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Preface

The Langlands Program has emerged in recent years as a blueprint for a Grand
Unified Theory of Mathematics. Conceived initially as a bridge between Number
Theory and Automorphic Representations, it has now expanded into such areas
as Geometry and Quantum Field Theory, weaving together seemingly unrelated
disciplines into a web of tantalizing conjectures. The Langlands correspondence
manifests itself in a variety of ways in these diverse areas of mathematics and
physics, but the same salient features, such as the appearance of the Langlands dual
group, are always present. This points to something deeply mysterious and elusive,
and that is what makes this correspondence so fascinating.

One of the prevalent themes in the Langlands Program is the interplay between
the local and global pictures. In the context of Number Theory, for example, “global”
refers to a number field (a finite extension of the field of rational numbers) and its
Galois group, while “local” means a local field, such as the field of p-adic numbers,
together with its Galois group. On the other side of the Langlands correspondence
we have, in the global case, automorphic representations, and, in the local case,
representations of a reductive group, such as GL,, over the local field.

In the geometric context the cast of characters changes: on the Galois side we
now have vector bundles with flat connection on a complex Riemann surface X
in the global case, and on the punctured disc D around a point of X in the local
case. The definition of the objects on the other side of the geometric Langlands
correspondence is more subtle. It is relatively well understood (after works of A.
Beilinson, V. Drinfeld, G. Laumon and others) in the special case when the flat
connection on our bundle has no singularities. Then the corresponding objects are
the so-called “Hecke eigensheaves” on the moduli spaces of vector bundles on
X. These are the geometric analogues of unramified automorphic functions. The
unramified global geometric Langlands correspondence is then supposed to assign
to a flat connection on our bundle (without singularities) a Hecke eigensheaf. (This
is discussed in a recent review [Frenkel 2007], among other places, where we refer
the reader for more details.)
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However, in the more general case of connections with ramification, that is, with
singularities, the geometric Langlands correspondence is much more mysterious,
both in the local and in the global case. Actually, the impetus now shifts more to
the local story. This is because the flat connections that we consider have finitely
many singular points on our Riemann surface. The global ramified correspondence
is largely determined by what happens on the punctured discs around those points,
which is in the realm of the local correspondence. So the question really becomes:
what is the geometric analogue of the local Langlands correspondence?

Now, the classical local Langlands correspondence relates representations of
p-adic groups and Galois representations. In the geometric version we should
replace a p-adic group by the (formal) loop group G((t)), the group of maps from
the (formal) punctured disc D™ to a complex reductive algebraic group G. Galois
representations should be replaced by vector bundles on D> with a flat connection.
These are the local geometric Langlands parameters. To each of them we should be
able to attach a representation of the formal loop group.

Recently, Dennis Gaitsgory and I have made a general proposal describing
these representations of loop groups. An important new element in our proposal
is that, in contrast to the classical correspondence, the loop group now acts on
categories rather than vector spaces. Thus, the Langlands correspondence for loop
groups is categorical: we associate categorical representations of G((¢)) to local
Langlands parameters. We have proposed how to construct these categories using
representations of the affine Kac—-Moody algebra g, which is a central extension of
the loop Lie algebra g((z)). Therefore the local geometric Langlands correspondence
appears as the result of a successful marriage of the Langlands philosophy and the
representation theory of affine Kac—Moody algebras.

Affine Kac—-Moody algebras have a parameter, called the level. For a special value
of this parameter, called the critical level, the completed enveloping algebra of an
affine Kac—-Moody algebra acquires an unusually large center. In 1991, Boris Feigin
and I showed that this center is canonically isomorphic to the algebra of functions
on the space of opers on D*. Opers are bundles on D* with a flat connection
and an additional datum (as defined by Drinfeld—Sokolov and Beilinson—Drinfeld).
Remarkably, their structure group turns out to be not G, but the Langlands dual
group L' G, in agreement with the general Langlands philosophy. This is the central
result, which implies that the same salient features permeate both the representation
theory of p-adic groups and the (categorical) representation theory of loop groups.

This result had been conjectured by V. Drinfeld, and it plays an important role in
his and A. Beilinson’s approach to the global geometric Langlands correspondence,
via quantization of the Hitchin systems. The isomorphism between the center and
functions on opers means that the category of representations of g of critical level
“lives” over the space of £ G-opers on D*, and the loop group G ((¢)) acts “fiberwise”
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on this category. In a nutshell, the proposal of Gaitsgory and myself is that the
“fibers” of this category are the sought-after categorical representations of G((¢))
corresponding to the local Langlands parameters underlying the £ G-opers. This has
many non-trivial consequences, both for the local and global geometric Langlands
correspondence, and for the representation theory of g. We hope that further study
of these categories will give us new clues and insights into the mysteries of the
Langlands correspondence.!

The goal of this book is to present a systematic and self-contained introduction
to the local geometric Langlands correspondence for loop groups and the related
representation theory of affine Kac—Moody algebras. It covers the research done in
this area over the last twenty years and is partially based on the graduate courses
that I have taught at UC Berkeley in 2002 and 2004. In the book, the entire
theory is built from scratch, with all necessary concepts defined and all essential
results proved along the way. We introduce such concepts as the Weil-Deligne
group, Langlands dual group, affine Kac—-Moody algebras, vertex algebras, jet
schemes, opers, Miura opers, screening operators, etc., and illustrate them by
detailed examples. In particular, many of the results are first explained in the
simplest case of SL,. Practically no background beyond standard college algebra
is required from the reader (except possibly in the last chapter); we even explain
some standard notions, such as universal enveloping algebras, in the Appendix.

