
Every finite semigroup is embeddable in a finite relatively free semigroup

George M. Bergman
Department of Mathematics, University of California, Berkeley, CA 94720-3840, U.S.A.

................................................................................................................

Abstract

The title result is proved by a Murskii-type embedding.
Results on some related questions are also obtained. For instance, it is shown that every finitely generated semigroup satisfying

an identity ξ d = ξ 2d is embeddable in a relatively free semigroup satisfying such an identity, generally with a larger d ; but that
an uncountable semigroup may satisfy such an identity without being embeddable in any relatively free semigroup.

It follows from known results that every finite group is embeddable in a finite relatively free group. It is deduced from this and
the proof of the title result that a finite monoid S is embeddable by a monoid homomorphism in a finite (or arbitrary) relatively
free monoid if and only if its group of invertible elements is either {e} or all of S.

MSC: Primary: 20M05; secondary: 20M07, 20M30.
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1. Introduction

The proof of the title result will be given (to use the jargon of computer programming) in ‘‘top-down’’
format: The next section gives the skeleton of the argument, the two that follow fill in the steps sketched,
assuming a family of semigroup words given having certain properties, and finally, in §5, such a family of
words is displayed and the required properties checked.

To help the reader keep track of the statements assumed at various points that are to be proved later,
whenever we make such a statement we will display it with a label shown in the form ‘‘(n↓ )’’, and when
the result has been verified, we will note this by writing ‘‘(n0)’’. However, that verification may use other
statements marked ‘‘↓ ’’ which remain to be proved; thus, our proof will be complete only when all of our
‘‘↓ ’’s are ‘‘0’’ed.

The title result answers a question of John Rhodes and Benjamin Steinberg (personal communication),
and will be used in [8, Chapter 2]. The last two sections of this paper obtain some related results and note
some further questions.

2. The framework of the proof

Let S = {a1 , ... , an } be a finite nonempty semigroup. For each i, j ∈ {1, ... , n}, let i ∗ j ∈ {1, ... , n} be
the unique value such that

...........
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(1) ai aj = ai ∗ j .

In §5 we shall define n distinct semigroup words in two indeterminates ξ and η ,

(2↓ ) Ai (ξ , η ) (i ∈ {1, ... , n}).

Assuming these given, let V be the variety of semigroups defined by the n2 identities

(3) Ai (ξ , η ) Aj (ξ , η ) = Ai ∗ j (ξ , η ) (i, j ∈ {1, ... , n}).

If F (x, y) is the relatively free semigroup on two generators x and y in V , or, indeed, in any
subvariety of V , then the identities (3) guarantee that the map S → F (x, y) given by

(4) ai → Ai (x, y)

is a homomorphism. To complete the proof, we shall construct a semigroup T containing two elements x
and y such that

(5↓ ) T is finite,

(6↓ ) T satisfies the identities (3),

(7↓ ) The elements Ai (x, y) (i ∈ {1, ... , n}) of T are distinct.

By (6), the variety generated by T is contained in V . If we take F(x, y) free in that variety,
then (5) implies that F(x, y) is finite, and (7) implies that the homomorphism (4) of S into F(x, y) is
an embedding, establishing the title result.

I am grateful to M. Volkov for pointing out to me that a similar technique for the construction and
study of semigroup varieties was introduced in 1968 by V. Murskii [6].

In the next two sections we shall assume that words (2) are given, and satisfy various properties which
we will state as they are needed. The reader may, of course, peek ahead to §5 and see what these words
are, if and when he or she feels this would be helpful.

3. The construction of T

Assuming the family of semigroup words (2) given, let us take for T the semigroup presented (as a
semigroup – without assuming (6)) by three generators, x, y and 0, and three families of relations:
First, the particular cases of (6) gotten by substituting x for ξ and y for η :

(8) Ai (x, y) Aj (x, y) = Ai ∗ j (x, y) (i, j ∈ {1, ... , n}),

second, the five relations making 0 a zero element of T :

(9) x 0 = 0, 0 x = 0, y 0 = 0, 0 y = 0, 0 0 = 0,

and finally, the infinite family of relations saying that
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(10)
Every word in x and y which is not a subword of a product Ai1

(x, y) ... Air
(x, y)

(r ≥ 1, i1 , ... , ir ∈ {1, ... , n}) is equal to 0 in T.

(Throughout this note, a ‘‘subword’’ of a word will mean a string of consecutive symbols in that word.) In
the presence of (9), the family of relations (10) is clearly equivalent to the smaller family of relations
saying that

(11)
Every word in x and y which is minimal (under passing to subwords) for the
property of not being a subword of a product Ai1

(x, y) ... Air
(x, y) is equal to 0

in T.

Observe that the set of words in x, y and 0 having no subwords to which any of the reduction
rules (8), (9) and (11) can be applied consists of 0, and all words U (x, y) such that U (x, y) is a
subword of a product of the Ai (x, y)’s (by (10)), but has no subword which is a full product of two
Ai (x, y)’s (by (8)). We now wish to prove that distinct words in this set represent distinct elements of T.

The conditions on a semigroup or similar algebraic object presented by generators and relations, where
the relations are treated as ‘‘reduction rules’’, for such a conclusion to hold, have been known under
various names, and stated with various degrees of precision; the formulation we will follow is that of [2].
Roughly speaking, it is proved there that what must be verified is, first, that no word admits an infinite
sequence of successive reductions (applications of the reduction formulas, in our case (8), (9) and (11), to
subwords), and, secondly, that for every minimal case of a word that can be reduced in two conflicting
ways – that is, every case where either the left-hand side V of one reduction formula is a subword of the
left-hand side W of another, or where some product of words U V W has the property that U V forms
the left-hand side of one such formula and V W that of another – the results of reducing W, respectively
U V W, in these two ways can subsequently be brought to equality by further application of reductions
from our family. Following [2], we shall call such cases of words that can be reduced in two ways
‘‘ambiguities’’ of our reduction system, and call the confluence condition that must be verified
‘‘resolvability’’ of the ambiguity. (For details see §1 of that paper, which develops the result in the
context of unital rings, §9.1 which notes the simplified form it takes in the case of monoids, there called
‘‘semigroups with 1’’, and §9.2, which notes that corresponding statements are valid for nonunital rings
and semigroups without 1.)

