' NOTES ON FERGUSON AND FORCADE'S GENERALIZED BUCLIDEAN ALGORTTHM

George M, Bergmen

1. Background and introducktion. ILeb us recall some of the imperdant properitiss
of the Buclidean algorithm on .pairs of real numbers o, ggz_

If and. 3 are commensurable, the algoritim yields their "common measure",
“i.e. a single generator for the additive group they gensratey Thé pair is
commensurable if and only if o end 2 are linmearly dependent over the inbegers,
and the elgorithm in fact yields an a#plicit equation of linear dependence. For
arbitrary o and 3, the coefficients arising in the application of the algorithm
are the enbries in the continued frection expanéin of p/tx, whieﬂ can be used to
construct good rationel approximations of this ratio. 1If [:‘/o( is a quadratbic
irratiomality the sequence of coefficlents is evenbually periodic (proof recalled
in 820below), and from its periodic part ané can construct um‘.ﬁs in the ring of
elgebraic izrbegerrs in Q(g/a). ' .

Given e family of more than 2 real numbers, Nqseees Fp, One can still use
the Buclidean algoritlm to find & common measure if they are comensuré.bleq_ By

-repeatedly reducing one or another of the terms by & smaller nonzero one, one can

eventually gebt o tuple of terms of arbitrarily small gbsolubes values, unless ab

-
i

some step one's tuple hes only one nonzerc term, forcing éne to stop. Ir ’c:hie‘ :
elements one begen with were all commensurable, the process must clearly ’cermiﬂata
in the above manner, andr'bhe final nonzere term is the common measure.
However, “this versi;)-n of the Buclidean algoritim does not have any of the
: , | .

obher properties described above. For insbance, if one starts with (&1, Ko s ots) =
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(1,2, l+f§)-, it is not hard to show that one can carry out a series of subtractions
leading to arbitrarily small 3=tuples, but never one with a O term, so tha’t one
may never "discover" the linear relation ofy +e&g =Xz = 0. (E.g. first decrease
%y by &, then decrease s by six times the modified %ps etc.. )

The problem is that there is too mueh freedom as to which term _'L-o reduce
by which. There have been attempts to remeédy this by settimg arbitrary rules,
For instance, in = proposed gersralization of the Euclidean algorithm which tas-
been studied for many years, cailed the Jaeobi-?erfon algorithm, one starts with
an n~tuple of positive real mumbers indexed oyclically, and successively subtracts

from each term the lergest integral multiple of the preceding term which leaves e

_nonnegebive reminder. It was hoped thet if one started with an n-tuple of walues

forming a Q-basis of a number-field X of degree n, the process would become
periodic, leading to a construction for unlts in the ring of algebraic integers
in K. But inlgeneral, such algorithms turn out to work in some cases and fail
in others. Intreducing arbitrary regularity inbto the procedure does not give the
same benefits as the essentie.l unicity of the c]_.e.ssical case,

Recently, howéver,‘ H. R. P. Ferguson and R. W. Forcade have found an
algorithm which will find a #% -linsar dependence relation on an n~buple of real
numbers whenever one exists_, and their approach changes 6ur wnderstanding of the

nature of the whole problem. I found the details of their announcement [1]

_ diffiecult to fbilcrw, but was able to exbract two key ideas, and work out a

“Fergusan—ﬁ'orea.de type" algm'l‘l:hm. similar in mativa‘lnen bub, not: in detail to .
theirs. T will develop it biristically in §§2-¢4 bolow. 82 contains [
the Lemms which pubs the problem in & mew perspective. In 83 I apply this idea %o
broduce a relatively simple algoritim which works for n = 3, 4, but unfortuietely
not for higher n., In 84 we introduce another idea frem |1], and with it oonstruet

an algorithm that works for arbitrary n.



The remaining sections explore various consequences and related ideas. In
particular, in 56 we étrengthan--fthe- algorithm, and-in 887, 8.note some conseguences
. concdrning‘ subsets, subgroups and subspaces of real vector:spaces. §10 contains o
proof of {qh-g result ?f ;B,gra._:age, Fhat the ean‘tin_ued fraction expansion of 8 real
V_q-;xgdratic irre.tienaiity is périodic, E.igd recells l_w_ep- this leads %o a construction
| for units in qudratic number fields. In B11, I disouss the question of whother
the present algorithm may have analogous properties for number./fieslds of higher
'_-iiagrae.- 813 is an appendix in which 1 Prove some curious results about finitely
generated denss subgroups of real voobor Spaoess: related o the diseussion of 87,

This subjeet is far from my own field of work, so I would particularly

- welcome any commente on this material, #

" 2. Diophantine conditions. ILet us write PR  for the space of all column-

vectors of p real mumbers, BRI for the space of row vectors of g real
nmnberé, and PRI for the spece of all p x g matrices of real mumbers. We
shall consider BP and -PR’ dual spaces via the obvious pairing.
.G:'gs{en é.- (ginite' seq'geﬁce of réa.l mmbers o .. 9%y equivalently a

vector e R™, we wish bo..search.for s %= linear relation
1 . = -
.( ) oty b(1)+ cee t Oy b(n} ¢ (b(i) € Z, not all 0).

We moy generalize this problem by replscing the Wi € B by column vectors

a e MR, We assume these linearly dependent over IR » and ask whether they
satisfy e linear dependence relation (1) with éoeffisients in. %. Here without
loss of generality we may assume the o, span "R over M. (since obherwise

we can projeet - "R ombo m'<m appropriatély chosen coordimates and get vectors

a&i, cauy m!’l satisfying the same linear dependence relations in T R ag the of;

setisfy in ™IR,) In particular, m< n; let

n.o=m-kor. ..

*I-should also mention thet this material has expanded to an unexpected extent
as 1 have written 1t up, and I do: not have the time free st present to de a _

. pelished job, sp I apolegize for the mmeven exposition.



The given data ¥is.aeyef, oanbe looked at a8 an m x n matrix

Ae DRE,

The question of whether the columns of A satisfy a relation (1) can also be
formulated in berms of the rows of A. COalling these al,..., I it asks:
does. the space spanned by the row vectors 8,s--+5 8 ~lie in a hyperplane

He RY described by a linear relation with integer coefficients?

To look at this in still another way, let us consider the space of all
column vectors b e PR awnihilating all rows of A. Tt is easy to find an
R=-basis for these (usingthe row-reduced echelon fHrm & A), say Bg seeey By €

PR, et us form oub of these a matrix
B e BRY,

Then the question of whether a relation (1) with integer-valued Bp 3o se5:2(n)
holds is equiwvalernt to ésk:ing whether some nonzero linear combimation of the
columns of B has integer enbries. Now a general linear combination of the
columns of B has the form B e (ce& TR), The veetor o represemts a linear
funetional on IE{r, so the given guestion taices on & fourth forms Doés there
exist a nonzero limear functiomal on RY which gives inbeger values on all

the rows of B ? To summarize ths above obserﬁtions, let us make the following
definitionss.- .- :

A lineer Diophanbine relation satisfisd by 2 family of elements of a real

vector space will mean 2 R=linsar dependence relation .sa,tisfied by these elements.

A Diophentine peint of R (o R®) will'méan a point with inbeger coordinates.

A Diophantine hyperplane in R®™ (resp, ™R ) will mean the annihilator

of a Diophantine peint of "R (resp. RT),

A linear co-~Diophantine relation satisfied by & family of elements of a




real vector space will mean the condition that some specified nonzere real linear

functional on the space assume inbeger wvalues on all thése elements.

lemma 1. Lot m, r be posibive irfcegers, and A€ mmm-!-r’ B e ®FRY 1

matrices such that the rows of A form a basis for the left annihilator space

of B, and the columns of B form e basis for the right sanmihilsbor spece

of 4. Then the followipg four conditions are equiva}.en‘h.

(i) The columns of A, AysecesOlyins sabisfy a linear Diophantine relation.

(i1) The wector spage spanmed by the rows of A, Bysesrs 85 lies in a
Diophantine hyperplane in R ¥'®,

(1ii) The vector space spanned by the columns of B, b, seees b, contains

a Diophamtine poimt of TR, ’

(iv) The rows of B, Ryse-+s fuips Sebisfy a linear co-Dicphentine relation. |

How does one picture condition (iv)? If o e YR is a fized nonzero vector,

then the solution~set of the aQSOciated oco~Diophentine relation,

(2) {fbeRY | pece)

ﬁll be 'l:ﬁe' union of a family of regularly spmced cosets of the hyperplane
(3) {b]be =0}

Clearly if Pyseees fiy lie in the set (2), so does the whole additive group
G that they generate. Note also that from our hypotheses relating 4 and B,
it can be deduced that /:&,...o,/gn span R asa vector spaoce, 80 G will
not lie entirely in the hyperplane {3).

Suppose now that we try to modify the generating set /31, sees ARy of G,

by adding to one [3; &n integral linear combination of the others, and iterating



this process with the aim of getbting “smlier“ generators. Clearly there will
always remain at least one generator not on the hyperplans (3), hence we can
never get the maximum of the lengths of these generators less than the distance
between successive coselts comprising (2).

What Ferguson and Foroede show by exjglicit eonsﬁruction is that conversely,
if (;1,..., ﬁn do not satisfy a co-Diophanbtine relation, then one can
get arbitrarily "small™ pgenerating sets for G, We shall do this in the next
two  sections.

When these constructions are applied to a family of veohors which do : .
satisfy a co~Diophentine relation, they termimate by giving & family /?.1,... s fn

such that

(4) all but one of the A; lie in & common proper hyperplans (3).

of {3)
In this case the Iinear funchiomal s normalized to have the value 1 on

the exceptlonal -[Si, yields the desired co=-Diophantine relation.

Inﬁ?,&-:méhﬁil nobe consequences and inﬁerpﬁe‘hations of this result in
terms of all fdur viewpoints of Lomma 1.

Note that two poinbs 0(1, qa of the oneé=dimensionsl s,pa.ce‘]R satlsfy a
linear Diophantine relation if and only if they satisfy a linear co=-Diophantine
relation. This is why the type of procedure that must be applied o B in the
general case can in the speclal casé m:=r = 1 of the classical Buclidean

algorithm be applied diredtly to A.

Remgiricss PFérgusen and Foreade |1[ consider é__:;ply the case m =1, Thé :
egquivalence (i) <=> (iv) of Lemmm 1l above is implicit iy their method. I have
itbroduced. the additional conditions (ii) and (iii), and allowed genersal m, ‘for
‘the sake of 5y

tey-and beawty. ~However, in §85-5 we will ales restrict ourselves



to the oase m = 1 for simplicity, and- ﬁork only ‘with the viewpoint of (iv), i.e.
that of trying to find co-Diophantine relations. . In 86 the algorithm will be
generalized to arbitrary m, é.nd in 87 we consider consequences expressed: in terms
of.the viewpoints of conditions. (1)~(iii).

We also menbion that as a masu;'e of the "size" of a vecter which they seek to
reduce in the courase :-'.nf their algorithm, Ferguson and Fercade wse the maximum of
the e.bsalnﬁe values of the coordinates. Here we shall instend us the length of the
vector under the standard imher product norm onr RT3 we shall write |x| for the
length ‘éf Xe |

To avoid excessive complications with indices, I shall regularly abuse notation
by using the sames symbels for a system of vectors with which we start, e.g. Brevees Bes1s
and the systems inbo whioh it is transfarmed at various stages of our algari'bhms.‘
But these m.ll be distinguished by contexb,e.g.“the original system [31,...., r+1“’
"the walue of (5 after this step", ete.. Occasionally, when there is & need %o

disti_ngm.sh these symbelically, I will do so using primes or supersecripts.

3, Algorithms for amall r, Given r+l vectors in ]Rr, we wish bto investigate

" whether they satisfy a linear eo-Diophantine relation, by the methed indicated abeve.
Consider the omse of three veotors, My, i, (3 in the plane. Say [p,] <

{(5 f<ip | Now if f, and (Sz are enliﬁear I( pictured as arrows from O), then

we alree.dy have the situation (4), which gives s.‘eo-})iaplmrrtine relation. So assume

the contrary. It still may not be possible to reduce the lemgth of f3 5

subtracting an integrel multiple of [?rl or [5 This can be ssen in tha?. illustretion

below, where the circle shcws ‘the set of vectors of length equal to that of B
'/F‘

[ty
-



I{m-vi'er, 1 claim that it is possible to reduce Iﬁsl by subtracting some
Z ~linear combination of {51 and {32. For consider the lattice Eﬁ 1+ B [.22.

' This dissects RZ into parallelogrems with sides {31 and ﬁz, and the vector ﬁs
will lie in (or on the boundary of) one of these. {To find this parallelogram
computationally, one inverts the nonsingular 2x2 metrix (fv,l); the inverse
matrix converts the lattice in question to the latbice B2 < JRg, and the square
of this lattice containing 'bhé impge of [33 me be found from the integer perts
of the two coordinates of thi.s point) Xow the distance from [35 to the ﬁearest
of the four vertices of the parnllelegram eont:s.ln:l.ng it will be < (\/:_?. / 2) ”’;2[.
We omit the details, simply neting that the wors'b case is when the paralleogream
isa square and - 135 is its center.

Hence, if we write n

+n for this lattice point, and pé =

1 T Pl
@5-11]3. n,fB,s then Iﬁl/”il < Iﬁé[/lﬁal 5_./?/2. It is easily

deduced that (|g | + [p | + I/sz;l) ZUBL 1B+ Ugl) = 2+ 2y v 2+ 2).

