THE CLASS OF FREE SUBALGEBRAS OF A FREE ASBOCIATLVE ALGEBRA IS NOT CLOSED

UNDER TAKING UNIONS OF CHAINS, OR PAIRWISE INTERSECTIONS
George M. Bergman

The results stated in the title, which will be shown by two examples below,
enswer in the negative two questions asked by A. T. Kolotow ([1], end of §1).
We motivate both examples. (We shall also show that the the amalegs of these
two examples work for commutative polynomial alpebras; though the union-of-a
cha in example requires polynomials in infinitely many indeterminates, and
neither example is as naturally motivated. But I doubt that ths existence :
of such examples will:be news to commutative ring theorists.)

We fix s field k. All rings and k-algebras will be associative, with 1.

We begin with the simpler ocase:

1. Pairwise interseotions. Recall that if R 1s a ring, a relation

(1) 8‘.1"1 t oees ¥ anbn = 0, eqqivalen‘bly

by
a.b = 0, where a = (al,...,an), b=
by

among elements &j, by € R is sald to be trivial if for every i, either

ai‘= 0 or b; =0. The ring R isan n=fir ;f for every relation (1) of
m<n terms, there exists an m xm matrix U over R which trivializes (1),

i.e. such that the equivalent relation aU~l.Ub = 0 is trivial. A free

associative algebra is am n=fir for all n (|2}, Cor. to Prop.2.4.2, p.80.)

1Part of this work was done while the suthor wes partly supported by
NSF grant MCS 77-03719,
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Given a finite family 8ys0009 By of elements of a ring R, let
rt.rk.R(t}) denote the least number of generators of the right ideal ajR+... +a.nR,

end similarly for b ....,bn € R lab 1t.rk.'?n(b) denote the mimimum number of

1
generators of the left ideal Rb; + ...+ Rb . If (1) is a triviel relation, we

clearly have rt.rk.n(a) +l"h.rk.R(b) < n. It is elso easy to see that if U is
an invertible n x n matrix, the terms of aU"! generate the same right ideal as
those of &, and the terms of Ub +the same left ideal as those of b, Hence in

the preceding statement, "trivial" can be weakened to "trivialiszable™ We deduce

Lemme 1. If R is an n=-fir, then for any n-term relation (1) holding over R

one hes rt.rk.R(a) + lt.rk.R(b) < n.j|

If 8 is a subring of R, and al,...', &y @ 8§, it is easy to see that
rt.rk.n(a) < rt.rk.s(o.), and similarly for left ranks.

We shall get our example by starting with a 3~term relation.

(2) ayby + a.zbz * asbs = 0

in a free algebra F, whioch can be brought by an invertible matrix U 1o
the "very trivial®™ fom

H ;, o
(3) (%, .0, 0) 10] =0,

¥ ¥

ol f| s : certain

‘e0 that rt.rk.k_(o.) - 1t.rk.R(b) = 1, We then find . free subalgebrs Gy € F
whﬁ.ch contsins the entries of ‘& &nd b, but not all of those of U. Then (2)
will still be trivializable, ueing-e. metrix: Ul over Gl’ but we shall find

that such & matrix can only bring it to the form

0
("‘a 0, 0) (") = 0
-

becausa : 1'b.rk.R(b) a 2, We will similarly find & free subalgebra (‘}2 conteining



the entries of a and b such that rt.rk.Gz(a) = 2. Hence all entries of
e and b will lie in Gy N Gy, Dut rt.rk.Glnez(a) + lt.rk.GlnGz(b) >
2 +2 > 3, 80 Gl" Grz is not a 3=fir, and in particular, not a free algebra.