In the opening chapter, we present a pedagogical overview of the classical
Langlands correspondence and a motivated step-by-step passage to the geometric
setting. This leads us to the study of affine Kac—Moody algebras and in particular
the center of the completed enveloping algebra. We then review in great detail the
construction of a series of representations of affine Kac-Moody algebras, called
Wakimoto modules. They were defined by Feigin and myself in the late 1980s
following the work of M. Wakimoto. These modules give us an effective tool for
developing the representation theory of affine algebras. In particular, they are crucial
in our proof of the isomorphism between the spectrum of the center and opers. A
detailed exposition of the Wakimoto modules and the proof of this isomorphism
constitute the main part of this book. These results allow us to establish a deep link
between the representation theory of affine Kac—Moody algebras of critical level and
the geometry of opers. In the closing chapter, we review the results and conjectures
of Gaitsgory and myself describing the representation categories associated to opers
in the framework of the Langlands correspondence. I also discuss the implications
of this for the global geometric Langlands correspondence. These are only the first

I'We note that A. Beilinson has another proposal [2006] for the local geometric Langlands corre-
spondence, using representations of affine Kac—-Moody algebras of integral levels less than critical. It
would be interesting to understand the connection between his proposal and ours.
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steps of a new theory, which we hope will ultimately help us reveal the secrets of
Langlands duality.

Contents. Here is a more detailed description of the contents of this book.

Chapter 1 is the introduction to the subject matter of this book. We begin by
giving an overview of the local and global Langlands correspondence in the classical
setting. Since the global case is discussed in great detail in my recent review [Frenkel
2007], I concentrate here mostly on the local case. Next, I explain what changes one
needs to make in order to transport the local Langlands correspondence to the realm
of geometry and the representation theory of loop groups. I give a pedagogical
account of Galois groups, principal bundles with connections and central extensions,
among other topics. This discussion leads us to the following question: how to
attach to each local geometric Langlands parameter an abelian category equipped
with an action of the formal loop group?

In Chapter 2 we take up this question in the context of the representation theory of
affine Kac—Moody algebras. This motivates us to study the center of the completed
enveloping algebra of g. First, we do that by elementary means, but very quickly
we realize that we need a more sophisticated technique. This technique is the theory
of vertex algebras. We give a crash course on vertex algebras (following [Frenkel
and Ben-Zvi 2004]), summarizing all necessary concepts and results.

Armed with these results, we begin in Chapter 3 a more in-depth study of the
center of the completed enveloping algebra of g at the critical level (we find that
the center is trivial away from the critical level). We describe the center in the case
of the simplest affine Kac—Moody algebra ;[2 and the quasi-classical analogue of
the center for an arbitrary g.

In Chapter 4 we introduce the key geometric concept of opers, introduced
originally in [Drinfel’d and Sokolov 1985; Beilinson and Drinfeld 1997]. We state
the main result, due to Feigin and myself [1992; 2005b], that the center at the critical
level, corresponding to g, is isomorphic to the algebra of functions on ©G-opers.

In order to prove this result, we need to develop the theory of Wakimoto modules.
This is done in Chapters 5 and 6, following [Frenkel 2005b]. We start by explaining
the analogous theory for finite-dimensional simple Lie algebras, which serves as
a prototype for our construction. Then we explain the non-trivial elements of the
infinite-dimensional case, such as the cohomological obstruction to realizing a
loop algebra in the algebra of differential operators on a loop space. This leads
to a conceptual explanation of the non-triviality of the critical level. In Chapter 6
we complete the construction of Wakimoto modules, both at the critical and non-
critical levels. We prove some useful results on representations of affine Kac—Moody
algebras, such as the Kac-Kazhdan conjecture.
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Having built the theory of Wakimoto modules, we are ready to tackle the isomor-
phism between the center and the algebra of functions on opers. At the beginning
of Chapter 7 we give a detailed overview of the proof of this isomorphism. In the
rest of Chapter 7 we introduce an important class of intertwining operators between
Wakimoto modules called the screening operators. We use these operators and some
results on associated graded algebras in Chapter 8 to complete the proof of our main
result and to identify the center with functions on opers (here we follow [Frenkel
2005b]). In particular, we clarify the origins of the appearance of the Langlands
dual group in this isomorphism, tracing it back to a certain duality between vertex
algebras known as the “W'-algebras. At the end of the chapter we discuss the vertex
Poisson structure on the center and identify the action of the center on Wakimoto
modules with the Miura transformation.

In Chapter 9 we undertake a more in-depth study of representations of affine
Kac—Moody algebras of critical level. We first introduce (following [Beilinson
and Drinfeld 1997] and [Frenkel and Gaitsgory 2006c¢]) certain subspaces of the
space of opers on D*: opers with regular singularities and nilpotent opers, and
explain the interrelations between them. We then discuss Miura opers with regular
singularities and the action of the Miura transformation on them, following [Frenkel
and Gaitsgory 2006c¢]. Finally, we describe the results of [Frenkel and Gaitsgory
2006c¢] and [Frenkel and Gaitsgory 2007c] on the algebras of endomorphisms of
the Verma modules and the Weyl modules of critical level.

