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Tensor algebras, exterior algebras, and symmetric algebras

1. Basics. Throughout this note, k will be a fixed commutative ring.
Recall that if M and P are k-modules, a k-multilinear map µ : Mn → P is called alternating if

µ(x1 , ... , xn ) = 0 whenever two successive arguments xi , xi+1 are equal. From this condition one easily
shows that transposing two successive arguments reverses the sign of µ(x1 , ... , xn ) = 0, from which it
follows that any permutation of the arguments multiplies the value by the sign of that permutation; hence,
from the original condition we see that the value is zero if any two terms are equal.

We recall likewise that a k-multilinear map Mn → P is called symmetric if it is unchanged under
transposing successive arguments; equivalently, if it is unchanged under all permutations of the arguments.

Let us now define some universal maps.

Definition 1. Let M be a k-module.
By 2× n M we shall denote the k-module with a universal k-multilinear map of Mn into it, written

(x1 , ... , xn ) → x1 2× ... 2× xn . This module is called the n-fold tensor power of M.

By Λ n M we shall denote the k-module with a universal alternating k-multilinear map of Mn into it,
written (x1 , ... , xn ) → x1 ∧ ... ∧ xn . This module is called the n-fold exterior power of M.

By Sn M we shall denote the k-module with a universal symmetric k-multilinear map of Mn into it,
written (x1 , ... , xn ) → x1 ... xn . This module is called the n-fold symmetric power of M.

Each of these modules can clearly be constructed directly by generators and relations. 2× n M can also
be constructed as M 2× k (M 2× k ( ... )) (with n M’s), while Λ n M and Sn M can be constructed as
factor-modules of 2× n M by the submodules generated by all elements of the forms

x1 2× ... 2× y 2× y 2× ... 2× xn ,

respectively

x1 2× ... 2× y 2× z 2× ... 2× xn – x1 2× ... 2× z 2× y 2× ... 2× xn .

(where each term is x1 2× ... 2× xn modified only in two successive places).

Let us make the convention that 2× 1 M, Λ1 M and S1M are all identified with M, while 2× 0 M,
Λ0 M and S0M are all identified with k.

The universal properties defining our three constructions can be conveniently restated as follows:

A k-module homomorphism with domain 2× n M is uniquely determined by specifying it on the
elements x1 2× ... 2× xn for all x1 , ... , xn ∈ M, in such a way that the value is a k-multilinear function of
x1 , ... , xn .

A k-module homomorphism with domain Λ n M is uniquely determined by specifying it on the
elements x1 ∧ ... ∧ xn for all x1 , ... , xn ∈ M, so that the value is an alternating k-multilinear function of
x1 , ... , xn .

A k-module homomorphism with domain Sn M is uniquely determined by specifying it on the
elements x1 ... xn for all x1 , ... , xn ∈ M, so that the value is a symmetric k-multilinear function of
x1 , ... , xn .

Each of 2× n, Λ n, Sn may be made into a functor. Given f : M → N, one defines, for example,
Λ n f : Λ n M → Λ n N as the unique module homomorphism taking x1 ∧ ... ∧ xn to f (x1) ∧ ... ∧ f (xn ) for
all x1 , ... , xn ∈ M. This homomorphism exists because the latter expression in x1 , ... , xn is alternating and
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k-multilinear.
Let us now show how to multiply a member of 2× m M by a member of 2× n M to get a member of

2× m+n M, and similarly for the other constructions. The universal properties of our module constructions
characterize the module homomorphisms, i.e. linear maps, definable on them, but we now want to construct
bilinear maps. The next Lemma allows us to translate existence and uniqueness results for the former into
existence and uniqueness results for the latter. (Note that in that Lemma, the subscripts i and j index
generators, while i ′ and j ′ index relations.)

Lemma 2. Let A be a k-module presented by generators Xi ( i ∈ I) and relations Σi α i ′ i Xi = 0
(i ′ ∈ I ′ ), and B a k-module presented by generators Yj ( j ∈ J) and relations Σj βj ′ j Yj = 0 ( j ′ ∈ J ′ ).

