- notes on
FUNGTORS FROM FINTTE SETS TO FINITE SETS
by George M. Bergman®

Inbroduchion
In a course I wes teaching this Fall, to help give the. studenbs aifeel

for wha’g funchors are like, I proposed the following problem: There are a
large verieby of covariant and conbravariant funetors one can .cﬂnstruct from

the cebegory of fimite sets inbo itself. Any such functor F determines a
function f from the nonnegative iwbegers o the nommegative inbegers, by pubting
£(]%]) = |HX)| for all finite sebs X What can be said ebowt funobions £ thetd
arise in this way from funckors? Can we oharacterize them completely?

I

Working on %

his problem mysel®;.I eventually obtained s complete
charscterization of functions arising from combraverient funchors.end an almosh

complete charachberization in bhe covariant case; end in the process, some

interesting results on the structure of such functors., I have writben this up

here in rough form. I don't know whebher I will rewrite it as an article (with the

material better arramged, fuller justificabion of steps, ete. )e I would be
7 . )
inbterested in any comments on relations of thils material to other 13*:01"141:,."2 obc..

t will be mosh convenient to restrict ourselves to the ombe gory of nonempty

finite sets (with seb-meps for morphisms), which we will ecall FS. We shall

follew the set-theoretic convenbion that a positive integer n is o cerialn seb

of cardinmality n. If F; FS-» F8 1s any covariant or conbtraveriant funetkor,
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then for each imbeger n, consider the set of slements u & F(n) which are not
images under any maps F(a) of elements v € F(n-1) (a € Hom(nwl, n) in the
covarisant case, & & Hom(n, n~l) in the combreveriant case). Now T induces an
actlon of the symmebric group S, = Anth(n) on F(n). Hence tersuchAavﬁ;:wg
canassocigbe its Lsotropy subgroup G-;nén: We shall find thet G almost completely
determines the Behaviow of u under maps F(b) (b ¢ Hom(n,X) in the coveriant
case, b 4 Hom{X,n) in the conbravariant case: X & ob(Fs). )

Below, we shall begin by bbtainimg for every n and every subgroup G ¢ Sn

a functor P a: FE-> I'S (in the conbraveriant case; Q,
> — — .

g in the coveriant case)
56

as-sugsested by the above observabtions, and show that these finmchors are
"ouilding blocks" from which all endofunebors of FS can be constructed by en
extension process. The numerical functions associated with these building blocks
come from binomizl coefficlents in the coveriant case, and Stirling mmbers in
the conbraveriant case. Ih the latter case a streighbforward construction will
show that the PﬁﬁGfs can ocour in a functor F with arbitrary multviplicities. The
multiplicities do not generally completely debermine ¥, but they do determine the
assoclated mumerical function, solving our initial problem. In the combwevariant
case, conditions are slipghtly more complicabed and our resulbs jush miss
consbitubing a precise criterion.

We end with o few obssrvabions on the structurss of such functors F
The have & strong similarity to simplicial complexes, with the “huilding—

block® funetors in the role of simplices.



Oonkraveriant funchbors

Glven axy 4 & FS, and any subgroup G & S.A. =def

a contraveriant funchor EA ;¢ T8 = IS by putbing By (X)) = Hom(x, A)/E(e),

2

ilu*hFS(A.), let us define

where B(G) is the equivalence relabion on Hom(X, A} which has one equivalence
alese consisting of all the nonsurjective maps X =» 4, and such that the
equivelence clasw#cs of surjechive meps are the orbits under the induced action
of G. When |A| = 1, the first-mentioned %equivelence class™ is ectunlly empty,
but we ghall throw in an exbra "basepoint® anyway. Tt is easy bo-8ee how:bo
define Pﬁ;,;G(a)’ PAaG(Y)@PEQG(X) for any map a: X=>Y in FS.