In Chapter 10 we bring together the results of this book to explain the proposal
for the local geometric Langlands correspondence made by Gaitsgory and myself.
We review the results and conjectures of our works [Frenkel and Gaitsgory 2004;
Frenkel and Gaitsgory 2006¢; Frenkel and Gaitsgory 2006a; Frenkel and Gaitsgory
2005; Frenkel and Gaitsgory 2006b; Frenkel and Gaitsgory 2007c], emphasizing the
analogies between the geometric and the classical Langlands correspondence. We
discuss in detail the interplay between opers and local systems. We then consider
the simplest local system; namely, the trivial one. The corresponding categorical
representations of G(¢)) are the analogues of unramified representations of p-adic
groups. Already in this case we will see rather non-trivial elements, which emulate
the corresponding elements of the classical theory and at the same time generalize
them in a non-trivial way. The next, and considerably more complicated, example
is that of local systems on D> with regular singularity and unipotent monodromy.
These are the analogues of the tamely ramified representations of the Galois group
of a p-adic field. The corresponding categories turn out to be closely related to
categories of quasicoherent sheaves on the Springer fibers, which are algebraic
subvarieties of the flag variety of the Langlands dual group. We summarize the
conjectures and results of [Frenkel and Gaitsgory 2006c¢] concerning these categories
and illustrate them by explicit computations in the case of s?[z. We also formulate
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some open problems in this direction. Finally, we discuss the implications of this
approach for the global Langlands correspondence.
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CHAPTER 1

Local Langlands correspondence

In this introductory chapter we explain in detail what we mean by “local Lang-
lands correspondence for loop groups.” We begin by giving a brief overview of the
local Langlands correspondence for reductive groups over local non-archimedian
fields, such as F,((?)), the field of Laurent power series over a finite field F;. We
wish to understand an analogue of this correspondence when [ is replaced by the
field C of complex numbers. The role of the reductive group will then be played
by the formal loop group G(C((?))). We discuss, following [Frenkel and Gaitsgory
2006¢c], how the setup of the Langlands correspondence should change in this
case. This discussion will naturally lead us to categories of representations of the
corresponding affine Kac-Moody algebra g equipped with an action of G(C((2))),
the subject that we will pursue in the rest of this book.

1.1. The classical theory

The local Langlands correspondence relates smooth representations of reductive
algebraic groups over local fields and representations of the Galois group of this
field. We start out by defining these objects and explaining the main features of
this correspondence. As the material of this section serves motivational purposes,
we will only mention those aspects of this story that are most relevant for us. For
a more detailed treatment, we refer the reader to the informative surveys [Vogan
1993; Kudla 1994] and references therein.

1.1.1. Local non-archimedian fields. et F be a local non-archimedian field. In
other words, F is the field @, of p-adic numbers, or a finite extension of Q, or F
is the field F4((¢)) of formal Laurent power series with coefficients in [Fg, the finite
field with g elements.

We recall that for any ¢ of the form p”, where p is a prime, there is a unique,
up to isomorphism, finite field of characteristic p with g elements. An element of

1



2 1. LOCAL LANGLANDS CORRESPONDENCE

F4((?)) is an expression of the form

Zant”, an € Fyq,

nez

such that a, = 0 for all n less than some integer N. In other words, these are power
series infinite in the positive direction and finite in the negative direction. Recall
that a p-adic number may also be represented by a series

D bap".  bpe{0.1.....p—1}

nez

such that b, = 0 for all n less than some integer V. We see that elements of Q,, look
similar to elements of F,(()). Both fields are complete with respect to the topology
defined by the norm taking value " on the above series if @ 7% 0 and a,, = 0 for
all n < N, where « is a fixed positive real number between 0 and 1. But the laws of
addition and multiplication in the two fields are different: with “carry” to the next
digit in the case of Q, but without “carry” in the case of F,((¢)). In particular, Q,,
has characteristic 0, while F, (7)) has characteristic p. More generally, elements of
a finite extension of Q, look similar to elements of F,((?)) for some ¢ = p”, but,
again, the rules of addition and multiplication, as well as their characteristics, are
different.

1.1.2. Smooth representations of GL,(F). Now consider the group GL,(F),
where F is a local non-archimedian field. A representation of GL,(F) on a
complex vector space V' is a homomorphism 7 : GL,(F) — End V' such that
w(gh) = n(g)m(h) and (1) = Id. Define a topology on GL,(F) by stipulating
that the base of open neighborhoods of 1 € GL,(F) is formed by the congruence
subgroups Ky, N € Z,. In the case when F = [F;((¢)), the group K is defined
as follows:

Ky ={g € GLa(Fgllt]) | g =1 mod M},

and for F = Q) it is defined in a similar way. For each v € V' we obtain a map
7()v:GLy(F)— V, g+ m(g)v. A representation (V, i) is called smooth if the
map 7 (-)v is continuous for each v, where we give V the discrete topology. In
other words, V' is smooth if for any vector v € V there exists N € Z such that

w(g)v =, Vg e Ky.

We are interested in describing the equivalence classes of irreducible smooth
representations of G L, (F). Surprisingly, those turn out to be related to objects of
a different kind: n-dimensional representations of the Galois group of F.
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1.1.3. The Galois group. Suppose that F' is a subfield of K. Then the Galois
group Gal(K/ F) consists of all automorphisms o of the field K such thato(y) =y
forall y € F.

