A NOTE -ON ABELIAYN CATEGORIES =
TRANSIATING EIEMENT~CHASING PROOFS, AND

BZACT EXMBEDDING 1IN ABELIAYW GROUPS

George M, Bergmn

Motivation: Given a theorem about abelian groups or R~modules which one proves

by diagram~chasing arguments, oné would like to get a'nic.e proof of the same result
in arbltrary asbelian oategories; in particular, one would like = reé.ia‘u}.e way of
“oranslating" an elemenbary element-proof inte an elementary arrow-proof.

4 usetul approach is the Following. Given am cbjest X of an ebeliam
category, take an arbitrary object A, and think of = map 1 A -» X as
"representing a “peremetrized family of elements of X". We can add such "families
of elements", and apply maps X -» ¥ %o them, by adding or composing wmorphisms.
The one kind of -diagramﬂchasing srgument that we unfoi‘tunat-ely cammot apply to them
.L:'LZS lifting: if Z —»» X is an epimorphism in our category, we cannob necessarily
" say that every map x: A -» X arises from a map A - Z.
Ghe: solutlon is to allow ourselves to modify the "paremetrizing" object A,

Let us define a "refimement’ x' of a map x: A = X ‘to mean the composite

of this map with an epimorphism B -~ A, Then gilven any epimorphism . £3 .2 > I,
some. FYefinement of the given map B X can indesed be lifted Lo - &, neamely Jché pullback

| B w—mw A
x) f J,-_x_-
L2 ~=p» L .
In the category-theoretic translabion of an élemenw‘:-ghasing procf, any initial

ghoices of elements would be replaced by choices of maps from an srbitrary test-

0
of successive refinements would be made, giving maps Ah-«-» vos P Al i .A;G,

object A. into obJects of the given dilagram, In the course of Tthe proof, a number




u

tosumeketch the liftings involved in the el-ement-proof poséiblenfor —ovrliil. g
the mapé in question, and the proof would be completed like. the ek merfc probf.,

Bmpiricelly, I hsve found that this works qué:l;e well, I will skebtch some
further deteils in B2, But first I will show how the idéa of ﬁlﬁs technique can
be adapted to give & vather elgmentary proof of the exact embeddiné; theorem for
abelian categories (Which"is 2 kind of universal diagram-chesing theorem, )

Let us think of the ldea described:.above loosely as follows: The functors
.I{om(.é., -) are-nbt satisfac%ory substitutes for an "underlying set" because,
ghough left examect, they are not in general (right) exsct. So toiget around this,
we look ab inverse systems  ...~—>% An —, , D a.o, and find that the direct
iimits of the systen of funcﬁors I—Iom(.é.o,_ =) =B Hom(An, =) ~»>,.. behave
better,

But theydo not behave well enough (in general) for what we now want - 1o
one system of refinemn%-s reed work for _5;3:_1_ Iifbings, Though we _gg;q.find such systems
that will work for amy glven finite set of 1ifbing problens.

There is a fréghently ieffective - triek for going from constructions that cen

be made bo satisfy any finite subset of o set of conditions, o a construction

satisfying them ol l: take a reduced produck,. with-wespdot to a’filbery G,uomdhe seb

of all constructions, defined in terms of the conditiom in question. It is this
that we shall use below to get owr éxmct embedding.

We shall -luo find -that, because we will be-gonsidering simulbtaneously "all®
sysbems of refinements rather than just a single ons, the assumptions that the
STTOWS é.re epimorphisms can be dropped; we will get the desirsd falthfulness without
i%. This will allow us to avold having too assume the given sbelian cabegory is
small; it will be enough for it o have a set of generators. (Theorem L1).

s Pur construction is based on the funchors Hom{A,-); we shall rei‘ormﬁlate
it for proof in a form {Theovem 2).that assumes only thet we are giveh .an eppropriabe

set of:functors ~— mot nedesssrily repredenteéd hy objects A.




_§1. The exect embedding Theorem.

. We shall call a category "emell®™ if it is e set, "legitimate" if for
any two of its objects, A and B, Hom(a, B)‘ is a set, and "large™ if we do nobt
assune either of these conditions. _A_‘tg_ will denote the (legitimate) cabegory

of abelian groups.

Theorem 1, Iet A be s lezibimate sbelian category, heving a generabing set

of objects, 8 ¢ Ob(_.ﬂ_s_). Then there exists a faithful exsct funcbor e: A =~ Ab.

(Note: stronger ezmot-embedding: theorems are knowm. )
We shall prove Theorem 1 from Theorem 2. By a "small class", let us mean

one which can be indexed by & set (even though it may have "Wlarge! ol ements).