Then for any k-module C, a k-bilinear map A × B → C is uniquely determined by specifying the
image Zi j of each pair of generators (Xi , Yj ), in such a way that for each j ∈ J, i ′ ∈ I ′ one has
Σi α i ′ i Zi j = 0, and for each i ∈ I, j ′ ∈ J ′ one has Σj βj ′ j Zi j = 0.

(Equivalently, the k-module A 2× k B may be presented by the generators Xi 2× Yj and the two sets of
relations Σi α i ′ i Xi 2× Yj = 0 (i ′ ∈ I ′ , j ∈ J) and Σj βj ′ j Xi 2× Yj = 0 ( j ′ ∈ J ′ , i ∈ I ).)

Proof. Exercise. 1

We deduce

Lemma 3. Let M be a k-module and m, n nonnegative integers. Then there exist

a unique k-bilinear map 2× m M × 2× n M → 2× m+n M which carries each pair

(x1 2× ... 2× xm , xm+1 2× ... 2× xm+n ) to x1 2× ... 2× xm+n ,

a unique k-bilinear map Λ m M × Λ n M → Λ m+n M which carries each pair

(x1 ∧ ... ∧ xm , xm+1 ∧ ... ∧ xm+n ) to x1 ∧ ... ∧ xm+n , and

a unique k-bilinear map Sm M × Sn M → Sm+n M which carries each pair

(x1 ... xm , xm+1 ... xm+n ) to x1 ... xm+n .

Proof. We are describing these maps in terms of their actions on pairs of generators of the two modules in
question, so by Lemma 2, it suffices to verify that these assignments satisfy the equations corresponding to
the defining relations for the two modules. These equations are equivalent to saying that the assignments
should be multilinear (respectively alternating multilinear, respectively symmetric multilinear) in
x1 , ... , xm , and also in xm+1 , ... , xm+n , which is clearly true in each case. 1

Let us now form the k-modules

k<M> = 2+n (2× n M),

Λ M = 2+n (Λ n M),

S M = 2+n (Sn M).

We define a bilinear operation on each of them by letting it act on pairs of elements from the mth and nth
summands by the operations described in Lemma 3, and extending it to sums of elements from different
summands by bilinearity. We can now assert
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Theorem 4. The multiplications on k<M>, Λ M and S M defined above are structures of (associative
unital) k-algebra.

The algebra k<M>, called the tensor algebra on M, is universal among k-algebras given with
k-module homomorphisms of M into them.

The algebra Λ M, called the exterior algebra on M, is universal among k-algebras given with
k-module homomorphisms of M into them such that the images of all elements of M have zero square.

The algebra S M, called the symmetric algebra on M, is universal among k-algebras given with
k-module homomorphisms of M into them such that the images of elements of M commute with one
another, and is also universal among all commutative k-algebras given with k-module homomorphisms of
M into them.

Proof. To verify associativity of an operation known to be k-bilinear, it suffices to verify it on 3-tuples of
elements from any set of k-module generators. Thus, for instance, associativity of the multiplication of
Λ M can be verified by checking it on 3-tuples x1 ∧ ... ∧ xm , xm+1 ∧ ... ∧ xm+n , xm+n+1 ∧ ... ∧ xm+n+p .
But it is immediate from the definition that the product, formed either way, is x1 ∧ ... ∧ xm+n+p . The
associativity of the other two constructions is proved the same way.

Thus, our three objects are indeed a k-algebra with a k-module homomorphism of M into it (namely,
the inclusion of 2× 1M), a k-algebra with a k-module homomorphism of M into it such that the images
of all elements of M have square zero, and a k-algebra with a k-module homomorphism of M into it
such that the images of all elements of M commute with one another, and in this last case it follows that
the algebra is commutative. To complete the proof of the Theorem, we need to show that these algebras
are universal for these properties.