Let F be a field. The algebraic closure of F is a field obtained by adjoining to
F the roots of all polynomials with coefficients in F. In the case when F' = F, (7))
some of the extensions of F' may be non-separable. An example of such an extension
is the field F, (¢'/P)). The polynomial defining this extension is x? — ¢, but in
Fq ((tl/ 7)) it has multiple roots because

xP — (VPP = (x —1V/P)P,

The Galois group Gal(F, (t1/7)), F4 (%)) of this extension is trivial, even though
the degree of the extension is p.

This extension should be contrasted to the separable extensions [, ((tl/ ), where
n is not divisible by p. This extension is defined by the polynomial x” — ¢, which
now has no multiple roots:

n—1
- H(x —Cill/n),
i=0
where ¢ is a primitive nth root of unity in the algebraic closure of F,. The corre-
sponding Galois group is identified with the group (Z/nZ)*, the group of invertible
elements of Z/nZ.

We wish to avoid the non-separable extensions, because they do not contribute
to the Galois group. (There are no non-separable extensions if F' has characteristic
zero, e.g., for F = Q,.) Let F be the maximal separable extension inside a given
algebraic closure of F. It is uniquely defined up to isomorphism.

Let Gal(F/ F) be the absolute Galois group of F. Its elements are the auto-
morphisms o of the field F such that o(y) = y forall y € F.

To gain some experience with Galois groups, let us look at the Galois group
Gal(F4/F,). Here [, is the algebraic closure of F4, which can be defined as the
inductive limit of the fields F,~, N € Z4, with respect to the natural embeddings
Fyn < Fym for N dividing M. Therefore Gal(Fq /Fq) is isomorphic to the inverse
limit of the Galois groups Gal(F,~ /Fg) with respect to the natural surjections

Gal(F,um /Fq) — Gal(F,n /Fg).  VN|M.

The group Gal(F,~n/Fg) is easy to describe: it is generated by the Frobenius
automorphism x — x4 (note that it stabilizes [F,), which has order N, so that
Gal(Fyn /Fq) >~ Z/N Z. Therefore we find that

= = def .
Gal(Fy/Fy) ~Z = 1imZ/NZ,
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where we have the surjective maps Z/ M7 — Z/NZ for N|M. The group Vi
contains Z as a subgroup.

Let F' = F4((z)). Observe that we have a natural map Gal(F /F)— Gal([Fq /Fq)
obtained by applying an automorphism of F to [Fq C F. A similar map also
exists when F has characteristic 0. Let Wr be the preimage of the subgroup
Z C Gal(Fq /Fq). This is the Weil group of F. Let v be the corresponding
homomorphism Wr — Z. Let W, = Wg x C be the semi-direct product of
W and the one-dimensional complex additive group C, where Wr acts on C by
the formula

oxo = q“(”)x, o€ Wpr,x eC. (1.1-1)

This is the Weil-Deligne group of F.

An n-dimensional complex representation of W;; is by definition a homomor-
phism p’: W, — GL,(C), which may be described as a pair (p, u), where p is an n-
dimensional representation of Wr, u € gl,,(C), and we have p(o)up(c)~! = q"(")u
for all 0 € Wg. The group WF is topological, with respect to the Krull topology
(in which the open neighborhoods of the identity are the normal subgroups of
finite index). The representation (p, u) is called admissible if p is continuous
(equivalently, factors through a finite quotient of W) and semisimple, and u is a
nilpotent element of gl,, (C).

The group W, was introduced by P. Deligne [1973]. The idea is that by adjoining
the nilpotent element u to Wr we obtain a group whose complex admissible
representations are the same as continuous £-adic representations of Wg (where

£ # p is a prime).

1.1.4. The local Langlands correspondence for GL,. Now we are ready to state
the local Langlands correspondence for the group GL, over a local non-archimedian
field F. It is a bijection between two different sorts of data. One is the set of
equivalence classes of irreducible smooth representations of GL, (F). The other is
the set of equivalence classes of n-dimensional admissible representations of Wy..
We represent it schematically as follows:

n-dimensional admissible irreducible smooth
representations of W, representations of GL,(F)

This correspondence is supposed to satisfy an overdetermined system of con-
straints which we will not recall here (see, e.g., [Kudla 1994]).

The local Langlands correspondence for GL, is a theorem. In the case when
F =TF4((2)) it has been proved in [Laumon et al. 1993], and when F = Q, or its
finite extension in [Harris and Taylor 2001] and also in [Henniart 2000]. We refer
the readers to these papers and to the review [Carayol 2000] for more details.
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Despite an enormous effort made in the last two decades to understand it, the
local Langlands correspondence still remains a mystery. We do know that the above
bijection exists, but we cannot yet explain in a completely satisfactory way why it
exists. We do not know the deep underlying reasons that make such a correspondence
possible. One way to try to understand it is to see how general it is. In the next
section we will discuss one possible generalization of this correspondence, where
we replace the group GL, by an arbitrary reductive algebraic group defined over
F.

1.1.5. Generalization to other reductive groups. Let us replace the group GL,
by an arbitrary connected reductive group G over a local non-archimedian field
F. The group G(F) is also a topological group, and there is a notion of smooth
representation of G(F) on a complex vector space. It is natural to ask whether
we can relate irreducible smooth representations of G'(F) to representations of the
Weil-Deligne group Wp,. This question is addressed in the general local Langlands
conjectures. It would take us too far afield to try to give here a precise formulation
of these conjectures. So we will only indicate some of the objects involved, referring
the reader to the articles [Vogan 1993; Kudla 1994], where these conjectures are
described in great detail.