Hence by iterating this process, we cen make }fgll + |ﬁg| + 1Pyl arbrbra.ri]y sma 11,
or else discover a linesr co~Diophantine relation.

The seme argwent works for r = 335 in our estimate: we get /¥ / 2 in place
of VZ/ 2; as: this is etdll < 1, it is satisfactory. But for r >4 we get
\/‘/ 2 >1, and the argument fails.

(Actwally, in the marginal case r = 4 it can be saved. One first notes that
| if the lattice '[?1 *eee R 43 differs greatly from a regular cubic lattice, or
if (s deviates much from the center of its eell in this lattice, one can geba
bound < 1 for Ip'i / Iﬁsl If the lattioe is olose to cubic and ﬁs degs lie
near the center of its e¢ell, bubt if this cell does not have 0 as a vortex, we

cen decorease the length of [55 by trenslating it to a nearer cell. This leawves the



case where the cells are a;.»;ppmximtuly' oubic, and -[ja 1ied near ‘the center of a_
cell with one vertex at O. Thus {up to signs), fbg 35 ¢, +ﬁ2 +Py +‘f34)' ng
if we set . g = By *Py *fy +ﬂ4 = 28, we have again reduced Y Ipil by &

factor which we can ‘mpund below 1. But we:doinot wish %o go on 1oeking for such

ad hoe a:‘gmms for oaah ~higher value of x.) See f,gg note 2 e eﬂ e
drscolve ot abve o\ awH.m
oamg 5mvrz P <, not 3 .p“,
Thus we need a different ap"proach. Covrestipum w vigel Huonee
Peveh banphs,

4, A general construction. Iet r now be an arbitrery positive inbeger. Given

8 family of wvectors {5)1, coes B € R¥, we seek an slgorithm which, by repestedly
modiﬁing one é,nd another memher of this system by linear Qombimtions "of the others,
elther produces sysbtems of vectors of arbitrarily 'small lengths, or terminstes in a
situation (4), es*be.bl:.sh:.ng a oo-Diophantine relation.

Thiiioe?rd. idee which I adapt from Ferguson and Forcade is to begin as follows.
Assume induc‘éively that such en algorithm exists for r-l. Let f3, be the shortest
of the vechors {}i, project -/}2,.,., Ppeq onto the orthogonel complement of 'bhé
subspace of RY spanned by _{51, and apply the {r-1)~algoritim to these ‘projeetions.

We remark again that Ferguson and Forcade use the max norm rather than the
length function. Correspondingly, rather than project onto the orthogonsl
complement -o:E‘ (?,11{ » They let the large;st coordinate of iil be the jth, and
project ﬂz,,.., .11 0 their r-l coordinetes other then the jth.

Further, while Ferguson and Forcade follow precisely the approach just stated,

I find it more eleganﬁ to give a single construotion in which the algorithms for
smaller dimensions are impliocitly incorporeted. 7 .

To describe it, we will use the following notation., If ﬁl’ cees ﬁr-!-l are

vectors in IRY no proper subseb of which-are lineerly dependent, define S(l)

(0 < i<r)to be the orthogoml complement in R¥ of the space spanned by

ﬁl,‘ ey ﬁi' . Thus
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r ='s@:s R {ol.

For any wvector x, we let x(i) denoté the erthogohal projection of x in S{ i) .
Wote that fer i < j, +the orthegonal aemplement in S(l) of the space sparmmed
R:.-*-l’”'.’ ﬁ(l) is (J), and for amy x, (x(l))(a) = ’x(J). In our
construction, whenever we modify & system of vectors ﬁl, eevs Bapys it will be
understood that the system of subspaces S(l)g is.modified accerdingly. It will
also be undersbood that if owr system of -r+l- ‘vectors ever has the property that
the first r are lineerly dependent, then we have = co-Diopha.zﬁ:ine relation and
can terminate our construction. Hence we may always assume the contx;ary is the

case in desoribing a step of the construction.

Our. algorithm will consist of the alternste application of two sbeps:

"Adjustment™. The idea of this step Will be 0 add to each B (1 <k < rel)
that 1ntegml 11near combipation of ﬂl"”’ fhrw: which will minimize the
distance from {3(3 l,) 5o std) {i.e. %o ﬂ(g)) for = 1',..., k=l, MNote
that
(5) Addlng any multiple of j} to fh (3 < k) does not change the system

of subspaces S(o),..., {r) nor the projections ﬁ(l -1) (1<ixrel),

A4 precise sbatement of the operation is as follows. Letting j run through

the velues r, r-1, ..., 1 in that order, we successively

(8) replace &very vector ﬁk (J < k<r+l) vy B - Dy s ﬁj’

where

p). gl
(7) | Sl B
By P
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Here dots denobe immer product of veotors, and brackets denote the "nearest
integer" function (with "rounding down" when the argument is a half-integer.)

We see that after an application of (6) for some value of j, the new vectors

N R o plah.glan) L
£ {(j < k<r+tl) will satisfy l e : l < = , whigh can be translated
ke oTe pl-1),4(3-1)" ~ = 2
ass J J
(8) The perpendicular projection of f&]i‘]-l) on fﬁga-l), name Ly

53](';3"‘” -;3;7’, is at most half the length of fzg.j"l).

Further, the condition (&) is not disturbed when (8) is subsequently applied
~with J replaced by values 1 < j, since ﬁi has zerc projection on 'S(j"l).
Hence after applying (6) successively for J = r,..., 1, we get a sysbem of

vectors which satisfies (8) for all 3§ < kK, ILet us make the

(9) Definition., A system of vectors fGl""’ Ar-}-i e RY such that (8)

nolds for 1< j<k<r+l will be oalled adjusbed.

ﬁow roughly speaking, it is best To perform this operation of adjustment
on systems {31,..., f3ny1 baving smeller vectors to the lefs. The process itself
tends Lo meke the vechors on the right smaller., Hence we follow each-.adjustment
step by one of

Reindéxing. The principle here is
-l jeml . .
(10) i [{Sg_l )i > i[j&i‘l )l, inberchange the labels of f3; and fj,.q.

However, things are compliceted by the fact that there may be more then one
value of i for which the hypothesis of (10) holds, and (as we shall show by an

example &t Yhe end of the next section) the effect of a choice of which interohange



to perform first cannot always be neubralized by later choices, So I shall
aimply state one stretegy of reindexing for which our proof of the algoeritim
will go through, and we shall note inthe nextrsection-tlmt this can be varied

in many wayss
{11) Perform (10) successively for i = r, r~l,..., 1 (then stop).

We claim that the operations of adjustment and reindexing described above,
performed albernately on an (r+l)-tuple [51,..., Prs1s Will elther berminate
in a situation where some /31,..., Py (i_<_r)‘ are linearly dependent (so that, if
i is the least such value, ﬁgi‘l) = 0), 'giving & co-Diophantine relation, or
will produce systems of arbitrarily small vectors.

We first note that for an adjusted system of vectors, the lengths of the
Py, cen be estimated in terms of the lengths of the /33.3"1) tj < k). Indeed,

from {8) and the Pythagorean Theorem we have

e
pl® < L1820 s Ll

o D12 g < g ),
Ignoring the "1/4"'s for simplicity, we get the bound

z) T Il? s nlplE e g1 e e )R

Iet us meke the

(13) Definition. The right hand side of (12) will be denoied m([il,.,., ﬁrﬂ.)‘

We shall prove that if our algorithm cenbinues without termimmting, this

function converges to zero. We first note {ef.(5));

(14) An-operation (10) changes none of the spaces SU"tg emép’b

l(ck-l) exceph ﬁgi-l) and ﬁ(i)

S(i), end none of the projeckbions §# $01°

12
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Assuming the hypothesis of (10) satisfied, let us describe the effect of

L
that operation explicibly by writing ﬁf = ﬁi-i-l’ {g:.;_+1 = ﬂi’ S(l) =

orthogons 1 eomplement of space sranned by !31,..., {Sl_l, fil If we le'b 5

denobe the sins of the angle between ﬁ(l -, nd {3 -1) (whieh are algo

:l..+l

B;E_;‘. 1) ama /5;.(1 1)y in 8(371), then we have Ifj(;’_ll | s “3(1-1)1 We

now compare:the lengths of the ith and 1+15% of the: ﬁékl) beforé and. afber (10):

old lengths new lengths
- (i
(15) A4 Iﬁi(l l)l"“lﬂiill)l
88 = 1sl 1887 Ip2E ) = gal 1t = e 18

Were it not for the factor |s|, we see that the sum of the old velues would egual
| s . i-1)| o [pli=l

the sum of the new values. Since sl <1 and |p§_11 )l = IB& )I, the sum of

the néw values is actually less than or equal to the sum of the old wvelues. The

same argument applies %o the squares of the lengths, giving

(18) When the hypothesis of (10) is satisfied, the operation there described
decreases lp(ji+l)lz, and increases | S_:_‘ilz by at most the same smount.
L

Since in the definition of m([&l,..., ), The summand lﬁéi-l)lz has allayger

15

coefficignt 'hhanlﬁii%lz {larger by 1), end since the wvalue which replaces
(i-1)2 (i-1)2 |

Ips* ™12 )

after (10) is the former walue of [/}Hl

s we get from (18)

{17) Wien the hypothesis of (10) is satisfied, the operation there described

decreases the value of m(ﬁl,...,ﬁr_,_l) by at least the ¥alue-of

Iggi-l)lz !G(l 1)|z

N before the application of the operation.
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To concluds that m(f;l,..., f3r+1) converges to 0, we need to know that
when we follow (11), at least one fairly large deoresse ocowrs. Now one can

show that for i =1r, the hypothesis of (10) is always sabisfied, and that
Hg(rul)l I (I‘ l)l

Pl (Indeed, since S@’” is one~dimensional, "adjustment"
for. j=r, Ic--r-!—l is like & step of the ordinary Buclidean algorithm.) However,
these mumbers mey be very small compared with some of the other |ﬁg_i-l)l, and
s0. not cause "m(.ﬁl'g...*,. fpii) o decrease 'by:am,rrsta{:eé:”"ffap’gicn.of its original
value. On the other hand, if we look at the largess values of Ifs(.i"l)'i , though

these do contribute a large fraction of m((?al,..., g’sr+l), the differences
(3.-1 2. (i=1),2
T LR T ]

1+1 mey be small, if the hypothesis of (10) is satisfied at

all, Do get a satisfactory compromise, let us choose 1 so0 as to maximize
28 p3"U)]. This i will be less than r+1 Gimce 5'T) =0  and hence gl =

Then

o

(1) Bl = 5 1YL

If the system fyssees B,y 19 adjusted (9), or more generally if

(19) Other spplications (10) performed since the preceding adjustment
have left intact the case j = i3 k = i+l of (8), -
then we may conclude by the Pythagorean theorem that
: i-1 2 (i (i=1) li)y2
(20) lﬁ( 2 < |Bs )Iz * B3y 7 =Pyl

< GG+ & P -2

Hence the hypothesis of (10) is satisfied for this i, and the amount by

. . : 1 i
which m((;l,..., [5‘r+l) is changed is at least 5 [ﬁgl l)|2. But



(i=1); _ 1 od 1ald iy o L (j=1)
(21) 71 = e 2 RN 2 w187,
whils
(22) Wogrers Pray) & TP |51 )2,

We csn now get the needed esbimate. Starting with an adjusted system
7 (i‘l)l

[31,..., ﬁr, we chooss i =as above 0 maximlze zi [fii Thus from (21)

and (22) we can deduce

1. (i=1),2 i '
2 2 I{gi "z & (r+1)(r+2) Ry Bt

Yow we start reindexing aceofdi.ng to (11), until our .chosen value of . 1. is
reached. The previous reindexings will not have changed p(ii"l), and can
at most deeréas_e m(ﬁl,.,., Pps1)s SO (23) remsins brve. Further, if fliiq
hes :/been changed at all, it has been replaced by some ﬁk’ k>i, so (19) still
holds, end we get (20). Hence for the chosen walue of 1 +the hypothesis of
(10) holds and by (17), m(ﬁi,..., Br-l-l) is decreased by at least the amount
deseribed by {23). Suﬁsequen'h applications of (10) can only decrease it further.
So if we let the reindexed system after application of (11} be denoted fiseees for1o
we have |

1
2 (r+1)(r+2)

(24) B(fsenrs Bl,,) < (1 - ) Ry seves fig)e

Clearly, theh, the function m and hence our system of vectors converges

t0o 0-'
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5. Variants, and related observations. Let us note some modifications of (11)

for which the above argument, with the same estimete (24), is still walid.

We might replace (1l) by

i

(25) Find a velue of i meximizing 2 !ﬁgl-l)i, and inberchange the

labels of ’Gi and ﬁi+l’

This in fact would simplify bhe fimml argument leading to (24). Altermatively,
we could change the words "(then stop)" at the end of (11) to "and iterate this
until no such velues of i remsin®™ This would bterminate after finitely many
iterations,sifce it is decreasing on--'r’a(f}l,..., w+1)s 8nd there are only
finitely many permutations of 'the ﬁi‘s.