Iet |A| = %. Then the integer-valued function associated to P . cen

A,G
be written 1 + (SA:G) P}c(n)’ where

p () = R - (D)™ 5o s ()

= the mmber of partitions of a set of cardinslity n into exectly & nonempby
subsets. (These ere Stirling numbers of the second kind. Without the 1/1},
the formula represents the number of surjective maps of n to k; it
ig obbained Wy inductlior from the formula E® for the %total mmber of waps from
n to k. )

Note that the funotors P, . can be thought of as funcbors from FS into

A,G
the category of finite sebs with basepolnb. By taking sums~with-amalgemation-

of=basepoint we see thalt we can geb o -Puhobtor giving axy huherieal fandbion of
b g Y TEney

the form 1 + ¢ pl(n) * o, %(n) +e.. s where the ¢, are nomegative integers,



'(f?nhieh;ﬁwe;idgf‘;}obareqmm bolbesalmost all zero, because for sach n, only
Bis+essp, have nonzero value et n, so the funcbors we obtain by such infinite

suins are still ‘ﬁ%m&ued.' Incidentally, note that pl(n)==l.)

We shall show thet ceopversely, every conbreveriant ;ffz,e"'zc‘.;*.;s:‘;f‘.tti‘i
Puncbo-TywRS#FE Inducesia fuickiontf of vEhis Pormi i F'meed hot: be, an)inf¥nite
o ——— — e — Fugty

Bgum" of functors P, o @8 above, bubt we shall see that it is in genersl the
e _

limit of & sequenece of extensions of functezﬁsi?‘ﬁ’ G'

It is clear how to define a subfunctor of an FS=velued funcbor, and if

sty

E' is a subfunotor of F, we define the guotiemt Pumctor E/F* to associate
te each X the set _FH‘_(X) with the subset F!(X) identified to a point. Weo
shall:say-bhat: thefuwioter:F istan-ekbension of F' by E/F'. Note that if in
this ;Eitua*&ieﬁ,i:the:‘fumtbﬁ;om asiociabed with Py, ¥, T F' are written:l+u, liv,
1#w, then u = vw. Ths "sums with amalgemation" considered above sre = spodial
case of extensions of funotors. (As another example, the funchor X —» k> is
‘an extension bf B s {e) of the!functor associating to X the set of all scecHim{X,k)
with [a(X)|< n~1, which in turn is an extension by the "sum" of (i) copies of
Biewl,{o)#"PE the functor giving hé sebofTa. such thet |a(X)|s am2yuides

| Zabonss sngvrsfde a;eontravamant functor F: FS => FS. Given any nonempty

(X renging over asome family of sets)

set § ¢ UI F(K), we oan define the subfunctor of F generated by § as the
funetor sending emch ¥ %o the set of all elements of E(Y-.) which are images

of elements of § under the various maps F(a) (= € Hom{YsX), X & F§). This
will be nonempby for all Y becmuse Hom(Y,X) is always nonempby!

For k = 1, 25 ++.5 lot us define f;ki),zho% The subfunctor of F generated

by all of E(k).* Since the idenbify map of k-1 factors through k, we get

rH ¢ Ff@? € ..., with F as the union.

Lemma. F( ) is s sum (as functorsw;thubaaepoints) of & finite family of
copies of Pl,{e}' F(k)/F(:lc 1) o 18 ln,kemse the sum of e finite family of

{ functors of the form P, , for various subgroups G of sk
) k,G’




Proof. Since 1 is the final object of FS, hemce the initlal object of 2?_0,
_F_(l)(x) will consist of e canomical image in F(X) of F(1l), for each X. Using
the faot that there are also maps of every element of FSD back o 1, it is

ensily deduce that r(l) is isomorphic Yo the constent funetdr: with walue F(1).
(1) with smalgemation of basepoints
Say F(1l) has n elemen’cs; then F can be represented as the “sm: of nwl

coples of Pl {e}

Jo=
Yow let k > 1, H = F(k) /F( ) We note that the collapsed subfunctor

gfk'l) S _;g'_( ) indnoes basepoixts by € B(x), that H(J) = {04} for j <k,

and that H is generated by H{k). We shall show that any funchor :il!: with these

properties is a “sum“of funcbors p of the form P,

Ja¥
Let Ug G(k) be a set of represanta‘hives for the orbits other than {ak}

wader the actiuﬁ of .(_}‘_(%) on &(k), Denote:the Lsolrépy subgréupd of ‘eacif:-m € U
byo@y@ 8w Toprovenour claim i% will suffice to shows

(1) Given w & U, X € FS,+a € Hom(X, k), we have G(a)(u) = og @ 8 is
not. surjective.