Recall that in the case when G = G L, the irreducible smooth representations
are parametrized by admissible homomorphisms W, — GLy(C). In the case of a
general reductive group G, the representations are conjecturally parametrized by
admissible homomorphisms from W/, to the so-called Langlands dual group e
which is defined over C.

In order to explain the notion of the Langlands dual group, consider first the group
G over the closure F of the field F. All maximal tori 7" of this group are conjugate
to each other and are necessarily split, i.e., we have an isomorphism 7'(F) ~ (FX)”.
For example, in the case of G L, all maximal tori are conjugate to the subgroup of
diagonal matrices. We associate to 7'(F) two lattices: the weight lattice X *(T") of
homomorphisms 7'(F) — F and the coweight lattice X«(7") of homomorphisms
F =T (F). They contain the sets of roots A C X *(7") and coroots AV C X (T),
respectively. The quadruple (X *(7T'), X«(T), A, AY) is called the root data for G
over F. The root data determines G up to an isomorphism defined over F. The
choice of a Borel subgroup B(F) containing 7'(F) is equivalent to a choice of a
basis in A; namely, the set of simple roots Ay, and the corresponding basis A in
AV.

Now given y € Gal(F/ F), there is g € G(F) such that g(y (T (F))g~! = T(F)
and g(y(B(F))g~! = B(F). Then g gives rise to an automorphism of the based
root data (X*(T), X«(T'), As, AJ). Thus, we obtain an action of Gal(F/F) on
the based root data.
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Let us now exchange the lattices of weights and coweights and the sets of simple
roots and coroots. Then we obtain the based root data

(X« (T), X*(T), A Ay)

of a reductive algebraic group over C, which is denoted by £G°. For instance, the
group G L, is self-dual, the dual of SO, is Spay, the dual of Spj;, is SOy 1,
and SO, is self-dual.

The action of Gal(F/F) on the based root data gives rise to its action on L G°.
The semi-direct product G = Gal(F/F) x L' G° is called the Langlands dual
group of G.

The local Langlands correspondence for the group G (F') relates the equivalence
classes of irreducible smooth representations of G'(F) to the equivalence classes of
admissible homomorphisms W, — LG. However, in general this correspondence
is much more subtle than in the case of GL,. In particular, we need to consider
simultaneously representations of all inner forms of G, and a homomorphism
Wp — LG corresponds in general not to a single irreducible representation of
G(F), but to a finite set of representations called an L-packet. To distinguish
between them, we need additional data (see [Vogan 1993] for more details; some
examples are presented in Section 10.4.1 below). But in the first approximation we
can say that the essence of the local Langlands correspondence is that

irreducible smooth representations of G(F) are parameterized in
terms of admissible homomorphisms WI/, - Lg.

1.1.6. On the global Langlands correspondence. We close this section with a
brief discussion of the global Langlands correspondence and its connection to the
local one. We will return to this subject in Section 10.5.

Let X be a smooth projective curve over F,. Denote by F the field F4(X)
of rational functions on X. For any closed point x of X we denote by F the
completion of F at x and by Oy its ring of integers. If we choose a local coordinate
tx at x (i.e., a rational function on X which vanishes at x to order one), then we
obtain isomorphisms Fx =~ F, ((tx)) and Ox =~ F, [[tx]], where [y, is the residue
field of x; in general, it is a finite extension of [4 containing gx = q9¢™) elements.

Thus, we now have a local field attached to each point of X. The ring A = A
of adeles of F is by definition the restricted product of the fields Fy, where x runs
over the set | X'| of all closed points of X. The word “restricted” means that we
consider only the collections ( fx)xe|x| of elements of Fy in which fy € O for
all but finitely many x. The ring A contains the field F, which is embedded into A
diagonally, by taking the expansions of rational functions on X at all points.
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While in the local Langlands correspondence we considered irreducible smooth
representations of the group G L, over a local field, in the global Langlands cor-
respondence we consider irreducible automorphic representations of the group
GLy,(A). The word “automorphic” means, roughly, that the representation may be
realized in a reasonable space of functions on the quotient GL, (F)\GL,(A) (on
which the group GL,(A) acts from the right).

On the other side of the correspondence we consider n-dimensional representa-
tions of the Galois group Gal(F /F), or, more precisely, the Weil group Wz, which
is a subgroup of Gal(F/ F) defined in the same way as in the local case.

Roughly speaking, the global Langlands correspondence is a bijection between
the set of equivalence classes of n-dimensional representations of Wr and the set
of equivalence classes of irreducible automorphic representations of GL,(A):

n-dimensional representations irreducible automorphic
of W representations of GL,(A)

The precise statement is more subtle. For example, we should consider the
so-called £-adic representations of the Weil group (while in the local case we
considered the admissible complex representations of the Weil-Deligne group; the
reason is that in the local case those are equivalent to the £-adic representations).
Moreover, under this correspondence important invariants attached to the objects
appearing on both sides (Frobenius eigenvalues on the Galois side and the Hecke
eigenvalues on the other side) are supposed to match. We refer the reader to Part |
of the review [Frenkel 2007] for more details.

The global Langlands correspondence has been proved for GL; in the 1980’s by
V. Drinfeld (Drinfel’d 1980; Drinfel’d 1983; Drinfel’d 1987; Drinfel’d 1988) and
more recently by L. Lafforgue [2002] for GL, with an arbitrary n.

