ON JACOBSON RADICALS OF GRADED RINGS
by George i, Bergman

Rings are associative with 1. In 881-2 we shall prove the following results,
thus getting the wellwknown results Corollaries 3 axd 4 ° ﬁa. more general arpuments '
thdn *those = I hawwe Seen in the literebwes . . - T n
Theorem 1., Let R be a (Z /n% )-graded ring, with homeogeneous component of degree
i € Z/ok written R,. Then if Byteetey )
Gﬁrollary 2.¥ If R is & % =-graded ring, then J(R) is & homogeneous ideal.

eJ(R) (a. &R. ),We heve na: &J(R) (0<i <n),

Corollery 3. (reference?) If R is a ring, and R[t] the extension of R by &

central indeterminate %, then J(R[t]) = I[t], where I = J(R[t])n &, » nil ideal of R.

Corollary 4, (Amitsur. See [1, p.252]). Iet R be an algebra cver a fisld ¥, and

F{t) the field of rational functions over ¥, in en indetermimate +©. Then
J(R e Mt)) = 1 @F %), where I = J(R o5 P(t))s Ry & nil idsal of R.

Some generalizations of these results are also indicated.

The radicals referred to above are defined without reference. to the grading
on R. However {as Hochschild remindéd me, though it .was already seci'ﬁtly nezsing
at my conscience when I wes writing sections 1 end 2) there is e version_,'ni’_‘ "c:ha
concept of the Jacobson radical eppropriaste te graded rings per se, and in 83 -
we shall ses thet the eame methods used in B81-2 yield information on the relation
. between the graded and ungraded redicals of R. In mﬁ.uul&r, when the grading
group G is ’ga,—:(:gr more generél;ly‘; is torsiom=frée abelian) we get J(R) -JG(R),'.-
while when G :is finite, it appears likéiy that one has the opposite inclusion,

J (R) ¢ J(R)! I prove the ls.ttef inclusion for G finite solvable. Possible attacks
oh the gemeral case are disoussed in 8845, '
/Rough draft, Comments end relsted |
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1. Simple modules and finite extensions. We need three preliminery lemmss, of some

interest in themselves. Throughout this gection, R € 8 will be rings such that

8 i=s f;Ln;Ltely generated as an R-module s by R-cent:t'e.la.zlng elaments.

[R a;] R

‘_‘-!'<a~<: = BRI

e . j-‘..__‘?‘ “‘1 -' -‘ - . o :_‘:, L w
' S fR al 2o + R al%’i.:-f:'

lemme 8+ Lot M  be a,..‘.ﬁimple;_glefﬂt S-module. Then M- -iszl-"semiSMPle of L
finite length as'a.left R=module, and all i‘t;s,_.sin}ple_ B=submodules are isomorphie.
Proof, - For eny monzero x € M, we have ' -
M=8x = Ralx-.-l- ess + Ranx, 80 M is finitely generated as an R-module. Hence it
has a maximal  Resubmodule N, Fori=1l,,.0., n, lot ¥; € M denote {y e ] asy € N},
Because each a; commutes with R, multiplieation by &; 1s an R-module
endomorphism of M, henee each Ni, being the inverse imsge of & maximal submodule
under ‘e module ‘homomorphism, is either a maximal submodule of M,_ or all of N,
Letting L= Npn...oN,..we See that M/L is an R-module of finite length, But |
note that 8§ L = ZR a; LCZR &y N CZR N = NfM, s0 as M was & simple S~-module,
L = 0, henee the R-module M has finibte lenzth,

Hence we ca.n’ehoose a simple Resubmodule Mo &M Now M=38 MQ = Z 8y Mys

e sum of finitely many homomorphic images of the simple module MD s from whiech

the desired eonclusion follows by the general properties of semisimple modules, ||

lemma 6. Iet N be o simple Remodule, Then 8§ GR" M is semisimple of finike
length es an R-module, a direct sum of coples of I
Proof. Clearly, S GR ¥ is spanmed as an R-module by the submodules a;8 M,

each of which is e homomorphic image of M, |

Lemmg ©. J(8)n R= J(R), with equality if 88M- is nmonzero for every simple
R-module My or if R is rationally closed in S (i.e., x € R, x™* ¢ § =» x"LeR, )
Froof. Say r & R - J(8). Then we can find a simple S~=module M not ammihilated
by r. As an R-module, M will be ‘semis:impla.;by., Iemmia.ﬂ-ﬁ;-,- béence will have & simple

R=submodule M, not emnihilated by r. This shows r # J(R), giving the first inclusion.