Consider first any k-algebra R with a k-module homomorphism f : M → R. We see that for each n,
the map Mn → R given by (x1 , ... , xn ) → f (x1) ... f (xn ) is k-multilinear, hence by the universal property
defining 2× n M, it induces a k-module homomorphism 2× n M → R. This family of maps yields a module
homomorphism k<M> → R. When we consider the behavior of this map on the k-module generators
x1 2× ... 2× xn of k<M>, we find that the way we have defined multiplication in this algebra makes the
map respect multiplication of these generators. From this and the fact that it is k-linear, it follows that it
respects multiplication on all elements, establishing the asserted universal property.

Likewise, given a k-algebra R with a k-module homomorphism f : M → R such that for every x ∈ M,
f (x)2 = 0, the map Mn → R taking (x1 , ... , xn ) to f (x1) ... f (xn ) is k-multilinear and alternating. Thus
it extends to a map on Λ n M, and the proof is completed as before.

In the case of the universal property of the symmetric algebra, we similarly see that (x1 , ... , xn ) →
f (x1) ... f (xn ) is a symmetric k-multilinear map, and complete the proof in the same way. From the
observation that S M is commutative and the above universal property, it follows that it is also universal
among commutative k-algebras with maps of M into them. 1

It follows, either from the explicit description or by the universal property, that each of the above
constructions gives a functor from k-modules to k-algebras.

What do these three sorts of algebras look like? Let us get explicit descriptions in the case where M
is a free module.

Theorem 5. Let M be a free k-module on a basis X. Then:
k<M> is the free associative k-algebra k<X>, equivalently, the semigroup algebra on the free

semigroup <X>. It has as a k-module basis the set of all products x1 2× ... 2× xn (or, using ordinary
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multiplicative notation, as is common when this ring is regarded as a free algebra or a semigroup algebra,
the set of products x1 ... xn ) for x1 , ... , xn ∈ X. Thus, if X is a finite set {x1 , ... , xr }, then for each n,
dimk (2× n M) = rn.

Λ M may be presented by the generating set X and the relations x ∧ x = 0, x ∧ y +y ∧ x = 0 (x, y ∈ X).
If a total ordering ‘‘≤ ’’ is chosen on X, then a k-module basis for Λ M is given by those products
x1 ∧ ... ∧ xn with x1 < ...< xn ∈ X. In particular, if X is a finite set {x1 , ... , xr }, then a basis is given by

those products xi1
∧ ... ∧ xin

with 1≤ i1 < ...< in ≤ r, hence for each n, dimk (Λ n M) = &
(

r
n
'
).

S M may be presented by the generating set X, and relations xy = yx (x, y ∈ X), and is the
(commutative) polynomial algebra k[X], equivalently, the free commutative k-algebra on X,
equivalently, the semigroup algebra on the free commutative semigroup on X. If a total ordering ‘‘≤ ’’ is
chosen on X, then a k-module basis for S M is given by those products x1 ... xn with x1 ≤ ... ≤ xn ∈ X. If

X is a finite set {x1 , ... , xr }, then the elements of this basis can be written x1
i1 ... xr

ir with i1 , ... , ir ≥ 0,

and for each n, dimk (Sn M) = &
(

r+n
n

–1'
).

Proof. The universal property of k<M> combined with the universal property of the free module M on
X imply that k<M> has the universal property of the free algebra k<X>; and the semigroup algebra on
the free semigroup also has this universal property, hence k<M> has for basis the free semigroup on X.
The other two algebras can now be obtained by imposing additional relations on this free algebra, and the
indicated bases are easily established using the diamond lemma [1, §1]. 1

Remark: The constructions of 2× n M and k<M > can be carried out and their universal properties
verified in the more general context where k is a not-necessarily-commutative ring and M is a
k-bimodule. (In this context, k<M > is called the ‘‘tensor k-ring on M ’’.)

