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| TEE LIE ALGEBRA OF VECTOR FIELDS ON IR® SATISFIES FOLYNOMIAL IDENTITIES
George M. Bergman

William Goldman (student, University of California, Berkeley) las asked

(irn conversation) whether the Lie algebra of vector fislds on the resl line

dx

‘on those generators. Surprizingly, the answer is negetive, not only on ths

genereted by two vecbor fields f d and g 3‘; can be free as a Lie algebra

line, but on any ﬁnite-dimansional mnifold: we shall exhibit here for each

n nontrivial Iie idemtities (with constant coefficients) holding in the Lie
algebra of vector fields on JRn, end hence on any n—mnifo_ld. It will be

most convenient to first obtain identitles in large numbers of variables (§§ 1=3)
and then note how these can be made to yield identities in 2 wvariables (§ 4 ).‘I

These results are actually algebraic statéments about Lie algebras of

derivations on & commubtative ring. The arguments are combinstoric.
We then further investigste properties of the variety (in the sense of !
universal algebra) of lie algebras, V,» genereted by the Lie algebra of vector

fields on. R™, and of seme related varieties of lLie a—lgebras.
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2012 Addenda: I was informed by D.Fuchs while working on these
notes that the existence of Lie identities for vector fields

had alsc been discovered by B. Lidski, a student of A. Kirillowv,
and I stopped work on the write-up. {So apologies for their messy
incomplete state.) I subsequently heard mention of such work in
discussions with othexr Soviet mathematicians. Lidski‘s work is
apparently unpublished. Some MathSciNet results are given below
on this sheet; but I haven’'t examined them.

In 1999, Askar Dzhumadil’daev wrote me pointing out that
assertion {2) of my Theorem 1.2 (on p.3 below) was incorrect.
I've crossed out the statement and material depending on

it in these notes. (The error in the proof appears on p.b6,
marked "No!l".) .
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1. Definitions. The general €% vector field on R™ has the form Z £,

:L?ox._,_

where the f; are C® functions, end is & derivation on c®(R%). We shall
prove owr results for derivetions on an arbitrary commutative ring. We shall find
it convenient to corsider not only lLie polynomiels, but arbitrary polynomials in
.a-;,fu;:ily'of derivations, i.e.8ums and differences of their compositions, which in
ge:aera.'l will represent higher order differential operators.

Formally, we define a Lie polynomial in veriables Ul’ eesy -Ur-' ess 88 81

element of the free Lie algebra over Z in Ujs..., Uy, L[Ul""’ Unseeo)s &nd

. .a polynomieal as an element of the free associative algebra Z< Ul""’ I;, sees S

We shell regard L[Ul""] as embedded in Z< Uy,... > (with Lie brackets

interpreted as commutators) so that lie polynomials are in particuler polynomisls.
.Given & Lie polynomial P, homogeneous of degree 1 in one of its variables,

Vy, it is not hard to show that using the Jucobi identity, P oan be reduced to

8 linear combination of monomials of the form [Uil’ [Uia,-...[Ui ,V]...]]. (o, A V).
. - 3

in particular a multilinear ILie polynomial in Ups v0es Ur can be written as &
linear combination of the monomials [U (1) r(z) e [Uw(r-l)’ U].--1]
where 1 ranges over the permutetion group Sn—l‘ Conversely, these monomials
are linearly independent, since when they are expanded as elements of Z< Upse v

esch has e unique term ending in Ur’ rame 1y U,.s and

Un(1) Uriz) G (r-1)

these are distinet for distinet W. Hence up to secalsrs, there is & unique nonzero

lie polynomiel multilinear in Ul,..., Un and altermting in the first r-l

of these, namely

Tr(Uls---p Ur_l; Ur) = Z ne Sr-l (-1)1!' [U"(l); [UH'(Z)""’ [Ur(r_l), Ur]a..]]o

(Incidentally, for r > 2, there is no nonzero multilinear lie polynomiel
alternating in all r variables. For we see that up to scalsrs this would have
(s .

identity applied to Up(r=2)* Un(r-1) ®™ Up(y) this is 0.)




&_ Qur main result is

Theorem 2.1. ILet R be a commubative ring, and Dl’ ooy Dn: ‘R =» B deriwtions. i

I-et Ul, Uzsgoo denote left R"‘linear combinations of Dl’vco’ Dns

Uy = stn £, D (£, € R).
Then
(1) Tn2.{-2n+2(Ul" .. ; Unz + 2n+ 2) - 0- | . m

To prove this, let vus consider how & composition of opesrators ef the form f£D

(feR, Di: R >R a derivation) may be "expanded out"™. If Di R -» R is a
derivetion, & € R ean element, and X: R - R any map, we find that D-(aX) =
(De)x + a(DX). (where Da represents an element of R, but DX a camposition
ef epera.tbi-s.) From this, it is easy to see by ‘induction thet & cempesition of
operators efltl@e form fD c&n be expanded by enumerating all ways in which the
derivations can beiassighed teo ring elements to their right,; in a sense

which whould be > clear from the following examples: let f, g, h e R, amd"

D, Es R < R be-derivetions.. Ope expands (3) by enmumsrating eases as in (4),

and swming the resulting e’xpréssiona a5 in (5).

(3) (4) (5)

(£)(gE)(1D) () &) (1) £(Dg)(Eh) D
(26 CEE) () + #(Dg) b ED

(253 (e R + £ g (IER) D |

(8 (D) + £ g (Dh) ED

(£8)(gE)(nd) +fgh IED



Let us call an expression as in (3 . "druds monomial®, the six expressions
in (4) the "diagrams" obtained from (3), and the six summands in (5) the "walues®
of these diagrams. We shall also say that in, for instence, the tH.rd disgram
of (4), the term (kD) "receives" the derivations from the terms (fD) ana (gB),
whi le .'l:he derivetion from (hD) "exits". |

fie shall prove the Theorem by showing that when Tr(Ul’ ees} Ur‘) is
expanded, for eppropriate values of r, +he diagrams arising msy be paired
off, so thet the values of paired diagrams cancel. let us write a typical erude

monomial occurring in the expeansion of Tr(Ul,...; Ur)
(8) (.f'l Dl‘l)"'(fr D}‘r)

(igmoring the original indexing of the "fij's" in the statement of the Theorem).

Let us oall the factor f, Dfﬁ in (6) thet .comes from U. the "Fixed term®,

end the factors arising from Uys «esy Uy the "movable terms"¥ As Tr(Ulg...; Ur)

is alterpating in Ujseess Uplys each crude mopomial in the expansion belongs to a system

of (r=1)t  sudh monomials, having the same fixed term in the same position,
but differing in the arranzement of the mowable terms, and having the same
coefficient but alternating signs.

| Bach crude mbnomia.l (6) yields in turn r! diagrams. Suppose now that 8

is one of these diagrams, and thet it hes the property

(7) © contains two moveble terms £ and f, D (1#3) such that

Duz M
(1) Py =Ry (i.e., the derivetions they contribute are the same) and
(i1) £, receives the sdme éomposition of dérivetions xé - £5.7u (possibly the

empty composition) in the diegram 6.