:Next, let r € R = J(R), Suppose 8@ kills no simple R-modules. Then we
take 2 simple R-module M not annihilebted by r, and form § 8, M This will be
8 nonzerc syclic S-module, hence have a simple factor-module - M = (I @R S)/N.
as an R=module, :
From lemma 6 we see thal , M': is & direct sum of coples of M, hence it is not
annihilated by r, hence r ﬂ J(8), as desired. Finally, under the-same hypothesis
r € R -~ J(R); -suppose R is rationelly closed in S. Since r ¢ J(R) there is

an element x € RrR such that 1 -~ x is not invertible in R, Hemee 1 = x is

not invertible in 8, hence =z ¢ J(8). |

‘Open-quesbions - Is the 'inclusion of ‘Lemme 7 ever 'strict?

2. Proofs of the main results ;,.i.'md greneraliz'a'tions.

Proof of Theorem 1. 1let % [wJ be the extension of Z in the complex numbers

by & primitive 0™ poot of wnity w., This is free as a % -module, of rank ¥(n).
Thus, if we take S = R e, Zw], R § will satisfy the hypothesis 6f the precdeding
:segbion, * - end since S8 1is free as a right R-module, S®&« will not annihilete
eny nonzero Remodules. Hence by Lemma 7, J(S}A R = J(R). 1In pertieular, . ...
Bateeota ) € J(8).

Wow we may grade S8 by pubbting S:1 = Ri & Z [w], and we may then define an
autemorphism o on § by of si) ==}:wisi (s5:€ -S:.L)u Clearly, an aubomorphism
sends J(§) into itself. Now for any i &€ % /nZ we eompute: z,"j w=id e‘j -‘E’(’a.c-h sete .. )

n=-1
=08, , hence this element lies in JHS)AR = J(R), as cleimed, ||

Proof of Corollary 2. Say }.‘é.xﬁ‘.'?-‘,{,fﬁ:fsg's'-':,E: J{R),: where. <86 By by € R:.‘ cNow

the: Z =grading on. R - induces & % /nZ -greding for each positive integer : .
If we %eke .n > res, the % /o =homogeneous ocomponepts of our elemewt will -
‘be precisely the a.'s (end 0), hence for emch i, n a; € J(R). But similarly

(.n+1)ai € J(R), hence 8, € J(R),“
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Proof of Gorollery 3. Clearly I[t] (the idesl of all elements of R[t] with

coefficients from I) is conteined in J(R[t] ). Convei‘sely let .-a.n'b'f"«ln“';,-r 8g € J(R[‘&] ).
By the, preeeding Corollary each e.iti lies in J(R[‘b] ). Bub R[’c] has an
automorphism sending t to t+l, hence ai(t-i-l)i € J(R[t]). Now applying the seme
Corollary to this element “to extract the degree-zero term, we get a; € J(R[t]).
Hence 8. & I, To show that I 1is nil, nobe thet if x e i, then 1 + xt will

be invertible, and its inverse must have the form I = xb-+ xa“b?’ - .‘..','hence '

for this to be a polynomial, some power of x must be zero, |

Proof of Corollary 4, Again, clearly I & F(t) ¢ J(R ® P(t)). To get the

converse, take an element of - J(R 8 F(+)), and write it f(t)'l(amtmh .o ¥eg)

(£ & F[t]~{0}, a; € R). Then clearly e t™...+a, & J(R:® F($)), and we nded to

0

. € J(R® F(%)). Now F(t) is not Z -graded, bubt it is

prove that each By

% /n% -greded for each n > 0, with homogensous somponents F(t)i = tIR($1), 1P
we apply Theorem 1 to the induced grading of ROF(t), we see that when n > m,

we éet na, e J(R ® F(t)), hence again teking two relatively prime values

of n we have ai'bi & J(R ® F(t)), hence maltiplying by -h"i, we have e; € I, a8
desireds To show that I is nil, consider F{t) -=as embedded in 'the-ri-.hg of
formal leurent series, F((t))+. Then in R & P((t)) , Wwe get the expansion (l-i*:v:t)"'.l
=] = xt x‘?‘tz - oo « But for this to lie in bthe indicated tensor-product ring,
the coefficients of the powers of &, nemely 1, =-x, xz,... must lie in a finite-
dimensiongel F-subspace of R; which means x must be algebraic over R, If

the algebraic element =x were not nilpotent, some polynomial in =x with zero
constent term would be e nonzero idempotent, contradieting =x e J(R & F(t)). So