The analogs of the exterior and symmetric algebras can, of course, be formally defined in this context
as well, but these turn out to be degenerate, with all symmetric or exterior powers of a module beyond the
first reducing to cases of the constructions for modules over a commutative ring developed above. For
instance, suppose M is a bimodule over a ring R, and x, y ∈ M, a ∈ R. Then in the ‘‘symmetric
square’’ of M we see that axy = ayx = (ay)x = x(ay) = xay; thus the distinction between ax and xa
has been lost in this bimodule. Moreover, if b is another element of R, we see using the above
computation that (ab)xy = x(ab)y = (ax)by = b(ax)y = (ba)xy, so left multiplication by ab and ba are
the same; i.e., the left R-module structure of S2M is induced by a module structure over the
abelianization R ⁄ [R : R] of R. From such observations one can show that for n ≥ 2, Sn M can be
identified with the nth symmetric power of the R ⁄ [R : R]-module obtained by dividing M by the sub-
bimodule spanned by all elements ax – xa (a ∈ R, x ∈ M), and the corresponding observations apply to
Λ n M.

2. Exterior powers and determinants. Note that if, as in the preceding Theorem, M is a free k-module
on r generators x1 , ... , xr , then Λ r M will be a free k-module on one generator x1 ∧ ... ∧ xr . Hence if
f : M → M is a module endomorphism, the induced endomorphism Λ r f : Λ r M → Λ r M will take
x1 ∧ ... ∧ xr to d( f ) x1 ∧ ... ∧ xr for some constant d( f ) ∈ k. Let us note the properties these constants
d( f ) must have.

Since specifying f is equivalent to specifying f (x1), ... , f (xr ), the element d( f ) can be thought of as
a function of this r-tuple of elements of M. As such it can be evaluated by forming the product
f (x1) ∧ ... ∧ f (xr ) in Λ r M, and writing this as a multiple of x1 ∧ ... ∧ xr ; the coefficient is d( f ). It is
easy to see from this formulation that d( f ) is an alternating multilinear functional of f (x1), ... , f (xr ),
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which takes the identity map to 1. We thus recognize d as the determinant function! In fact, this can be
taken as the definition of determinant, and the standard properties of that construction derived elegantly
from this definition.

One such property is that every alternating r-linear functional on M is a multiple of the determinant.
Let us, more generally, prove such a result for alternating r-linear functions from M into any k-module.
Let a : Mr → N be such a function. Then by the universal property of Λ r M we can write
a(y1 , ... , yr ) = α (y1 ∧ ... ∧ yr ) for some k-module homomorphism α : Λ n M → N. Let
α (x1 ∧ ... ∧ xr ) = u. Take any y1 , ... , yr ∈ M, and let f denote the unique endomorphism of M that
carries the elements x1 , ... , xr to y1 , ... , yr respectively. Then a(y1 , ... , yr ) = a( f (x1), ... , f (xr )) =
α ( f (x1) ∧ ... ∧ f (xr )) = α (d( f ) x1 ∧ ... ∧ xr ) = d( f )u. In other words, the general alternating map
a : Mr → N may be represented as the alternating map d, times some element of N.

If f, g are two endomorphisms of M, then from the functoriality of Λ r we see that d( fg) =
d( f )d(g).

Note that for f : M → M, the induced map Λ n f multiplies every element of Λ n M by the scalar
d( f ), and that this property uniquely determines that scalar. Hence, though we needed the existence of a
basis of r elements to show the existence of such a scalar, the value of the scalar can be characterized
independent of choice of basis. This shows why the determinant of an endomorphism of a free module
makes sense independent of basis.

Given a linear map f : M → N between free k-modules of finite rank, how will the induced map Λ f
act on the general element of Λ M ? Let x1 , ... , xr be a basis of M, y1 , ... , ys a basis of N, and (( fij ))
the matrix of f (considered to act on the right) with respect to these bases. A typical member of our basis
of Λ M has the form

p = xi1
∧ ... ∧ xim

∈ Λ m M (1 ≤ i1 < ...< im ≤ r),

and a typical member of our basis of Λ N the form

q = yj1
∧ ... ∧ yjn

∈ Λ n N (1 ≤ j1 < ...< jn ≤ s).