It might appear that we could make a simplification in the "adjustment"
step corresponding to (26), getbing a combined "adjustment and reindexing®

opera'bisn'of the form

(26) Find the velue of i maximizing 2'|p.|, replace p,.. by

Poet1 = ni+1’ ; (Si, then interchiinge the labels of @ and -ﬂi-l-l'
This would indeed get m([}.l,..., ﬁ‘r*’rl) to converge to O according o (24);
the diffieulty is that the estimate (12) 1s only valid for adjusted sysbtems.
However, sinee adjustment does not chenge the wmlue of m{pl,..., {&r-hl)’

we could iterate (26) till we hnd m(pl,..., Br+lJ as small as we liked,
then perform a "complete adjustment™ at the end, This is not an iterative

algorithm in thé strictest sense, of course. Whether it is a better algorithm

than the one described I don't know. It would involve fewer aritlmetic operations,
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but might also involve the build~-up of large mmbers.

Yy feeling is that the algorithm with complete adjustment as described in
the last section, bu:zjzindexing iterated as long as possible, is the least
axbitrary, end so mey in some way be the best. If we divide our estimate of its
ke of gonvergence by ‘the pumber of arithmetic operations performed,  the .i-éaulﬁ
is of course far poorer than for (25). However, it's actusl convergence may be
much better than the estimate, especially for "™iypiecal™ rather than "worst" cases.
This might be studied by working some exsmples.on a computer.

Wo'remark that the seme -construcbion. cdn be -applied in- m”g with the -
Gaussian integers % [i] . in place of % The one significent change is

that lfﬁ . replaces 1/2 in (8) and the sentence immed'ia;bely preceding.

This changes the coefficlent on the right hand side of (20) “from -~

(“2}‘)2 + (%)2 = % to - (.%‘)-2 T (j%)a = i, hence the’ coefficient we want to
' _ : ' . 1
put on the left-hand-side in {23) is not 1 -%‘ = % but -1 - z =g and

the £inal effect is te put an extra fdctor of "2 inhto the denominator. coctrring
in (24); i“;—a'. the convergence as estimted is essenbtially half as fasht, Similarly

if W is a primitive oube root of unity, and we use Z [] in place of %,

: : 1 1
we get 1A/3 - in place of 1/2 in (8), it é in (20), and convergence

essentially (1 = izé)/(l - %) = §/6 =s fast as for Z. One can also put a |
polynbmialiring - k[t] in place of % and the formal Leurent. séries. field k( ©))
in place of IRj; bubt because of the .ultra.metri;: absolute value, one must mske
greater changes in the formallsm of the construction, and we will not discuss this
ca.se,.

=1,

We remark that when we chose i +to maximize 2% |§§_ the factors 2%

were chosen for simplicity, bub a differeunt 7s'yétein of coefficlents would have
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i by ci, I believe the estbimates

led to different estimates. If we replece 2
improve {for large r) as- ¢ decreases toward 2/4/3. When ¢ = 2//3, the analog
of (20) gives the useless estimate U3(1'1)] Iﬁ(l-ljl However, if we use not
just the fact that for the chosen value of i, (2//3)* [ﬁiidl)] - (aA/?)i+llgll)l
=0, bub the fact that the sum of all the posibtive wmlues assumed by
(24/3)31 331} % HDIUBN® tor 21 1o at Loast AT, 1
believe we get guite a good estimate. The possibility of improving our estimatés
by meodifying the indicator fumetion m should also be looked inbo.

Hoere is the promised exsmple showing that a cholce of which operatien (10)
to perform firset may make a difference. ILet a = (5,0), b =(0,2), ¢ = (4,1)

in W2,

Then the arrows in the diagram below show the éperations-.on. sysbems: =
1315 s 35 composed of these three vectors in some order, allowed by the

hypothesis of (10).

a,-. b, ¢
8y Cy b by &, ¢
(27) 0 T
c, 8, b b, ¢, &
¢y by 8
Thus, sterting et a; b,,¢. (orat - e, b, &) one can arrive at either

of the two "steble" systems.

(Given r > 2, suppose 1 denotes the graph with (r+1)! wverkices
corresponding to the permutaitions of 1, eves v+ly; and an edge connecting
each pair of permubtetions which differ by a tramsposition of two adjacent terms.

Begey G3 is a hexagon. It would be amusing to try to determine what systems . of -
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orientations of the edges of Gr-i-l can be realized as in (27) by allowed .

- operations (10) on some system of vectors /33_,..., ﬁ:ﬁ-l € R¥. There are two
obvious restrictionss there can be no cycles by (17), and & second condibion
arises, for r+l > 4, from the observation that ﬁh’e‘bhei! one trensposes s given -
two adjacent terms does not affect whether one may transpese a pair of adjacent
terms disjoint from them, )

In connection with the "low=dimensionsl" construction of 83, it would be

interesting te know what is the least integer, v such that there exist

0

03

r
nonzero vectors /31,..., ;lré_!_le R ~ such that none of the lengths ]gii can

be deoreased by subtraecting from f; a % ~linear combimation of {gijl j £ ik

(From the paremthetical paragraph at the end of that ssetion we can say that

ry > 4. On the other ‘hand, one can see that ro 14

the 14 ‘standard basis vectors le= (1,0,00450), vous Plé = (Ojveey 0, 1), and

< 14 by considering in R

a vector 5115 having five coordimates equal to 2/10, four coordimtes equal

o 3/10, and five coordinates equal to 4/10.)

6. Recycling the alggri'bhm. Suppose (@l,...,_ ﬁr+l span ]Rr, and satisfy

& linear co-Diophantine relatien. Then if we apply the algorithm of 84 to this

' (r'){;

_ rr+l
) . ;!:— r

i.e. such thet /5, , lies in the subspase T" S R™ spammed by fysee-s Apee

gystem, we eventually obtain a system such that for sems »r'< r., A 0,

But let us not step there.'_"“}le’ce that since our system invelves just one more
vector than the dimensi-a#. of ‘JRr,_ T*’_ must be expotly r'-dimensioml. Hence
identifying T' with Iﬁr’, we osn now apply the algorithm te this system of

rt + 1 elements. If these satisfy & ce~Diephantine relation im T, we eventually
obtain in the same manner a system of still fewer vectors. This process can be

repeated only finitely mawy times. “Hemce owr algorithm, iterated in this menner,
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eventially transform any system of vectors {31,... s (3p+1 Spanning RY inte
one such that fer sems 5! (O <8< r), {31,...., i35+l span an s-dimensiowsl
subsp_gce U, but satisfy ne linear co=Diophantine relationm in U. Continued
appliaa'bien of the algerithm to 531,... R ﬁsﬂ. will lead to systems of s+l
.ve@ters_ of arbitrarily small lengths.

In the above .situ.a.'bian, (imdeed, even without the assuaption that we have
reached the fimal stege, where fjs...s (3g.) satisfy no co-Diophantine relation),
we oan see by looking at dimemsions that [foipse.., f,,; will be linearly
independent module ﬁ, so that their prejections ﬂ(s"l). (s-1) on the

gz 70 B
orthogonal ecomplement s(s=1) or U will form & basis of sls=1),

Xow 'Buppesé that we have in our peocket an r+2nd vector, ,’5 2’ whiah— we'
have not dene azwth:.ng with up to this poiﬁ‘h. If we bring in its pr@aeetmn ﬁ(s'ﬂ')
then we have r-s+tl veotors ﬁ(sﬂ') /3](::;1) spenning the (r«s)-dimensiomal
spa.ce S(m_l_), and we ean apply the algorithm to these. This process ean, in
turn, be repeated if more additioral vecters f}r* PLTERr Ié! et BT given.

The ;process:sketched ‘abeve invelves a discrete succession of applications ef
the -e.lga_r:!.thm of 84, Bub that algoritim ean, in fach, be modified in a very minor
wey so as to do all this at onee. 8o let us éonsider the abeve remarks as heuristic

énly, and mow go on te & precise deseription of the extesmded algorithm.

7. The e:_dsended algorithm, Given awy system of veetors {51...., ﬁﬂm apayming

I_iR_r (m, r > 0), let us, as in 84, defime g{i) (0<i < r+m) te be the orthogonal
- eemplement in RrY of the subspace spanned by ﬁl”“’ Bi’ and for amy x & RY
define x'*) 4o be the projectien of x om (1), Phus, BF =8{¥m,.. > slrm)

= {0); but note that in this gemeral case not all the inelusiens will be strict.

s
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=1
(1-1) = S(i), equivalently,

In fact, for precisely m walues of 1 we must have 8
[Bginl) =0, Let us eall the iﬂdex i weak if the above equalities hold, stromg
otherwise. Those indices (necessarily strong if any) which dére greater than all
weak imdices will be eulled the -bemimfl'-,indiees. The status of an index will,
of ceurse., change as we modify ouwr system, I-

For such e system of veotors, let us defime the process of ad justment

exactly as in (6)_, except that k new renges only ever non-terminal indices,

an Jj only over the strong indices preceding k. The second resiriction is
eleerly needed, because (7) is umdefined when j is weak. The first is included
" more for reasons of eleganees We shall see that the vectors indexed by termimel
indices cammot be made a.x:-bi’crarily small; so we may as well keep them Pixed,
rether then changing them alightly et sach step. Note that after adjustnent, (8)
will hold for all nontermiml k end all Ji If ) is strong it holds bocause

of the effeet of the adjustment as in 54; ir j Vis weak, beoeause hoth lengths are Q.

The eperatien ef reindexi;_ﬁ we define 8s in (1,0_) snd (_ll) with enly the
restrietion {agein for ,eleg_ance) that i be nonbermiral. Eetega;%ﬁh R
* the hype'bhes;ia of (10) can never b_e satisfied when 1 is weak, since then the
left~hand side of the indieated imequality is O.

A5 in 84, adjustmeri%-x.a;nd reindexing are te be performed elternately.

Let us see when, in this process, the status {weak vs. streng) of an index
can change. This camnot lhappen at an adjustment step by (6). At a step (10), it
s‘_t_:i_ll canno‘t;' happgr_i if both 1 and 5:!-1 are gtrong. For in that case, the space
spaz_uﬁied‘by' 533;,?.,, ﬁiﬂ is of dimension 2 mere than that spanned by
§1,..., ?’i-l’ i.e. the dimengion goes up by 1 when each of ﬁi, ﬁi—!-l is added.
This property is retginad if we reverse ‘the erder of the two vecters, hence after
the reordering the indices remain strong, and clearly the status of no earlier er

later index is affectdd.(14). We have seen that the hypethesis of (10) cannet be
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satisﬁ.éd if i is weak. There remains only the case where i is strong and
i+l is wesk. This means that /S(i;}‘) is nonzere, and (35_:;1) is limearly
depewdent thereom. How if 5(1'1_) is aisa nenzero, then after reversi:’;g the
labels of ,gi and ﬂi‘l-l.’ i will again be strong, and i+l eagein w'ea.‘k. Bub
if ﬂ(i'l) = 0 +then after this reindexing step 1 is weak and i+l strong.
Thus we sse that the only wey indices ghange  status during our algerithm is by
the loecation of a weak index moving one step to the lefb.

Note in particular thet once an index i has become terminal, its status
eammot ehange-, and the vector A, itself remains fixed as well,

Yow say that at a particular stage in this process, s +.m is the last. weak
index, (02§ <r), and we 1e-bU denote the subspe.ce spanned by ﬁl""’ _ﬁsﬂn‘
Thus, U will be s-dimans?.onal, and the re_mining_ r=s vecters ;93+m+1’”" fgr-l-m
will span ®Y  over U, and be linearly independenﬁ module T, Thus, thelir
projections /3(3;:])- avey (3(5:”) on S( sm) will be a basis thereof, and hence
generate a discrete additive subgroup. Hence the subgroup ef rT generated by
all of ﬁl'”" ﬁr*m will lie in ‘the disczfe‘t:evunian of cosets of U by the
olements of that free abelian group of rank r-s. This is a generalizatien ef
'j!:he pi.o'bure_ ‘hhat we gé.ve of a co-Diephantine relation, f@llo_wing lemna 1. In fact,
each terminal index correspends to an independent co-Diephantine relation-setisfied
by our system of vectors, and whenever the last weak index moves & step to the
loft, this cerrespornds to the diseevery of another such relation.

We now claim that as we apply our algeritim, the maximum length of ‘the

veotors assoclated with gmonbterminel indices lgees te 0. To see this, we define

(28) ”(91.’“'; B i) =

iyali=l);2
Ei. nonterminal (r+m+l-i)|§§i )I ’
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Then precisely the seme caleulations as before shew thet if this is nonzere, it
decreases at sach reindexing step by a factor which we can bound (by (24) with

r+m~1: §ih-.place of r). The key point te mote is that because we have restricted
(i"'l)la ’
i

correspond te the last weak index i, and hence will be zere. Hence the term

the sum (28) to nonterminal i, +the last term |8 which appears will
which maximizes Zilﬁgi-l)[ will not be the last term, and our argument about
the effeet of the next reindexing still holds. |
Now if we apply__ our algoeritim leng enough to a given system of vectors,
the pesitien of the last weak index stm must evenbually stabilize. The lengths
of ﬂl""’ [35+m will thus tend to O, hence these veoters cannot satisfy awy linear
co=-Diophantine relation in the space they span. Thus all linee.r co«Diophentine
relations satisfied by the origimal system hawe been determined. Specifically,
if we let & denete the additive subg;'oup gahépa’.‘hegl_ by the given veo’coré, which
is not changed by our algoritlm, then allvlinear:fumctionels £: R¥ - R
'satiéfying f(G) s & are determined by specifying arbitrary integer values on
ﬁs-t-ﬁw—l""’ fpiy» 8nd the value O on the s=dimensional space spammed by
ﬁ}_"“' ﬁs-t-m.,
Of course, we cannet know in practice when the last we_gk index kas meoved
to the left for the last time. But we can give the following Ffinitery version

of our resgult.

lemme 2, Iet r, m be nomnegative integers, pl""’ Fr-!-m 2 system of wveebors
sparming ]_R?, and ¢ & posii_;ive number, Then in a'number of steps which ean
be explicitly bounded the algorithm deseribed above will _'bransform the given system

into one having the feollewing preperties:
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(i) For seme s >0, (51,.... J2 all have length < &, and span an

g+m
g=dimensional subspace U S RT, while the:remaining r-s vectors are

(necessarily) linearly independent modulo this subspace. When this holds we also have
(11) If we let H denote the additive subgroup of U spammed by those s

vectors f3. (L <i<s) such that ﬁgifl) # 0, then every point of U lies

within distanse _[21:16 of & point of H,

{(iii). Every linear functional £3 BRY¥ = IR of nerm < 1/&¢  which assumes

integer values -oni.{:Bi,‘g., Fr+s is an integrai linear combination of the res

funotlowal defined to have walue 1 at one of g3 and O at

_s+m+1""" 3r+n_1’
all other f..