Among all peirs (i,J) satisfying (i) and (ii) in the given diagram © let

us choose the one thet minimizes i, and minimizes Jj for that walue of i.

*Thus, we are really thinking of (6) as a product with a distinguished factor,
the fixed term, and of T &s decomposed into & linear Gombihation of sich
products. '




(We could use any other fixed rule for selecting & unique pair from every nonempty
sot of peirs.) Now define & ©& +to be the disgram obtained from @ by interchenging
the movable terms fiD}‘i and ij/"j’ but leaving all other terms, and sll BTTOWS,
in the same placs.

One sees that o« 6 again satisfies (7), and that g« ® = 8. Further the
velues of 6 and «® will be equal, and by the alternating condition they will
ecour im the expansion ef Tr(Ul,...; U.) with the same ceefficient but eppesite
sign. Hence in this expansion, the velues of all disgrams satisfying (7) will
oancel, and such disgrams ¢an henceforth be disregardesd.

Now for what values of r will there exist any diagrams not satisfying (7)?

If 8 is such a diagram, note thet it can inwolve at most n movable terms I, D/“a_
that do not receive any derivaetions (one for esch pessible walue of D‘u }, anxd et
most n® movable terms that receive exnctly one derivation (n possible wvalues of
Dr“i and n of the derivation received.) Also,the number of movable terms recelving
more ‘Ghan one derivetion oan be no greater than the mumber which receive no
derivwations, since the total number of derivations received is at most the number
of movable terms. (At lemst ono derivetion exits, bub one is contributed by the
fixed term.) So the mumber of movable terms is at most n + p® + n, so +the totel
2

number of terms is at most n+ n® + n+ 1. So if we fake r =n" + 2n + 2,

the values of all diegrams will cancel, establishing (1).

nside? agel
e/wAj iscerddéd all #3

¥egrém 6 arising from the ofude




(8) © contains 2 movable term f;, Dy, such thet gither

3 © is agal -'/a movable term, but this term does wt receive the

derivation of fiDz“' or
(1) £, Duj,; € the fixed term, end this is fgflowed by another movable
Sorm \£; .0 Dny 4 (i.e. i < r=2), but neither of these terms receives the
.derimtin ¥ omm fiq“i’ nor does fi+2 ]:!/M-l_2 recelive the derivetion

from tlhe 1 zed term fi+1 D/u 141"

In/ this cese let i be\the leght index (or any other consistently chosen
one ) for which (i) or (ii) holdg,/and let us define 6 to be the diagram obtained
by. ransposing the mova?:le_i'l;e ) ENDy, with fi+lDHi_+1 in case (i.)"_,r or with
-y +2D}&i+2 in case (ii), bub/this timé\ letting these terms "carfyx""ﬁth them" the
heads or tails of any assofiated arrows. \We see that 38 wi /s.gain be & "well-

i.e.,arrows go fron/ left to right, : '
formed® diagrem (f.fhi.ch wguld not be 'b.rue if ¥ ) respectively (.ii) failed), which
will occur‘in‘.’che'_expa sion of Tr(Ul,...; Ur').. with the _e'—gelofficieni; as 8
but opposite sign, epd will not satisfy (7) but will sgtisfy (8), with fple = 6.
Further, if Dl"' s D, commute, then & and 46 i1l have the same walue, a‘.;%/%’f
hence will cance) in T:-(Ul‘“;q')’ (It is only in t¥e case where the derivetions
from the two tyEnsposed terms, or from one of them and the f‘i\§ed Yerm 1if this lies
between them,/ are received by & cemmen term, 4r beth exit, tha';\“-gommu‘bativity
is even neg¢ded.)

So je now ask when there can exist ¢ diagram © satisfying neither (7)
nor (&). In sucha 6, +the derivatich coming from any term other then the
f;. pdd berm, the term immediately preceding the fixzed term, and the last term

must be received by the immediately following term. Hence there can be at most




two movable terms receiving no derivations:  the Lirst and the one immegiately

- following the fixed term. Also, at most ong/dexivation, namely thei”of the fixed

tefm_or the immediately preceding movabl}é term, bub not both, ¢ent-be received by

& term ether then that immediately #ollowing i%, and whish feceives a derivation

from elsewhére. So there can b€ et most one term recei¥ing moge than one derivation.

Finally, es befordy becausg” 6 does not satisfy (7) there can be &g most nz movable

‘ne derivetion. Hence fhe total number moveble germs is atb

terms receiving exactl

most 2 + nf + 1, " Throwi in the fixed term, end one more movable tLermy we

2

see that for r/“ n° + 5, all dlagréxg/satisfy (7) or (8), so Tn2+5( {oeee U2y )

0
= 0, proving/(2) end completing the froof df the Theorem. (Note thgt when we said
there cowld be at mest 2 terms Afecelving ho de ivation, we ¢ould have made this -

mx(2n), gebting the answer /245 + max(2,n) which combinss (2) with the n=1 cese

0o (1), as nebed parenthetically after the statement of the Theorem.)

3. Remarks.

3.1. To put our results on derivations in perspective, let us consider n
'arbitrary k=linear maps Dl"" s D3 R -» R, where k 15 a commutative ring
'and R & commutetive k-algebra. Suppose we form linear combimstions of these,
U, =¥ £, By, bub with coefficients f; € k, rather than coefficiests from R

as above. Then it is trivial that eny polynomial in the 'Ui's which is . ;

-multilinear and alternating in more than n of £hem (for instance, Tn+2(U1"' o3 Un+2))

will be identically sero. If in fact the D 's commie, thon so will the g
t )} o=

. Ui 8, and we even have ‘I‘Z(Ul; U2) C.

On the other hand, suppose that, as in Theorem 2.1, we allow coefficients

fi from R. These will not in general commpbe with The Di; and now the U,

need not satisfy any polynomial relations at all, "(One oan get an example where

n=1l, Dl is an automorphism of R, &and the Ui = fiDl satisfy mo polynomial

relations. )

So the intermediste sitwation of Theorem 2.1, where we get identities, but



not for trivial reasons, cccurs because the Dm are there not assumed to comnmube
with the coefficient ring, but are instead assumed bo met on it by derivations.
%.2 The method of proof of Theorem 2,1 can be used to give many wariant results.
For instance, the Lie polynomials I, {r = n?+ 2n + 2 or nér §) can clearly
be replaced by any assveistive polynomiels multilinesr in Uyseees U, and
alternating in r-1 of these, (But essociative polynomials satisfied by
derivations are 2 -+ less inberesting then lie polynomizls, because they
cennot be interpreted &s relations holding identically in any lie or associative
algebra. )

We can also get results allowing more than one "non-albernmating" variable.
For instance, any multilinear polynomiel in r = n2 + 2n + 28 (respectively
r-= n?‘+ 2a + 3) veriebles and alternating in all but a of these is satisfied
by Upseees U, &sin (1) (respec¥ively {2)). (This result can be improved
slightly when o Dbecomes large compared with n  end the limitetion on the

possible number of terms receiving 0, 2, 3 ete. derivetions comes into play.)