In the present situation, it is immediate that no infinite sequence of reductions can be applied
successively to any word, because each reduction decreases the length of the word.

To verify the resolvability of all ambiguities, we first note that none of our reductions turns a word
containing the letter 0 into one not containing 0. It is easily deduced that given any ambiguity such that
at least one of the two reductions involved is a case of (9), the word resulting from each reduction can be
further reduced to 0, so such ambiguities are resolvable. We also see that for any ambiguity such that
both reductions are instances of (11), both sides likewise reduce to 0.

So it remains to consider the cases where either both reductions are instances of (8), or one is an
instance of (8) and the other an instance of (11). In verifying that these are resolvable, we will use the
following property of the words Ai to be defined:

(12↓ )

There are no inclusions or overlaps among the words Ai (x, y). That is, none of
these words is a subword of any other, and there are no choices of words U, V, W
in x and y such that each of the words U V and V W belongs to {Ai (x, y) !
i ∈ {1, ... , n}}.
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From (12), it is easy to see that the only ambiguities in which both reductions are instances of (8) are
those arising from products U V W, where U = Ai (x, y), V = Aj (x, y), W = Ak (x, y) for some
i, j, k ∈ {1, ... , n}. In this situation, after we apply the two reductions in question to this product, one more
application of (8) reduces the resulting words to A(i ∗ j) ∗ k (x, y) and Ai ∗ (j ∗ k)(x, y) respectively, which
are equal by associativity of S (cf. (1)).

In the case where one reduction is an instance of (8) and the other an instance of (11), it is not hard to
deduce from (12) that either our minimal ambiguously reducible word has the form U V W with U V
equal to the left-hand side of an instance of (8), and W not an initial segment of any product of Ai (x, y)’s,
or we are in the mirror-image of this situation; by symmetry it suffices to consider the former case. Note
that after one applies the reduction coming from (8), the resulting expression still involves a word Ai (x, y)
followed by a string that is not an initial segment of such a word. In view of (12), such an expression is
not a subword of any product of Ai (x, y)’s, hence, by (11), it reduces to 0. Since the other reduction of
U V W, by applying (11) to V W, gives U 0 which reduces to 0, these ambiguities are also resolvable.

Since all ambiguities in our reduction system are resolvable, the semigroup presented using the
relations (8), (9) and (11) has a normal form consisting of those words in x, y and 0 which are
irreducible with respect to that reduction system; that is

(13)

Every element of T is either 0, or has a unique expression as a word U (x, y) in
x and y which occurs as a subword of a product of one or more words from the
set {Ai (x, y) ! i ∈ {1, ... , n}}, but does not contain as subword a full product of two
factors from that set.

Since, in particular, every element Ai (x, y) is of this form, the Ai (x, y) represent distinct elements of T,
proving (70) (modulo statements which remain to be verified).

Note also that if L is the greatest of the lengths of the Ai (x, y)’s, then a word as in (13) can have
length at most 3 L – 2. (It can consist of at most an Ai (x, y) flanked on either side by a word one letter
short of being an Ai (x, y).) Hence there are only finitely many such words, giving (50).

(For an estimate which better shows the order of magnitude of card(T ), note that each nonzero word
as in (13) can be obtained – possibly nonuniquely – by choosing a product of three Ai (x, y)’s, choosing
some letter within the first of these three factors to be the first letter of U, and some letter in the whole
word to be the last. This gives < n3 · L · 3 L words in x and y. Also counting the word 0, we conclude
that card(T ) ≤ 3 n3 L2.)

The next section will be devoted to verification of (6), i.e., to showing that –

4. T belongs to V

To prove this we must show that

(14↓ )
For every pair of elements X, Y ∈ T, we have Ai (X, Y ) Aj (X, Y ) = Ai ∗ j (X, Y ) for
all i, j ∈ {1, ... , n}.

In view of (10), we can expect that most choices of X and Y will cause both sides of the equations
of (14) to reduce to 0 in T. In determining what the exceptions are and analyzing these, we will invoke
several more properties of the words Ai .

To state the first of these, let a run of x’s or y’s within a word mean a block of consecutive x’s or y’s
that is not contained in a larger such block. Then we shall assume
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(15↓ )
All words Ai (ξ , η ) have the same length L > 6, and all begin with a run of more
than L ⁄ 3 but fewer than L ⁄ 2 ξ’s, and end with a run or more than L ⁄ 3 but
fewer than L ⁄ 2 η’s.

We can see from (15) that a subword W of a product of the words Ai (x, y) will have no run of
≥ L ⁄ 2 x’s or y’s; but will, within every interval of length L, have a run of > L ⁄ 3 x’s or > L ⁄ 3 y’s;
and moreover that the run of x’s, if any, following every run of > L ⁄ 3 y’s will also have length > L ⁄ 3,
unless it is terminated by the end of our word W, in which case it may have shorter length, and similarly
that the run of y’s, if any, preceding every run of > L ⁄ 3 x’s will have length > L ⁄ 3 unless cut off by
the beginning of W. Finally, the points of transition between runs of > L ⁄ 3 y’s and the following runs
of > L ⁄ 3 x’s (where one of these two runs may have smaller length if cut off by the beginning or end of
the word) will be spaced at intervals of length precisely L, and the subword between each such transition
and the next will be one of the words Ai (x, y).