_Proof that (i)i=»(ii)iand (iii). From: (1) e elearly have Iﬁ(l 1)| < § for

8ll nonterminal i. CGiven =x € U, we may "adjust" x with respect to the

set of I;‘» such Bt i is nonterminel and strong, i.e. wevéan form.a veotor
y=x=9% n 1y which satisfies ly(l 1) . y(l)l < |ﬁ(l"l)|/2 (ef, (8)). Then
by the Pybhagorean theorem |y| < ‘CE » l.e. x lies within that distance of
z n, pi € A, establishing (i1). G:.ven £ as in (iii) which is integer-valued
on 21l ﬁi and has norm < lfe, we see that its value on each ﬁ (i, 84m)
will be < (/g)e = 1, hence, ‘being an integery muat he:-0;: The charmcherization

of such functionals follows. i

CIf G is axy additive subgroup of Z&’t Shen its closure el{G) will be
8 closed subgroup. There is & simple deseriphion af the clesed subgroups of finite=-
zimensienal real veoter spaces. They ave -dire_c'b products of vechor spaces ]R
and finitely generated disorete groups % °. Thus, owr algorithm can be thought
of as Pfinding (br approximating to any desired degree of aceurscy) this
decomposition for cl(G) when G s RY is fihitely generated (and for convehience,

spans K.)
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We remark that to state Lemme 2 properly, one should give the bound on the - .
number .of steps, rather than merely sayinmg that it "ean be explicitly bounded",
For some of the assertions of the lemma, the existence of an algerithm whose
ieﬁ:gth can be bounded is trivial. ‘E.g.' %o find all functionmals as in (iii),
choose from the eriginel system a basis {ﬁil ie I} of RY, go through all
ways of mapping each /3_1 (i e I)toan iﬁteger less than |/§‘1|/s: s 8&nd see
which of these induce funmctionals that are also integer velued on the remeining
ﬁj {(j £ I). The point is that the "Buclidean® technique is se much faster.

Thus, Fergusen and Foreade a;maunoe‘ several results such as: [1] Theorem 5{a).
Am; p_alynamié.l of degrees < § with inmteger coefficients satisfied by the Buler
constant ¥y must have at least one ceefficient > 1050. This they presﬁnably
ebtain by applying their algorithm to search for % ~linear dependence among

L, %»s +ess YO, using a sufficiently good decimel appmxima:bia.n of Y. Clearly,
the algorithm of exhausbtive search could not give an estimate like this in any
practical tin;ai

However, we shall say mo more about explicit bounds in this mobe. Such
bounds can easily be obbained from {(24) and related diseussioen following;: we _
leave these to the expert to:study. Lot us nobe, instead, some infermation that

Lemia 2 combains which is independemt of algorithmic considerstionss

Corollary 3.. let 131,..., ’3@_ be vectors spanning yi: o (r < n), and B e BRT
the matrix ha.vﬁ.ng the fi; as rows. Then the following conditions are equivalents
(1) /?1,,“.'_., B, satisfy mo linear éa-Die_phan‘bine relation in RY,

(ii) The additive subgroup G S RY generated by Ayseees B, 1S dense.

(i.ii) For amy €> 0 we can find wu & GI{n,%Z ) such that uB hag all «

entries < £.||
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In particular, the implication (i) == (iii), applied to the case where

Pl,..., ﬁn form a basis for the free abelian grouwp €, gives

Corollary 4. (Ferguson snd Forcade |1l|, Theorem 3). If G is a finitely

generated dense subgroup of BT, +then every neighborhoed of 0 in RY ocontains

a basis for G as a free abelian group. ||

8. Reinterpretations, Suppose A & BR¥'®R B ¢ ¥R RT .0 a5 in Lemme 1,
i.e. the rows of A form & basis for the null space of B, equivalently (in
view of the dimensions of these matrices) the columns of B form & basis for
the null space of A. If we app_ly our algorithm to the rows of B, then as
we noted in our formulation of Corollary B, the successive bhanges which this

system of weectors undergoes ceorrespend to mul'bipiication of the matrizx B on
the left by & certain sefies of matrices in GL{r+m, Z ).

If we look a;h the effect of these operations on the colummns of B s Ve see
that 'bhe,j;-e-.' they act, _no'l: by adding Yo one a specified multiple of the other, but
by ﬂ.inéécr,z transformations from Gl{r+m, Z ) applied to the ambient veotor space
T*BR, If the algorithm on the rews gives.at:some stage s system in which the
lagt r=-s rows are linearly indepéndent module the rest, then the cerresponding
transformation on T'™®R carries the column space of B 4o & space which contains
the lest r-s sbtandard bvasis vectors. Thue as it "discovers" eo~Diophantine
- relations among the rows of B, it alse "discovers" Di.aplnu'bine points in the
colﬁmn space of B. ‘

| Note that when we mﬁI‘&(iply B on the lefs by ue Gl(r-!-m, %)y if we elso
mul‘biply ;A on the right by u"l & GL(r+m, Z ), our hypobhesés relating A and

B will be preservad. Those spara:bwns transform the row gpace of A by a linear
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Rﬂm, ~and the columms of A by operations adding

ackion on. thé embient spade
to one column a multiple of another. ﬁa‘be that if the column:space of uB
contains the last r~8 standard besis vectors of TR, then the row space
of Au"l, its annihilater, must consist of vechbors with last res entries O,
i.e. must lie in a Micul&r':‘ﬂ-‘ :-*ce.n'ebic;'a;l ‘system of r-s Diephantine hyperplanes;
And finelly, thé last r-s of the columns of A w™' wiil be zere, whioh'is a
triviel system of 'I=8 linear dependence rele.t:i.ons on these columns, and yields
& nontrivial system of such relations on the originel columns of A.

One may ask whether the version ef the Euclidegn‘alg’oritl—m whieh we have
desoribed in Yerms of finding co~Diophentine relations on the rows of B ocan
be translated directly to an algorithm on the originmal subject of our interest,
‘the columna of A. I suspect thet it earmét.* The 'mﬁtrix A4 does not uniquely
dé”;emina B. When we first select the latter, we must choose & basis for the null
space of " A. : Thaugg-fwe might de so according to soue spe_e:i.-fied rule, onoe we start
applying our transformations to A and B s ‘they will ne'longer con‘binue. te be
related by thatrrule. For instance, starting whth A. =(1, x 1) (xe R )s we
might take B = (—g :g).” If wo should apply to A the operations of adding the
first column te the mixddle coluan and subtracting the last column from the sé,xna
middle column, them A is left’ un_ohangea, but the corresponding eperations on B
do net 1e#w it fized. Thus in some Sense the choice of B seems to give us
semething more "solid" to work with than the origimal system A, (Ferguaon and
Foreade also remark laeeniaally, Me exploit the nonun:i.queness of Q7 may
[iee., B]". )

The additional information that the algor:‘r&h&n gave us, which we steted in

terms of the rows of B as Corollary 3, has interesting translations in terms

~#But see §9 below.
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of the columns of B and the rows and eolumns of A, For s:l.mpl:.c:.ty af
Pregentation I will delay steting the "density" conditions, equivalent te (3.1)
of Corollary 3, unbil the others results have been presenmted, as I find them
distracting. The reader is advised, in thinking ebout Corollaries 5 and 6, to
emphasize the case m = 1, where the result is the most striking. tFor
Corollary 5 this meana cagiim(W‘) = 1, for Corollary 6, d:.m(?) =1, The
general cases are, in facht, consequences of this one, 'n.a going to appropriate

overspaces or subspeces. )

Gorolllary . let W be a vector subspace of ”'I_R' (a > 0). Then the following
conditions .a,re_r equiﬁlenﬁz .
(i) W contains no-J;iaphantine points of TR,
(i) Por all £> 0 there exists u e GI{n,% ) which, :u.f we regard it by
resﬁr:.ct:.on as a-linear map W -» R 3 ha.s operator norm < & (se.y with:peapset
to the standerd immer:product structure on bR ). |

Proof., Suppose W does conbain a Diophanbine point p. Blements of GI{n,% )
carry Diophantizie points té Diophan‘bine peints, and every Diephantine point has
nora > 1, Hence no element of Gl{n,Z ) oan acton: W with operator norm

< ]}jp] Hence (i:.) =» (1).

To preove the aonverae, toke a basis b/l ,...,'b : o'f W, and let B e “RY
be the matrix having these r ooluwans., I W hag no Diophantine points then by
Lemma 1, the rows of B satisfy no linesr te=Diophantine relation, hence by
Corol]ary 3 there will exist eiements u e GL(n,E) making the entries of uB
arbitrarily smell., But these entries are the ;coordimtes of the vectors u 'bé_
and by making thesge imgea ‘of ‘babis:elements sufficiently small we can get the

operator norm of w on W as small as we wish. i
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‘Example, Note that the matrix (g i) he.s e:i.gemé.lues (1£/8)/2, with eigenvectors
1

(l; 5) respectively. The aigenvalue (1+/56)/2 has absolube value

<1, - henee the elements (2 i)i € GI{(2,4 ) have norms converging to O on

_ the l-dimensional subspage W E RA speymed By the correspending eigenvecthor.

The fact that matrices with arbitrarily small ﬁorm on this subspace are given by

powers of a single mabtrix, and preserve the subspace, are of course.not true inﬂ

the genere.-l situation of Corollary 5; they are results of the fact that the

(ordinary) Euclidean alg;nritl'nn is periodlc when applied o this vector. However,

the example shows how members of GI{n,%Z ) ocan act with small norm on a proper

subspace of R™., The entries of these metrices, incidentally, are Fibomacel

numbers, ° (?_ i')i = (11’1 fl..), and “a- key fact is the equaticn ot =
' p, P -
i Tisd . :
1:/6
£3.17 + f;, where 7T represents either of T .

Coreollary 6. Ilet V‘, be & subspace of R® (n > 0). Then the follewing : . .°° ...

conditions are equivalents

(i) V is contained in no Diophantine hyperpleme in BR”‘.‘

(1i) For all positive resl numbers C and & , there exists ue€ Gln, &)
carrying the ball {xe RZ | |z} < c} iﬁto the open:™ube:of radivs £ about
V, i.e. the set of points of R a% distance <& from V.

Froof, Agein, one direction mey be shown without using the Buclidean algorithm,
S8ay V lies in ker £, where O f f3 R® -» R has integer coefficients, et
| £] denote the operator norm of £, Then every Dibphantine point x & Z° at
which f£(x) #0 must lsa‘biafy- 2(x) > 1, hence must lie atia distence:: 3_ 1/ £}

from V E ker f. W¥ow:the closed unit ball contains & basis for En, and a
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subspace er £ € R®, Hence we see.thet it must teke at least one of them to -
& point at distance > 1/|f| from V. Homee (ii) =» (1).
Conversely, assuming (i), let 84s... 8, be n basis for V, let A be
the matrix with these rows, and let' B.€ BRIZ"B be g matrix whose colwms form
o basis for the myll spece of A. By Lemma 1 (it) ==(i¥), our hypotheses imply
that the rows of B satisfy no linesr co-Diophantine reiafh'ien, hence by Corollary 3
there exist matrices uw e GL{n,Z ) making the entries of uB arbitrerily amsll,
Now the coluwmns of B, ;if*bw.;:inr--;-.:i “’b’h-m r'epres.ent".a-.;—basis'~'foi§;:_ét&xe:jzlia’aam..ﬁ:ﬁbbi;onéls;oﬁ;ﬁmg
annihilating V, and it is not hard to see that given VG, £> 0, we can find

€t > 0 such that

¥xe JRn,_ (= b‘-é‘fi' f< £ (i=1,...,n=r)) =» (dist(x,V) <¢ ).

Now choose wu € GI{n,Z )} such that all columns of wB have lemgth < £%/C.
Ther for any =x € IR® we see that

Uxl 20) = (hxup)leaer/o) = er (a=l,...0mr)) = (atstlz, V) <£).

as required.‘ I T

Let us eoﬁsider the above Corollary in the case where V - is -l--dimeﬁsionai.
Since an element u & GI{n,% ) has determinant &£l, it is volume-preserving,
hence if it moves erll:vectors close to the linme V, it must also squeeze them
far out along that ;ine‘ Hehﬁce "baking a randem veckor =x in the clesed unit
ball, it will tend te give a very long vector =xu, which is also very clese te
V. Thus the ratioes ‘tj)f the coordimates of xu will in general be close to the

-T'c'aax'tdimt'aﬁra,tio characterizing pointa of the line V. Of cﬁrae, since the

image under u eof any ball containe & neighberhoed of 0, +the statement in



this form applies only-to "most points™. Bub suppose we look only at the
podnts x= (1,0,...,0), .c.y (0y...,0,1). Then the =xu will all be Diophantine
points. (In fact, they are the Tews.of u, and form a basis of EZn.) As we
foroe them to be close to V, they must all becoms long, since ‘inaty fixed::
ball there'are hot.Dibphantine points erbitrarily clese to V. Thus the
o sz hmve: Rerge--neyi, ~but lie R R RS-

algorithm gives bases of Z T whose points"é;_ﬂ-z_: arbitrarily close to V.