Further, the altermating condition - itwelf. van be generalized., For

instence, For any integer h > 1, we may consider multilineer (lie or associative)

* polynomials Q(Ul,..., U Ugiqorees Us+a) such that the images of § under the
full group of permutations of any h  of the variables Ujis..., Ug sum to O.
(The h=2 case is the alternating condition. Note that a polynomiel sucheas T,
which is alternating in all but one variable will satisfy the h = 3 comdition
in all its variables.) We see that if we make the mumber s large enough so
that every diagram must have at least one h=tuple of terms that both give and
receive the same combination of derivations, then such e polynomial Q will

e family of derivations

be identiocally zero on U, ®&s in {1). In general, it would besworth studying

the questions If Q is a multilinear lie polynémial in «r iraftii&és;irand; AQ‘

is the linsar representation of the symmetric group Sr arising by. looking 2t Pamal




permutations of the variebles of @, what properties of AQ can insure that

A is en identity for derivetions as in (1) or (2)°7

3.3 I do not know whether the degrees n2+ 2n + 2 in (1) and nf+ 5 in (2)

hold,. under the steted

‘are in fact the least vslues for which the ldentities Tr

hypotheses., As we shall see in 8 s 1f & polynomiel identity P =0 is
setisfied under the hypotheses of (1) or (2) this can indeed be verified simply

by formally expanding the expression P(Ul,..., Ur) with Ui. = Z fi_m Dm, as
ebove. Bub our emalysis of the expansion of Tr(Ul,... : U&) wa.s quite limited:
We only considered the cancellation of certain types of peirs of terms relsted

by simple transpesitions of the Ui. Fquel berms can also arise in the expansions
of monomials related by other members of SLo10 and I simply do not know whether,
for some values of r smmller than those given in (1} and (2), the coefficients
of every such term cancel.

| & comparison with the theory of polynomial identities for associstive rings

sugzests. pessimism, There ome is inmberested in the idenbities sabisfied by the
ring of & xd matrices over & commubative ring R. One defines the'"sténdard
.polynomial“ S (X seens X) = Y (-1) X1y xgtr). It is easy to verify that

e dxd matrix ring satisflies sdzéo, because modulo its qenter it is
(dz-l)-dimensional. But the true minimel identity satisfied (for which no easy

proof wes known until quite recently) is So4 (0 tsete ]l st |

HE
E
H
b
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If one wishes to study the above guestion further, it mey be useful tc;
know the expansion of Tr‘(Ul""; Ur) &8s an associative polynomial., From the
fect tmt it is albermeting in Ul""’ U,y 1t is clear that I, 1s 8 linear

combination of the r alternating associstive polynomials

3 (=17 v
Hesr-l -

S ] - L N ; =
_ (l)l‘(Ul’ s Unoy? U, def.
(i=l,..., r). Writing

esl U U eeel
TR TER T P Te RS

— 3 = - - r M
I, = }:i 8 r S(i)r’ one gets the recursion formuls ai,r a_i-i,r-l' (=1} By r-1

- (To sec this, note thet T, = {ﬁ<r (-1)j-l[uj, T,y s Tgoums U.)] end comsider the
coefficient of Ul...UiUrUi+l...Ur_1.) One can deduce thet 85y is the
coefficient of =1 i ('b-l)(t+l)(t-l)...(t+(-l)r-l). According as r is odd
or even, this is a power of tz-l, or is %=1 +*imes such a power. In each cese
an expression for ai, &s *1 +times & binomial coefficient resul’cs;hﬂ

For dxd matrices over & commubative ring it is known ‘not onlyn'bhe least r
for which the stenderd associative identity Sr holds is 2d, but thet 24 is in
fact the least depree of any nontrivial identity, and thet SZd is, up to scalars,
the lone idertity of thaf degree. Fbr ouwr lie algebras of linear combimetions of n
commuting derivations, if r is the least value for which T, is identically O
(whatever that welue is), it would bé desireble to know whether it is also the least
velue for which any Lie identity is satisfied, and whether the only identities of
thet degree are the linear combinatiors of those obtained from Tr by permuting

veriables. (Over the rationzls, these spen an r~l-dimersional space of lie polynomiels,

which is an irreducible representetion of the permutation group on the r variables )
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3.4, Vector fields. Teking R = Cm(]Rn} end D:i. = 'a?:? we see that

statement (2) of Theorem 2.1 trenslates to say that the lie algebrs of all ¢%

vector fields on IR® satisfies Tn2+5' It is easily deduced using local

coordinates that the seme is true on any n-manifold. Statement (1) similarly

- translates to say tlet given an n-dimensiorel tangent-spece distribution® on

*Yeriously called a "distribution", "Frobenius distribution", "Chevalley
‘distribution" or "differenmtial system". Joe Wolf suggests Mtangent-space

distribution" as an easily=~understood term which avoids the possible .

confusion with "Schweartz distribution” that hes led to the recent proliferatson

of terms.

e manifold of ary dimension, ery vector~fieslds Ul’ veasy U o belonging to
ne+an+2

Note, howsver, thet this does not

i
|
!
:

the distribution will satisfy Tn2+2n+2'

make T an identity of any Lis algsbra of vector fields since the cless

né+2n+2
of vector-fields belonging %o & tangent-space distribution is not, in general, a

lie algebra. If it happens tlat i% is, then Frobenius's Theorem tells us tlat
 The menifold can be folisted by integral menifolds of the distribution-[ '§3..SJ, [ p.lq].

faking local coordinstes Kyseeos X, tn these inbegral manifolds in & coherent
- . 3 2 ax ot . .
fashicrn, we get e basis et LRy for the distribution, which commubte, so
X1 A

thet the sharper result (2) iz feet applies in this case.

It is metwral to ask whether there is an algebraic analog 4o this.last

observetion.. We shall give such a resuli below under an algebraicelly convenient
hypothesis, namely thet our given comutative ring is a field. However, it

will be emsily seen that the proof, a modified wversion of the proof of Frobenius's

ITheorem in I I, can be adepted to varied hypotheses (e.g., to vechor-fields

Dl""’ Dn on & manifold, in the neighborhood of arxy point where these give

linearly indeperdent tangent vectors. E. R. Kolchin informs me that the next
“result and Proposition 3.7 below sre kmown to workers in differentisl algebra,

but bave.apperently not appeared in print. )



Iet E be a field. Note that the derivetions of K into itself form a
left K=-vector-space. Further, if § 1is any family of derivetions such that
the lie bracket of any two members of § is 2 left-K~=linear combiretion of

members of 8, +hen the left K~span KS is closed under “Hommrbetor; hrackets

lemme 3.5 Iet K be a field, and V =& left K~vector-spasce of
derivations on ﬁ, which is finite—&imensional and closed under commubstor
brackets. Then V las a left basis Dl""’ Dn consisting of pairwise
commuting derivatiions,

Proof, Let El,..., E, be an arbitrary K-basis of V. From the fact that
 these derivations sre E-linsarly independent operators on K, it follows that
we can find f£,0.., £ € K suh that the matrix « Eifj)) is nonsirgular.