Now suppose W is a word in x and y of length > 1, which is not only a subword of a product of
the Ai (x, y), but has the property that for some r > L ⁄ 3, Wr is still a subword of such a product. (We
are, of course, looking for words which can be used as X and/or Y in (14) without causing both sides to
reduce to 0. The situation where X or Y or both have length 1, though simpler than the situation where
they both have greater length, will be postponed to the end of this section to allow us to use there some
special cases of observations developed for this harder situation.) We see, first of all, that W must
involve both the letters x and y, since otherwise Wr would constitute a run of > 2 L ⁄ 3 x’s or y’s.
Also, the fact that Wr has length > 2 L ⁄ 3, together with (15), implies that it must contain a run of
> L ⁄ 6 x’s or y’s, which, as L > 6, eliminates the possibilities W = xy, yx; so W must have length at
least 3. This gives Wr length > L, hence it must contain a run of > L ⁄ 3 x’s or y’s, along with the
complementary letter that terminates each end of that run. Using our observation on the regular spacing of
transitions between runs of y’s and x’s of that length, it is now not hard to deduce

(16)

If W is a word in x and y of length > 1, such that for some r > L ⁄ 3, the
word Wr is a subword of a product of the words Ai (x, y), then W has length
s L for some positive integer s, and can be obtained from a product of s of the
words Ai (x, y) by moving some (possibly empty) initial subword of length ≤ L ⁄ 2
from the beginning to the end, or some (possibly empty) final subword of length
≤ L ⁄ 2 from the end to the beginning.

Let us note further that if W1 and W2 are words both having the form described in (16), and if
moreover both W1

2W2 and W1 W2
2 are subwords of products of the Ai (x, y), then using again the

periodicity of transitions from longs runs of y’s to long runs of x’s, we see that the lengths of the
transposed subwords in the descriptions of W1 and W2 as in (16), and the directions in which they are
transposed, must be the same (assuming for the moment that if a transposed segment has length exactly
L ⁄ 2 it is transposed from the beginning to the end, to make the description in (16) unique). In fact, these
transposed subwords are forced to be identical if we assume yet another property of the Ai (x, y) :

(17↓ )
For i ≠ j, the words Ai (x, y) and Aj (x, y) differ both in their initial subwords of
length [L ⁄ 2] and in their final subwords of length [L ⁄ 2], where [L ⁄ 2] denotes
the greatest integer ≤ L ⁄ 2.

That is, each half of one of the Ai determines the other half. It follows that one cannot glue two different
words of some length L0 ≤ L ⁄ 2 onto the same side of the same word of length L – L0 and get in each



- 6 -

case a word in {Aj (x, y) ! i ∈ {1, ... , n}}. The assertion preceding (17) is now clear, giving us

(18)

If X and Y are words of length > 1 such that for some i ∈ {1, ... , n}, Ai (X, Y )
does not reduce to 0 in T, then either there exist i1 , ... , is , j1 , ... , jt ∈ {1, ... , n}
(s, t ≥ 1) and factorizations Ai1

= B A ′i1
and Aj1

= B A ′j1
with B of length

≤ L ⁄ 2, possibly empty, such that
X = A ′i1

Ai2
... Ais

B, Y = A ′j1
Aj2

... Ajt
B,

or the situation is the right-left mirror image of this one.

Note: In (18) above we explicitly allow B to be the empty string. Except where such an explicit
exception is made, all letters appearing in equations in T are understood to denote elements of T. Note
also that for brevity we have written Ai1

, etc., instead of Ai1
(x, y), etc. in (18). We shall do the same

from time to time without comment in the remainder of this section.
The completion of our proof of (14) in the case where X and Y have length > 1 requires two more

properties of the Ai . The first seems strong, but will be easy to build into our construction of the Ai
using the finiteness of the semigroup S :

(19↓ )
For all i, j1 , j2 ∈ {1, ... , n}, the element Ai (aj1

, aj2
) ∈ S is an idempotent ah ∈ S,

which is independent of i (but in general depends on j1 and j2).

Since the Ai (x, y) ∈ T satisfy the same relations as the ai ∈ S, it follows from (19) that in the case of (18)
where the word B is empty, the equation from (14) that we need to verify reduces to one with a certain
element Ah (x, y) on the right-hand side, and the square of that element on the left. Moreover that
element is idempotent, so the equation holds.

To handle the case where B may not be empty, let us simplify the notation of (18) by writing B–1W
for the result of removing an initial string B from a word W, assuming W begins with that string; the
symbol will be undefined otherwise. (In using this notation, we must keep in mind that if evaluating W
in T gives the same result as evaluating another word W ′ , this may not be true of B–1W and B–1W ′ .)
Then the expressions for X and Y given in (18) (ignoring, without loss of generality, the mirror-image
case) take the forms X = B–1Ai1

Ai2
... Ais

B and Y = B–1Aj1
Aj2

... Ajt
B. When we substitute these into

the two sides of (14) we get – prior to reduction – the same expressions we got when B was empty,
except for a B–1 on the left, and a B on the right. However, the B–1 on the left may prevent us from
calculating in T as we did before. To get around this, we shall call on one more property of the Ai .

It is follows easily from the finiteness of the semigroup S that there exists a positive integer d such
that

(20) ai
2d = ai

d (i ∈ {1, ... , n}).

(If S were a group, d would be called an exponent of that group.) Recalling that L is the common
length of the words Ai (ξ , η ), which all begin with > L ⁄ 3 ξ ’s, we shall assume that

(21↓ ) L ⁄ 3 ≥ d,

so that each Ai (ξ , η ) begins with > d ξ ’s. It follows that each of the expressions we want to prove
equal begins with
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B–1(Ai1
Ai2

... Ais
) d+1 = B–1(Ai1

Ai2
... Ais

)(Ai1
Ai2

... Ais
) d

which by (20) is equal in T to

B–1(Ai1
Ai2

... Ais
)(Ai1

Ai2
... Ais

)2d = B–1(Ai1
Ai2

... Ais
) d(Ai1

Ai2
... Ais

) d +1.