% is nilpotent, as required. ]I



It is oasy bto get many more results like Corollaries 3 and 4, e.g. by
.. to R several | . ) )
adaoinmgﬂnomomutmg but Rmeentralizing indeterminetes; by tensoring an
algebra R over a commubtative ring C with appropriate rings lying bebtween
C and the rationsl function field of its fisld of fraections; ete..
It would be interesting Yo know for what classes of groups G one has
a.nalogsiof Theorem 1 or .Corollary 2, with G in place of Z% .or %zn." et us

obtain one ‘ensy gensyalization’of Corollary 2. We need two Lemmas:

Lewma 8, Suppose R;.=-xl_:_i.'§_1 Rys the direst limit of a directed system of rings.
Then ..J(R)g 1im sup J(R,)s :where the righb~hand.side is defined to consist of
those r € R whieh are images. of menbers of J(Rq) for some eofinal set of indiees
% Bquality holds if all the morphisms of owr directed system carry nonunits
%o no:punits (e.g., are inclqsions of rationally closed subrings. )

" Proof. Straightforward using the cheracterizetion of J(R) as {x | 1+RxR consists

of units}. |

Iomms 9. Iet H S G be groups, B a G~graded ring, and Ry EZH Rh R, a0
Hegraded subring. Then R; is rationally closed in R,

Proof, Immediate by the homogeneity of 1€ R.|

Theorém 10. Corollary2 holds with Z replaced by any torsion-free abelian group.
Proof. Follows from Lemma 8, Lemma ¢, Corollary.2, and the fact that any torsion=
free abelian group is a direct limit of free abslian groups of finite rarnks. To

prove the result for Z® one makes successive use of the n % -gradings. "

One ean similerly get Theorem 1 for anmy finite abelisn group A (with |A] for
n) but I know nothing ebout the nonecommutetive case.
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3. Graded radicals, If R is a G-graded ring, then elong with J(R) it is natural

%o look at . the following ideals

Definition.1l: Let G be a group, R a Gmgraded ring. Then by JG(R) we will

denote the ideal which may be characterized equivalently es followss
(1) The set of elements of R ennihileting all simple G-graded R-modules.
(2) The iargest homogeneous ideal J € R sueh that l+x -is a. unit for all
x€ Jn R, (e the identity element of G).
(3) The lergest homogeneous ideal J < R such that JnR, s J(R,)
7 If H is any subgroup of G, and RE denctes the H-graded subring Zﬂ Rh S R,
then JG(R)' can also be deseribed inductively as

(4) The largest homogeneous ideal J & R such that ' JnR, S JH(RH).

(Clearly (1) defines an ideal. The characterization of ch:.s ideal by (2)
is proved exactly analogously to the corresponding result f‘or. ungraded rings.
The equivalence of (2), (3), (4) is streightforward.)

From condition (25)-.é.bovg,i-'m gebi: o ou
Lemma 12, . JG(R) sontains all homogencous elements-of J(R)..:Hence by:Theorems-10 and _3-9
Whon G:is -torsion~frée abelisn: J(RYE J,(R), end when ;G.=.Z/nky: BIR) €I (R). ||

To see -that-the first of the.above:two inclusions:can be striet; let C be an
mgraded -aqmmuba'biv'e:vdomin and.:c[t] its polynomial ring, % =greded in the standard
wey« Then J(C[t]) =0, ~but. ng-‘(g[t]). =.J(C) + t0[t] (emsily seen from (3_)'.; I8
we adjoin én inverse to t, we again have. J(G[t,'b'l] )={0}, and now Iz (G[‘b,‘a'l]) =
J(C)[ﬁ,"h'l] which caniagain be nonzero.) ~'For exemples where the second inclusion is
strict just teke a case where R = Ry 8o-that _J'(:}'(S‘R"}f' =-J(R); but where J(R) # nd(R).
To- -siio‘w-: the first inclugion {endCorbllary:-2) can: fail when G = Z /n% , teke for n
g prime p and for R the group alga'bi'a of G over a field of charscteristic p. Then
J(R). is the augmentation ideal, but JG(R) = 0O,

But there is evidence thet for G finite one hes the opposibte ineclusion,

JG(R) ¢ J(R)! I shall prove this for fimite solveble G. We first nsed e Lemma



allowing us to pess to composition factors of Gs

lemma 15, Iet G be a group, N a normal subgroup, and R & Gegraded ring.,
Suppose thet JN(RN) s J(Ry) eard JG/N(R) < J(R). 'Then JG(R) c JR), (Here
Jo /N(R) is the radical of R with respect to.the weaker grading by G/N.)