I claim that the coefficient of q in (Λ f )( p) is zero unless m = n, and that in this case, it is the
determinant of the n ×n submatrix of (( fij )) gotten by intersecting the i1 , ... , in th rows of that matrix with
the j1 , ... , jn th columns. The first part of the claim follows from the fact that Λ f is put together out of
maps Λ n f, taking Λ n M to Λ n N, but has no components carrying Λ m M to Λ n N for m ≠ n. The
second can be seen by composing f on the one side with the inclusion in M of the free submodule M ′
spanned by xi1

, ... ,xin
, and on the other side with the projection of N onto the free submodule N ′

spanned by yj1
, ... ,yjn

. It is easy to see that on application of Λ n, the first of these maps sends the

single generator p ′ = xi1
∧ ... ∧ xin

of Λ n M ′ to the basis element p of Λ n M (also formally

xi1
∧ ... ∧ xin

, but here distinguished symbolically because it represents an element of a different algebra),

and that the second sends the basis element q of Λ n M to the generator q ′ = yj1
∧ ... ∧ yjn

of Λ n N ′ ,

and all other basis elements to 0. Now the composite f ′ of f with these maps on the indicated sides is
represented by the n ×n submatrix of (( fij )) in question, hence Λ n f ′ sends p ′ to q ′ times the
determinant of that matrix, hence that determinant is the coefficient of q in (Λ f )( p), as desired

If M is a free module with basis x1 , ... , xr , note that Λ r –1M is also free of rank r : for each i ≤ r
we get a basis vector of this module by leaving out the ith factor of x1 ∧ ... ∧ xr . Let f be an
endomorphism of M. Then the coefficients in the action of Λ r –1f with respect to this basis are
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essentially the entries of the classical adjoint of the matrix of f (Hungerford [2 p. 353]; written A~ but
not named in Lang [3 p.518]). Precisely, the classical adjoint is the transpose of a matrix having these
entries, with certain changes of sign. Let us now derive in our present context the result that the product
of a square matrix with its classical adjoint is the identity times the determinant of the matrix. We will
find it easiest to keep track of what should map into what if we start with a linear map f : M → N, where
M and N are possibly distinct free k-modules of the same rank r, and only at the end specialize to the
case where they are the same.

Let us note that every element x ∈ M induces a map x ∧ – : Λ r –1M → Λ r M. If we let x run over our
basis of M, then, up to sign, these maps run over the obvious basis of Hom(Λ r –1M, Λ r M). To get the
correct signs, let us take a slightly modified basis of Λ r –1M consisting of the elements

x2 ∧ ... ∧ xr ,

–x1 ∧ x3 ∧ ... ∧ xr ,

. . .

± x1 ∧ ... ∧ xr –1 ,

using a + or – according to whether, on left multiplying by the appropriate xi , this has to pass through
an even or an odd number of factors to reach its proper place, i.e., according as i is odd or even. We can
now say that with respect to our given basis of M, the above basis of Λ r –1M, and the singleton basis
{x1 , ... , xr } of Λ r M, the ‘‘multiplication’’ map M → Hom(Λ r –1M, Λ r M) is represented by the identity
matrix.

Now consider the diagram

M
f

→ N

,,
↓

,,
↓

Hom(Λ r –1M, Λ r M) Hom(Λ r –1N, Λ r N)

,,
↓

(Λ r f ) ° – ,,
↓

– ° (Λ r –1 f )

Hom(Λ r –1M, Λ r N),

where the upper two vertical arrows are those just described, while the lower ones represent post- and pre-
composition with Λ r f and with Λ r –1f respectively. The diagram commutes: If we start with an
element x ∈ M we get

x → f (x)