Thus, the product (Ai1
Ai2

... Ais
) d +1 at the left-hand edge of the expression we want to reduce, which

was originally ‘‘marred’’ by the B–1, now appears as a genuine factor, insulated from the B–1 by the
word (Ai1

Ai2
... Ais

) d which has length larger than that of B, since L d > L ⁄ 2. Hence we can now
perform the same calculations we did in the case where B was empty, ending up with the same equality,
except for an extra factor of B–1(Ai1

Ai2
... Ais

) d on the left of each side, and an extra factor of B on the

right, which do not disturb the equality.
This completes the proof that if X and Y are words in x and y, both of length > 1, which when

substituted into at least one of the words Ai do not give 0, then when substituted into the identities (3),
they give equality. Of course, if X and Y are words of arbitrary lengths which do give 0 when
substituted into all Ai , then these cases of (3) reduce to ‘‘0 = 0’’, and this includes the case where one or
both of X and Y is not purely a word in x and y, but involves 0. So we have proved all cases
of (14) except those where at least one of X and Y has length 1, and where the equation to be proved
does not reduce to 0 = 0.

Let us start with the case where one of X or Y, without loss of generality X, still has length > 1,
while Y has length 1. Then (16) describes the form of X. Calling on a final assumption about of our
words Ai ,

(22↓ ) All runs of ξ ’s and all runs of η ’s in every Ai (ξ , η ) have length > 1,

we see that when we substitute X and Y into any Ai , the result has a subword of the form X2YmX2

with 1 < m < L. But observe that each factor X2 has a point of transition between a run of > L ⁄ 3 y’s
and a run of > L ⁄ 3 x’s, and if there were no Ym between them, the distance between any such transition
point in one factor X2 and any such transition point in the other would be a multiple of L; hence with
the length-m factor Ym inserted between them, the distance is not a multiple of L, contradicting the
properties we noted for subwords of products of Ai . So this case is excluded.

Assuming X and Y both have length 1, note that if they were the same letter, then any Ai (X, Y )
would be a run of that letter of length L; but we know that no runs of length ≥ L ⁄ 2 occur. Also, if X
were y and Y were x, then Ai (X, Y ) would begin with a run of > L ⁄ 3 y’s not followed by a run of
> L ⁄ 3 x’s, which is again impossible. This leaves us with the case X = x, Y = y. In that case, of
course, the desired relations hold by (8).

This completes the proof of (140), which was a restatement of (60).

5. The words Ai

Since for any value of d satisfying (20), the same equation is also satisfied by all multiples of d, we
can assume the d of (20) chosen so that

(23) d > 1.

We can now give the formula for the Ai ’s promised in (20):
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(24) Ai (ξ , η ) = ξ d2(n+1) (ξ di η d (n+1– i)) d η d2(n+1).

Note that each of the three factors comprising the right-hand side of (24) has length d2(n+1), so L =
3 d2(n+1). Conditions (150), (170), (210) and (220) are immediate from the above expression.

It is also not hard to check (12): The large runs of ξ and η at the beginnings and ends of the
words (24) insure that the only kind of overlap that could occur between Ai and Aj would have the
initial run of ξ ’s in one word containing that in the other, and ending at the same point. But then the
lengths of the following runs of η ’s would have to be the same, forcing i to equal j and the overlap to
be equality, establishing (120).

Finally, to get (19), note that by (20) all dth powers in S are idempotent, hence that for every r > 0,
a (dr) th power can be simplified to the corresponding d th power. Hence Ai (aj1

, aj2
) simplifies to

ad
j1

(ad
j1

ad
j2

) dad
j2

. This is independent of i; moreover, the middle factor is left divisible by the

idempotent element ad
j1

and so can absorb the ad
j1

on the left, and can similarly absorb the ad
j2

on the

right, so the expression simplifies further to (ad
j1

ad
j2

) d, which, being a d th power, is itself idempotent.

This completes the proof of (190). Thus, by the argument outlined in §2, we have proved

Theorem 1. Every finite semigroup S is embeddable in a finite relatively free semigroup on two
generators. 1

We remark that the above proof embeds S in a free semigroup in a variety larger than that generated
by S. The following example of Rhodes (personal communication) shows that we cannot in general use a
free semigroup in the variety generated by S itself. Let S be the semigroup {a, b, ab, 0} where all
products except a · b = a b equal 0. It is easy to check that in the variety generated by S, the free
semigroup on a nonempty set G consists of the members of G, the pairwise products of distinct
members of G (counting order), and a zero element 0, and that all products except products of distinct
generators give 0. These free semigroups have no pairs of elements whose product is zero in one order
but not in the other, hence S does not embed in such a semigroup.

(On the other hand, this S can be embedded in a relatively free semigroup in a variety much less
elaborate than that of our proof. E.g., in the variety defined by the identities ξ 2η = ξ 2 = ηξ 2, saying that
every square is a zero element, one can embed S in the free object on x and y by sending a to x and
b to yx.)

6. Results and counterexamples for infinite semigroups

If we want a semigroup S to be embeddable in a finite relatively free semigroup F, we clearly
cannot assume less than that S is finite; so in that sense Theorem 1 is best possible. But what if we
delete the requirement that F be finite?

One strong restriction on embeddability is noted in

Proposition 2. Let S be a semigroup admitting no homomorphism into the additive semigroup of positive
integers (e.g., any semigroup containing an idempotent element, or more generally, having a solution to
xy = x, or xy = y). Then if S is embeddable in a relatively free semigroup, there exists an integer d
such that S satisfies the identity ξ d = ξ 2d.

Proof. Suppose S is embeddable in a free semigroup F in the variety V . Now F admits a
homomorphism to the free semigroup on one generator x in V , hence by assumption, that relatively free
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semigroup is not isomorphic to the additive semigroup of positive integers. This means that an equality
xm = xn (m < n) holds in that free semigroup, from which one can deduce an equality xd = x2d, which
is thus an identity of V , and hence of S. 1

Surprisingly, the converse to the last sentence of the above proposition holds for finitely generated
semigroups, as we shall now prove by a modification of the method of Theorem 1. To do this, we must
replace the systems of identities (3) and relations (8) used in that proof, which were based on the
formulas (1) for computing in S, with something more general. To formulate the generalized result,
consider any finitely generated semigroup S with generating set a1 , ... , an , and for each a ∈ S, define
the reduced expression for a to mean the expression for a as a product of these generators which is of
least length, and, among all expressions of that length, is lexicographically first. We will call any word in
the symbols a1 , ... , an reduced if it is the reduced expression for the element of S it represents. Now

(25)

Let Red(S; a1 , ... , an ) denote the set of all ordered pairs (P, Q ) such that P =
P (a1 , ... , an ) is a minimal word in a1 , ... , an which is not reduced (i.e., a word
which is not reduced, but all of whose proper subwords are), and Q =
Q (a1 , ... , an ) is the reduced word representing the same element.