The global and local correspondences are compatible in the following sense. We
can embed the Weil group W, of each of the local fields Fy into the global Weil
group Wr. Such an embedding is not unique, but it is well-defined up to conjugation
in Wr. Therefore an equivalence class o of n-dimensional representations of Wg
gives rise to a well-defined equivalence class oy of n-dimensional representations of
W, for each x € X. By the local Langlands correspondence, to ox we can attach
an equivalence class of irreducible smooth representations of G L, (Fy). Choose a
representation 1, in this equivalence class. Then the automorphic representation of
G L, (A) corresponding to o is isomorphic to the restricted tensor product ®; ex Tx-
This is a very non-trivial statement, because a priori it is not clear why this tensor
product may be realized in the space of functions on the quotient GL, (F)\GL,(A).
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As in the local story, we may also wish to replace the group G L, by an arbitrary
reductive algebraic group defined over F. The general global Langlands conjecture
predicts, roughly speaking, that irreducible automorphic representations of G(A)
are related to homomorphisms Wg — £ G. But, as in the local case, the precise
formulation of the conjecture for a general reductive group is much more intricate
(see [Arthur 1989])).

Finally, the global Langlands conjectures can also be stated over number fields
(where they in fact originated). Then we take as the field F’ a finite extension of the
field @ of rational numbers. Consider for example the case of @ itself. It is known
that the completions of @ are (up to isomorphism) the fields of p-adic numbers Q
for all primes p (non-archimedian) and the field & of real numbers (archimedian).
So the primes play the role of points of an algebraic curve over a finite field (and
the archimedian completion corresponds to an infinite point, in some sense). The
ring of adeles Ag is defined in the same way as in the function field case, and so
we can define the notion of an automorphic representation of GL,(Ag) or a more
general reductive group. Conjecturally, to each equivalence class of n-dimensional
representations of the Galois group Gal(@/Q) we can attach an equivalence class
of irreducible automorphic representations of GL,(Ag), but this correspondence is
not expected to be a bijection because in the number field case it is known that some
of the automorphic representations do not correspond to any Galois representations.

The Langlands conjectures in the number field case lead to very important and
unexpected results. Indeed, many interesting representations of Galois groups can
be found in “nature”. For example, the group Gal(Q/Q) will act on the geometric
invariants (such as the étale cohomologies) of an algebraic variety defined over Q.
Thus, if we take an elliptic curve E over (O, then we will obtain a two-dimensional
Galois representation on its first étale cohomology. This representation contains a
lot of important information about the curve E, such as the number of points of £
over Z/ pZ for various primes p. The Langlands correspondence is supposed to
relate these Galois representations to automorphic representations of GL,(AF) in
such a way that the data on the Galois side, like the number of points of E(Z/pZ),
are translated into something more tractable on the automorphic side, such as the
coefficients in the g-expansion of the modular forms that encapsulate automorphic
representations of GL,(Ag). This leads to some startling consequences, such as the
Taniyama-Shimura conjecture. For more on this, see [Frenkel 2007] and references
therein.

The Langlands correspondence has proved to be easier to study in the function
field case. The main reason is that in the function field case we can use the geometry
of the underlying curve and various moduli spaces associated to this curve. A curve
can also be considered over the field of complex numbers. Some recent results
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show that a version of the global Langlands correspondence also exists for such
curves. The local counterpart of this correspondence is the subject of this book.

1.2. Langlands parameters over the complex field

We now wish to find a generalization of the local Langlands conjectures in which
we replace the field ' = F;(()) by the field C((#)). We would like to see how the
ideas and patterns of the Langlands correspondence play out in this new context,
with the hope of better understanding the deep underlying structures behind this
correspondence.

So from now on G will be a connected reductive group over C, and G(F) the
group G (1)) = G(C((2))), also known as the loop group; more precisely, the formal
loop group, with the word “formal” referring to the algebra of formal Laurent
power series C((1)) (as opposed to the group G(C[t, 1~ ']), where C[t,¢~!] is the
algebra of Laurent polynomials, which may be viewed as the group of maps from
the unit circle |£| = 1 to G, or “loops” in G).

Thus, we wish to study smooth representations of the loop group G((¢)) and try
to relate them to some “Langlands parameters,” which we expect, by analogy with
the case of local non-archimedian fields described above, to be related to the Galois
group of C((¢)) and the Langlands dual group £G.

The local Langlands correspondence for loop groups that we discuss in this book
may be viewed as the first step in carrying the ideas of the Langlands Program to the
realm of complex algebraic geometry. In particular, it has far-reaching consequences
for the global geometric Langlands correspondence (see Section 10.5 and [Frenkel
2007] for more details). This was in fact one of the motivations for this project.

1.2.1. The Galois group and the fundamental group. We start by describing the
Galois group Gal(F/F) for F = C((¢)). Observe that the algebraic closure F of F
is isomorphic to the inductive limit of the fields C((z'/™)), n > 0, with respect to
the natural inclusions C(¢!/")) < C(¢'/™)) for n dividing m. Hence Gal(F/F)
is the inverse limit of the Galois groups

Gal(C("/")/C (1) ~Z/nZ,

where k € Z/nZ corresponds to the automorphism of C((z!/")) sending 1'/" to
e2mik/ngl/n The result is that

Gal(F/F) ~ 7,
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where Z is the profinite completion of Z that we have encountered before in
Section 1.1.3.