Let ({ cij)) be its inverse, so thet
(o). 2. o Eyfy = 5hj (hs 3§ < n).

Applying the invertible matrix ({ cij» to the n-tuple of derivetions (E ),
i

we get a new basis for V, consisting of the derivations
By (9) and (10) we see thzt

(11) D, fj = 5113"

It followsimmediately that all the compositions thi annihilate all fj,

honce 8o will all the commubators [Dh’ Di]' But these commubators belong to V,

by (11} they

henee are linear combimmtions of the D's, hence,are determined by their walues

A

on the fj's. Hence they must be zero, as claimed. |

12
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Using the theory of localizatien of commutative rings, we cen now gebs

Corollary 3.6. Let R be & comuutetive ring without pilpotent elements, and

L & left R-module of derivations oen R, vhich has dimension < n in the
gsense that /\n+l L =0. Then

(12) = 0 idenbically on L, and

n+2n+2

L siscolpseg sy commitsbon brsokete, sthen \I = & Monklertiy

(13

Proof. Suppose T 1is&n integer such that Tr is not identically 0 on L.

Then we oan find & nonzero element & € R of the form & = Tr(Ul,...;Ur) £

(Ui € L, fe€R). Since a is not nilpotent, the multiplicative semigroup it
generates does not coxtain 0, end we can find & meximal mulbiplicative semigroup
$ ¢ R={0} which contains a. From the fect that R conteins no nilpotent
clements, and the maximelity of 8, it follows &lat ™R will be a field X .
Every derivetion De€ L induces a unigue derivation D on X, and it is easy

to deduce thet this process r.espec":.s conrmubator bracketa ar_ld-the Re-module -structure

- n+l = ' =
of L. Hence A L =0, end if we let V denote the K-vector-spece KL,

we heve I\n+1 V=0, i.e. dimy V < n. YNote also that
(14) Tr(’fl,...; TYE = e foO

beceuse we mode S invertible in K.

We can now apply Theorem 2.1 (1) +to (14) to conclude thet r < n2+2n +2. EF

Thus we

get (12) end (13) respectively. ||

(I do not know whether the a2bove result remeins ftrue if R is allowed o
heve nilpotent elements. If we let ¥ denote the nil radical of R, eand if
R has no sdditive 2=borsion, then a&ll derivations on R teke N into ¥

s

end we can &pply the above Corollary to R/N to conclude that T, (for the




14

indicated values of r)} will be W-valued. By the same localization approach used
above, the general guestion can bo reduced to the question for a loecal ring with

nilpotent maximal ideal,)

‘The proof of Frobepius's Theorem in | | had to be simplified to get our
proof of lemme 3,5, since the origimal proof involved solving differential
equstions, which cannot be done within an arbitrary field with derivetions.

But that more complicated proof hed an {(unsteted) bonus: In the construsted besis
D.ogecey Dn., the first term Dl could be chosen erbitrarily. To get the analogous

1
algebraic statement we must allow ourselves to exbend the field X and the

derivations on it. The sort of exbension we went is, of course, cne that preserves

the lLie reletions on these derivetions. This cordition could be formulated

directly, but we shall teke a shorteut. We use the present versien of Proposition &5

0 ehoose sn arbitrary commutinmg besis di,..., d  of Vi then say that we
wish to look at extension fields K' of K given with extensions of ..dli,,...,. dn
which sontinue to commute. (It is not hard to verify that this is equivalent

to extending the action of V 8o as to praserve commubtater brackets and K-linear
‘relations. )

This, in fact, puts us inbo the framework of differenmtial algebra, which

gtudies fields K (or sometimes zeneral ecommutative rings R) given with families

discees dy of pirwise commuting derivations | |. We shall state the mext

result in the languaze of differential algebra. (However, except in e&n appendizx, 8

where we prove & lemme used in the next result, we shall not use the langwage of

differsntial algebra in the rest of this pe.pér.)




Proposition 3.7. Let (K; dl"’"’ dn) be ‘a di.lfferential fielci, with dyseees d,
left linearly independent over X. Iet Dl""’ D, be m<n linearly
independent and pairwise eomuti_ng lgfb K-linear combinations of "l""’ ,dn' . ‘
Them over somé oxtension {K'; dyseees dn) of the differential field (K; dyseces dn)’
the given fe.mly can be extended to & eommubing basis Dl""' Dn of the K'elinear
apan of dl,..., dn. _ ' ‘ | |

Proof, Iet D; = 'S'sij dj' ‘The | D, - are linearly independent, hemce after a ,
po’ssible reordering of djsess, dys We oan assume thg = xm matriz  {( gij)) .
(i, Jj £ ») is nonsinguler; i.e. that D

for thse spen Df. dl,---’ dg;’
¥ow let us form X!

120 Dn’ dm+l-’ vees dn form = basis
edjoining to K solubions fy,..., £, %o the
system of linear partial differenmtisl equations D, f;j = 6i,j (:1. <m, j< n).
By & lemmn in differemtisl algebra which we prove in an appendix, 8  below,
such an exbensicn is possible, and soreover may be performed so that the
elements di fg‘ {m<i <m, 1<Jj< n) are algebraieall.y igdepqndent 'overi K.
This means that ?vher1. we _s.pply the ?ﬁ‘, derivations Dl""’ Dn—’ dn+l" vag dn
%o the n oloments £1,4..5 £p» We got & matrix with blosk form (5 2), where
the *'s consist of algebraically independent entries. In pertioular, this
'ma_trix will be invertible. As in the proof of Proposition 3.5, we now apply
the i:;ve_rse of this matrix to our system of n derivationls_;, and conclude that
the resulting system forms & peirwise comauting basis of the space ef derivations.

weo are oonsidering. Bubt the block form of the watrix insures that the first =

terms of this basis will remain Dys«s.s D i

3.8. Supbose_ now that we are interested in investigating whether a given
polynomial P(Ul,..., Ur) is satisfied identically by lineer combinations of
n commuting derivatiems . on commutative rings R. For ressons thet will be
pedel precibe in s we can assume without loss of generality that R
is & field. We can also certainly assume without loss of generality that

Uy f 0. But by the above Proposition we cen now go %o an extension field of
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R, over which the vector space spanned by the given n. commuting derivebtions is
also spanned by & system Dl,..., Dn with Ul = Dl' It follows thaet in
determining whether P = 0 is an identity, we may without loss of generality
take Ul = Dl. Of course, in many srguuents, like those of Theorem 2.1, there

is no advantage to such & reduction; but it can be convenient when performing

hand computa‘bioﬁs for low values of r, =25 we shell do in parts of the mxt

section.
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4, Identities in two varisbles, and some precise results on the case n=l.