As noted in [2, §5.3] (for algebras over a field; but again, the case of semigroups holds for the same
reasons), the set of relations P (a1 , ... , an ) = Q (a1 , ... , an ) where (P, Q ) ∈ Red(S; a1 , ... , an ) will
constitute a system of reduction formulas presenting the semigroup S, which will be terminating (have the
property that no word admits an infinite sequence of successive reductions), and all of whose ambiguities
will be resolvable.

We summarize in the following lemma some steps in our proof of Theorem 1 that carry over to this
general situation with almost no change. (Note that we have not yet assumed an identity ξ d = ξ 2d.)

Lemma 3. Let S be a semigroup generated by n > 0 elements a1 , ... , an , and let A1(ξ , η), ... ,
An (ξ , η) be n distinct semigroup words in two indeterminates, satisfying (12), (15), (17), and (22). Let
T be the semigroup presented by three generators x, y and 0, the relations (9) used earlier, the
relations (11) determined by the words A1(ξ , η), ... , An (ξ , η), and, in place of the n2 relations (8), the
(possibly infinite) family of relations

(26)
P (A1(x, y), ... , An (x, y)) = Q (A1(x, y), ... , An (x, y))

where (P, Q ) ranges over the set Red(S; a1 , ... , an ) defined in (25) above.

Then
(i) Each element of T can be represented uniquely as 0 or as a word in x and y which is a

subword of a product of the words Ai (x, y), but does not contain as a subword the left-hand side of any
of the relations (26).

(ii) The map ai → Ai (x, y) is a semigroup embedding of S in T.
(iii) If W is a word in x and y of length > 1 such that for some r > L ⁄ 3 , Wr represents a

nonzero element of T, then W has the form B–1Ai1
Ai2

... Ais
B (notation as in §4) or B Ai1

Ai2
...

Ais
B–1 (mirror-image of that notation) for some possibly empty word B of length ≤ L ⁄ 2, and some

i1 , ... , is ∈ {1, ... , n} (s ≥ 1).
(iv) If X and Y are elements of T such that for some i ∈ {1, ... , n}, Ai (X, Y ) ≠ 0, then either X =

x and Y = y, or X = B–1Ai1
Ai2

... Ais
B and Y = B–1Aj1

Aj2
... Ajt

B for some possibly empty word B

of length ≤ L ⁄ 2 and some i1 , ... , is , j1 , ... , jt ∈ {1, ... , n} (s, t ≥ 1); or the situation is the left-right
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mirror image of this.

Method of Proof. Like the corresponding steps in the proof of Theorem 1, with the following
modifications in the verification of (i): Where the resolvability of an ambiguity based on the left-hand
sides of two equations from (8) was previously obtained from the associativity of S, the corresponding
statement involving left-hand sides of two equations from (26) follows from the resolvability of all
ambiguities in the reduction system Red(S; a1 , ... , an ); and where previously, the termination of the
reduction procedure followed from the fact that the reductions were length-decreasing, one now calls on the
fact that such reductions either decrease the length of a word, or preserve the length and reduce the
lexicographic position of the string of indices i1 , ... , is associated with word’s longest subword of the
form Ai1

Ai2
... Ais

. 1

We can now obtain the promised partial converse to Proposition 2.

Theorem 4. Every finitely generated semigroup S satisfying the identity

(27) ξ d = ξ 2d

for some positive integer d can be embedded in a relatively free semigroup on two generators satisfying
the identity ξ d ′ = ξ 2d ′ for some positive integer d ′ .

Sketch of Proof. Let a1 , ... , an be a generating set for S, let A1(ξ , η), ... , An (ξ , η) be the same
words (24) that we used in the proof of Theorem 1, with the d in their definition taken to be the value
in (27), which, as before, we increase if necessary so that (23) holds, and let T be the semigroup
constructed from these data as in Lemma 3 above. We claim that T satisfies the identities

(28)
P (A1(ξ , η ), ... , An (ξ , η )) = Q (A1(ξ , η ), ... , An (ξ , η ))

for all (P, Q ) ∈ Red(S; a1 , ... , an ).

Lemma 3(iv) shows that the words X, Y in our generators which, when substituted for ξ and η
in (28), yield a possibly nontrivial relation to be checked are as in the proof of Theorem 1. The
identity (27), corresponding to our earlier condition (20), again yields (19) (cf. paragraph before
Theorem 1), and (19) and (27) again reduce the verification of the hard case of the relations we must verify
to the equality between two powers of a common idempotent element. In the remaining case, namely
X = x, Y = y, the relations are assured as before by our presentation (26) of T. As in the proof of
Theorem 1, it follows that the map (4) of S into the free semigroup F on two generators in the variety
generated by T is a one-to-one homomorphism.

It remains to show that this variety satisfies an identity ξ d ′ = ξ 2d ′ . A quick way is to note that,
assuming S nonempty, the identity ξ d = ξ 2d for that semigroup shows that it cannot be mapped
homomorphically into 1+ , hence neither can the relatively free semigroup F in which we have
embedded it, hence by Proposition 2, F satisfies an identity of the same sort.

