on each Xi, making it a transitive G-set, and these G-set structures are respected by
the maps Xji; so X can be regarded as an inverse system of cyclic G-sets with empty inverse limit.

Example 2, with G abelian. Here we will obtain our G as a subgroup of a larger abelian group, namely

(13) H = Zω1×ω1 .

Let us define elements cij ∈ H for all i, j ∈ ω1 by

(14) cij(i
′, j′) =

{
1 if i′ < i and j′ < j,

0 otherwise.

(The set at which cij has the value 1 can be pictured as a “rectangle”; but note that the height and width
of this rectangle, though countable, are not, in general, finite.)

We now define

(15) G = the subgroup of H generated by {cji − cii | i < j ∈ ω1}.
Thus, the support of each generator cji − cii is a rectangle with upper left corner at (i, i − 1) (just below
the diagonal), upper right corner at (j − 1, i− 1), and lower corners at (i, 0) and (j − 1, 0).

By a “cross-section” of an element h ∈ H, we shall mean the element of Zω1 gotten, in the obvious way,
from the coordinates of h by fixing any j ∈ ω1, and letting i vary. We see that

(16) every element of G has only finitely many distinct cross-sections,

(17)
every cross-section of an element of G has bounded support; i.e., its i-th coordinate is 0 for all
sufficiently large i ∈ ω1,

(18) all elements of G have value zero on and above the diagonal of ω1 × ω1.

(The construction below would work if we instead took G to consist of all elements of H satisfying the
conclusions of (16)-(18); or any group between the group defined in (15) and that one.)

For each i ∈ ω1, let us now define

(19) Hi = Zω1×i.

Thus we have obvious coordinate-dropping homomorphisms,

(20) fi : H → Hi, fij : Hj → Hi (i ≤ j).
The homomorphisms fi allow us to regard each Hi as an H-set, and hence as a G-set. We now define,
within each Hi, the G-orbit (i.e., coset of fi(G)),

(21) Xi = fi(cii +G) (see (14)).

Clearly all elements of Xi satisfy the conclusions of (16) and (17) (with “cross-section” defined for elements
of Hi as for elements of H); while rather than (18), we see that they satisfy

(22) all elements of fi(cii +G) have value 1 on and above the diagonal.

I claim now that for i ≤ j, the map fij : Hj → Hi carries the orbit Xj to the orbit Xi. Indeed,
fij(fj(cjj)) = fi(cjj), and since fi discards coordinates with second subscript ≥ i, this equals fi(cji).
Since cji − cii ∈ G, the G-orbit of this element contains fi(cii), and so equals Xi.

Note that lim←−ω1
Hi = H, hence that lim←−ω1

Xi can be identified with a subset of H. Suppose that

subset were nonempty; say y ∈ lim←−ω1
Xi. Then as a function on ω1 × ω1, y inherits from the Xi the

conclusions of (17) and (22), while the property (16) of the Xi implies that below each horizontal line
in ω1 × ω1, y has only finitely many distinct cross-sections. But since the ordinal ω1 has uncountable
cofinality, this implies that y has only finitely many cross-sections altogether; i.e., does in fact satisfy (16).
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Since each of these finitely many cross-sections has bounded support, there is some i0 ∈ ω1 containing all
their supports. Applying this fact to the i0-th cross-section, we see that the (i0, i0) coordinate of y must be
0, contradicting (22), and completing the proof that the system of G-sets X has empty inverse limit. �

We mention some easy variants of the above examples. In the noncommutative example we could (in
the spirit of Higman and Stone’s original proof of Theorem 2) let X : ω1 → Set take each i ∈ ω1 to the
set of order -embeddings of i in Q (or R) whose image is bounded above, and let G be the group of all
order-automorphisms of Q (respectively R). (Or, if we wish, the subgroup thereof consisting of those order-
automorphisms that act as the identity on all sufficiently large arguments.) In the commutative example,
we could, of course, replace the Z in Zω1×ω1 by any nonzero abelian group A, and the 1 in (14) by any
nonzero element of A.

To get the module-theoretic result Kepka asked for, let G and X be as in the statement of the above
lemma, let k be any field, and let F be the free k-module functor, which associates to every set a vector space
with that set as basis. Then F ◦X gives a functor from ω1 to k-vector-spaces, with surjective connecting
maps, which (by the result of Higman and Stone by which we led up to Corollary 8) has the zero vector
space as inverse limit.

Combining the action of G on X with the vector-space-valued functor F, we see that F ◦X can be
made a functor from ω1 to left modules over the group algebra k G. For each i, any element of Xi generates
F (Xi) as a k G-module, so these modules are cyclic. Taking R = k G, we get

Corollary 11. There exists a ring R, and an inversely directed system of cyclic (in particular, finitely
generated) nonzero left R-modules, and surjective R-module homomorphisms, whose inverse limit is the zero
R-module. In fact, R can be taken commutative. �

From examples of this phenomenon for one ring, group, etc., one can get such examples for others: If
a ring R admits an inverse system X as in Corollary 11, and S is an over-ring which is free as a right
R-module, then applying extension of scalars to X, one finds that S also admits such a system. The
analogous statement for a monoid and overmonoid is likewise clear; applying this fact about monoids to
a group G, we see that if G has the property of Lemma 10 then every overgroup inherits that property.
The property is also clearly inherited by rings, groups or monoids that admit homomorphisms onto rings,
groups or monoids with the property; so in particular, all free rings, free groups and free monoids of large
enough rank have the property. Finally, if a ring, group or monoid R, G or M has a subring, subgroup,
or submonoid R′, G′ or M ′ such that R, G or M is finitely generated as a left R′-module, G′-set or
M ′-set, then every finitely generated left R-module, G-set or M -set remains finitely generated over R′, G′

or M ′, so the property carries over from R, G or M to R′, G′ or M ′.

Question 12. Can a countable ring R admit an inverse system of finitely generated nonzero left R-modules
and surjective module homomorphisms with zero inverse limit?

Can a countable monoid M admit an inverse system of finitely generated nonempty left M -sets and
surjective M -set homomorphisms with empty inverse limit?

Can a countable group G admit an inverse system of transitive left G-sets and G-set homomorphisms
with empty inverse limit?

Other examples of trivial module-theoretic inverse limits are obtained in [2, §7-§8].
In [1, Theorem 4], we use the result of Aronszajn-Higman-Stone (Theorem 2 above) in a slightly more

subtle fashion than here, to get inverse systems of modules and surjective homomorphisms with a different
contrast between the properties of the given modules and of their inverse limit.
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