,,
↓

,,
↓

x ∧ – f (x) ∧ –

,,
↓

,,
↓

(Λ r f )(x ∧ –) = f (x) ∧ (Λ r –1f )(–),

with equality at the bottom because Λ f is a ring homomorphism.
Now suppose M = N, and we fix a basis of this module, so that f, the top arrow of this diagram, an

endomorphism of M, is represented by a certain matrix with respect to our basis. The upper vertical
arrows are the same map, which, as we have noted, is represented in the appropriate basis by the identity
matrix; the left hand lower vertical arrow is just the identity matrix times det( f ), while the lower right-
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hand matrix has for entries the determinants of (r –1)×(r –1) minors of f, but with signs modified
because of our choice of basis of Λ r –1M, and transposed, because we are letting it act on the first
(contravariant) argument of Hom(Λ r –1M, Λ r N). It is easy to verify that it is precisely the classical
adjoint of f, so the commutativity of the above diagram shows that the matrix of f followed by its
classical adjoint gives (det f ) I.

I do not see as direct a way to get the corresponding result for composition of these matrices in the
opposite order. However, it can be obtained by applying the above result to the dual of f, and taking the
transpose of both sides.

Subsequent sections of this note will, like earlier sections, look at properties of exterior algebras
belonging to frameworks that also apply to tensor algebras and symmetric algebras. For further results on
exterior algebras in particular (and the related construction of Clifford algebras), see Lang [3,
Chapter XIX].

3. Geometric interpretations of exterior powers. [To be written up some time in the future. Cross-
products; differential forms; closed polyhedra]

4. Graded algebras.

Definition 6. A graded (or more precisely, Z-graded) k-algebra will mean a k-algebra R given with a
direct sum decomposition into k-submodules

R = 2+n ∈ Z Rn

such that

1 ∈ R0

and such that for all m, n,

Rm Rn ⊆ Rm+n .

If R is a graded algebra, an element is said to be homogeneous of degree n if it belongs to the
summand Rn , homogeneous if it belongs to one of these summands, which are called the homogeneous
components of R.

If R and S are graded algebras, then a homomorphism R → S as graded algebras means a
homomorphism as algebras, which for each n carries Rn into Sn .

(More generally, for any monoid G, which we will assume written multiplicatively, a G-graded
k-algebra means a k-algebra R given with a direct sum decomposition into submodules

R = 2+g ∈ G Rg

such that

1 ∈ Re

and for all g, h ∈ G

Rg Rh ⊆ Rgh .

Homogeneous components and graded-algebra homomorphisms are defined in the same way for this case.)

We thus see that k<M>, Λ M and S M can all be regarded as Z-graded k-algebras, or, indeed, as
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N-graded k-algebras, where N is the additive monoid of nonnegative integers.
Gradings constitute an important tool in both commutative and noncommutative ring theory. We will

not be able to look at that subject in this course; we have introduced the definition only so that we can
define the concept of the next section, which is relevant to exterior algebras.

5. ‘‘Graded’’ or ‘‘super’’ or ‘‘topologists’’’ commutativity – a sketch. It is easy to verify that in an
exterior algebra, homogeneous elements of even degree commute with everything, while homogeneous
elements of odd degree anticommute with each other. In other words, for a ∈Λ m M, b ∈Λ n M,

ab = (–1) mn ba.

This same equation turns out to hold frequently in the cohomology rings studied in topology, so that some
topologists have taken to calling this ‘‘commutativity’’ as graded rings!

In recent years, the study of graded rings with this property has flourished under the name ‘‘super’’
commutativity. In this context, analogs of a large number of familiar concepts can be defined. For
instance, just as in a not necessarily commutative algebra, one can define commutator brackets, which
measure the failure of commutativity, and then define objects with an operation which behaves like
commutator brackets, called ‘‘Lie algebras’’, so in a graded ring, one can define ‘‘super’’ commutator

brackets, which act on homogeneous elements by the law [a, b] = ab – (–1)deg(a) deg(b) ba, and define
‘‘super Lie algebras’’ as graded k-modules with an operation satisfying the identities of these brackets.
And just as one may define the tensor product of two algebras, with multiplication based on the formula
(a 2× b)(a ′ 2× b ′ ) = aa ′ 2× bb ′ , which, if the algebras are commutative, is itself commutative and gives
their coproduct in the category of commutative algebras, so one may define a modified multiplication on
the module-theoretic tensor product of two graded algebras using the formula (a 2× b)(a ′ 2× b ′ ) =

(–1)deg(b) deg(a ′ )aa ′ 2× bb ′ for homogeneous elements a, b, a ′ , b ′ , and this turns out to preserve super
commutativity, and to give the coproduct in the class of such algebras.