The details now. To get & relation in e-free algebra which is nod trivial,
but ean be brought to the form (3), we simply take a relation of the form (3)
and "de-trivialize" it by applying an invertible matrix U. The group of
invertible matrices over a free algebra is generated by the invertible upper

. (|2|, Theorem 2.2.4) - :

triangular and lower triangular matricea& So let us try the simplest case, where
U is itself triangular.

let F be the free associative algebra on 5 generators,

k< X, Y10 Tgs Tgo 5> let uas start with the relation

0
(x, 0, 0) (o) ‘= 0,

1
and let us apply the invertible matrix U = 0] il Zr:) to the first faotor,
1L =yy Vi¥eV3 ' 0 0 1
and Ul = (0 1 “¥q to the second. We get the relation
0 0 1
(y1y,v3)e
(4) a-b = (x, Xy Ws) Yoz = 0.
z

We want. a aa‘b_&lgobra‘GlS;F over which & oen still be reduced by en
inver tible matrix to the. foym. (¥, 0, 0), i.e. necessarily to (x,0,0). 50

G, should comtain . ¥3 and yg. We see that once we have these elements, (4)

1 vy ¥
can be trivialized by the matrix Ul= ,(O 1 07, o v

o 0 1
0
(5) (xv » 0) "3'23 = Q.
denote ,
So let G, A.;A the subalgebra of. F generated by the entries of Up and those

of (4)3 equivalently, of (8)3 i.e. by the ¢lementss=” Tl B SIS T



(6) X Y10 Y32 Yzz’ z.

It is olear that these elements are independent (1-0. are free generators of
e free subalgebra), and if we write p = Yy b We seo thet the left ideal of
Gl gonerated by the entries of b, equivalently by the entries of the column
veotor in (5), is Gl p+ (}l z, so lt.rk. Grl(b) = 3.‘

Wo now go tirough the right=left duwl procedure, and find that the
subal gebra (}2 gonerated by the elements
(7) Xs Xys V¥, Vge Tis e
is free, ®mntains the entries of (§), and satisfies rt.rk.Ga(a) = 2, By

the arguments given above we now have

Propositio 2. Let k Dbe any field,  F: the.free associative k-algebra
k< X, Y15 Vpo Ygs 3> and - Gl,;:GZ- s B ‘the subalgelras generatel by the

familiea of elements (6) and ('7) respectively. Then ¢; and Gz are free
on these generating sets, but @ = Gln G2 is not & free algebra, in fact

not a 3-fir. ||

2, Remarks on the above construction. One oan show that the .intersection

ring Gy n Gz is precisely the subalgebra of F generated by the six
entries of (4). I will just sketoh the idea. let us grade F by the free
Semigroup - 8 on 4 generators x, ¥, Yoo 2s giving yg degree ylyz,
(and all other generators the obvious degreest Then G, and G, are olearly
hmo geneous subalgebraa of F. Note elso that given s € 8, ' a necessary
ond ition far there to exist monzero elements of Gy homogeneous of degree
8 is that every ocourrenoe of Yy in s either be followed by 2z, or

preceded by ¥y (ys gives the latter onse).: Similerly, for G, %o have



such san element, every occurrence of Y1 mg::heithér be precedeg by x or
followed by yz. If we take an s satist‘ying‘thoae conditions, write it
ait, and pub & "dividing mrk" between any two letterss ..u|v.. unles uv
is the degree of a generator of Gl or G2’ then 8 falls into segments,
such that the analysis of the forms of elements of Gln(}z can essentially
be performed segment by segment. The only gegments that ocan occur are
Xy ¥, 2 and subsegments thereof, and the verification that the only elements
_oocourring are expressions in the terms of (4) becomes fairly easy.

It is easy to show that the elgebra generated by these aix elemsnts
is presented by the single relation (4).

In contre:gt with the preceding example, one oan prove

Lenma 3. If F is a free assooiative k-algebra, then the intersection of
any family of free k-subalgebras of F is a 2-fir. (More gemerally, if F

ie any ring with 2-term weak algoritim |2|, then the intersection of any family
of subrings which contsin all the units of F, and are themselves strong,GEé-
rings, is Wgain a strong (Ez-ring.)