Alternatively, one can show directly that T, and hence the variety V it generates, satisfies the
identity ξ L = ξ 2L, where as in §5, L = 3 d2(n+1), by using Lemma 3(iii) to restrict the words W on
which we must test this identity, and making use of the identity ξ d = ξ 2d satisfied by S. 1

Can a similar method be applied to non-finitely generated semigroups? Given a countable semigroup
S = {a1 , a2 , ... , ai , ... } satisfying an identity ξ d = ξ 2d, it seems plausible that one may be able to
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choose words Ai (i = 1, 2, ...) satisfying some of the key conditions we have used above, say (12), (17)
and (22), and apply the same general idea to embed S in a semigroup with the desired properties.
However, we would have to make some major adjustments in our arguments. Certainly the infinite family
of words Ai could not satisfy (15), i.e., all have the same length. In fact, they could not be obtained from
any ‘‘closed form’’ expression using exponents as the parameters to be varied if the semigroup T we are
constructing is to satisfy an identity ξ d ′ = ξ 2d ′ , since application of this identity would kill the
distinctions among all but finitely many such words. So a more sophisticated coding technique would be
needed.

Another approach to proving Theorem 4 with ‘‘finitely generated’’ replaced by ‘‘countable’’ might be
to try to embed an arbitrary countable semigroup satisfying an identity ξ d = ξ 2d in a finitely generated
semigroup satisfying an identity ξ d ′ = ξ 2d ′ .

I leave these possibilities for others to explore.
If we want to embed uncountable semigroups in relatively free semigroups, even the above vague ideas

obviously won’t work. There is, in fact, a nontrivial obstruction to such embeddings.

Lemma 5. If S is a semigroup, then the following conditions are equivalent:

(i) S has uncountably many isomorphism classes of finitely generated subsemigroups.

(ii) For some positive integer n, the set of congruences on the free semigroup F on n generators
induced by homomorphisms into S is uncountable.

If these equivalent conditions hold, then S cannot be embedded in any relatively free semigroup.
(More generally, the corresponding facts are true for algebras of any type that involves at most

countably many operations and where all operations have finite arities.)

Proof. Assuming (i), there must be some integer n such that S has a set of uncountably many pairwise
nonisomorphic n-generated subsemigroups. Choose a family of n generators for each of these. Each
such generating family determines a homomorphism from the free semigroup F on n generators into S,
and these homomorphisms induce distinct congruences on F, establishing (ii).

To get the converse, note that any finitely generated semigroup admits only countably many n-element
generating families, hence corresponds to at most countably many congruences on the free n-element
semigroup. Hence if, as in (ii), n-generator subsemigroups of S induce uncountably many such
congruences, there must be uncountably many isomorphism classes of such subsemigroups, giving (i).

Now if S can be embedded in a semigroup F free in a variety V , then each finitely generated
subsemigroup of S embeds in a finitely generated subsemigroup of F, which will be contained in a
subsemigroup Fm ⊆ F free on finitely many generators. So we have embeddings of all the finitely
generated subsemigroups of S in countably many relatively free semigroups, each of which, being
countable, has at most countably many finitely generated subsemigroups. Hence an S admitting such an
embedding cannot satisfy (i).

To see the parenthetical generalization, note that the assumption of at most countably many operations,
all of finite arities, still guarantees that finitely generated algebras are countable. (We must still restrict
attention to finitely generated subalgebras of S, to be sure that a countable algebra has only countably
many such subalgebras.) 1

From this we can get
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Corollary 6. There exists a semigroup S satisfying the identity ξ 2 = ξ 3 (and hence the identity ξ 2 =
ξ 4), but not embeddable in any relatively free semigroup.

Proof. It is shown in [5] that there exists an infinite 3-generator semigroup in which all squares are equal
to a zero element, and hence which satisfies the identity ξ 2 = ξ 3. Adjoining a neutral element 1 we get
a monoid, which we shall denote S0 , which clearly satisfies this identity. Let S1 be the semigroup of
all partial set-maps S0 → S0 , i.e., functions a from some subset dom(a) ⊆ S0 into S0 , with
composition defined in the natural way, i.e., so that ab(x) equals a (b(x)) if the latter is defined, and is
undefined otherwise.

Let us name two sorts of elements of S1 : For each x ∈ S0 , let tx denote the everywhere-defined
function of left translation by x, and for each element x ∈ S0 and subset P ⊆ S0 , let cx,P denote the
‘‘collapsing’’ function having domain P, and sending all members of P to x. These are all distinct,
except that cx, ∅ does not depend on x. Let us denote the latter element (the empty function) by 0 ∈ S1 ,
but understand it to be counted in statements we make about elements cx,P .

It is immediate that the elements of the forms tx and cx,P comprise a subsemigroup S ⊆ S1 . The
elements tx form a subsemigroup isomorphic to S0 , hence, by choice of S0 , satisfying the identity

ξ 2 = ξ 3. On the other hand, an element cx,P satisfies cx,P cx,P = cx,P if x ∈ P, cx,P cx,P = 0
otherwise. Hence if we substitute cx,P for ξ in ξ 2 = ξ 3, either both sides give cx,P , or both sides
give 0; so ξ 2 = ξ 3 is an identity of S.

Let us now show that S satisfies condition (ii) of Lemma 5, making an embedding in a relatively free
semigroup impossible. Let x, y, z generate the semigroup S0 – {1}, and for each nonempty subset
P ⊆ S0 – {1} consider the semigroup relations satisfied by the four elements tx , ty , tz , c1,P ∈ S. For any
word W in three semigroup variables, we see that c1,P W (tx , ty , tz ) c1,P will equal c1,P if
W (x, y, z) ∈ P, and 0 otherwise. Hence for distinct choices of P we get distinct sets of semigroup
relations holding among these four elements. Since S0 – {1} is infinite, there are uncountably many
choices for P, giving condition (ii) of the preceding lemma. 1

I am indebted to the referee for pointing me to Morse and Hedlund’s result [5] used above. (My
original construction applied the same method to an infinite Burnside group, yielding an identity ξ d = ξ 2d

with large d, and using the deep result of [1] rather than the elementary result of [5].)
Note that the uncountably many nonisomorphic 3-generator subsemigroups displayed in the above proof

are each embeddable in a relatively free semigroup in a variety satisfying an identity ξ d = ξ 2d, by
Proposition 2. These embeddings require uncountably many such varieties (hence not all of them finitely
based); the existence of uncountably many semigroup varieties was apparently first shown in [3].