e ,
Proof, By Def.ll, (4), JG(R)nRN = JN(RN}, and this ideal isAJ(RN) by hypothesis,
But RN\ is the identity component of R wunder the G/N grading; hence JG(R) is
a (G-homogeneous and thus),’G/N—-homogeneous ideal J whose intersection with the
identity component of that grading is conbained in the radieal thereof, Hence by
Def. 11, (3), JG(R) is contained in JG/N(R), which By hypothesis is contained

in  J(R}. ||

The next thing we need is some observations on graded moduleé., If R is. 8.
G-graded ring, we clearly have a "forgetful functor® from : G=graded R-~modules to
ungraded R-=modules. This functor has a right adjoint, which associates to an
ungraded R=module M +the graded R-module MG = @G_ b, where sach M is a cOpy
of M, written {x® | xe M}., end M¥ is made en R-module by defini-né, for
reR, reo® = {px)2B.* We remark that if we apply .the forgetful funotor to get
an ungraded R-module from M, <this will not in genéral be a direct sum of coples
of M - the component MB's are not R=-submodulés '(thougﬁ,,they are Re-submodules).
In fact, if M is simple end G is finite, I don't even know whether M¥ will
be of finite length, which obviously makes for difi‘i;cul'bies in using this

construction in studying graded and ungraded radicals of R. However, we.-

%To get the full ca’cegory-theoret_ic plcture, let us think of graded rings and

modules as many=-sorted glge?bras', ‘R.= :(Rg) éeé, M= (Mg) geG’ each "sort" of -

elements being a homogeneous component. THus one hes multiplication operations

R, x Rh > R., B, =x M.h - M  , but no addition of elements of different degrees.
B gh’ g N o

tader this definition théere:ake no:nonhoiogencousielementa™ in ~M»or: . Rs:rather
these appear when one applies the funcbtors Sum; which teke G-graded rings R to
ungraded rings Sum(R) = @ Rz» and R-modules M %o Sun{R)-modules Sum(M) = @ Mg;
Then we find that I s> MF 2 (M8) .o is a functor from Sum(R)-modules to
Remodules, which has the left adjdint Sum end & right adjoint Prods M e [[i,.
For G finite, Bum . and Prod-coiwcidei:«Tn.this paper 1 have, with EﬁSgivin'gsg,
foregone ‘the above "manysortéd™ approach-amd followed the standard the viewpoint
which identifies: “R .and Swia(R), or rather, regards .R as Sum(R) plus some
additionsl structure. Obtherwise more éxplénetion would hove been needed than
the lengbh of the paper would justify., Note that the constructions of going
from a Gegrading to e G/N-grading ebe. can also be described by "Swum"-like furctors.



can get a reasonably good hold on these structure questiond when G is finite

cyclie, allowing us to proves

Proposition 14 TLet G be a finite solvable group, and R a G~graded ring.

Then JG(R) c J(R).

Proof. Using lemma 13 we may clearly reduce to the case G =% /pZ . Using ths
ides of Theorem l, we may assume that R is a Z [w)] -algebré, where ® is &
primitive pth root of unity. ‘

Now let r be a homogeneous element.of R = J(R), take & simple ' ..
{ungraded) R-module M ‘not ennihilated by .  r, and:.form the graded -‘--R-modulexzm(j}v'._.;
Our-desirad result will follow if we’'ean show ﬁmt we can :E?oz_‘m a simple graded--
'fac’cor.-module-",MG/N,.".\and that. this is not annihileted by r. To do this we shall
show that as ap ungraded R-module ¥ hes s composition series of length bp,.
eech simple factor in which:is & .copy of M, _possibly "twisbed", but still not
killed by r: ‘then M/ will have e simple factor-moduls - M/N, - and this::
éannob. . be :annibiia,.’ced-.a;hy;,: a0 We must consider separabely two cases:

Cese 1, pM ;5 0, Then multiplicebion by p is imvertible on M, Now for sach

% [W] -valued character X of G = Z/pZ, let #* < ¥ Genote the imege of M

under the map x »s O{(g)xg)geé. Unlike the M5's, the M™s will not be homogeneous
but they will be (ungraded} Be=submodules. Hach is in fact isomorphic to M with

its module=structure twisted by one of -the automorphisms of R used in the proof

of Theorem 1. It is easy to show (using the invertibility of p on M!') that

MG= & qu, hence MG is semisimple as an R-module, with the desired sort of
composition factors,

Cese 2. pM = 0, Then define xw.ps By% M-P MG (0.1 <p) by fi(x) =

((g)x, voep (;)x, cesy (Pgl)x), and: let M(i) = fO(M)‘h“-i‘fi(M), The £ ere not

module homomorphisms for i > O3 bub one finds - £;(ax) =& £5(x) (mod uti=1)y (acRr).