Sketoh of proof. In & ring with 2-term wesk algorithm, any relation (1) with

n=2 oan be trivialized by multiplying by a sequence of matrioces (é ';‘) and
(‘]; ?_) which is essentially unique mubject to sane nondegeneraaoy eonditions,([?:]ghop. 2. 7,1
Hewe if the terms of such a relation lie ina strong GBy~subring (a subring B o)
over which one oan trivialize any 2-tern reletion (1) by a product of upper and
lower triangular metrices, ) all tke "™u's" and "v' s" involwed in the = =iz
trid ali zationof (1) dlso lie in this subring, and will thus lie in the
intersection of any family of such subrings. || -
Of. |3| Prop 2.1, where the same method gives an amalogous result for

fixed rings of endomorphisms. It might now be worth trying to ..:



@#be wvhiother the ideas: 6f the. preceding exemple can be used to answer the long-
open question of whether the fixed ring of an automar phism (a & group of
automorphisms ) of a free algebra must agein be one.

Note that the subalgebras Gl, G2
rationally olosed in F, e.5. yp2, £ € G, by, # G- This might just

of the preceding example are not

be an artifact of our using the simplest possible invertible matrix Uz if
instead we had taken & product of an upper and & lower triangular ones, we might
wa'll have gotten an example with ratiomlly closed Gl and Ga. On the

ot her hand, if for som‘e'manbm-anyzn.._si:eh-‘ counterexample necessarily invdl ws
ron-rati nélly closed subslgebras, then the fixed-ring problem may have a

positive angwer, since fimd rings of auvtomorpli sm groups of rings without

zero=divisors are necessarily rationmally olosed,

& [The analogmus commutative ring. ILet F now denote the commutative polynomial

algebre k[x, ¥ ¥po ¥z z], and G,s G, the sutalgebras of F gemerated ly

the families (6) end (7) respectively. We see easily that thess two sets are
each algebraically independent over k, 8o Gl and Cr2 are each alse polynomial
rings in 5§ indeterminates. (They also clearly have the same fields of fractions
as F). We oan show that G = G N Gz is not e polynomial ring, but by - .,
different méthods from those of 8l* Let &3 F —» k be the k-algebre homomorphieam
taking all the indetermimates to O.° We shall show that there are 6 linearly
independent o-derivations G =<» k - geometrically, 6 linearly independent
tangent vectors to Spec G at the point corresponding to ®. But if G

were & polynomiel ring, it would have to be on < § indeterminates, since

tr. deg. G < Jcr,d’eg,.kF = 5, and oould not have > 5 linearly independent
O\-derivations. (Geometrically, what this means in that the point o of

Spéc G is.singular; a polynomial ring has smooth speotrum.)

®i5s noted et the end of this subsection (bottom of p.7) there are simpler

examples in the commutative oase, so the reader mgy wish to &ip the rest
of this semtion. '



We .can show our six deriwations are linearly independent by evaluating

them on the 6=buple of elements comprising the entries of (4),

(8) Xs XY1s Wgs (F1¥,7V3)2s b 2

In fact, becan se ow sitwetion is "symmetric", via an aubomorphism of F
interohanging =x and 2, ¥4 and Vos ~and Vg and Y1¥ o Ve it will suffioce
to display three o =derivations G <= k which are linearly independent on
N xy;, and zero on the last three terms of (8).

ox
= Xy, one of the free generators of Gz), comp se with os G, =k, and

3
Two of these are easily described: take CY and g: Gé’é G2 (where q

restriot to G = -Gl" Gz. Thes take on the values 1, 0, 0, 0, 0, 0 and

0,1, 0, 0, 0, 0 on (8), respectively. To get the third, let us define f1 G, >k

to take - ylyz’;- Vg - to 1, and all other elements of (7) to 0. Now

Bl Gy N Gé = o G Gz. (‘Thi.s néazy be seen y grading F by the free abelian
.,0 P »

semigroup on =X, Y ¥po 2y and noting that if an element of Gln(iz, expressed

in ‘terms of (6) hed & yg term, then teking it s y?.yg—homogeneous component
and oanparing representations in terms of (6) end (7), we would get yg =
(ys ~yly2)n, a cmtrediction.) Hence if we take the derivation %{t (,;2 - Gz,
ompose with f3, and restrict ‘o Gyn Gy, We get an d-derivation, and this
can be seen to teke (8) to 1, 0,-1, 0, 0, O, completing ouw arguent.