(An algerithm which generates, for a given l-diménsiomsl V, matrices u
€ GL(n,Z ) the distance of -whose rews frem .V tends to '_0 is sa.i_d by
Ferguson and Forcade to "approximete" for V. If on the other hand the algoritim
eventually preduces & u 'such that seme coordinate of a;ii‘:\:'poinﬁs of Va dig 0O,
they sey the algorit.lfm “termina:l:es"- for V; An elgorithm, like the one bhey
| desoribe or the version we describe above, which either approximates or termimtes
for every V, +hey say “splits". They indicate that they have examples éhowing

that the Jaoobi-Ferron aigorith:ﬁ, ef. p.2 above, does not split.*)

. 0 1.4 P31 £y )
Again, the metrices (1 1)' = PR ) give a simple examples +they move
| 3 fia’ T

points in any bounded subset of B2 into marrow strips about the line
(1, (1/B)/2)R. |
The “aext; and final Mrahslation” of Corollary 8, im terms of the columns
of A, is net as simple {:o state as 'i:hose that precede. Given vectors
&1,..., Hpiy € BR, and vectors g.i,..., g(;+m in any romhed ‘véotor spade X,

and & real number £> 0, let us say that the latber system is linearly

f=approximable by 'tha former if there exists a linear map f£i JR_" -» X such

that | olet;) - “i] = 0. The next Corollary follows easily from Corellary 6,

s0 we omit the proof.

*Aotuelly, they say it "ean termimte without & relation", but this makes no
sense that I can ses, so I assume they mean it can be applied to a linearly
dependent family without yielding a relation.

31



Goroilarf'.i'T. let m<m + be nomnegative integers, and qtl,..., Ky B

system of wvectors spanﬁing EE Then the following conditions are equiwvalents
,(i) Hyseees Ky, 8&re Z =linear :‘gndepeﬁdent. |

{ii)  For all positive reel numbers €, = £, there exists u € GL{m;-Z ) .
whi.eﬁ, when applied to any -a;-:s-%ﬁ}-#ﬁuple of vectors inm a.ny real normed vechor
spece X, whose lengths sre all < 0, yields an vomi=tuple whick is linearly

f-gpproximable by “.'1-""." Oy ..o i

(To -gee how this' follows: fram Corellary=6;.the réader might leok at the
cage r=m=1l; o, =1, %, = (1+/B)/2 a-?-(?__(i)i.)_

coce Lebhasl now state s third egquivalent conditioﬂ for esch of the last three
Corollaries, corresponding to condition (ii) ef Corollary 3, (dens_ity of the
subgroup). To iienable'us to state the versien for Corollary 7, let us define a
map from a réal véqtdr s;;ce inte a torus BR/PE 4o be "Limear" if it is
induced by a linear map imto PR, (These "Linear™ maps are just the continuous
group homemorphisms. ) Thén we can define "E-linear. approximability® of e system
of elements of a torus Wy e -sjstem of elements of & vector spece. Let us just say
8 system of elements of & torus is "linearly approximble“. by & sysbtem in & wvecbor
space if it is & =linearly approximé;ble for all £, {(0f éourae, the linear maps
used will depend on £.)} The eéuivalez;ee we will state using this definition is
very likely known to ergodic theorists,
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Goi‘allary 8. The equi.valen’c' peirs of conditions of Corollaries 5=7 are alse
respectively egquivalent tos

(5,iii) The set of lipear functionals on W induced by linear functiomals
on 2R with integér coefficients is dense in all‘li*;;ear:vfunétiénals on W,
(65iii) The image of Z2 in R V is dense.

(7,333) Every n-tuple of vectors in any torus group bR/ bz  is linesarly

a;ppro:dmaﬁle by “'l,o--, dﬁ.e umc "

9. Some further ranarks.- Though neither of the tweo matrices A and B in

Lemma 1 determines t}ie- other in general, in the case m = 1 we sse thabt given
B, the l-by-(r+l) matrix A will be unique up to a scalar factor. In fack,

up to sugh e factor and a;ppropriate' signs, ﬁhe terms of A are the rxr miners
of B; and the constant factor does not change under the sction of GL{xr+1l, Z ),
so we may fix it at 1. Thus, if one pictures the algoritha on f}l,..., &

r+l

geometrically, one can say that X peees & are the volumes of the

1
parallélopipeds spanned by r-tuples of the A's, and the question of whebther we
can 8ot up some version of the algerithm thet works only with the &ts'is »

- equivalent to asking whether a strategy for _reducingj :bhe lengths of the A's by
subtreeting multiples of one from another can be formulated in which the operations
-‘bo be ﬁerformed at an:,r‘sta.ge are détemined wholly by the ratio of these volumes.

The ratio ef the volumes determines {31

of Rré (Indeed A clearly always determines B up to right multiplication by

s+++» iy UP to a linear automorphism

a member of GIr,R).) So still ahother way to put the problem is: Can an
a.l@rithm be described based only on bthe linear structwe of the system ﬁl"“’ Bri1 |

€ I]RY, or must one introduce some obher structure, such as the metric structure
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I have used or a:;'-sbordina.te system as used by Forocade and Ferguson? The goal
thet all lengths of (Si's '.'ev.entua,lly“ approach O can be expressed in terms |
of the vecbor space strucbure, because ths tepalog’é)' of a real finite~dimensional
vector spece is uniquely;d;eterminﬁad; but it is not clear whether there is a

: systema'bic way of achieving this without using mere structure.

Afterthoughts Indeed, there must be such a form of the algorithm! For

given [31,..., pr-l-l lspanm.ng ‘IR. let G(B) $ JR dene“l:e ‘the oonvex:

hull of { + g, SE "'kﬁsa.ng the a.lgorathm as presen‘bed here, one oan. assoeia.'be
to every such (rtl)=tuple a finite sequence of operations of the sort we are
ﬁaing, which will either reveal a do~Diophentine reiation, or fransform the given
(r+1)~tuple to one whose vectors all lie in %O(ﬁ). ' By streightforward arguments
“this c;.n be done in a way that is inveriant under l:in'ear avtomorphisms of Rr,
and reasonably nice — i.e, such that the set of all (r+l)~tuples for which#
given sequence of operations is used forms -is:é"desé:r'ifbed,-szby:z*a'i:ﬂa‘;irly simple system
of inequalities. Iteration of this preeeés will be the desired algorithm. ‘Se

~ the real quest:.ons arg-Can this be done in a way bthat is reslly oonvenn.ent o work .
with? Iﬂ 8 Way swh that the corresponding algorithm on the e's ean be

| conceptually explained? In a way such that the mumbér of npé&a*ﬁi:nnis:;of;a&ding
Borone: vectoria combination’ of the others which constitutes Mone step" of ‘tﬁiﬂ
algoritim is bounded? A candidate algorithm, which is nice, but which meyor

may a0t work, will he menbioned in 812,
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10. Periodic continued fractions., I .shall prove here & classical result, using

the “ordinary" Buclidean algorithm. But there is some wveriability as to what the

Yordinary" Buclidean algarithmrcan mean, which we should settle first. Ome matter

is simply notational: we shall find it most convenient to use an algorithm

without i'reinde:clng". Thus, starting with two real numbers o .and 8, we get

at the next stage a pa.ir wly ,3‘ of the form o, £~ nv, and at thernext: atage

we operabte in the opposite way, getting a(“_, A" in the form «' = n'g', A', ete..

The coefficients n, n*, ..., n(i),... are the terms in the ocontinved fraction

expensions 1
1 1 r——

B/t = m+ BFF 0 BE . L e m6) F L,

Secondly, we reoall that one msy perferm the BEuclidean algorithm either chossing

the n(i) so as to give the least positive remeinders, or so as to give the

remainders of smallest absolute walue. This leads to two interpretations of "the"

continwed fraction expansion of a real number. We shall find that with trivial

readjustments, the same proof applies to both.

Theorem (lagrange +)e Let ¢ be an irrational redl number. Then the following
condi“bioz;s are 'equimlent.‘

(1) The coxtinued fraction expansion ‘of ¢ (understood in either of the above
ways) is eventus.lly periodic.

(i1) [ele) s ¢} = =.

Proof, One wa.y is straightforward. If we assume (i)}, then o nmay be expressed

a.s- & fractionnl linear transform with integer coefficients of the element c!
represented by the periedic part of the conbinued fraction, and o' by periodicity
becomes & fractiomal linear transform of itselfs o = (pe! + q)/(re® + s)

(Ps 9o ¥, 8 € Z). The latber equation yields a quadratic equation satisfied by of,

and this makes e guadratic as well.
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Yow assume (ii). Let us write ¢ = /3/«, where «, [ ore algebraic inbegers -
in Q(c), and apply the Buclidean a.lgorihhm to this pair of real numbers. We
shall oall the pair obtained at the 1™ step oi(i), {3( i). These will clearly
agein be algebraic integers.

Consider now the determinant

(1) pli)
[s 8

: 3 - i - 1 3 1.
(29) 5) ﬁ(i) . o{(m)ﬂ() Y ,a(l)-

where x +» % denotes the auﬂbomorphism'of the quadratic field Q(c), which we
shall ecall conjugation., Note that the transition from the i to the (irl)5Y
stép affects the matrix in (29) by =a §olwam opavation,which has :--na_;.@fi’ec'h';on/:&he’--"fsl
determinant. ~Thus the value of (29) is.an invariant:-of our seguence of pairs., |
Furthér, conjuga tion affects (29) by interchanging the rows of the matriz, hence
changing the sign of thé determirant, so the common value of the slemsnts (29)
must be of tﬁe form /D (where D e %, and /D represeﬁts a fixzed ope of its
square roots, not necesserily the positive ons.)

We now consider fér each 1 +the polynomial setisfied By the ratio of the
terms at the ith ste.ge, ﬁ(i)fa(( i)

(%0) @b - gl &l)y - §l3))
. = (a(i) 5(1)) £2 - (é(i)[';'(i) (1) glidy g o« (ﬁ(i) E‘i))
= a(i) 2 - b(.i) t o+ c(i‘).

The coefficients a(i), b( i), c(i) will be integers because they are algebraic
integers in Qo) inveriant under conjugetion, The diseriminant of this

polynomial, b(“') 2. e a.(i) c(i), is easily seen to be D, ‘the square of (29).
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(Bither by compubation, or by noting that (29) equals the numerator of the difference
of the roots of (30), writbten with denominator a(i).) Thus (30) gives a sequence
of polynomials over # all having the same discriminant.

We next note that the coeffisient b(l) R (1) 73( 2 + &(i)ﬁ(i) wey be

written in ‘two wayss
(31) | Tl S J, BRI AL

¥ow we olaim that for i > 0,

(52) 17 w4 [-3] /Dl, 3}/B| 1, then p*2) st be amaller in
absolube wvalue than b(i), while if pid) lies within this interwl,
so will »{i*1),

d(i+l), é:‘wl) is obbtained

Indeed, consider first the case where the pair
from a:(i') . B‘i) by modifying 'bhe‘i: first term and preserving the second. We then
use the first expression for pl L) in (31). 1In this expression only the of term
changes at this step, and the new term-e-:rﬂ-d.(zgﬂ) will be (depending on whieh form
of the Euelidean alg rithm we use) either of the same sigy as .((i) but sma ller
~ in absolute miue, or of arbitrary 'sign and smaller in absolube mlue_ by at least
half. In-either ocase,.(32) is easily checked?® If, ocﬁversely, the i+18% pair
is obtained from the ith by modifying the [; torm, we use the second formula
in (31) teo get the same result. |

(1)

- Yow (32) .says that as we perform our algorithm, b eventunlly becomes

limited to a finite set of walues. Since b{ 1) 3 - & a(i) 0(1) is constant,
4 a.(j’) c(i) also ranges over only a finite set of values, and by factorization
properties of %, we get only f."initely many poessibilities for a(i) and o( i),

hence only finitely mamy possibilities for the quadratic equation (30). Each

*1f one uses the version of the algorithm in which the sign of % does not
change, then (32) is éven trie: uding the smaller imterwel [-|/D|, | /D|].

i
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Such equation has only two roots, so we eventually get a repetition
i ; i i
(33) AUl liem) o (), (),

Since the steps applied in the Buclidean algorithm depend omly on this ratio,

the algorithm must repeat with period r.|

Remark: The above proof is in essence the seme as all proofs of legrange's
resul’c. that I havé seen, bu'bl most presentations involve less -trampgr‘éntic'améumtions
bhecause the authors work ﬁith'the field=eloments c( 1) = /g(i)/ ,,Ei) rather
‘than the pairs of algsbraie integers d(i), ﬁ( i). I.e., they work strictly

in terms of continued fractions, and not in terms of the Ruclidean algorithm,
Note that in the situation (83), we can write
(54) “(.’u-r) =g cx(l), ﬁ( itr) = A(lj (e & Q(o)).