Note, however, that in our study of the Galois group of [F4((¢)) the group Vi
appeared as its quotient corresponding to the Galois group of the field of coefficients
4. Now the field of coefficients is C, hence algebraically closed, and Z is the entire
Galois group of C((2)).

The naive analogue of the Langlands parameter would be an equivalence class
of homomorphisms Gal(F/F) — LG, i.e., a homomorphism Z — LG. Since G
is defined over C and hence all of its maximal tori are split, the group G((¢)) also
contains a split torus 7°((¢)), where 7" is a maximal torus of G (but it also contains
non-split maximal tori, as the field C((z)) is not algebraically closed). Therefore the
Langlands dual group LG is the direct product of the Galois group and the group
LG°. Because it is a direct product, we may, and will, restrict our attention to £ G°.
In order to simplify our notation, from now on we will denote G® simply by Lg.

A homomorphism Z—Lag necessarily factors through a finite quotient 7—
7 /nZ. Therefore the equivalence classes of homomorphisms Z — LG are the same
as the conjugacy classes of LG of finite order. There are too few of these to have a
meaningful generalization of the Langlands correspondence. Therefore we look for
a more sensible alternative.

Let us recall the connection between Galois groups and fundamental groups. Let
X be an algebraic variety over C. If Y — X is a covering of X, then the field C(Y")
of rational functions on Y is an extension of the field F' = C(X') of rational functions
on X. The deck transformations of the cover, i.e., automorphisms of ¥ which
induce the identity on X, give rise to automorphisms of the field C(Y') preserving
C(X) C C(Y). Hence we identify the Galois group Gal(C(Y)/C(X)) with the
group of deck transformations. If our cover is unramified, then this group may be
identified with a quotient of the fundamental group of X . Otherwise, this group
is isomorphic to a quotient of the fundamental group of X with the ramification
divisor thrown out.

In particular, we obtain that the Galois group of the maximal unramified extension
of C(X) (which we can view as the field of functions of the “maximal unramified
cover” of X)) is the profinite completion of the fundamental group 7{(X) of X.
Likewise, for any divisor D C X the Galois group of the maximal extension of
C(X) unramified away from D is the profinite completion of 771 (X' \ D). We denote
it by nllg(X \ D). The algebraic closure of C(X) is the inductive limit of the fields
of functions on the maximal covers of X ramified at various divisors D C X with
respect to natural inclusions corresponding to the inclusions of the divisors. Hence
the Galois group Gal(C(X)/C(X)) is the inverse limit of the groups n;ﬂg(X \D)
with respect to the maps Jrflg(X\D/) — n?lg(X\D) for DC D'.
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Strictly speaking, in order to define the fundamental group of X we need to
pick a reference point x € X. In the above discussion we have tacitly picked as
the reference point the generic point of X, i.e., Spec C(X) — X. But for different
choices of x the corresponding fundamental groups will be isomorphic anyway,
and so the equivalences classes of their representations (which is what we are after)
will be the same. Therefore we will ignore the choice of a reference point.

Going back to our setting, we see that Gal(F/F) for F = C((t)) is indeed Z,
the profinite completion of the “topological” fundamental group of the punctured
disc D*. Thus, the naive Langlands parameters correspond to homomorphisms
n?lg (D*) — LG. But, in the complex setting, homomorphisms 71 (X) — LG can
be obtained from more geometrically refined data; namely, from bundles with flat
connections, which we will discuss presently.

1.2.2. Flat bundles. Suppose that X is a real manifold and E is a complex vector
bundle over X. Thus, we are given a map p : £ — X, satisfying the following
condition: each point x € X has a neighborhood U such that the preimage of U in
E under p is isomorphic to U x C". However, the choice of such a trivialization
of E over U is not unique. Two different trivializations differ by a smooth map
U — GL,(C). We can describe E more concretely by choosing a cover of X
by open subsets Uy, o € A, and picking trivializations of E on each Uy. Then
the difference between the two induced trivializations on the overlap Uy N Ug
will be accounted for by a function g,g : Uy N Ug — GL,(C), which is called
the transition function. The transition functions satisfy the important transitivity
property: on triple overlaps Uy N Ug N U, we have goy = go888y-

This describes the data of an ordinary vector bundle over X. The data of a flat
vector bundle £ on X are a transitive system of preferred trivializations of E
over a sufficiently small open subset of any point of X', with the difference between
two preferred trivializations given by a constant GL,(C)-valued function. Thus,
concretely, a flat bundle may be described by choosing a sufficiently fine cover of
X by open subsets Uy, o0 € A, and picking trivializations of E on each U, that
belong to our preferred system of trivializations. Then the transition functions
gap - Ua NUg — GLy(C) are constant functions, which satisfy the transitivity
property. This should be contrasted to the case of ordinary bundles, for which the
transition functions may be arbitrary smooth G L, (C)-valued functions.

From the perspective of differential geometry, the data of a preferred system of
trivializations are neatly expressed by the data of a flat connection. These are
precisely the data necessary to differentiate the sections of E.

More precisely, let Ox be the sheaf of smooth functions on X and J the sheaf
of smooth vector fields on X. Denote by End(E) the bundle of endomorphisms of
E. By a slight abuse of notation we will denote by the same symbol End(E) the
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sheaf of its smooth sections. A connection on E is a map
V:J — End(E),

which takes a vector field § € J(U) defined on an open subset U C X to an
endomorphism V¢ of E over U. It should have the following properties:

e Itis Oy linear: Veq, = Vg + Vy and Ve = fVg for f € Oy.
e It satisfies the Leibniz rule: Ve(f@) = fVe(¢) +¢-&(f) for f € Ox and
¢ € End(E).