The condition of super commutativity is slightly weaker than the alternating condition imposed in the
exterior algebra construction. If one takes b = a in the equation ba + ab = 0, one gets 2 a2 = 0,
which, if 2 is invertible in the base ring k, is indeed equivalent to the alternating condition; but is not in
cases such as k = Z or Z ⁄ 2Z . So over a ring in which 2 is invertible, the exterior algebra construction,
regarded as a functor from k-modules M to super commutative k-algebras, is left adjoint to the functor
taking such an algebra to its homogeneous component of degree 1; and the functor associating to a set X
the exterior algebra on the free k-module on X is left adjoint to the functor taking a super commutative
k-algebra to the set of its elements of degree 1; i.e., this exterior algebra is a super commutative k-algebra
‘‘freely generated by an X-tuple of elements of degree 1’’. But over a general base-ring k, though such
left adjoints still exist, they are somewhat larger than the exterior algebras.

Note that in defining ‘‘super commutativity’’, one only needs to know whether degrees are odd or even,
not their exact values. Thus, the concept can be defined on Z ⁄ 2Z-graded rings. Moreover, any Z-graded
ring can be regarded as a Z ⁄ 2Z-graded ring by calling the sum of the components Rn with n even the
‘‘even’’ component and the sum of those with n odd the ‘‘odd’’ component. Thus, the concept of super
commutativity is often defined for Z ⁄ 2Z-graded rings, with the understanding that Z-graded rings are
automatically regarded as Z ⁄ 2Z-graded in this way.

Now suppose we define a ‘‘forgetful functor’’ taking each super commutative Z ⁄ 2Z-graded k-algebra
R to the ordered pair of sets (R0 , R1). This functor has a left adjoint, which takes a pair of sets
(X0 , X1) to the super commutative k-algebra ‘‘freely generated by an X0-tuple of even elements and an
X1-tuple of odd elements’’. Assuming 2 is invertible in k, we see that when X0 = ∅ , this is the
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exterior algebra on X1 ; when X1 = ∅ , it is the polynomial algebra on X0 , while for general X0 and
X1 , it is the tensor product of these two algebras.

6. Direct sum decompositions. In Theorem 5 we described the form our constructions take when applied
to free modules. Let us consider what we get when we start with a general direct sum of modules,
M 2+ N.

The tensor power construction is based on iterating the pairwise tensor product construction, which
satisfies the laws (A 2+ B)2× C =∼ (A 2× C) 2+ (B 2× C) and A 2× (B 2+ C) =∼ (A 2× B) 2+ (A 2× C). It is not
hard to deduce that 2× n (M 2+ N) is the direct sum of all n-fold tensor products of strings of M’s and N’s
(2 n summands in all).

The cases of the symmetric and exterior powers are not so obvious. Note that Λ n (M 2+ N),
respectively Sn (M 2+ N), is spanned as a k-module by products of elements of M and elements of N,
and that by the anticommutativity or commutativity law, every such product may be reduced to a product
in which all factors coming from M precede all factors coming from N. Within each of these two strings
of factors, the commutative or alternating law can be used to get further equalities, but it does not appear
that there will be any relations connecting the two strings of elements, except those arising from bilinearity.
This motivates the next result, for which I will briefly sketch three methods of proof.