From the fact thet aot'®) ama  ap(l) lie in the additive group spanned by

o((i) and (1) it folleows that & 1is a.n.‘ algebraic inbeger. (Imdeed, if we take a
matrix: w ovér. % such that (°((i+r), {B(iﬂ')_) = (d.(i),l P(i)) u, then a

will satisf:)'r'the_‘ cheracteristic polynomial of —u._.) -Bub d.(i) and p(i) are
similarly exp:?éssible in terms of oliT) ang g(i"r) (i.e. u € Gl(2, Z))

s0 a-l is also an algebraic integer. Thﬁs a is e unit in the ring of

algebraic integers in Q(e¢). Since Iok(i+r)| < lq( i)l, lal <1, s0 a g &,

i.e. it is a ‘montrivial unit of this ring of“algebraic integers.
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11, Ideas on finding units in higher number fields using the generalized
algorithm, Suppose the.-glgéri‘bhm;.deséz_:ibedt}in:w64;,-'*appliéd %0, an (p+1)=-tuple
of real n\mﬁbers R ITITTE -eéuimlently, to an (r+l)=tuple of vectors
(31,..., Brasy € JRr', becomes periodic. Then the matrix w e GL{r+l, Z)
representing the operations of the algorithm ower the ecourse of one peribd can
easily be seen to have as an sigenvector the walue of @1,...,0%_,,1)‘ ccowring
at the beginning of a period. The eigenvelue on that vechbor will be an invertible
algebraic integer a. Thus - [@(e)s @) < ¥*1, and if oms has equality, ome
finds thet the ratios ofy/y, must form a basis of Qa) over Q.

Honee to find units a in a real algebraic number field K, it scenms
reesonable to stert with a besis d'l""' X vl of K over @, and perform
our algérithm,en this system of numbers.

Car we duplicate the above proof of Ia‘gra.nge'é theorem, or some imporiant
parts of it, for ‘:thisr-ge.neralized situation? Two key points in the proef were the
invariance of the deberminant (28), and the fact that ef;ry step decreased one of
our two-read nunbérs, leaving ‘the:otker: fixed.

On the othai'-hand, 'i:he important ides of Ferguson and Forocade on which the
generalized algerithm is based is thet one needs to consiger the effieoh of ’::.s
ehe's: transformibions: nok on the nimbezsu..’;zmiya*.i,-__9@:..,.1,;, burt on .. ‘; s e o el ls
tha %ee_tc’:_rs ﬁi,;... fé pe13 equivalently, on the matrix B. ¥ow this leads to & great
number of analegs of (29). Let &,,..., 0,7 Pe the distinct embeddings of X

1

in the complex numbers. Then for any column b i of B, the determinant
) will be -constent under the operations ef ouwr

-

construetion. But we cen form still more determimnﬁs with this preperty! E.g.
s bt = i i : Ib . P

U‘:"x_'+l ‘3r+1;") for fairly arbitrary sequences i}.’ . i:ri-l

- and jl_(',..., 31'4-1’ which may even involve repetitions, as long as both do not

d@t(ﬂ'il By 31 s sesy

repeat simultaneously.



This is too much data to know what to de with. But recall that ow original

date ul,...,ar + do not uniquely determine B. Might i'b_be possible ‘o choose

1
B so that some of these invariants have easily described relationships %o others?
For instence, by meking the wvarious celuens of B limages of one another under

the o ?

Folleowing this ides through, I finally came “‘ho the conclusion that it was
perheps mest matural not to start with the o's at all. Consider instead the
following approachs

- let K be an abstract algebraic number field, of degree r+l, eand
@Yo cees Tpoy its distinet embeddings in €. Ilet uali temporarily assume _'_bha'b
these are in fact real-valued, i.e. that K is & totally real fisld. Let us
teke a Qe=besis of K consisting of algebraic integers, which we shall-denete
ﬁ;, "":B:*-l" We now define wectors ﬂl, eves [l € &’ by By =
(o‘l((%z). eens cr(ﬁ;‘)'); and perform ow algorithm on this systen. |
| In fact, o:ne may look et what I have described as . embedding - K in
r", using the » real embeddings a'l,..., Ohe 204 performing our algorithn
in K itself, using the structure of normed space it acquires under this embedding.
If the e.}.gori%ﬁ .becéms periodio, then the peried will correspond to multiplication
by & unit which hes length < 1 under all of these r embeddings (ﬁnd,:iﬁence, of
course, length > 1 under :&ﬁ}_.)
We remerk that the weebor «

1
formed from the minors of B (of. 88), ocan be shown to have the ratios

gessy dr_‘_i oor:responding to this system,

/oy in %..1(K);  in fact they will form a basis thereof.
In-the.situation described above, there is a unique matural amlog of (29),
“name ly | '
* .

This will be the square root of an integer, and constant under the algorithm,
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The analog of (30) would seem to be a homogeneous polynoﬁial in r+1 indeterminates:

(36) T, (L, o0 6 ¢ Bleees ol

But whether one can prove that under (some version of) our algorithm, (36) sssumes
only . finitely meny velues = which would yield ‘the anslog of legrange's theorem!
- 1 ecan't say. Perheps one should first think; about the simplest case r+l = 3.
Pubting this key questien aside, let us sk how we should vary the above
considerations if K is not totally resl. We can, of course, simplfy ﬁse ﬂze
version of our elgorithm with € and % [i] in place of R and %. Unfortumtely,
‘this-would:correspond te looking-for units in K(1), which might not lie in K.
However, suppose that Cril is veul; equiwalently that those of Tlaeren O
that are not real ocowr in complex conjugate pairsf Say 6. and 0, eare such

e pair. Note that in ¢, we can mke a unitery transformation so that

the r-tuple Eﬁ’ instead of begimming (w{(flg), Ea(ﬁg), ...) begins

() o (6 oY) - o8
| ﬁ » iﬁ y tes

= (VEReloy (1)), V7 Tley(83))s o).

These 'Ewo functions .ara alﬁays real. Doing the same with each conjugete pair,

we get & system of r+l vectors in ¢* whioch are in fact Iar—valued, and

will remain se under application of our algorithm.' 8o the complex algorithm,
applied to these vectors, red'ucesy to a case of the real algorithm! | (As nofed,
the factor /Z keeps the new system wniterily equivalent to the old ome. Whether
there wouid be any less in dropping it, I don't know.)

daoRITEN T L LTEalT LUnPeli, . SR ST 0
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When the embedding one wishes to distinguish is itself complex, I suspect that
the best approach would be to call the degree of K r+2, let 0ps ceey O
be all embeddings except the distinguished one and its complex cenjugate { for
oné cannot allow & .unit to have absolute value > 1 under one of ‘these embeddings
but mot the other), and apply the algorithm to the r+2 vectors
(o'l(b;), vaes a;(b';“ € C¥. As before, & change of coordimtes reduces this in
turn to an spplication of the algoritim in RT,

Jof course, the complex elgorithm per se would be appropriate when leoking

for units in extensions of the Buclidean fields (i), Q(w), etc...

H

1z, A sin'zple candidate algorithm, We mentioned on p.l that the one property of

the Euclidean algoritim which it was clear ocould be generalized without difficulty

of systems of n real numbers was that of debeoting cammensﬁrab"i_li'by.

Now & closely related property of the ordinary Euclide_a'h algorithm is that

of detecting approximetion to raties of small integers. Example: Ny 13 year old

stepson Jeff Watson told me thé.t his batting average, for the weeks thmt his class
had béex_: playing softball in Fhysical Educetion, was .B46. Wondering what score
he had cemputed this from, I applied the Euclidean algorithm to 1000 and 8486,

_ . . e - ‘= 4+ LI 1 1 TN
getting the conbinued fraction exparsion .846 T = 5% % Clearly, this
1 1 1 11

is ¢lose to- ™ e % i3 -1 asked whether he had gottem 11 hits in 13 times
at bat, and he said yes (but pointed out that I had know way of knowing it wasn'
22 out of 26.) |

Suppose, nov;r; that we are given three or more numbers whose retie is an
appromma‘bion of a ratio of small i.rrt:egers, wh:.ch we wish to reconstruect. We
can try =« Euclidaan algorithm type progrem of reducing warious 'l:erms by integer
multiples of_”gthers. But whether we are led to the correct ratio, despite the

approximate nature of our datae, may depend upen our choices of which terms to
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‘subtrect from which at each stage. lLet us, then, consider each mumber as combaining
a small error term, end try to ua;e the procedure which will cause the least build-up
of these errors. Thus, if |a| < |b| < |e¢|l, and we have a choice of reducing o
by subtracting a large integer times a or a smaller integer times b,.' the latbter
would be preferable, since it would add to ¢ & smaller nultiple of an error term.
This leads ’colthe algorithms Always subtract from the largest member, x, of the
current system of real numbers, the least integer multiple of the next-to-largest
member, y, which leaves a remainder smller than .y in ebsolute value. (This
way be contrasted with the Jacobi~Perron algorithm where, after the first cycle,

one always reduces the largest term by an integrai multiple of the smallest., This
cuts down the size of one's numbers very quickly, but bresmm.bly also allows errors

. S’ee- q"\g‘{f naig 5
to build up fast if ene's numbers are not emact.) e eowlie, discover

of sbove efgod it

The ebove reasoning is, of course, pragmatic rather than rigorous. I have
not thoughf gbout how to formalize or prove a statement to the effect that this
is e particularly good algorithm. However, in ’c‘zhe same speculative vein we may
inguire further. As pointed out at the -end of §9, there should exist some
algorithm which will detect linear dependence ameng e family of real numbers
Xyseeep pyis Without redourse:to:a family of vectors ﬁl,..., fipsy Such as
we have used. Might the above be such an algorithm?

8till more spsculatively, might it become périodic when applied to a basis
of an algebrai'e number field? " |

As an experiment, I applied it to 1,_%, ?/Z, using for the last two the

six-place values in ORC Standard ¥athematical Tabless 1.259921 and 1.56740L,

To record:the results, let "n" denote "n times the second ldrgest walus was

subtracted from the largest ‘value, " " denote "the remeinder then beceme the



second largest wvalue", and "s" denote "the remminder then became the smallest
velue." The result of the caloulation was

(7). 1sla3s1.3-1s351-1s1sLs1s1e1e3510 312515221951 .

Notice that the pattern "1sB331-3-1" occurs both right near the beginning (starting
with the second "1"), and toward the end. Conjecturing that this represented the
‘ beginning of the repetition of a periocd obscured by the inexactness of the given
approxizﬁa’sions, I wrote down the presumed period, l:3sl:3* 1:3:1'111313131', and

computed the corresponding metrix w e GL(3,% ); and its inverse:

24 8 -5 058 177 228
w = | 8 119 -8 |, wl=  [oe2 281 354 |

-31 ~13 14 331 400 504

If my conjecture was correct, I should got (%{_—E’/E, 1s %/E Ya=. .. o,

al @'_x___?-‘l'%,'-{.,li 5/5), sinee - (3,/_ - :’:/;‘2',' 1, %) is the iwiage of the originsl
d~tuple under 'bha initial step "ls", which precedes the conjectured perlad, for some
a € Q(a:/— ) A necessary :and suff:.cient cend::b:.on for u te behave in this

way is that it commuise with the matrix v representing multiplication by %

in terms of the basis (32 - %/3, 1, %% ). Tnis is

-1 1 1/

One finds that, indeed, uv = vu, and concludes thet u will indeed aoct
on the indicated 3-tuple as multiplication by an olement @. One easily
obtains a by looking at the middle term of the product B=buple and one

gimilarly gets 2=t from the middle bterm of the imege of the 3=-tuple under u‘la

a= 19-53%F -5 2, a™t = 281 + 223 37 + 177 ¥/4



Hobe- thet:the period-discovered:is "palindremic"; in the sense that it
has conters of symmetry at the "+ 3" and at the middle of the series of "3li"s,
The continued fraction expansions of square roots of ratlonal numbers are alse
Enown_fa have amh. a property (of. [2], p.825 itemi(£)).

Ou the:other hand, & similar experiment with 1, 3/3, 3/F gave:
1s181lslslsl+12232-1-331s415283213351°131-331-2,

with no evidence of periodicity or palindromicity. Perhaps 6~digit approximations
are not good enough for this case, or perheps my algorithm, like the Jacobi-Perron
R ) R ) See f‘.ﬁ")‘; nﬁ‘ﬂ 5,
algoritim, simply gives results sometimes but not always.