If it should prove true that all countable semigroups satisfying identities ξ d = ξ 2d are embeddable in
relatively free semigroups, one could ask whether Lemma 5 gives the only obstruction to such embeddings
in the uncountable case. But this seems implausibly strong; it might, rather, be worth looking for other
restrictions ‘‘in the spirit of’’ that lemma.

Let us now consider the other class of semigroups which Proposition 2 allows as potentially
embeddable in relatively free semigroups – those admitting a homomorphism into the additive semigroup
of positive integers, which we shall denote 1+ .

Not every finitely generated semigroup in this class is embeddable in a relatively free semigroup. For
instance, the semigroup presented by three generators and one commutativity relation, S = x, y, z !

z y = y z , admits a homomorphism to 1+ sending x, y and z to 1; but since the subsemigroup
generated by x and y is absolutely free, S satisfies no nontrivial semigroup identities, so the only
variety where it could possibly embed in a free semigroup is the variety of all semigroups. However, free
semigroups in that variety have the property that any two elements which commute have a common power,
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which y, z ∈ S do not. It is conceivable that every finitely generated semigroup satisfying a proper
semigroup identity might admit such an embedding; but again, this seems very strong.

A test case I looked at was the class of semigroups gotten by taking a semigroup satisfying an identity
ξ d = ξ 2d, forming its direct product with 1+ , and taking a finitely generated subsemigroup of that
product. It turned out that these are indeed embeddable in relatively free semigroups. Generalizing the
proof led to the following result (which is easily seen to include that class of examples). In the statement,
note that since S is written multiplicatively and 1+ additively, w takes ‘‘products’’ to ‘‘sums’’.

Theorem 7. Let S be a finitely generated semigroup which admits a homomorphism w : S → 1+ , and
which for some positive integer d satisfies the identity

(29) ξ d η d ξ 2d = ξ 2d η d ξ d.

Then S can be embedded in a relatively free semigroup on two generators which likewise satisfies an
identity ξ d ′η d ′ξ 2d ′ = ξ 2d ′η d ′ξ d ′ .

Sketch of Proof. Let us begin by reducing to the case where S is generated by elements a satisfying
w(a) = 1.

If S is generated by elements a1 , ... , an not necessarily satisfying this condition, let us form the
monoid S ∪ {1}, extend w to the monoid homomorphism S ∪ {1} → taking 1 to 0, form the
product monoid × (S ∪ {1}), and map this into by the homomorphism w ′ : (m, a) → m + w(a).
Clearly this product monoid still satisfies the identity ξ d η d ξ 2d = ξ 2d η d ξ d. Moreover, the n +1
elements (1 – w(a1), a1), ... , (1 – w(an ), an ) and (1, 1) are each sent by w ′ to 1 ∈ , hence w ′
restricts to a semigroup homomorphism from the subsemigroup that these elements generate into 1+ .
That subsemigroup contains the elements

(1, 1) w(ai ) –1 (1 – w(ai ), ai ) = (0, ai ) (i ∈ {1, ... , n}),

which generate {0} × S =∼ S. Thus we have embedded S in a semigroup admitting a homomorphism to
1+ which carries all members of a finite generating set to 1.

So let us assume for the remainder of this proof that S is generated by elements a1 , ... , an satisfying
w(ai ) = 1, and let us form the system of reduction formulas Red(S; a1 , ... , an ) as in (25), using this
generating set. Note that in the present case, for each element (P, Q ) of this set, P and Q will have
the same length, namely the value of w on the element of S they both represent.

To take advantage of this homogeneity, let us choose our words Ai (ξ , η ) (i ∈ {1, ... , n}) all to have
the same degree in each variable. We can achieve this by slightly modifying the words given in (24), and
letting

(30) Ai (ξ , η ) = ξ 2 d2(n+1) (ξ d i η d (n+1– i) ξ d (n+1– i) η d i) d η 2 d2(n+1).

These words clearly still satisfy (12), (15), (17), (21) and (22), but also have the property that (again
writing L for their common length) they each have degree L ⁄ 2 in each variable.

As before, Lemma 3 gives us a semigroup T in which S embeds, and we need to show that T
satisfies the identities (28). Again, part (iv) of that lemma gives us a very limited class of values of X
and Y to be checked. In checking these case, we previously used the fact that the various Ai had the
same form, differing only in the powers of ξ d and η d occurring. The words (30) have this property, but
we now also use the fact that, when we compare two of these words Ai and Aj , a higher power of ξ d
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or η d in one position is always balanced by a correspondingly lower power of the same factor in another
position. These facts and the identity (29) allow us to rearrange the factors of any expression Ai (X, Y )
where X and Y have length greater than 1 to get any other such expression Aj (X, Y ). Since we have
noted that for (P, Q ) ∈ Red(S; a1 , ... , an ), P and Q have the same length, the desired equalities follow.
We similarly find that T will satisfy the identity of the form (29), but with d ′ = L in place of d. 1

This time, if we remove the finite generation assumption there are obstructions to such embeddings that
affect even the countable case:

Lemma 8. If a semigroup S admitting a homomorphism to 1 + is embeddable in a relatively free
semigroup, then the intersection of all congruences on S induced by homomorphisms into 1 + has
finite congruence classes.

Proof. It clearly suffices to show that in any variety not satisfying an identity ξ d = ξ 2d, the free
semigroup F (G ) on any set G has the asserted property. Now if we define an equivalence relation on
semigroup words in elements of G by calling two words U and V equivalent if each member of G
occurs with the same multiplicity in U and in V, the equivalence classes are finite, and words in
different equivalence classes can clearly be separated by homomorphisms F (G ) → 1+ . The assertion
follows. 1

An example of a semigroup which admits a homomorphism to 1+ , is commutative, and hence
satisfies all identities (29), and is countable, but which the above result shows is not embeddable in any
relatively free semigroup, is (1+ ) × . Indeed, it is easy to see that every homomorphism from this
semigroup to has the form (a, b) → pa + qb for some integers p and q, and that this map will be
(1+ )-valued if and only if p is positive and q = 0. All the homomorphisms to 1+ so obtained
induce the same congruence, namely (a, b) ∼ (a ′ , b ′ ) ⇔ a = a ′ , and this has infinite congruence classes
{a} × .