4,1 BSubalgebraz of free Lie algebras. It is known that every lie subalgebrs of

| & fres Lie alzebrea over a field k is azain free, and that the free Lig‘.-n.lgobra.

on two generators, Ik[x,y] contains subalgeﬁras fres on countably many generators,

Ik[Vl(x,y), Vz(x,y), eee] ( ). It follows immediately that if

2 Lie algebra A satisfies s nontrivial identity in r variables, £(Uj,e..s Up) = 0,

then it also setisfies the montrivial idemtity inm two variables, f(Vl(x,y),..., Vr(x,y) ) = 0. |
The next Lemme exhibits some explicit free sube.lgebras of free Lie algebras, .

thus allowing us to write down explicit 2-variable identities in our Lie algebras

of derivations., I% also burns out to be & very ocomvenient aid to computations

in free Lie algebras.

lemma 4,2. Let k be a commutative ring, and X, Y be disjoint sebs. Then

in the free Iie algebra Li't[x“ Y], the elements
(15) (ad Xl)o-.(ad Xn) b2 (nz 0; Il,o--’ xn =] X; v &€ Y)-

.i‘orm a free generating set as lLie slgebra for the ideal of Lk[IuY_] generated by Y.
Proof. To show that the elements (15) satisfy no lie relation it will certainly
suffice to show thaet in the free associative algebra k< XuY > they satisfy no
associative-algebra relation. Thié in turn will follow if we can find a semigroup~
ordering on the free semigroup < XuY > such that the leading terms (i.e.‘, maximel

nonzero terms) with respect to this order, of the elements (15) ccour with coefficient

1l and satisfy no sénigroup relation in the semigroup < XuY >,

To do this, choose any total ordering on XuY such that all elements of Y

are greater than all elements of X, and order < Xu¥Y > by putting U>V if
U has greater length than V, or if they have the same length, and in the last
place where they differ, the letter occcurring in U is greater than the letter

occurring in V. (I.e., for words of equal length use lexicographic order reading



from the right.) Xow in the expansion of (15) in k< XuY >, ‘there is o unigue
term ending with y, mmely X;...xy, 80 this is the leading term. ef (15). It is
olear that in any product of elements of < XuY > of this form, the factors are
uniguely reéovera.ble. (Split 5.1: af'ter each member of Y ocourring.) Hence these
e_.lenent generate & free subsemigroup, completing the proof of the independence
of the terms (15),

Iet us call the set of elements as in (15) < ad X >Y. The Iie algebra
which it generates clearly lies in the id=al of Ik[quJ gonerated by Y.
Comversely, we see that this ILie subalgebra is closed under bracketting with all
elements of X, because <s8d X > 7Y is, and it is closed under braoketting
s

with all elements of Y beocause it contains these. Hence it is an ideal of L [XuY]

and as it comtains ¥, it must be precisely the ideal indiocated. ||

4.3, In perticular,.in the free lie &lgebra on two generators Lk[x, .y].,a "the
ideal generéted by y (spammed as an Remodule by &1l Lie monomials other than x)
- is free as & Lie algebra on { (ad x)n ¥y I n=20, 1,...}. Hence if a lie algebra
| L satisfies a mul‘bilinea;r identity of degree r, P(xl,..., xr) = 0, it will
satisfy the Zevariable identity P(ys..., (ad x)*=1y) =0 of degree r{r=-1)/2
in x and r in ¥y, and thus of total degres r(r+l)/2. For instance, the

iie algsbrs of vector fields on the real line satisfies the nmontriviel identity
Ta(y, (ad x)y, (ad %)%, (ad x)%; (d x)%) = 0, of total degree 15,

For r lerge there are tricks that will give us Z2=variable identities of
meller degree than r(r+l)/2. Within the sutelgebra of L, [x, y] freely
generated by {(ad x)% y}, oconsider the ideal gemerated by all elemenmts (ad x)iy
such that i > 0. ({This is the commutator ideal of Iy [x, y].) Again applying

Lemme 4.2, we See tihat this will have the free genereting set {(ad y)*(ad x)J y|
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i>0, j>0}. DNote thet this has d~l generetors of each degree d rather than

just ons. One om deduce that a multilinearrexpression of degree r may be

trensformed into & 2-veriable expression whose degree is on the order ef rs/ 2,

To gat a still better rate of growth consider, within the Lie algebre freely

gemerated by {(ad x)* y} the ideal generated by y alone, This will have es

free gererators the elements (ad (ad x)ily)...(a.d (ad x)iﬂ‘y) y (>0, il,...,inz 1).
One can show that the number of these of degree d is precisely fd 29 the

d-znd Fibonpeci nimber. We leave further investigation of this phenomenon to the
interestec reader.

The identity T_. for vector fields on the line is of too small a degree for

5
‘the above tricks to help, but there is another observation we can apply. Recall
thet the Lie polynomiel Tr(Ul""" U S U ) (r > 2} is altermating in the first
- r=l variables, but not in all r, This means thet it becomes the zoro polymomial

- if eny two of Ugseoes U,..j 8re idenmtified, but not if any two of Ul""’ U 2Ye.
It is easily deduced that T (U seves U -1 l) is e nontrivial Lie polynomisl,
_bu'b of course it is identically zero on any Lie algebra on which T, is zero, 1I%

follows that vector ficlds on the line satisfy T (y, (ed x)y, (ad x)°y, (ad x)sy, V)

= 0, & nontriviel identity of degree only 11.
4.4. So far we have been obtaining Lie polynomials
(16) Tel ViGay)s ooes Vo (3y) )

which had to e nonzero in Lk [x,y] by generel arguments. But other polynomials

of the form (16) have & .chance of beinz mnontrivial, as long as Viseees V., &Te
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linearly independernt, and Vr ;‘ 0. For r =5 (the case of vector fields on the
line) the two si-nplesf polynomials with these properties (module imberch nge of .

x and y) are
(17)'. : T5(1;a Yo [st}.v [I’ [Ia.V]] 3 x)s
(13) T_a(x-: s [st].v [Ya [x-sYJ]f x),

both of degree 8, To aid us in determining whether these represent nonszero elements

of L [x, y]» let us first note that in expanding an instanmce of Tss each term
(19) (ad a)(8d b)(ad ¢)(ad d) e

oan be peired off with the term =(ad b)(ad ar)(ad-e)(a'd d) e., and the sum of the
two reduced to (ad [#,b])(ad o){ad d) e. This in turn oan be peired off with

~(ad [2,0])(ad d){ad o)} ¢ +to give (ad [a,b])(ad [e,a]) ey or [[2s0], [[c,d]_,e]-]..
In this way, the (5-1)_!- = 24 terms of Ts are reduced to 24/4 = 6. Applying

this to (17), end writing y; for (ad x)1y, we get
(20) | T5(JC: ¥ [xsiﬂs [x:[xs.')’]]i x)

- [[x’yol{ [[Y];:yz] ,:x.]] + [[xf‘ylla[[YZJyolsﬂ] + [[xs;fz] a_[[}’o‘:yll‘:x]]
Hlyovyls [my,]sdll + [ypavals[lxy 1owl] + [lygavols[[xry] 1.