I would be interested in knowing whether this algorithm is one that has

bean sxamined before,



13. Appendix. A result on.'d-ensé- -subgro'ups.' In 87 we generslised the algorithm studied

from the ease of r+l vectors to r+m vectors in BT, and translated the
results inbto statements about dense subgroups. This suggests the following
question: Suppose G 1is a dense fimitely geﬁera.ted subgroup of RT, say free
‘abelien of rank r + m. :W'ill G in gsne'ra:l sontain a subgroup of rank r + 1
(i.e. freec abelien on r+l generators) which is still dense in rY 2

It seems.-that for: "most™ G :this ie so, bub &efinitely not for all.
In this section we shall characterize precisely those G for whiéh it fails
when r = 2. | '

The result, and/or many of the observetions used to prove it, may be known.
I would be grateful to anmyene who could givé e referencea; |

For any subset Xs R¥, let WX) d.e.mote the subspac;e of ]Sr spanned hy
X, A(X) € W(X) +%he p.ddi'bive subgroup g,eherated by X, eand U(i:) g W(X) the
comneeted component of “ O ‘in the closure ol(A(X)), It is clear from the
deseription of the structure of closed su‘bgroups mentionagl in 87 that IT{X) is

open in c1(A(X) } » hence that

(28) ) A(X) n B(X) is dense in WX).
For X finite, it is convenient to study A(X) by ' taking in X a
will

vec'baz:-spa-ee basis Y Qf. V(X), whichjsatiefy’ ~UY) = {03}, W(¥) = ¥(x),:"

‘and'seeing how WYy %) grows as additionsl families of elememts % € X = Y

are edded, Once Y is fixed, the possible v‘ector-spaées ocowrring as WYe 2) (2 € VW(Y))
turn out to be guite limited} In’the: '*So'lf&wi.ngi ifowr assertions; Y- will be

any Religsarly ipdependent subset' of ‘W%, Tieould supply preoefs, but since

the results are not deep and may be well-knewn, end simee I am short of time,

I shall wmot do so here. (4]} and (2) are deduced from (39) and (a0).
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(38) 1r U isa Yector subspace of V(Y), then A(Y) + Tc WY) is elosed
if and only if U has a basis eontained in A(Y). When this holds,

the connected component. of O in the closed group A(Y) + U is just TU.

(40) If P is any closed subgroup of V(Y) which contains A(Y) then U(P)

satisfies the above conditions, and A(Y) + W(P) has finite index in P.

(4) If 2,, Z, are subsets of W(Y), them U(Yu Z,v 23) = WYvz) + A¥ud,).

(42) Suppose- Y 2{yyeeves yt}-, an@ let 2z € VW(Y), Tet us write z = ely1+...+et|.

Llet {1 = Bys yl,‘;.., pu] be a Q-basis for the Q=vechor-subspace of

IR apanned by "*2.‘_1._,' Gysises Cp. Thus we can write 3z =z Pi(rilyl toees t r’ity'b)’

where the r, j &ve ratiomel mmmbers, of:whiehithose with &£ 0 imay, . .
By appropriate medificetion of 1p.siwes i'Pos be taken to be integers.

_ containgd in A(Y)
Then an IRwbesis for U(Yv {5}) pis gliven by the vector cofactors of

A

Fl’;;" Py in the above éxpression‘, no
From (41) it is easy to deducss

(43)  Amy finitely generateéd dénSe subgroup .G.S-RY - contains e @ubgroup: rrin

-generated:by < 2r elements which is alsc dense.

Indeed, let: - Xi-be a finite generating set for G, and let us rchonse
from X a basis Y of RY., Thon from (41) we see that wWX) = ’RY will
be the sum over all z e X -Y of the vector subspaces WYou (2}). Clearly
a subsum of < r terms will give all of IRr; hence the r eiements ef Y
together with < r eadditional elements generate a dense subgroup.

We: ask  fer mwhieh groups G there are no dense subgroups of raxk. gmeller
:Esha-nl—"*--zr;."-;-riier:;f‘-_xi.ﬁ..ﬂ::-_:thi?s,-. is.the.-question we-started with, since, 2r=l is

the seme as » + 1. To statée the answer , We need an invariant -of groups-:G € R¥s



(44) If G is eny awbgroup of IRY, +teke an M=baszis Y for V(G);
“thus every élemontof :Ge Ry be wribten as axlinear combimation
of elements of Y with ecoefficiemts in TR. Iet @(G) S IR denote
the field generated over the ratiomals by all coeffieients cceurring
in the expressions for elements of G to this basis. Then the

field Q(G) is independemt of the choies of the besis Y.

This is easily deduced by looking &t change-of=-basis matrices, We can now

stobes

lomm 9.° Let G :béia finitely gonersted:dense subgroup a:f—‘u'.\.:m,r,:?‘,.- where: r > 2,
Then the follewingtio-conditions -are equivelent.

(1) Bvery subgroup of G dense in RT has rank > gr.

(11) [a(e): q) = 2. |

mtg;ﬂ; r§ G be a vector space basis fér RY. Then for any generating
set X for G, Zx B(Yw {x}) = UWTwX) = R, YNow if any of these spaces

WYy {x}) hed dimens‘i.an ;grea'ber than 1, we could add to it fewer than r-1

e'bhera spaces U(Yuv{x'}) and get all of .IRr. The result would be a subset

YuZ' of cardimality < 2r such ttat U(Yu3') = R’", i.c. such that A(Yo2')

is &ense. Thus
(45) For all xe G, dim WYy {(x}) <L

Now let us take r olements Xyseess X, 6uch that the spaves WY o {x‘l})
are l-dimensional apd swm to RY. By (38), elements of G are dense in each
of these spaces, o by (43) we oan find in each U(Ye {x;}) two elements which

~ generate a _densé subgroup therein; call these z,

; and Gi?i (ei € R~ Q).

Now for emy i, j, let us apply (485) ﬁth {‘zl,..., Zr} in place of Y,

3

end e;%; + ¢s2, for x We conclude that dim W{zy,..., 2.} u{e,z; * ajzj}) = L

J J
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By. (42) this tells us- thet the Q-vector-space sparned by 1, e; and e, has

3

a basis of the form {1, ¢}, Since none of the d:i"s lie in @ +his means
(48) For all i end J, o; ise Q-linear combimation of 1 and aj;

But we can perform the same calcoulation with the roles of 2.

1s.ndc

1%

reversed, gebtting the conolusion thatb cgl is also a Qulinear combination of
1 and cj. This leads to & @-linear reiatien among 1, o, and c'i'_l, so o
satisfies & quadretic equation ovetr -Q.: Hence'by (48 ), all cj‘s 1719 ina
cormon quadratic Rmimber field, say @Q(c).

To complete the proof of,(ii'), pick axy x€ G, If dim U({zl,.‘.,zr}u{x})

53

= 0, %hen the caefficiue;;a’lc; express:l.ng x in terms of the zi‘s)are all

retional (cf.(42)), and hence trivially in Q(e). If net, then this dimension

is 1, s0 by (42),i%the Qmvector-space sparmed by 1 and the ooefi‘i.é".i.en'bs

expressing x in terms of %ys-s7% 15 spaxned by 1 eand one other element, which
the coefficient of _

we can take to e, z,. New pick a F i, end apply the same considerations to

x + cjzj. For this result to remain trve, the space spaxmed by the origimel

coefficients must have been e). So Q(G) = Qle), establishing (ii).
Conversely, essuming (ii‘)'we can see from (42) that for any R-besis Y ¢ G

of RY, (45) will hold, from which (i) follows immediately, ||

We remark that the proof of (ii) =» (i) generalizes to show that for any

finitely generated dense subgroup G EIR:', a dense subgroup of G must have

rank > (1 + 1 ) r.
_ la(G)sq] - 1

The reverse implication (i) => (ii) does not have the obvious sert of
goreralization. If all dense subgroups of a gi.vén G have remks > rm for

some m, this does net yleld an upper bound on Q(G) except when m = r. For
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example, let d be an irrationnl number, witheut restriction on degree or
algebraicity, and let Q(c) be & guadretic extension of Q. If X = {xy9e--s xr}
is a basis of }Rr, then the subgreup G generabted by Xyseeos Fos e.;.tl,...,
G#r‘-l’ dxr has Q(G) = Q(c,d)s, which can have arbitrary degree, but has no
dense subgroups of rank < 2r-l. To see this, projeect G onte V({zl,...,zr,_l})
along V({zr}). A dense subgroup H S G must project onto a dense subgroup of
the imgé; which must have rank > 2(r~1) by Iemma 9 . One dan deduce from (39)
that H must aleso have ﬁonzero: inbersection with v({zr}) s ;p.ence its ravk is at
least one wore than that of its projection. |

However one can prove

{47) Exercises G:¢ REY. is a finitely generated demse subgroup, and every
dense subgroup of G has rank at least r + m, them Q@) must

have & subfield F such that 1< [Fig] < —= + L

(Hints if [Q(ci)'sﬂ] = n, then (e_i+1)"1,.,., (afn—l)';‘.f@and 1 form a
Q=basis of Q(ci).)
Finally, we nobe that in a differemt sense, all finitely generated dense

subgroups do aride frem finitely Feneruted dense subgroups with m = 1g

(40) Rzorotse: Buppose F < 8; amd G SR ta dense-subgroup: froe 'of renk
8+1l: a8 r.u:;::-a.belian : gréup_,:‘ Thenthere is'a :d'eﬁse* subgreup G' EfR ®  pies-af rai\-lk
" s+l, such that the projection of R onto the first 'r ‘coordinates takes -
@ ombo Gl L

L Contt Vlu_e. Frpim f)-‘f"f"i\) ?6«#‘ <]
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corrections and eddende to my "NOTES ON FERGUSON AND FORCADE'S GENERALIZED
EUCLIDEAY ALGORITHM®

Gedrge M, Berguan

Since writing thbﬁ above Notes: (here denoted I0|) s> I have corresponded with
Forguson and Forcade. Mest of the comments below are the products of this
correspondence. They may be read after the whole of |0|, or emch ftem canibe.: - -
read after the point of |O| referred te. - Point 8, ocoupying the last 2/3 of
‘these pages, may be considered an additional seotion of o], .'ﬁlz%!'._

L p.2, Lines 7-1L My description of the Jacebi-Perron algerithm is incorrect
Rather, it can be described as acting on a tuple of real numbers by al‘hernataly L
(i) subtracting from every term after the first that integer multiple of the first
term which gives the smallest positive remainder, and then (ii) shifting the first |
term to the last position. (Thus the parenthetical comment on this algoritim on
P.43 lines 8=12 should also be deleted. )

Unfortunately, most authors seek to "take advantage" ef the fact that the
steps of the algorithm depend only on the ratio of the given numbers, by normalizing:
'Eheir n-tuple aftor each iteration so that its first term is 1, and then suppressing
this redundant term. The' cost e-f...thi's-::l_'sismplifircaﬁion-:‘:is a'.:-lezss':‘.tranparent less
elegant; and: eumputatzomlly more diffioult algorithm; though a%rwimly ‘for . dome
purposes.it.is approprigte: o' considér normalizéd: elementsi: e z. -the ergediec
properties of the normalized algorithm, which would be meani.ngless far-the menw: . -
normelized form, are studied in |6[. To further complicate things, some authors
‘consider a single lteration of the algorithm to consist of the sequence of steps

"(1),(i1)" while others use the sequence "(ii),(i)", yielding the differemt
Ko - [”‘2] N 1

normalized formsti i (¥y,...,%,) > ( ey s
- [%) 4 =[]« =[]

. . « §
respectivelys (Nl,...,ocn) > (Ef - [‘;,“i]: cees &g_ r"—!'l "'" - [""]) See |5{, |6].

1 “‘1
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An exemple showing that the Jacobi~Ferron algorithm can fall to detect a reletion
of, #-=linear dependence (cf. p.3l lines 13~14) is given boward the end of point ‘8.

bolow. .

2, Pp.7=2, B5. The algorithm I develop in this seckion (which works in dimensions
2 :5 and with: some modificetion;.4) turms out te have been introduced by Barkley
Rosser in |7{, though with some differences in point of view. Rosser did not note
that f-inding what I have called a c@-:Diophantine relation among wm+l poiwts of IRR .
was equivelent to finding & Z -linear dependence relation among w+l reel mumbers;

in fact, the question of inbterest to him wes not whether m+l points of R®  satisfied
one co=Diophantine relsation, bub whether it sstisfied m such relations, i.e.
whether it generated a discrete subgrou.p of B®, and if s0, how to find the "smallest"
& -vasis. He considered such spplications as minimizing velues of guadratic forms,
In |8], |®] he also applies this algoritim to problems of approximating & ratio of
several irrational rumbers by a ratio of integers (of. O] begimning of 812 and

also Cor.6 p.31 eb.seq.)

1’3." p.9, first three paragraphs of 84, These paragraphs are’ ncﬁ.;.a -complete -

' éesgription- "of.._:-Fergu§¢n5=.a.ﬁd3"!?0'.,1;69.@9 ts algorithm, though the sentence which follows
them way seem to imply thet it is. What is true is that their elgorithm is
induetive, the algorithm for n-1 being used as a subrautiﬁe in the algorithm for.
n, and that it makes use of the max norn in.selecting which vector to distinguish,
For o more extensive pmsante.’cion of their construction and its consequences

than |1, see |3], }4|. -

4\4; P.42, top paragraph, Ths approamch I suggest there is nonsenss, since,the
extended algoritimias. I deseribe -.;.i'h-,wf:'é;héna applied to r+2 vectors in ¢, will

ignore the last one until s co~Diophantine relation'is found smong the first



r+l vectors, which camnot-heppen in this situation; and application of the
algorithe bo these r+l veoctors carmot give periodic result since K has degree
> r+l, The question is somewhat academic at this point, since we don't know

- whether the algoritim becomes periodic even whaﬁ .'hhs distinguished embedding is
+ real. Nonetheless, here are two possible ways outs (i) Modify the .a}.goritlm

so that it does not “ignore" weak indices. (For instance in {10) p.11:6hange the
(i-1)

( .
11 1" o MIf |13)|>|p j)},,where j is

i+l
the largest index < i such that s(3) A S(i)". But obher modifications might

hypothesis "If ]p(“‘ 1)I > |p:

be superior.) (ii) Find units in K(i) (cf. preceding page) and apply the norm
mep K(i) - K %o get units in K

iBs  pp. 42—43, §12. The “cdnd_idate algoritim" discussed in this section, which

1 motivate by the task of detesting approximation to smalleinteger ratio, bub
suggest might also detecjt linear dependence and/or give units of algebraic number
fields, turns out to have been introduced by Viggo:Brun |20|. Brun proved that
his algoritlm would detect linear dependence in a 3-tuple (o3 sp0005). Foroade
and Ferguson came up with the same algoritim independently and proved the same
result, but alsc found examples shcrmng that it may fail %o debeet linear
depeﬁdenoe relations in 4~tuples and thet when applied to a linearly independent 4~
-&aple'?.%, it may not "approximate" in their sense. I.e., the rows of the successive
matrices it pro&uces will not in general 'approach arbitrarily close to the
l-gimensional subspace xIR. (Like the Jacobi-Perron algorithm, it has the
property that the distances from these rows to xR, divided by the lengths of

- +the rows, do approach zero. This iz a much weaker condi‘bi_on, which Ferguson and
Foroade express by seying thet such algorithms give "angular epproximstions™.)