(A simpler example of polynomial subrings of & polynomial rirg, with non-
polynomiel intersection, is k[x, :w] A k[xz,' y] in k[x,y]. So the above
example is mot: of’ independent interest, unless tle property that the subrings

have the same field of fractions as the originel ring is hard to obtain.)



4. Asending chains. Let w first note that it is easy to find a k-algebra

which is the union of an ascending chain of free subelgebras, but not itself
free. An exemple is the commutative k-algebra k[x, xl/z,...g xl/zn, T ].
But Kolotov esked, in effect, whether such & subalgebra could be found within
& free algebra. |

The ideas that led to the example I shall give were the following, 1In
trying to prove that the union of any such ohain was free, it would be
convenient to know that if G & F are free algebras, and x is & member of a
free generating set for F, and lies in G, then x is also e member of some
free generating set for G. 8ince I was not able to prove this, I begen looking
for counte rexamples, anq the following epproach suggested itself,

One knows how to find all solutions in e free algebra to the equetion
(9) ab - od = L.

They form & chain of parametric solutions of increasing degrees of complexity.
(]2| p80, formuls (26). The approach is similar to that alluded to in 81,
with (9) in place of (1).) Nowif is ome of our indeterminates, we cn

mltiply a solution®:(9) by s to get

(sa)b = (se)d = .

We may hope that ifwe choose our solution to (9) sufficiently mwndegenerate, the elements
(10) p=sa, b, q %86, d

will be independent in F, i.e. free generators of a free subalgebra G,
but that 8§ = pb - g4 will not belong to a set of free generators.of G,
Note that,assuming that a family of elements (10) can bs proved to be

independent, the problem of showing that s 1is not e member of a generating



set reduces to the abstract question: in a free associative algebra on fouw
gensrators p,b, q, J, will pb-qJ be a member of a free generating set? The answer is
fo, - a&nd.this ocan be proved in several diff erent ways., One of these requires

a preparatory result of: interest:for its own sake.

Lerma 4 Iet R be & ring having week algorithm with respect to a filtration~-

funotion v. For any 2sidel ideal ISR, let min-w(l) =inf . v(e).
Then for two jdegls -I,.J € R, min-v(IJ) = min-v(I) + min-v(J).

Proof. Let X be a weak v-basis for I.es-a right.ideal (|2] p.72 bottom.)

Then I = Gx xR, end elements coming from different summands are - v~indepmden t.

Hence 1J = 8, xJ, and the result follows immediately. I

Corollery 5. An element of & free associative algebre which lies in tle product

of two proper -sidsd ideals is not a member of any free gererating set for the
algera .

Froof. An element belmnging to a free generating st has degree 1 with respect
to the associcted filtration. But if x€ IJ, then v(x) > mirv(l)+ min-v({J)

>2. ||
We can now provets

Lemma 6, et F be the free associative algebra on 4 indeterminates, k<s,x,y,z>.
Then the 4 elements
(11) p = sy + 1), b=gzy +1
qeslgz +x+2), d=y
are independent, and the subalgebre G which they generate eontains 'a.= pb'~ qd,

buk 8 is not e member of any free .generating set for @,



1o

Proof, To show G. is fyee on 'p; 4, b, d, let us map F into the group
algebm m the free group on four generatars s, w,y, v by senmling

s> 8 x> (87 - l)y-l, yy, zv (v--l)y'"l
Then we find

p >\ b v

g = (uv-s )y'l d = y.