Theorém 2, Let A bea large abelian category, P o small class of. covariant

left exact functors 4 - Ab, and § e small class of morphisms (napural. ..
(and additional data as indicated below)

transforma.tlbns) a;mong 'bhese funcuons.r “Suppose- 'bha't g:z,veﬁ any p€ P one '

can find p?' & P and g: p = p' in Q such "cha'i:, mmul‘baneouslyz

(i) {(Iifting property) For any previously specified epimorphism f3 Z -» X

in 4, and element x-€ p(X), there exists 2z e pYZ) such that « qx(x) = f (z)
z p(x}
s
2 —>=X 4.8 p' (L) —> Pt (X); and
i o fp: T
(11) ("Paithfulness™) For any previously specified objeet ¥ of 4 and nonzero
element y € p(Y¥), one has qY(y) A0 in p¥¥). |
Then the functor TTP P 3 A -» Ab cen be embedded in an exact funmctor
e: A ~& Ab.
Netes With quantifiers wr:.'bten in sﬁrlc‘c logical order, the candlts.on

on Pand Qreads: (¥pe F; X Y, &€ 0b(a); - £ & Boi(2,X); = x € p(j.'_),

y e p(¥)=~{0}){7] p'e B; (u: p = p') € Q5:z.€p*(2)): fp,(z) = qﬁ(x)’ qr(y) # 0.




. Proof,of Theorem 1 from Theorem 2, Given 8§ 'as in Theorem 1, we seb: P =

{Hﬁm(.&,-—) l A€ 8}, and take Q <to be the class of all morphisms among these
functors, which by the Yoneda Lemmea, are .induceéd by morphisms among the objects
of A. Clearly, Pand Q are small classes. |
To establish the “simﬂiﬁanebus-»faiﬁhfulhe.SSi Aa‘_nd Z_Lifti,ng“ éond:‘a.'tion;, suppose -
we are given A E. S, an epimorphism Af,.‘ Z -»» X inh, an element x € Hom{A,X),

an object T € A, and a nonzerd element y € Hom{A,Y)., We form the pullbacks

L i X o

Now becavse I is an epimorphism,_ The induced map g is alsa, hence a8 ¥ ;5 O,
the composite yg: B —> Y is also nonzero. Since § 1s a generating set for A,
_theré exists some Ai €A and some morphism hs A' ~» B  such that the composite
ygh: A' = ¥, is nonzerc. ILet us write g = ght A'—> A, Then yq f 6, and xg
factors 'through £, namely xq = xgh = fwh. This establishes the hypo‘cheses of
Theorem 2. 7

Hence by that Theorem, the fancbor TTS Hom(.a;,—) cen be embedded in an
exact functor e. Since 8 is a generating set, this product functor is faithiul,

so e is faithful, establishing Theorem 1,

Proof of Theorem 2. For every n >0, let Pn denote the set of all systems

of functors and morphisms of the forms

: L 43 a2 Gn
(1) B (py ~=>p, —=>... —= p,)  (p;ePs g,€Q).

In particular, ,FO mey be identified with P

For every = > 0, we have an obvious truncation map, By: Pn 3> Pn—i’

Iet us define a3 A & Ab  to be the funebor | mp *ﬁfnpn' Then for
sach =n > 0 we have a morphism of funcors bn: Byl ~ 2., induced by the

last morphisms, ¢, ©of the systems p *.’e B,




Now given any epimorphism f£: 2 ~» X .in A, any n > 0, and any

x & a.n_l(x), let Uf,x S P denote the set of those py, & F, such that

qn(:cP J e Im pn(z). Note that the imbersection of two such sebs is again
o’ . . A

£,x va o s Uf“' r where £% = (£,£'): Z@Z' -~» XBX', and .x" =
3 >

(xox*) € e, ((X) @a (X) 26 (X6 X'). Homoe the sebs Up . form tho

one: U

basis of a filter Fn on En‘

But we will waut s slightly stronger .filter, G, which we define inductivelys

{}O ig the trivial i‘ilter'{Po] on PG. For :h>0,

G"—-‘Fv‘b

n nYy n( Gn-l)

(where %n(Gn—l) means the filer induge&'onc;% by the filter G .y -.on-.éﬁ,,la

via the truncation map "bn: P, > Pn_l.} Thus, e typleal menber of .Gn is

a set V of systems P& Pn such -t;in.a*h ¥V includes all systems ps that |
sabisfy a ocertein lifting condition at the first "step", another st the second,
and so forth. (Becouse of the occurrence of x € a,_1(X) zT[_ Pp-1(X) in

the definition of our basis-sets, the lifting conditions in question will be
functions of tﬁe .system P, up to the point a% which the éondition is imposed, )

We now define our "reduced products®: For any X e Ay let cn(x) be

the quoti'ent of ’cli_e ebelien group a.n(X) = TTPn p,(X) by the subgroup
consisting of all elements x such that {p, € P, | X" 0} & Go I.e., two
. elements of an(X) fall together in cn(X) if they agree on all systems p,
sabtlisfying some sufficlently strong set of 1iffing condibions.