I will present the counterexamples in poiut (8 below.
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{65 Pp.44=45. Warren Dicks (Beaford College, London) hes tried out this algoritim
on (1, nl/ g / ) far =gy 3, 4 by computer, using 115 decimanl place
scourney. For n = 3, <there is still no trace of periodicity! For n = 4

{which, of course, gorresponds to the same field extensionas n = 2)., he does

get a periodic patterns

1s(1s1s2. 2.1 250s1s250.6. 161805282, 1. 1, 1e2sLa1e2,1, 28752, 1, 251, )@

Note tiat this is again "palindromie”, with centers of symmetry et the "6" and

'bhe “7"¢
{7¢ p.48, Lemmn O, The proof should begin, "Asswme (1)".

{8, FPerguson and Forcade give in |3|, p.7 an exemple of a Z -linearly dependent: -
4=tuple for which they state without proof that Brun's algorithm (see %éin-b 5 above)
falls to terminate, and & Eflinearly' independent 4~tuple for which the'y sﬁa*be
that it fails to approximate. I shall sketeh here some results which motivate and
explain these e::s.mples., and give antexample: slmilar to the first 6f thesé for:the
Jacobi<Ferronialgoritim,

In examining Brun's algoritim, let us fix an inbeger n., and restricﬁ our
a_ttention to n-tuples of res__.JV.‘mmbers (cil,.. .y ozn) satlsfying
(49) 02 Xy 2.v. £ &, 0<w, .

which we shall call Brun n-tuples. The set of all Brun n-tuples will be denoted

B, and the set of Brun n-’quple's modulo secalar mulﬁip‘lﬁ.eation, B. The latter seh
can be identified with the set of Brun n-tuples having «,= 1 ("normalized" n-tuples;

of. point 1), which we see from the defining condition (49) is compact. We shall

call a Brun n-tuple nondegenerate if o,y # O.
Next, given positive integers i Snl, j<ow, we d.efine the Brun matrix

b(l,a) o be the matrix which acts on row vectors (otl,...,n(n) € RY vy

1.3
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subbtracting jtxn_-l from the term o:n, and then moving this decreased term
to the ith place,-" giﬁnﬁ (o(:l’- Ve y P‘i_l, dn"' j%_l, O(i’-- P ocn._..l)- We can
geo that

(50) for any nondegenerate Brun n=tuple & +there exists a Brun

matrix b(i.j) such that « b{i,j) is agein a Brun n~tuple.

A Brun metrix b(i,j) with the ebove property will be called "admissible" for
n;, and e sequence of Brun matrices '.;b(.ilg,‘:.;ji.) ;Lb(_iér., -.5-2);;';., (finite or infinite)
‘will be called aamis_sible for: ey ‘if each b(ir, jr) is admissible for
. ok b( iys jl)...b(ir_l, jr-l)'. Then Brun's a_l_gori’tm consiste of applying to a
Brun n-tuple successive admissible Brun matrices, eontinuing -ihdefinitely
unless one reaches a degenerate n-tuple (:Lf one is testing for oommensurs}bility)
or an nwtuple with &,;=0 (if one is testing for Z -linear dependence).

(Tt is clear that the Brun matrix in (50) is "wsuelly" unique. In fb.e'b;
j is unique unless Ay SR “1;-1 (m > 2) in which case there are the two

possibilities j =m, m~l; i is unique unless %, = it is equal to zome

nel
%, (h < n~2). It follows that in any case of mohunique admissible b(i,3j), we
got for o b(i,j) an n-buple for which one of the "<" gigns in (49) becomes "=';
and one can show that such an n-‘buple must, afbter a finite number of further
admissible Brun operations yield an p—tuple with &, = 0. From this it will
follow that in the class of exsmples to be eozis‘idered, one has unigueness at every .
step; but I shall not belabor the details in this sketeh, )

We now:ask,:given an arbitrary finite or infinite sequence of Brun matrices,
what can be said sbout the class of & B admitting this sequence. To study

this guestion we mush look at inverses of Brun matrices. Those are even more

nicely behaved than the matrices themselves. We note that b(i,j)_l achbs on en



n-tuple by increasing the i%® term of the n~tuple by j times the last term, and

then relocating this incressed term in the last position. Clsarly
(51) B b(i,3)! < B.

(Thus (50) seys that the sets B b(i,j)~* cover B éxcept for the degenerate
points (0geees Oy «n), and ouwr remarks on uniqueness say thet points are covered
wniquely except at the boundaries of the immges B b(i.,j)"l.)

The:actiohs. of the b(i,j)'l clearly extend to the factor-se'h 'ﬁ, Given.
an infinite sequence of Brun satrices b(ih, ,jh) (h=1,25...) we see by the

compa.ctness of B that the intersection of the chain

| (52) B2 8 u(i, 3™ 2 Bali, :52)"l b(i,, jl)'l 2 ...
is nonempty. By metric considerations one finds that it reduces to a single
point o«R ¢ B, i.e. there is & point o€ B unique up to sealars which admits
th§ given sequence, Note thet if nene.of the: :.h equals 1, <then rthe algoriﬂﬁ
is essentially being performed on the {n=1)-tuple (“g"“’“n)-’ and in fact one
finds that in 'bh‘;s case X, = 0. On the other hand, if £ ="l" for'at:least
nwl velues of h, one can _shedv that &y F 0. In particular, if i, =1 for
infinitely meny walues of h, then neither s mor an,f,r of the iterates q'b('ﬂ.l. ji)’
qb(il,jl) 'b(iz,jg) ete. has first term 0. (And one can deduce that every step
of the Brun algorithm &pplied:to this & is unique.) o

Wo iow consider a:finite product of Biun matrices;: ?bF-'i'F 16 P ¥ P iy5d l) s
_where: r > 1 and at least one i, eawls 1. Applying the above considerations

to the infinite seguence
(55) _ . ) b(il, jl), -0;’ b(ir’jr), b(il,jl')gco_c’ b(ir,jr), LERN ]

We: conelide. thit there will be a unique point MR € B inmverient under b,
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i.e. a unique (up to.scalars) eigenvector T for b in B, The Brun algoritim
will be periodic on T, with seqguence of operations (53).
Iet us now suppose for simplicity that the ocharacberistic polynomial of b"l

1)

has distinet roots, A.seres Xn’ with eigenvectors 9( aievey e("). Note that

1

) - -1

Yow almost-all:poits of R™, end hence almost all pointsof B, will have the form

(n)

(55) 0 = 019(1)+ see T 09

n s wWith Ulpncc, Gn f o,

If we iterate b+ on é, we See that the eigenvector(s) corresponding to the
eigenvalue(s) of largest absolute value will "dominate", . On the obther hand,<from
our donsiderations concerning (52) we can see that the imeges in +B “of the iterates
8 b must oonﬁerge to the unique fixed point +IR. It is easily deduced that

there must be a unique eigenvalue of meximal absolube value, say 53;, that 9( 1)

=7 (up to soalars), and that Ay > 1. This is already a nomtrivial condition
on the characteristic polynomials of products of inverses of Brun matrices.
Fow it is not hard to ses thay if Brun's algoritim is to approximate < in

the strong sense of Perguson and Forcade {i.e. iterates @ b ' actually approach
the line TR in Bl, not merely in B), then all the eigenvalues 75_ other than

)\l must have absolute value < .. If one emines'th;a 4~tuple they give as an
example of non-approximation,(rearrénged as’in-(49)) dhe.;-find's-;that‘ it #s a fixed
point of . { :'b':# b(3,2) b(1s1) v(2,2) b(3,1)» ~The: characteristic polynomial of b~%,
1t - S e ? - g - 1, tas eigenvalues )1 % 5;198, ')\-2 # -l.1§2, ')s, )4: =

- 0,028 £ 0.405 i. Since }2 is in fact strioctly greater than 1, "approximation"
fails badlys the iterates of (65} actually move away from the line TR, (For

the rsoord, their éxemple is, up to a scalar: (31732", 4-)§+1, 'A?-i- '}\1, 3)?). But they
write the terms in reverse order, and 8Xpre s8 them in ’germs of )zl, the least

eigenvalue of b,)
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Consider ﬁext; what oan happen if the oharactenistic polynoﬁial of b~
not irreducible. Since the éigenvector ¥ 1is a solution of fr(b_l - 7‘11) = O,
it can be teken o have entries in the field Q(A;). Bub in this case N, has
degree < n, so the entries of 7 are linearly dependent over # . But by
construction,“Brun's algorithm applied to o is periodic and never gives an

n=tuple with o .= 0, hence it never "discovers" the linear dependence relation

1
among the enbries of 7.

There is in fact a rather straightforward approach to finding examples of
this sort. Start with an n-tuple 5 of positive and negative integers, e.g.
(1,1,0,=1). (Of coursse, 5 is not a Brun n-tﬁple.) Try to find & product bt
of inverseiBrum:matrices cerrying ¥ to =% ; in the above example, B
b(3,1)"t b(z,l)'l b(l,l)-l does so; Then +b7l. will have dheigenvalus =1, aid
héenée characteristic polynomial divisible by +H+l, avd in psrticular, not
irreducible. Indesd, the example they give has b=l as above, with characberistic
polynomial ('b+l)('b5 - 3t +1), and eigenvector + = (1, M-l 7\?_- 2}1,)1) &‘*:B;a:where.
)1 is the largest rvot of the cubie facbhor. |

The Jacobi=Perron algorithm can be examined in a "similar wey. Llet us consider

its basic step o consist of subbracting from the terms ata,..;, o, of an n-tuple

n
of the largest integer mulbiples of %, glving nonnegative remsinders (say
Ko= JKyseees un-,]na\l), then moving &%y to the last positions Then afber the
second step it will always give n-tuples of non-negative real nwabers with o,
greater than or equal to all of ysesvs Kl Let ns-eall thetséet of such n~tuples
J. The steps from this point on will also satisfy
Coubjeot. to (56)) p(Joseersdy). It is again true that every o€ J admits a

A 2 n _

matrix 'p(jz,...,jn), unique except in merginal cases. But it is notibrme o
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that J p(jg,...,jn)"l is.always-combained in J; this is so if and only if 1< j and
gy < 3, (h = 2,...,n=1; of. (56)). Nevertheless, with & little experimentation
one_'finds that for $=(1,~1,2,~1) one has gp(o,l,l) = =85 and p(0,1,1) has

an eigenveator i‘n' J, nemely ()\%, 5&1, §§+l, 23%-%1*1-), where A, ¥ 1.755 is

the real root of 5 - 2¢% + % - 1, this times ¥+l being the characteristic
polynomial of p(0,1,1)~L @ne:fconel&daa.fbha‘;"b:«'hhé dacobi«Perronsalgorithm fails to: -
detect the % -linear dependence of the terms of this 4-buple.

One night ask whether versions of these same algorithms which choose their

coefficients to give remainders with smallest absolute values at each step, rather

than least positive remsinders, might do better. Here both algorithms come to
have the difficulty of:hobt:satisfying the-analog of (51). For instance, the
nebural olass of matrices to look at for the Jacobi-Perron case ars those
p(:}a,..., J,) (defined formally as above) with arbitrary integers Jgswees Iy
subject %o zi;jhl <fils 22 ljn{, but the analog of (51) holds émly . ==
if all these inequélities are strict. This means that if one uses operations not
satisfying these stronger inequalities, then one must check that 'bhle string of:
operations-in-gue stionﬁié sinrfaoctradnissible on:-the: ’ei‘-‘geﬁi.re_éter e O Ehat& one énds
up-with: I bave not investigated these questions in depth, bub here, at least,
is an example for which this version of the Jacobi-Perron algorithm fails o find
linear dependence: Teking ¥=(=l, 2, =3,-1) we find that ¥p(~1,1,2) = ~%. The
charecteristic polynomial of B-1,1,2)"1 is (t+1)(6°-2t2r3t=1). Letting A » 7/3
denote the largest root of the latter factor, we find that ('}\i, -'Ai-l-?&, ﬁii-lfl,
31§ -'231 + 1) =¥ is carried by the algorithm to op(-1,1,2) = ]El’r, S0 hoin
zeroberm over appeatsy: though the: enbries.are % =linearly-dependent.

Note that in the above examples, by creating pe:t\'iodici‘by we were able to

" know -the:conplets -behawior of these’algoritims on certain elements, and thus
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prove that certain other phenomena failed to oceur. - It would seem that to

prove that one of these algorithms, when applied to somo:basis of sémelalpebraic

number field, did not show periediciby, should require much more subble methods. -

[el
7]
|8]
9]

| 10]

| 12|
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