Theorem 7. Let M and N be k-modules. Then

Λ p (M 2+ N) =∼ 2+m+n = p (Λ m M) 2× (Λ n N),

via the map

x1 ∧ ... ∧ xm ∧ y1 ∧ ... ∧ yn ← (x1 ∧ ... ∧ xm ) 2× (y1 ∧ ... ∧ yn ),

and likewise

Sp (M 2+ N) =∼ 2+m+n = p (Sm M) 2× (Sn N),

via the map

x1 ...xm y1 ...yn ← (x1 ... xm ) 2× (y1 ...yn ).

Sketch of 3 proofs. I will discuss the exterior-algebra case. The symmetric-algebra case is similar.
Method 1. The idea is to construct a k-multilinear alternating map from (M 2+ N) p to the indicated

direct sum, and verify that it has the universal property of p-fold exterior multiplication. The map is
defined so that a string consisting of m elements from M and n elements from N in some order goes
to the element of (Λ m M) 2× (Λ n N) gotten by rearranging them so that all members of M precede all
members of N, multiplying them together in the respective exterior powers, and putting on a + or –
sign according to whether the ‘‘rearrangement’’ involved an odd or an even number of transpositions. This
is then extended by multilinearity to terms consisting of sums of elements of M and elements of N.
Once this operation is defined precisely, it is straightforward to establish that it has the desired universal
property.

Method 2. Use the version of the diamond lemma in [1, §6] which deals with presentations of rings in
terms of generating (bi)modules instead of elements. Present Λ (M 2+ N) in terms of the modules M and
N, get a normal form for this algebra, and extract Λ p (M 2+ N) as the pth power therein of the generating
module M 2+ N.

Method 3. It is easy to verify by universal properties that Λ (M 2+ N) is the coproduct, in the category
of ‘‘super commutative’’ graded k-algebras, of Λ M and Λ N. (Key point: an easy computation shows
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that in a super commutative algebra, a sum of odd-degree elements with zero square again has zero
square.) Now use the description of coproducts in this category as tensor products, referred to in the
preceding section. The degree-p component of (Λ M) 2× (Λ N) is 2+m+n = p (Λ m M) 2× (Λ n N), as
desired. 1

7. Functorial notes. Given a k-module M and a nonnegative integer n, the universal property of
each of 2× n M, Λ n M, SnM can be considered as saying that the module is a representing object for a
certain set-valued functor. E.g., Λ n M represents the functor which takes every module P to the set of
alternating k-multilinear maps Mn → P. Now it frequently happens that when, for each object X of a
category C , we can construct an object F(X) of a category D , representing a covariant functor
D → Set defined in terms of X, then these objects fit together to form a functor F : C → D , which is a
left adjoint to some functor U : D → C . In the present case each of our three module constructions does
indeed give a functor k-Mod → k-Mod , but we have an exception to the second general observation:
none of these functors is a left adjoint. Indeed, left adjoint functors respect coproducts, but the
observations of the preceding section show that for n > 1, none of these functors takes direct sums to
direct sums.

Curiously, however, when we put these modules together to form k-algebras, one of the resulting
constructions, the tensor algebra, does, as we have seen, become a left adjoint – the left adjoint to the
forgetful functor from k-algebras to k-modules. The other two are still not adjoints when regarded as
functors to general k-algebras, but as we have also seen, the symmetric algebra construction becomes one
when regarded as a functor to commutative k-algebras. It is not hard to show that, similarly, the exterior
algebra functor, when regarded as a functor to ‘‘super-commutative’’ graded k-algebras in which odd-
degree elements satisfy a2 = 0, becomes left adjoint to the ‘‘module of elements of degree 1’’ functor.

On the other hand, all of our constructions of both modules and algebras can be made into left adjoints
if their descriptions are adjusted somewhat. For example, if the n-fold tensor power construction is inflated
so that the codomain category is not the category of k-modules, but the category of 3-tuples (M, a, P)
where M and P are k-modules and a is a k-multilinear map Mn → P, then it becomes a left adjoint
to the forgetful functor (M, a, P) → M.

8. Operations relating these algebras and their duals.
[To be written up some time in the future?]
For more on the exterior algebra cf. Lang’s Algebra, 3rd edition, Chapter XIX.
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