(Begos if a & R_l,_'-x €M, one finds fi(a;x) = a(f;(x) + fi-l(x))° The general
formula is more-complicated.) It follows that each M{1) is an Remodule, with
M(i)/M(i-l) g M, One also haes M(P-l) = MG, s0 again we have a composition

series of the desired sort. ||

 Ves. Cohen & Ma.ﬂyo mJu?
resu b
4; The probl;{n with nonsolveble G. Can the above pres? be extended to more
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general G?f:/ Consider the following reinterpretation of what we have done above.

Iet R be & Gegraded ring. For simpliecity, assume R is an algebra over a

field K. Form R @ KG, 8 G x G =graded ring. Then for every ungraded

R-module M, one gets a {l}x G =graded R © KG-module M & XG, and one can

study the structure of this module in terms of the structures of M and XG fairly

successfully. Bubt this is not quite what we want to do. Let G G x G denote

take

the diagonal subgroup, {(g.g)] g e G}, andAR = (R ® KG)E, which will be the

subalgebre spanned by all elements r @ g where r € Rg” Then R is

isomorphic to R, and our e is essenbially M @ XKG with scalars restricted
~  Gis finite and _ ' ‘

to R. Now if;\we.;take a . composition series for KG as & left module over itself,

10 c Il & o.0 & 1,5, we get a chain of submodules M @ Io G a0 SHE@ In of

M ® KEG, with factoxjwmodules isomorphic o M @ (Ii/Ii-‘.\,)" and we may:look at

these: submodules: and. factonmmodulés:as: '::f{-:-.moﬁti'les.- When Ii/ Ii-i-l is one-

dimensional, vas is-always the-case when G is dbelian and K-has‘enough:rdobs -

of 1,~then'. it is easy to describe

Jhe Remodule structure of M @ (1i/11_1), and to see that this is simple if

M is so. But when G is noncommubative, there will be terms of dimension > 1,

and I don't know what to do with these; certeinly M @ (Ii/Ii-l) will not always

be simple over R,

be G=set-graded modules. If G is a group and S a left G-set, then one

easily sees how to define an S-greded loft R-module. M = ("Ms)sﬁsa!_'?!e shall




confine our attention to the case & = G/H = {gH ] g €G}, H =& subgroup of G
Note that as a 1ei;'b R-module, R can be considered G/H graded for any H & G, end

50 one oan speak of G/E«homogeneous left idealss - left ideals 1 such that

1= & (I RgH)’ We shell write N(H) for the normalizer of H, thet ié, {g € @}
g“lH g = H}, Then it is not hard to prove the equivelence of the deseriptions in
the following definition. To see that the left ideal described by (1) is closed
under right multiplicatiqn by RN(G)’ note that if r € R, g€ N(G), and x € My
(M a G/H-graded R-module), then rx & M _, but M cen be given & new _.,-'G/H*g;,rading

g

by putting NaE = MagH’ end rx is in the basepoint-component of this module.

Definition 14, let G be a group, H & subgroup, and R a Ge-greded ring. Then

by JG H(R.) we shall meen the (R, R }=subbimodule of R characterized

W(H)
-equivelently as follows:
(1) The set of elements of R ennihilating the “basepbin‘b-‘-.-compon‘_e'nt“._;MH of
everyisitple..GyfH-graded -R-module I |
(1') The intersection of all maximal G/H-homogeneous left ideals I S R.
(2) The largest G/H-homogeneovus left ideal Jc R such that l+x is a unit
for all =x € JnRH.

(8) The largest G/H-homogeneous left idesl J < R such that JaRy S I(By).

I suspect that these "radicels™ might be useful in an atiack on the question
of whether Jy(R) < J(R) for general finite G. Note that for ge G, mot
necessarily in N(H), one has Jg /H(R) R, < J5 /( gﬁg-l)(a). The following

concept might also be of use:

; Definition 15, For G, H, R as above, we shall denote by JG//H(R) the ideal

of R characterized equivalently as follows: _

(1) The set of elememts of R ennihilating every simple G/H-graded R-module M.
(2 - . |

(@ n get JG/gHg"l(R)
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