One can refine the proof of Lemma 8 to get further restrictions. For instance, if S is a semigroup
satisfying the hypothesis of that lemma, and for each a ∈ S we let c(a) denote the number of distinct
elements b ∈ S such that for all homomorphisms w : S → 1+ one has w(b) = w(a), then since the
number of semigroup words of length m in a fixed finite set of variables grows exponentially in m, for
each element a ∈ S, the integer-valued function d → c(ad) can grow at most exponentially in d. So if
f : → is a function with faster than exponential growth, and satisfies f (m1+ m2) ≥ f (m1) + f (m2)
for all m1 , m2 ∈ , so that {(a, b) ∈ (1+ ) × ! |b| ≤ f (a)} is a subsemigroup S of (1+ ) × , then
that subsemigroup, though it satisfies the conclusion of Lemma 8, is not embeddable in a relatively free
semigroup.

7. Groups and monoids

Can we prove results analogous to Theorem 1 for classes of algebraic objects other than semigroups?
The corresponding statement for groups is true, but for different reasons. We shall obtain it from

Lemma 9 (see [4, Lemma 2.5]; cf. [7, Lemma 3.2]). If G is a finite simple group which can be
generated by n elements, then G is isomorphic to a direct factor in the free group on n generators in
the variety generated by G. 1

M. Sapir and M. V. Volkov have both pointed out to J. Rhodes (personal communications) that since
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every finite group is embeddable in an alternating group on ≥ 5 letters, which is simple and generated by
two elements, the above fact implies

Theorem 10. Every finite group is embeddable in a finite relatively free group generated by two
elements. 1

However, as with semigroups, a finite non-simple group need not be embeddable in a free group in the
variety it generates. Here is an example suggested by A. Magidin (personal communication). Let G be
the group of strictly upper triangular invertible matrices over the field ⁄ 2 ,

G = { I + ae12 + be23 + ce13 ! a, b, c ∈ ⁄ 2 },

and let V be the variety of groups generated by G. It is easy to see that multiplication in G is additive
on the coefficients of e12 and e23 , hence that for any group word W in any number of variables, if
each variable has even exponent-sum in W, then applied to elements of G, W takes values of the form
I + ce13 . Since such elements have exponent 2, we see that for such W, W2 = 1 is an identity of V .
On the other hand, G has elements of order 4, e.g., I + e12 + e23 , from which we can see that if W
is a word in which not every variable has even exponent-sum, then when evaluated at some set of
arguments in G, it does not go to an element of exponent 2; so for such words, W2 = 1 is not an
identity of V . It follows that in any free group in V , a product of two elements of exponent 2 has
exponent 2. (For by the above observation, each of these elements must be represented by a word where
all generators have even exponent-sums, hence so will their product.) On the other hand, in G the
elements I + e23 and I + e12 both have order 2, while their product, I + e12 + e23 , has order 4; so
G cannot be embedded in a free group in V .

Having gotten parallel results, Theorem 1 and Theorem 10, for semigroups and groups, one might
expect the corresponding result to hold for monoids. But instead one has

Theorem 11. A finite monoid M is embeddable in a relatively free monoid if and only if either (i) the
only invertible element of M is 1, or (ii) every element of M is invertible . In each case, M is in fact
embeddable in a finite relatively free monoid.

Proof. Suppose M is embeddable in a monoid F free on generators x1 , ... , xr in a monoid variety V .
If (i) does not hold, so that M has an invertible element other than 1, then we get a relation
U (x1 , ... , xr ) V (x1 , ... , xr ) = 1 in F, where U and V are nontrivial monoid words (i.e., not the word
1). Mapping F into the free monoid on one generator x by sending all xi to x, this becomes a
relation xd = 1 for some d > 0. Hence V satisfies the identity ξ d = 1, hence in every monoid in V ,
and in particular, in M, every element a has an inverse, ad–1, proving (ii). This gives the ‘‘only if’’
direction of the first sentence of the theorem.

In proving the converse, together with the final finiteness assertion, we may assume M has more than
one element. Suppose first that (ii) holds. Then M, regarded as a finite group, can be embedded by
Theorem 10 in a finite relatively free group F . By finiteness of F, any variety of groups in which F is
free will satisfy an identity ξ d = 1. This allows us to write the group identities of this variety as monoid
identities, replacing inverses everywhere by (d –1)st powers. Thus, F can be regarded as a relatively free
monoid, giving the desired embedding.

To deal with case (i), recall that a map from a finite set to itself that is either one-to-one or onto is
both. Looking at the left action of a finite monoid on itself, it is easily deduced that an element of such a
monoid which has a one-sided inverse is invertible. Hence if M is a finite monoid satisfying (i), there are
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no nontrivial solutions in M to the equation ab = 1, so M – {0} is a subsemigroup of M, which we
shall call M0 .

We can now apply the construction of Theorem 1 to M0 , getting a semigroup T0 in which M0
embeds, and which satisfies the identities (3) obtained from the multiplication table of M0 . If we write T
for the monoid T0 ∪ {1}, we see that M embeds in T; I claim, moreover, that T still satisfies these
same identities. The proof of Theorem 1 gives all instances of these identities except those where X or Y
equals 1. The case where X = Y = 1 is clear; the case where only one of these, say Y, equals 1
subdivides according to whether X has length 1 or > 1. In the former case, the desired equations are
seen to reduce to 0 = 0; the latter behaves like the case in the proof of that theorem where X and Y
both had length > 1. Given that the finite monoid T satisfies these identities, it follows as in the proof of
that theorem that M embeds in the free monoid on two generators in the variety of monoids generated
by T. 1

One can, of course, also apply the results of the preceding section to get partial positive and negative
results on when infinite monoids are embeddable in relatively free monoids.
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