The subslgebra li:<u,v,s,y,y"l> of that grow algebra, in which the image of G
now lies, oan in turn be mepped into itself.by Yeking .8 o uv-sy, end all
‘the other generators to themselves. The images of the indicated gerrators of
G are now.oarried to u, s, v, ¥, proving their independence.
One proof that 8 does not belong to any free generating set for G
is given by applying Corollary 6, with I = J = ideal generated by the indeterminates.
Another ocomes by moting that if & did belong to such a set, G/( pb=qd)v would
be o free k;-alg‘ebra. In'partieplar, the relation pb = gd = O would be
trivializable in this algebra. But sinee & is.free on.:p; g,:bj.d, the

algebm G/(pb-qd) is universal for having elements pb-qd satisfying such

e relation. Hence if that relation were trivializable, any such relation in

eny ring would be so, which is not so. ||

We shall now obtain our cowmterexample ko the origimal question by iterating
this construetions At esch stage, the p's, q'8, b's and d's" of the preceding
stage will be treated like "s", and made not to lie in ary free generating set
of the next larger subalgebra. (This does:mwt -itself assure thet the union of
the resulting ohein of subelgebras is not ﬁ'ee,‘but wo shall in faot find this
easy to prvove from the details of the corstruction.)

Note that the process we are suggesting is & repeate dly “branching" one,

since sach p, q, b or d will require its owmn p, q, b and d at the next
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stage., This "branching" can be conveniently wxxr éssed by:using. as:girindex-set
for our indeterminates the free semigroup with 1 on four symbols p, q;, b, de
vh ich will be denoted <p, g, b, d> (In fact, the symbols p, g, b, d will
never eppear except as indices!) The length of & word We <p, q, b, d>

will be written |W|. (In particdar, |1| =0.) We ocan now state and prove:

Theorem 7, Let F =k < a; Xyo yw. By ] We&<p, g, b, d >>, a free
essoolative algebre on & st of imdeterminates indexed as show. Let us

indwtiw ly define elements & We <p,q, by, &) as follewss

(12) 8, = 8,
(13) B“P = aw(x“yw-l- 1) S = zwyw + 1

(w e <Paq'blld>)'
" W W W T Yw

For each n >0, let 8, = {sw | 1w] =n} (a set of 4% olements), and let

G, < F be the subalgebra gensrated by Sn. The n,

n

(14)  for each n, 8, isan independent set, i.e. G is free on Sy,
(18) Gy S Gy S eeup DU

(16) G = UGn is not a free k-algebra, in fact, not even an yo-fir.

Proof. We shall prove (14) by induction The oase n=0 is clear. Assuming

Sn is indepndent, we shmll show Sn+ independents Note that the elements

1
of Sn may all be expressed in terms of & -and indetermimat es Xge Yyr Py

with |U| < n. Tt follows that {8y X Y | [ = n} 4is independent.
Let us oall the free subalgebra of F generated by this set H,, We now forget
sbout F, eml mgerd the free algebra H as the coproduct of 4% copies of

the free k-algdra k. <,8, x, ¥, 2 > of Lerms 6, indexed ty (W | M| = n.
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Then epdying the statement of thet Lemma to each copy, we easily see timt sml
i6: 1 nd ependent, establishing (14).

(18), of course, is seen by noting . 3
7 8y = st st - qu g

Now for eeeh n > 0, let I:'1 = Gn denote the ideal generated by all the

gomerators s (|W| =n), By (17) wehaw 5. - ..,
2
(18) I, € Iy

In pertioukr, I, S I, S..., s I= uIn will be an idel of G = UGy

2
But applying (18) to I we get

(19 1=12,

We can now finish off in & number of ways. The one requiring m technical
kmwwledge of free al gebras, firs, ete. is to note that for gagh n, Gr/lnﬁk,
hence G/I % k. Now if G were free on & generating set X, then for each
x€X, I would have to contrin x=o_ for some e € k. Henoe with reapect
to the new free generstirg set {x-o_| x e X}, I would be the ideal generated
by the indeterminates, But that ideal certainly does not satisfy (19).
Alternitively, we,can see from Lemms 6 that no right ideal in a ring with weak
algorithm satisfies (19). In fact, by th'le results of |4]| no ideal I in