We can now use the fact
{21) [xayi] = ¥i+l

to simplify (20) to e Iie polynomisl in the yi's alone, which“will be nonzero
if and only if it is 80 &s & member of Lk[yo’ yl,...]. It is easy to see that
when we do 8o, the variable y“!= will mppear exmctly enece, m.uely_ in the fourth

term of (20), whioh reduces %o [[yo,yl],-y;l. Since this is nonzero, it follows
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that (17) is nonzero, and répresents & nontriviel identity in x and y satisfied
by wector fields on the line, of degree & in x and 3 in vy,

When we expand (18) we get an.expression like (20), except that Yy .is
‘everyur.hore replaced by [yo,yl]_. In this oase, we find that applieation of {21)
leads tol exnctly twe occwrrences of ¥z Nanely, in the expansion of the fourth
term and the sixth term, we get suwmmends —[[yo,yll, [yo,y.‘,’]] and -[[[yo,yl] ,yo] 5¥3)
respectively, To eheck whether these cancel, we may exps.ndrthem 88 linear combinetions
of (ad ys)(ad yo)(e.d yo) y, @nd (ad yo)(ad yﬁ)(ad yo) y,» which we can see by
Lemma 4.2 to be independent. The second of these elements cccurs only im the first
summand, sand there it has coefficient +1, Hence (18) is also nontrivial. FNote .'l:hat

it heas degree 4 in x and 4 4in y.

If we interchenge x and y in {17) we get an identity of degree 3 in

x end 5 inm y. If we do this to (18), the resulting identity sgain has degree
4 in x and 4 in y, and it is not evident whether it is equivalent. to (18).
In an appendix, 8 below, we shall get our hends dirty with computations and
determine 8ll 2-varisble identities of degree < B satisfied for n = 1. We
shall find that (except in characteristic 2) there are precisely three such _
 linearly independent identities, one each of degrees (3;5), (4,4), and (5,3) .,

in x end ¥ respectively. Thus, the consequences of TI. debtermined sbove give

5
2ll the 2+variable identities of minimel degree. We shall also skebch proofs that

I, itself is the essentially unique mulbilinesr identity of degree < 5, dnd

rote some resylts on the case of finite choracteristic. (B feguires . 8 'y but the

two of these do not depend on any intervening material,)
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We remark thet though 5 and 8 are the least degrees of multilinear,

respectively 2-variable Lie polynomials satisfied identiocally for n =1
?

|
¢
H
i
l
1
'
i
%
H

there are associative identities of lower degrees. The multilinear idenbtity

s (x Keg) = -1 )%
g%y T2 5) E (=-1) xﬂ(l) xﬁ(z) xn(s) end the Z=-veriable identity

2 _ 2 2
xoy® = Bxy)® + 2 xylx + 2 yxiy - 3(yx)® + y2x2 are easily established. o

4.5. Bases for free lie algebras. Suppose Ik[x] is a free lis algebra, and

u € Lk[x] soms monomial other than exze of the variables. ILet ¥ be one of the

variables soourring in . Then by Lemm 4.2 we ean express u es a lie polynomisl -

'in ‘the elements eof the set < ad(X-{y})> v, and we see that it will have swe.ller

degree in this set of yveriables than in X. This idea, slightly refined, ocan be

used te comstruct & XK-module besis for Ik[ﬂ 1




ey

- lemma 4,6, Let Xk be a commubtative ring, and Ik[I] 8 free Lie algebra,

where X is a totally ordered set. For any y € X, write x-:y = {x € II X<y},
and let us order the set of monomials < ad Icy >y by pubting

) | 4 o
(ad xl)...(a.d :51) y < (ad xi)...(ad xn!) y if m<n', er if n=n' and
zi = x;-
& free K-module is given by the set of "acoeptable monomials" defined inductively

for the largest i such that xi ;‘ x;_. Then 2 basis for Ik[x ag

as follows:

(1) Poremy y e i, the only acceptable monomial involving no indeterminate
but y is y itself,

(ii) If w is & monomial involving more than onme indetermimate, let y be
the largest indebermimate (under the given ordering) ocourring in u., Then u
is accepbable if and only if it has the form of an expression in the elements
of the (ordered) set < ad (xq_) >y, and this expression (of lower degreel) is

in faot an acceptable monomial in the.free lie 'algebra on this ordered set.

Proof, DBeocause the identities defining a Iie algebrs are homogenscus in each

variable, Ik[x] will be a direct summ of components homogensous in every
indeterminate. If we collest these summands according to the largest inde’cermiﬁte

they involve, we see that L. [x] is the direct sum over all y € X, of the

- ideal of Iy [Iﬁy] generated by y (where xfy =X ¥ {y}). And we know by

Lezpno 4.2 thet this ideal is a free Iie algebra on < a.d(x':y) > y.
It now follows easily by induction that for all n, the acceptable
monomials of degree < n in amy free lie algebra on an erdered set form a free

bagis for the Lie polynomials of degree < n.||

4.7, As examples, let us list the forms of all accepiable monmminls ef
degrees < 4. Here x, y etc. will denote elements of the given erdered basis, .

not necessarily distimet unless so indicated.
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(22) < degree l: ¥y
degree 2% [x, y] oA (x<y)

degree 33 [‘W: [Xab"]] (W, x <y) .

Er. EX (x.<y)

degree 4t [v, [w, [xv]l] (vow, x<y)
[ys [w [=¥]]] G x<y)
[vs [ve [xy]]] (x<y)
[[woy]s [x7]] (w<x<y)

Meny of these cases can be consolidated by using "<" signs in our side-
conditions, but the above is the form in which Lemme 4.6 gives them Yo us.
| (By choosing different erderings of < ad(X, y) >y in the above Lemma,
and more generally different weys of fsartitioning X <y’ .5, into {y} amd
X rather than .X.

<Y _ <y
know whether bases so obtained overlep the knowh constructions, suck as that of

and {y}, Wwe can get Other bases for Lk[x]. I do mot

P. Ball (| |, §1A4.5. For generalization see | |). Inevitably, they agree in
degrees < 3, Bub constructions bused on Lemmz 4,2 seem oriented toward systems of
brackets that maximize "depth" and minimize "branching", while P. Hall systems

tend to do the opposite.)
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We ere now ready for

in two variables
'4,8. Precise determination of idemtities of minimal degree satisfied for =n = 1.
A

Ist k be & commutative ring. If R is a commbative k-elgebrs and Ds R == R
ome derivetion, we will abbreviate Da %c. a', and more generally Dla to a.(i).

The R=module of derivetions DR forms a Lie algebra over k; one eohecks that the

brecket eperation is
(23) feD, ©D] = (ab? - a'b)D.

We now wish to study Lie polynomiels in x end y .annihilsted by all assigments
(24) x=» £fD, ywgDh . (f, £ € R; R,Dasabove)'
It will suffice to consider Lie polynomiels of the form
(25) P(x,y) € L [x, ¥]» homogeneous of degres r >0 in x and 5 > 0 iny.
Also, &5 we noted at the end of 83, we cen without loss of generality
teke £ =1 in (P4), i.e. simplify (24) to
(26) . x> D, y = g D.