(2) Given w, u* € U, X & FS, end surjective =, &' @ Hom(Xk), if
G(a)(u) = g(a*){u'), then u = u',

(3) Given u e U, X & FS, and surjective a, a' @ Hom{X,k), wachave

9‘(“).(“) = G(a')(#) e arE Eu'_a.._

(l) and (2) are sa;m@ln& In (1), %o go‘b Rgmth, zao’sb"‘hha:k mmnsurgemtive
ma@ 8 oan 'ba fac‘bored 'bhrough k-l and G(k-l) = {:ak 1]. To get M=t yote
-hhat if a is snrgoe‘b:we, it imrigh‘h iavertible. In (2) » we chnase 5 r:.gh't
inverse bokoleds Applying G(b) o the eqm’ai.on G(a)(n) = ga® }(u'), we got
G{ab){u) = u*t. By (1), this means ab € Sy» and since ﬁ'ia a set of orbit
repregentatives, we must have u=u'.

In (3), "e==" is trivial, but "= " is a&rbit suwrprising.  «Tha:idea of i



isy din order for the element u to be able bo distinguish between surjective and
nonsurjective meps of sebs into k (which we know i% does By (1)), it must also
be able to distinguish smong surjective maps that differ by more then the action
of the. a.u.‘demorghiams_pof k, Indeed, suppose G{a)(u) = G(at)(u). ‘As in the proof
of (2), we choésa by k=» X with a'b = I, end find G(ab)(u) = uy.s0 ab ¢ Hu =
8. It will olearly suff:i.ce to prove the elsments a' and a% = (ab)-la € H a
equal.

Nove that a' and a' both have b as a right inverse, and satisfy G(a')(u)
= G{a")(u). Suppose a' # a"; choose x € X with at(x) # a™(x). Define ]
6 & Hom(ﬁ,x) %o agree with b except at a'(x), and teke this %o x. Thus
ate and a% both equal the idenfi'by functbion except, perhaps, at a'(x). The
i:'ormer‘, in fact, leaves this element fixed as well, so ato = Ik" whila the
latter akes al(xz) bo a™(x). Since it differs from bthe idembity ab exachly one
velue, it mist be nonsurjective. Hemce o, = &lafe)(u) = o(e)a(a™)(w) = &le)a(ar )(w)
)@ 0 = contredictionl

This completes the proof of the lemma; and our assertions sbouwb obteining

arbitrary functops as extensions of the Py,g follow. We hence ge*bi

Corollary A Punction on the positive integers is induced by som::émrbz‘savsriarrb
functor FS =» F8 if end o_nly if it is of the form 1+ oqPy + O, * ver

(ck 20, p, a5 on pi3.) In particular, for f such an induced funmetion, (a) if
& o k" for some o, k, then £ is a linear combinabion with ratiomal coefficients
of the functions 1, 2%, ..., k™, while (b) if :E(l)ﬂf(z)=...=f(k—l);éf(i:)', ‘then
£(n) > p(n) ® K/t

- Comment: Iet us burn beck to the point where we defined the functors PA G and
[ ——————— . »

. suppose we had not decided to "adjoin e basepoint" in the case JA] = 1. We



would heve %ot'ben fanetors PA go 2greeing with PA @ for [A[ > 1, but with
P;’ . 1’ :;n‘%he trivial {onewelement cons’cant) functor for jal = 1. I;l
the above development, we took cunning advantage of the feet that the

the funchor B 1,{e} equaelled the trivial functors On the one hand, it absol¥ed

us from eoasiderz.ng separately the i‘unc'tor P vwhich does not fit nicely

:{O}

imbo - our Pormily of P. .=, becausa we sterted our constructions with the

oY
"hasepoint" fomctor; on the obher hand, we dldn't have to worry aboub disjoint
gums of more Lthmn one copy of the trivial funcbor, because we get these as
'smns-wi"bh-mlgama'biun—of—be.sepoin*h of copies of Py (e}’