an ﬁo-ﬁr satisfies (19). |

6., Remerks.  The anslogs of Lemma 6 and Theorem 7 are als true for commitative
polynomial rings. In Lemma 6 one proves that @ 18 not a mnber of arny gere rating
set for G by wverifying that G/(s) is not a polynomial ring — its spectrum
has the g ngular point p=q=a=b=0; In Thearem 10 the first proof that G is

not free that we mmwe goea over word-for-word to the commtative m = . (We

don't knav :any analog to "not an ﬁo-ﬁr.')
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It is well=known that the free as&sociative algebra on two indetermimntes
ontains subalgebras :fres on countably many irdeterminates; hence the example
of Thearem 7 can be embedded in the free algebra on two indeterminete s This
does not apply to the comutative analog, of course.

It would be interesting to know whether one can get an example like that
of Theorem 7, but where the nurber of ﬁ'qe generstor § of Gn is bounde d.

Lemma 4 and the application we have made of it suggest

Definibion 8, If & isan elememt of a ring R, +then h{a) will denote

‘the supremum of nutbers n such thet x lies in a product Il"‘ I, of n

proper 2 -sided ideal 8 in R.

By Lemma 4, h(a) is & lover bound on the values “v{a) for ‘filtration functions
¥ With respect to which R has weak algorithm. In partiocular, if R is
free, the comlition h(a) =1 is necessary for & to lie in a free generating
set. It is wt sufficients for instance, fron the fact that k<x,y>A xyyz=1)
is simple, we see that xy-yx-l is contained in only ome proper 2~sided ideal:
580 h(xy=yx=1) = 1; b since this elenent goes to 1 modulo tl® ocomm tata
ideal, it can't belorg to & free g nerating set. The condition Y o € k,
h(a-®) =1 has more~ change of being sufficisnt for & +o belong tos frye
generating set, but I don't have high' hopes. Nevertheless, asa funcbion
on R invariant under automorphisms yet related to the walues of filtye tion~
funotims, h(a) m st be of use in the study of the automorphism groups of
free algebras.

Note that for a € RS 8, +tlere is no necessary relation between
hR(a) and h s(a),' In perticular, in the aituation of Lemme 6, tls proper
ideals of G +that g ve the value hG(pb-qd) = 2 generate impromr idealsin F.

One might ask whether an asceriing chain of free subalgebras 6y, of ‘@ free

algetra F, will haw free union G if for every a € G, the values of hGn(a.)

are bounded.
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Afterthought; In Lemms 4 we really only need to have I a right ideal and J

a left ideasl. 1IJ will then just be an additive subgroup, but the the

comc lusion still holds. So likewise, we might define h'(a) by removing

from Definition 8 the condition that I, be olosed under loe £t multip icetion

by ebmerts of R, and In under right multiplication. This h' "hight not

behave as elegantly as h (e.g., h(ab) > h(a)+h(b), but not eo for h'), but
the condition

non‘bhebss,"h'(a) =1 (i.e. @& does not He in the product of & moper right

ideal and & moper left ideal of R) is a muoh stronger  ope - then hla )= 1,

and © mi g};.t be more useful in studying generators of free algelras. (We should

set h'(u) =0 for u = unit, just to put that trivial oase aside.) Of.

§.
However, one still finds that h'(xy-yx-1) = 1, For if an element of degree 2

lies in a product IJ, one oan see from the proof of Lemme 4 that it ocan be expressed
in terms of elements of I end J of degree l. But elements of degree 1 generating

& proper-l-sided ideal also generats & .proper 2eaided ideal.
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