Avy lie polyomial P(x,y) can now be evaluated in RD as u D, where

u is a(commutetive associative) polynomial in g, g's «s.» g;(i),... . From (23)
' (1)

we get the following formula for Iie brackets of monomials in the g

. (- - i " i . .
, <q
whore ;" is = for l<h<p and + for pil £h<q. When we actwlly

caleulate with such polynomials it will be convenient to abbreviate -

(28) o ) Gpdp g (y00000i)s
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Also, whenever our context ellows us to specify the order-relatien smong the i, 's,

we will write them so that

(29) iy < ... iy (in(28))

B

’Re'burning to Iy [x, y], we recgll thet any Lie polynemial (25) can be

written as & lie polynomial in y , Tyseees where y, = (ea :c)i y, and this

0
polynomiel will be homogeneous of total degree s and totel "weight" r, where
¥s is considered to have weight i (i = 0,1,...).

Let us determine explicitly the expansions in RD of monomials in the ¥y

of low degrees:

(30) -'deg,ree =13 vy, > (ad D)i(ﬂ)) = i‘(i)D = (i) {by (28)).

(31) degree s =2: [y;, y ] = = (i+1, 3) + (3, 3#2) (using (27)).

i

{32) degree s = 33 [yi, _[yj, yk]] b (541, Jr1l,k )= (1+1,9,k0l ) =(1, 3+2,k)+(i, I, k+2),

In (30) end (31) we see that distinct allewable monomials in the Y3

{in the sense of Lemma 4,6; i.e. all cases of (30), and those cases of (31)
where i < j) are formelly linmearly independent. (To see this for (31) it
is helpful to restrict attention te expressions of a fixed weight r, so that
the only Iie monomisls in guestion are [yi, yr_:.;[ (0 <i <r/2) .and the
commutative monomials are (i, r-i+l) (0<i < (r__:fa).-bl).) It follows thet
if exy nentrivial homogeneous polynomial (25) is identically zero under
assigmments (24), its degree & in y must be > 3. By aymatry., its degree T
in x must also be > 3,

" We mow turn to (%2), and consider all acceptabls monomis.ls_[yi, [yjl, yk]]
of given weight i+j+k =r, The acceptability condltion means that j <k, i <k.

(Gfr. (22)). We note thet among all such monemials, the only ome that will have

e AL R
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e term (0,0,5+2) in its expansion is [yo, [yo, ya]] (See (32). Note that ::

in applying (32), we must rearrange each.term appearing on the right-hand side

so as to satisfy (29)., Thus, if we did not restriet ourselves te aeceptable
monomisls, [yo, [ys, yo]] would also have a term (0,0,5+2).) Hence, axy polynomial
P .ﬁhbsa evaluation wnder (26) is identically zero cemnot involve & term ‘

[yo, [vos Yo]e Ilet us now enumerate the remsining acceptable monmomials for small

velues of r:

(38) weignt r=8:  [yos [y v,lls [ps Bge w5l
(52) weight r=t1 [y, [yi. vells [rys [yc;, valls  [v1s [rye 9511 [yps [ygs w511
(35) ‘welight r=1 _[‘VO_’ _[Yi: Yé]]s ' [Yl:. [YOs YJ]: [Yo‘n [372" .')'3]].3 [Y]:: [Yi: 33]]'3.

['YZ’ [yO’ Ys]]’ [yza [yl" y‘?,]]'

From this point, it is just & few minubtes of scratchework te defemine
precisaly the identities satisfied in these degrees and wéigh'bs. Iet me oubline
how the calculation preceeds.for r = 5;

Write out the expensions of the six acceptable monomialé, using {(32),and
permuting each symbol to get (29). Suppose some linear combiretion of these
oxpansions is 0. Let &, 3 € k be the cosfficients of the first and third of
smmands in i:his cambimta.en. Looking successively at the eoeffac:.en'bs of
(03.6), (115), (124), and (155) we find that the coefficients of the 2d, m;,
6th and 5th summands are =-u, o(, i and o respectively. Leooking at the

‘coefficient of (025) we now get p= =2o, TUnder these oonditionsl, the coefficients
of the remaining terms (034).and (223) also cancel. ~ We conolude that there

A8y upite sealar multiples, a unique identily of degree 5 in-x and 3 in y,

given by suming the terms of (35) with ceefficients 1, =1, =2, 1, 1, =2,

In the cerrespending calculation en (54.-), we calculate that all feur
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nmeonentia ls must have the saﬁe coefficient X, whioh must satisfy 2= 0. 8Se if
k is an integrel demein of characteristic # 2, there ere mo identities ef this
degx'e;, but if char k = 2 there is, up te scalars, a unique idembity given by
the sun of all terms of {34).

In (33) ono finds me relatioms, . .

Fer s =4 1 will briefly record the results. We have the fermulse

(36) [y brys [7ge mid]]rm(nedsiod, 300 k) o (el 500, 3kt 1 )0 (v 1, 392, K) |
“(htd,1,3,k+2)+ (B 142, 341,k )=(hyi+2, Jok+1)=(hy1y 543,k JChy &, 342,151 )

+(h,i, Jri;k42 )+ (h,i, j,k+3).

(37) '[[yi’ Yk] s [st Yk]] e +(i+l.:}+2,k,k)-(it&;d+l,k,l€)+(i+2,j,k,k'i'l) : }
-(i,j*'z,k,k"'l)-i-(i,j+1,k,k+2)-(i"'l,j,k,k-f'Z)-

We see that the acceptable monomial [yo, [yo, [Y_O’ yr]-]] is the enly one having
(0,0,0,2+3) in its expansien, and -hence-(like .[y.a,' [yoi-'yi.]]-fbr ‘528.) carmot
‘appear in ayy idemtity.

For r = 5 = 4, we find that the remsining accepteble monomials are

(38) Bror brge s vgl11s b By Irgp v1ls [y g [yge wgllls | ;
_ [Yos [Yls [yl’ '.Yz]]]’ [.Yl’ [YO: ['.Yla Yz]]]: [.Yla [Yl.v [YO’ Ya]]]: [Yza [YO: [YO’ Yz]]}'

(There are none of the form (37).) On expanding these by (36), we find that
if. 2 'ls not s sero-divisor, there is a unique linear relation among them,
with coefficients 1, =3, 2, 1, =2, 0, 1 respectively, while in characteristic 2

we ave both this relation and one with ecoefficients 1, 0, 1, 0, 1, 1y O.




Qutline of main results in the remminder of "The Lie algebre ef veoter fields... "
(in preparation). ,

It P(Ul,...,Ur) is a nomtrivial Iie polynémial in r nrit.bies, then we
worify that P(U, (ad V)U, ..., (ad V)r-lU) is & nomtrivial Iie pelynemial in two
variables. Hence ary Lie algebra satisfying & wontrivial Lie identity satisfies

one in twe werisbles.

* For m=l (the case of vector fields on IR) hand calculations show that tlere are
ne Lie idembities in two variables eof total-degree <« B, but thet there are 3
linearly independent identities of that degree. (The génanal"armnt"gbevc
gives an idemtity of degree 15 in two wariables. incidentally, there ds:an

‘asgociative identity of degree 4.)