In the coveriant case, We shell have a similar femily of bulldlngnblock
7 for the funcbovowe:rget whion
Punoctors QA G’ and againg all have o basepolind excep’c when ]Ai*l. But in
this cade, Qlj h} will not be bhe-trivieltfuhbbobrbht the idenbity functor.
We—:;sha.li:.L:ﬂndzithgt«:gjg%?g?ﬁ?xisi: oo Yminimal! functors under the partial ordering
‘55 embeddable i‘n“: the trivial fumotor, which cam be written %,{e}’ et She
Identiby fancbor, th" te}. SPhiSrPrebowill prevent us from obbaining & complete
solublon to our problem, insthe |

Covarient oase Given sxy fimibe set A, including the emply set, and any

suﬁgroup G of Aub{A), we gebt a coveriant funebor QA,G’ FS»» FS by pubting
QA,G(K) = Hom(A,X)/E, where E identifies orbits under the action of G, and
Limpsdllopeninjective J':ug.-p.;;.toge’aher, In this case we will not adjoin a
besepoint in the cases |A[=0,1 where all maps are injective; end we find the
associatéd.integer-valued functions are: ‘ ig (132) for k=0,1
I+ i, (E) for k = 2.

We will have To work both with functors with snd wilthout basepoinis.
In particular, we see how to define an extension of an 'a.rbi.’crary functor
by & fwacbor with basepoint, to get an arbitrary funetor. E.g., the

functor Hom(2,-) is an extension of Q,{e} {without basepoint) by Qg, (o}




{(with basepeint). Note that by teking:'"sums with:gmalgemation of basepoint"

e
V ; 3 o n n n
Ql,{a}’ we can reallze svery function of the form GD(G) + cl(l) + 02(2) teer

of funetors @ f-*-"ri*‘-:::.s},ﬁ.irr_?;‘_2 - 'andf.fthrowii;:é Yin: disjointiy -copies of % (@ 3
, o {8}

with ¢y > 0, all other e, 2 0. But there are other funetions we can obbain,
Sefes (?)' .

Given s functor Fi FS—» FS, we define :.‘f_(i) (i=1,2,...) a5 in the covariant
cese. The analog of our earlier lemma can be broken into two parts, one of
which d.iffsrs from the contraveriant case, and one of which is quite analogous

to what ie true in thafcase. The different part is:

Lome Fids the: wikignefiar finite: faitlfsofidi sjobak subfmotors,, each ofiwiich, ;-
Sonbading exactly-one é%ﬁa&z&éﬁﬁ@f;ﬂ:é. <iPurther, ‘u funcor Gugenerafied by aiu.ls |
siﬁgief;:elemen'h w€G(1l) is isomorphic o either er {e} °F Q]_’{ e}s bence each
of the subfunctors intie which we heve pertitioned P has a unigue minimal
subfunctor of one of thess forms.

Froof Tirst assertions 1 is the fimsl element of FS, so every element of
eny F(X) has e umiquecimagecin s ':;:;r Partitioning the elaments of these
sebs according to their imsges in 1, we get the desired parbtition of the
funetor ¥» Second mesertions it is easy %o show That if the two maps of

1 into 2 send u to the seme elament of ((2), then G = QO (e}’ while if
3

they send it to two different elements, G ® Q {e}’
= i

Yomme TFork>1, _Bl(k)fi(kﬂ) is a sum as functors-~with=basepoint of a
finite femily of copies of Qk}(}’ for wearious subgroups & of 5.

Froof Exactly analogous to the contravariant case!

Corollarz For & function on the positive lntegers to be induced by &
covariant functor FS —% FS, a necessary condition is that it be of the form

°0(3) + cl(’f) + “3(%) *ess With all ez 0, end oy or ¢y positive. A sufficient




§ condifion is thet it have this form with Cq positive. In particular, for f
suech an Induced function, (a,) if f<¢ :ﬂ‘: for some k, then f is a polynomial

function of degree < k, and (b) if £{1)=£(2)=...=0(k=E)Fefk) (k>1), then

#(n) = n if k=2, £(n) > ) if k>2.