~ By the inductive comstruction of the filters Gn’ we see that the maps

b induce 1 c -5 0 I ¢laim these ¢ eare monomorphic
o bpra gmay induce maps d. n* G n n phic.

n-1
Indeed, suppose Some nonzero elemens of ¢p-1(¥).(¥e:0b(4)) had zero imege in
cn(l’). Iot the given olement be the coset of v € a,.q(Y). Then bn(y) must be

zero on some setb . Up x 0 p;;l(v) €P, (VeG ;) 8ince we assumed y had nonsero




image in 810 it 18 not everywhere zero on V & Pn-l5 let P, € ¥ be such
that y  # 0.
Px .

We now use the "simulteneous lifting and faithiulness™ hypothesis of our
Theorems it tells us that we can find a morphism Qut Ppuy ™ By which does not
samikilate yp , snd which has the lifting property determined by £ end =x.

. # ] .
If we now extend P, € Bup Yo p; € Pn by means of this morphism, we see

that pl will be & point of U, a p;l(v) ab which b (y) is nomgero. This

i’y
contradicbs our assumption, proving that The maps ¢, are indeed monomorphisms.
In particula,r, oy = By = TTP p embeds in every o .

Also, by the consbtruction of our i‘alters frow “lmi‘tlng properties™, we see
thet given any eplmorphlsm £: 2 ~>»» X in A, and s.n,y element }e %-»l(*{)’
(sey the image of x € an_l(X)), we will have dﬂ(&) € In T % Loosely spesking,
the functors o, respect epimorphisms, "ap to® the maps d,,. Hence, we see
that ifwe leb. 6 dénobe the direct limit of the system of funcbors

dy dg
GO>"‘"> G:L:I;‘ sos 3 |
then ¢ will respect epimorphisms. Also, e will be left exect, because the

morphisms in P were, and this property is preserved by reduced produets, end
directed limibs in "Ab. IHence e is exact. BSince the morphisms ¢y - ¢, are

monic for eamch n, the induced map: Cy ~» g is monic, completing the proof of the The rem.?

82. Further remarks on elemenb~chasing, I will not go through sn acbual

diagram~chesing proof here; the reader can work out his.own favorite example.
But I will give a few gvldellnes to bear in mind, ‘ A %

Whensthe: orlg}.ml elemen‘c-prooi’ ealls on-the deflm.tmon of exactness, the

translation will make. use of the following easy lemmas: a sequence & :5-9 Y > X
with fg-= 0 is exact in A if and only if, for every A € A, and ¥z 1&. - Y
such that fy = 0, There is a refinement y*' of y thet fackors through g.

Giveﬁ o map Ff: Y - X, if one forms the imege objeet, Im(£)>> X, then

-maps A -> Im{f) may be identified with maps A ~> X having refinements that



facbor Through I, Su?pose we ha:v;e two maps, f£: ¥ = X and Vs ¥ = X
Then "Im{f) + Im(£!)" may be translated as Im{((£,£'): Y& Y' - X). Hence a
" statement in an element=chasing proof thet some element x € X 'decomposes as
the sum of an element in the image of £ and en clement in the image of £f
translates to say that some refinement of the corresponding map xs A = X

* fachors through (£,£') — which is eguivalent to saying
that this refinement is the sum of an arrow which facbtors through f, and an
arrows which factors through £,

What about a proof where one constructs a map from some object X to some
objeect Z by picking an elemenbt =x, performing e series of liftings end mappings,
end finelly showing that the element z- € 2 one gets doesg not depend on the cholces
of lifting one has made, end that the resulting map :cié» z is s homowmorphlsm?
The' é;frgwé:‘:.pirbu.f.:?may"fhe done as follows: .S*I;'art wi;bh amj epimorphi sm zA--—H» X
{e.g. ythe identity of X). Perform s series of refinements, liftings, and
compositions, analogous to the liftings and mappings of the element proof, L7
endingtwithia diagran _ D —ds .. — A 'Then dhow, by the analogs
' sl gx

& X. _ |
of the "independent of cho;lces“ argumerts, that | z Xills Ker(D =—»» X}. Hence i
4 induces a map X — I, as desired, Note that the verification that the
resulbing map™s a homomorphism" is avoided! |

(8. ke Iane, in “Categories for the working mathematiclan™, . .- .7
DP.. 200201, develops a similar approach %o translating element pnoo:s $o arrow
procfs. The fein difference between his approach and mine is that he erphasizes
the eguivalence relation genersbed by %he relation "is e refinement of". Since
this equivalonce relation doss not respect the! .abelian group structure on Hom—se%:s,

hig epproaschiseens rathér awlkwikd when:appliedohd prvofsithatvinvolie sdaidy or
subtracting elements, )