Let 7V, denote the wariety (in the sense of universal algebra) of lLie
.algebras defined by the identities helding for all Ul""’ Ur,... as in Theorem 2.1 (2).
(Equivalently, by vector-fields on R-.)

Then the Lie algebra  '8l,,; ~ belongs %o V.. It is easy to deduce thet

the veriety generated by the union of the chain ¥, € V2 S ++. is the wariety of

gll Iie algebras. Hence the chain is not eventwmlly conste.nt. (But I cannot

prove that successive terms are always distinct.)

L
For aqy n>1, r > 1, we find that the ILie algebrsk free in -Yn on r
generators is prime, That is, for any ideals I, J < L, [I, J_] =0 =Ior Jd=J0,

For any integer n, let V denote the variety of ILie algebras determined

-V o1

by “the Lie identities of volume~-preserying veotor-fields on R®, Thus,

[ __Y n = Y-—n ‘We show that -T-'T-,v‘.,n satisfies Tn‘?"l'&' Let 'Y‘hf,ﬁ_ln denote

the variety determined by identities of Hamiltonian vector-fields en TRED,

h Vv €V < . We show that satisfies T .

Thus, L€ .o -Y-v,Zn e show -Y-h on isfie 2n2+n+5

Free Lie algebras en r > 1 generstors in these verieties (except, of course,

for V4 y) ere, like frée-lie algebras in Vy, prime.




B At

. Appendix:s & result in differential algebra. The following result was called

on in the proof of Proposition 3,7. There we were only concerned with solving the
partial differentisl equations D, fj = Sij. but it is matural to ..:t‘omula‘l:e the
reailt for a gemeral differential extension. We .a.lso indieate the universal

property of the resulting differential ring.

Il

Theorem .1, Lot (K3 dyseees d,) be & differential field, with djs-..» dy left

unaarly'independen'b over K. Suppose

(1) D, = Y&y d, (gs5¢K i< m, § < n)

ere m<n eommuting derivations, so that (Kp Dl,.... Dn) dgain bocomes a

differential field; and that the Di are linearly independent, in faeh, that

(A2) the m xm matrix ({ gij Y (i, 3 <m) is nonsinguler,

¥ow let
(A (L5 Dyseuis Iy)

be an extension of the differential field (X; Diseees D,); 2nd suppose that L
las 2 transeendence basis X over K (in the sense of ordinary field theory)
such that L is separable ov'er. K(X). (Automatie in charaeteri stic 0.)

Iet us adjoin to L a family X' of sdditional indeterminstes Xygo
where x ranges over X, and o ranges over all {n-m)-tuples (oLn_,_l,...,a,n)
of nomegative integers, excluding the zero (n-m)~tuple,

_‘Then the derivations dl,..., d‘n of K ean be extended to commuting
derivations on the polymominl ring I.-[I'] (and hence on its field of fractions
I{X*')) insa tmi‘que memmer such that (i) the linear comhina.t':’eons' Y €13 dj’ '

»

restricted to 1, are precisely the given extensions of . Dyssees Oy in (A3),




and (1) each x € X' erises by

d'm"‘l “n i L
(a®) x, dm-!-l vee dn x.

The resulting differential ring (L[X']; dysee-s 4,) has the wmiversal
property that given any differential ring (E; dise..s dn) extending (K;‘ diseees d,)
and any homomorphism s L =» E respecting the operators D, = Z fij_dj s> there
will exist & unigue homomorphism of differemtial rings ¥: (L{X']} djseces d) =>
(E; dyseees d.) extending . !
Proof, From the fact thet L is separably elgebraio over K(X), it is straight-

“forward to show that there are unique exters ions of dm+ <.y 4, bo commuting

1’
derivations on L[x'] satisfying (A‘f). To extend dl’""’ d.‘a will be a more

'delicate Process,
¥ote that by (A') and (A?) one cen express dl""’ d, on K in terms

of Dl’-..’ Dm, dm+1,-oo, dn, by' 28 Bys‘bem Ofreqmtions

(AS) d; = 1Ej<mpiij+Em<j<nqijdj (i <m)

which is equiva.llen'b to (Al). Sinee wo teve extensions of Dl""" D to‘ L,

and of 4 .qs-e0s &, b0 all of L[xt], we may use (AS5) to exbond  dyyeees Oy

to derivations 4.3 L - L[X']. Those will satisfy (i) because {AS) is equivalent to (A1)

; We exbend these to derivetions on all of L[X'] by prescribing
LY L
(o) gy(x) = (@ ..d e (x)  (xqe X'y 1 <)

We elaim thet this makes di (1 <m) commute with each dj (n < Jj<n)

Indeed, they already commute on K; comperison with (A4) shows thaet they now
also commute on Xu X', Since 1 is separebly algetraic over K(X), we see

that the derivations [di, d;.;J will be O onell of L{X'], as desired.




It remeins to prove that [d..d-j] =0 for i, J<®m Agin we stert by
noting that this holds on K. To show it on I we recall that Dl""’ Dm

~ eommute there by hypothesis. In view of {Ar) this says that as opsrators on L,

(A1) 0= [Di:sDjt]= Repaase ¥ &5'5 45

Xl.’ﬁ ird 3_ (5j' )d - 93 j 3(55_11) d ) + Z 1y j' [,dJ].

Yow if we restrict (A7) o an equation in operators on X, +the terms of
the last sum are identically 0, This means thaf the other mmm -0
is also 0. Bub this is just a .line‘ar expression in dl”"" d, with fixed
‘coeffici'ents from K. Since dl"“’ d_n are linearly independent, these

coefficients must all be O, 50 (even over L) (A7) reduces to

- (At) ) ;,j Bi0g By [4;s. dj-J =0, (it,3'<m).

The sun in (A¥) is & priori over i:, j < n, but the terms with i or J
>m we have already shown to be .0', so {A%) reduces to & sum over i -, J <=
By (A1) it follows that the [di_, dj.} are all 0 in (AY), i.e., as functi;ons
L - L[x].

Firelly, wo note thet sine'e di~ and dj' both commute with dh for h>n
o ell of L[x*], so does [4;,. dj] Eence for x, € X' we see [di’ dj] X o
= [di, a (s N SR R s TR 4] x=0, since xe L. So
[d ’ d;j] =0 on L[x'], as desired. This proves the main assertion of the Theom=m.

Sinoe the formulas by whieh we defined dl""’ d, on L[x'] were

fwond ehiue by conditions (i) and (ii), the universal property is easily wverified.||
In the particular case of Proposition 5.7, we take for (L, Dype.. D)

the extension of (X; Dl....,Dm) obtained by edjoining to K an n-tuple of

ipdeterminates, X = {i‘l,.... i‘n} end extending the Di's by defining




x+ &

‘

Di(fj) = Sij’ Then the hypotheses of the ebove Theorem sre satisfied, end we

see that in the extension I{(X') = K(XuZX') the elements d, i‘j (1 >m) are

indeed independent indetermimates over K, .. ST,