In thelcombréavariant case, our funclhions P, were linearly independent,

sach teking its first nonzero value at n=k. In this case, (E) and (E.f) both

take their first nonzero value {for positive n) abt n=l, and in fact, there

is precisely one "dependenpe relation® (not a 3.’ines.r_ dependence relation in

the usval senss because it irwolves infinite sums)s
)+ (3 * (D e =2 e (B e (D () en
Andiiw fack; each side ol this Felation-oun be repredentsd by s furetor:

- Glvemosny Hed ;;Fﬁg'i-lat‘zg{m}ﬁidm ‘hecedbiol all%/Wevelued” functioks oncK) cand

“rgivén £5X-» Y, and u € B(X), define B(£)(u) € B(Y) by B(£)(u)y) = 1

=0 ()

E e ey T TN S VOT. NP D S AR o, Sha g e e me e £ 4 iyt ey b g d T gl .
B B S R B R R N SRR NCTIN P ,\,,\;',--JVLEME.;‘»'-:\;.,;H B R A TR T

If we thirk of B(X) as consisting ef all subsets of X, then we see that for weB(X), the
parity of g{igsj_{?fa(ziz)1..eis';»th,;am;-;a’aiza_mﬁ:cof,]u'| ; iFtfellowsithat B decomposes
&5 the disjolnt wnion of two functors Boaa and Bevens Which, respectively,
associate to X the set of all its subsets of odd cerdinality, amd the set of
its subsels of even cardinality. Bach of these _induces the seme integer-
velued function, Zn"’}', bub it is easy to see thet the first is the union of
| e chaln of exbensions whose successive facbors Mvé-ﬁ.fuhetiema-(ai":i)g;’:;(%),i;w. >
while the second gives (g), (g), (2),... .
(I% might seem that this nomuniqueness could be cured by considering
functors on the category of ell finite sets, i.e., bringing -in f. While it

is true that Bygg and B,.o, would then differ on f, there exists a funchor
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L such vhet |E(B)] = 2, |B(A)] =1 for |A] > 0, and we see that [E + B 44|

. While we're on the subject,

induces the same function as I.....O {e} * evenl

nobe thet the difficuldy in getbing an ezact criterion for an inbeger=-valued
function to be coveriantly induced would disappeax if wé considered fumetors
inte the category of Tinite sets with Basapainﬁ. The answer would then be

precisely the condition given as "sufficient" in the last Lemma. I% appesrs that %fe
© would get equa.lly compie te results (slightly different in detail) if we made the dpmaln |
catbegory finite polinted sets, and the range al’cher FS or the same as the domain. I[Eo“be
c%;a:h the atruc'hure-’cheoretm (a.s di#stinet from the numerical) perts of the above re}sultsé

|
T are aqually valid without he finitmmess condition on the sets of the range cauegox{ﬁr )

Por any odd positive integer 2k+ l we can g&‘b the function ' ' l
B tesrlgh)s mrom 5L | |
| For auy posilivé: inbéger X, weiget i;théxi"e.aﬁ‘lzﬂcfbioni"-;'(?:)%@gi}:&a:'>. @-(’;‘:) from
_C-‘_(k) > where C associafes to X the set of all nonempby subsets of X, and

to s map £ X~» ¥ the map teking u € C(X) vo £(u) e c(Y).
| For amy kx> 1, let § ;< Sk denote the isotropy subgroup of the elemers O.
Form the qudtient of Hom(k,X} by the action of 8y .1, and then identify amy

two noninjective maps if they agree on 0 € k. The resultipg functor is an

extension of Gy ¢,y 7 @ 5, » and it induces the function ::(?) + k()

1% o Allivhisesepvesitocroming us that:the Feally iiterosting: problem is not
'hha"b of 1n&ager-valned mnctiansi b'a'b 'i;he,h s’sudy of functors from FS to FS.
The in’ceg;er-valued Punctlons gave us a sufficiently specific and itracteble
"test~question" to lead us to discover some basic structure-thesory of these
funaetors. We can now sep that, din Bothithe coveriant and contravarisnt
cases, a bPasic problem ls how to deseribe the extensions that can exish

among the functors Py,gand Q oo Te can meke a few observations on this polinmt.
s s
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lGiven A and G as usual, lot us define ‘EA,G and 5A,G a5 the functors
obtained by dividing Hom(-, &) or Hom{4, =) by the action of G (but nod
identifying all nonsurjechive or noninjective maps. If we had dohe dhingd ~outw
rights e muld have sbarted with these funchors and obtalined P and Q'

"'A’ A,:G'
from them.) It is sasy o checks

| Lemme. Iet A and B be disjoinb sebs, and G, H subgroups of §, and S;. Then

_ A
~ . . ~ ~ "~ . o ~ »
Pox, Gamt = Ea,e im0 and  Qn m . S, T SB,E
. . . Y Bkel) _ ~(=1}
ir [A] =k > 1, define 3.13;&,(} —EA,G s 2aRd 3QA %, Then we
see that P B _A’G/a_% and gﬁ, ¢ = %\., G/a 6" Purther, we finds

Lemma = Extensions E of & funcbor F by P (res B. Q ) are in natural

—ﬁ;G -_A-,
1-1 correspondence with morphisms of functors g ‘_J‘_ (resp. ___& g) - I

ey

To be precise, avy such E can be obbained in a unique msuner as the pushoud

of a diagrams ?:%,G -5 7 | (resp. ’agé @ B> ;Ex’ Je
: ‘ v {
24,0 =k Q&A,,G ----- >E

W ~
The analogy with geometry is striking: The P's and Q's are "simplices®
or Yaises", the P!s and Q's Hapheres®, "3.‘“(}‘:) is the "k-skelébon" of F. Bub we

hé.v‘e different kinds of "k-simplices® cgrrssponding to different subgroups

This relabionship with geometry cen, in part, be made precise. Let SC
denote the category of finlte simplicial complexes and simpliciel meps. Then
the full subcategory of all simplices:is equivalent to the category of finite
sets, since a map between simplices is Jusbhralael~uap:bf thée-werticess Hence
from every C € Ob(SC) we got & conbrevariant functor from Simplices ® FS into

P8, defined by Hom{=, ¢). The functors F5~» ¥S so reslizeble aresprecisely




those whose Moomponents® Pk under our decomposition all heve G = {6} and are

£y
cormected by boundary-meps (a8 in the preceding Iemma) which are all 1=~1., In fact,
the full subcategory of functors of this sort in Funcﬁ(EE??, FS) is eguivelent

to SC. '(mf one is willing to stretch things, one csn even enlarge 8C bo o category
of "geometric™ objects which represent arbitrary members of Funct(gg??, Fs). On
the obher hand, if we halte a simplicial complex € and look at the covarliant funchor

(D)’ A0

)s

so we neither obbain inkeresting information about €, nor a large class of covariant

Hom(Cz =) on simplices, we find thet for any simplex O, Hbm(cluéj & Hon(C

functore. We have uot besn able Ho find any geometrie realization of general
ecovarisnt functors.)
It would be Iuberesting to see whether homotopy and other geomebtric concepts

have analogs for thesge functors.
‘ : : Winber 1971-72

Mddendwn. Maroh, 1973. - . S - L

Here are some related references that have been brought to my sttention. -
Ttems [1]-]4] study. .covarient and contraverient endofunetors of the category 8 of
all sets., The question studied in |5| is analogous to that. studied here. In
BVI1.5 of |6, ™simplicial objects” in an arbitrary category G are developed as
contrevariant C-valued funchors on (a skeleton of}) the category of finite totally
ordered sets. g ' R '

{1l V. Trrkovd, Some properties of set functors, Comment.Math.Univ.Carolinse EERE :
: 101969 ), 323=352. . . S " - T
[2] V. Trnkové, On descriptive classification of set functors, Comment.lbth. )

o Univ. Cerolinee, part. I3 12(1971)143-175, part II; to appear,
13 V. Koubek, Set functors, Comment Meth.Uni¥v.Carolinae 12(1971)175=195.
[4] V. Koubek,(to eppear, same journal). B

[5] D.B.A. Epstein end M Kneser, Functors botween cetegories of vector ‘spaces, pp.l54-170"
Catogory Theory, Homology and their epplicetions, IIT, Springer lecture Notes 99.
le] s. Maclene, Categories for the Working Mathematician, Springer Graduate Texts
' in Mathematics, 5, 1971, L ' o

Addendumn. May, 2010.

The covariant cass, whichk I was able to solve here only up to a possible
added term +1, is completely solwved in:

[7] R. Daugherty, Punctors on the oategory of finite sets, TAMS $50 {1992
§59-886. MR 92£518001. | tiese)

- 1 The MR review of that paper points to further related work.