A connection is called flat if it has the additional property that V is a Lie algebra
homomorphism

[Ve: V] = Viea (1.2-1)
where we consider the natural Lie algebra structures on J and End(E).
Let us discuss a more concrete realization of connections. On a small enough

open subset U we can pick coordinates x;,7 = 1,..., N, and trivialize the bundle
E. Then by Oyx-linearity, to define the restriction of a connection V to U it is

sufficient to write down the operators Vj , where we use the notation dy; = —
1

The Leibniz rule implies that these operators must have the form e
Vay, =, + Ai (%),
where A; is an n X n matrix-valued smooth function on U.
The flatness condition then takes the form
[Vaxi , Vaxj] = 0x; Aj — 0x; Ai +[A4i, Aj] = 0. (1.2-2)

So, for a very concrete description of a flat connection in the real case we can
simply specify matrices A; locally, satisfying the above equations. But we should
also make sure that they transform in the correct way under changes of coordinates
and changes of trivialization of the bundle E. If we introduce new coordinates such
that x; = x;(y), then we find that

n

0x;
0y, = :a—{ax].,
j=1

and so
n

0x;
Vi, = —LV, .
Vi ]; dy; J
A given section of E that appears as a C"-valued function f(x) on U with respect
to the old trivialization will appear as the function g(x) - f(x) with respect to a new



1.2. LANGLANDS PARAMETERS OVER THE COMPLEX FIELD 13

trivialization, where g(x) is the GL,(C)-valued transition function. Therefore the
connection operators will become

gVa,, & ' =V, +gdig” —(Ox8)g "

Using the connection operators, we construct a transitive system of preferred
local trivializations of our bundle as follows: locally, on a small open subset U,
consider the system of the first order differential equations

Vid(x) =0, £eT(U). (1.2-3)

For this system to make sense the flatness condition (1.2-2) should be satisfied.
(Otherwise, the right hand side of (1.2-2), which is a matrix-valued function, would
have to annihilate ®(x). Therefore we would have to restrict ®(x) to the kernel of
this matrix-valued function.) In this case, the standard theorems of existence and
uniqueness of solutions of linear differential equations tell us that for each point
Xo € U and each vector v in the fiber Ey, of E at Xq it has a unique local solution
®, satisfying the initial condition ®(x¢) = v. The solutions &, for different
v € Ey, are sections of E over U, which are called horizontal. They give us a
transitive system of preferred identifications of the fibers of E over the points of U:
Ey ~ Ey,x,y € U. If we identify one of these fibers, say the one at X, with c",
then we obtain a trivialization of E over U. Changing the identification Ey, >~ C"
would change this trivialization only by a constant function U — G L. Thus, we
obtain the desired preferred system of trivializations of E.

Put differently, the data of a flat connection give us a preferred system of identi-
fications of nearby fibers of E, which are locally transitive. But if we use them to
identify the fibers of E lying over a given path in X starting and ending at a point X,
then we may obtain a non-trivial automorphism of the fiber Ey,, the monodromy
of the flat connection along this path. (More concretely, this monodromy may be
found by considering solutions of the system (1.2-3) defined in a small tubular
neighborhood of our path.) This automorphism will depend only on the homotopy
class of our path, and so any flat connection on £ gives rise to a homomorphism
m1(X,Xp) = Aut Ey,, where Aut Ey, is the group of automorphisms of Ey,. If
we identify Ey, with C", we obtain a homomorphism m; (X, x¢) = GL,(C).

Thus, we assign to a flat bundle on X of rank 7 an equivalence class of homo-
morphisms 71 (X, Xg) = GL,(C).

In the case when X is the punctured disc D>, or a smooth projective complex
curve, equivalence classes of homomorphisms 7 (X, xg) — GL,(C) are precisely
what we wish to consider as candidates for the Langlands parameters in the complex
setting. That is why we are interested in their reformulations as bundles with flat
connections.
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1.2.3. Flat bundles in the holomorphic setting. Suppose now that X is a complex
algebraic variety and E is a holomorphic vector bundle over X. Recall that
giving a vector bundle £ over X the structure of a holomorphic vector bundle is
equivalent to specifying which sections of £ are considered to be holomorphic. On
an open subset U of X with holomorphic coordinates z;,i = 1,..., N, and anti-
holomorphic coordinates z;,7 = 1,..., N, specifying the holomorphic sections
is equivalent to defining the 5—operators Vo_.,i =1,..., N, on the sections of
E. The holomorphic sections of £ are then f)recisely those annihilated by these
operators. Thus, we obtain an action of the anti-holomorphic vector fields on all
smooth sections of E. This action of anti-holomorphic vector fields gives us “half”
of the data of a flat connection. So, to specify a flat connection on a holomorphic
vector bundle £ we only need to define an action of the (local) holomorphic vector
fields on X on the holomorphic sections of E.

On a sufficiently small open subset U of X we may now choose a trivialization
compatible with the holomorphic structure, so that we have V3_ = 0z,. Then
extending these data to the data of a flat connection on £ amounts to constructing
operators

Vo., = 0z + Ai(@),

where the flatness condition demands that the 4;’s be holomorphic matrix valued
functions of z;, j = 1,..., N, such that

[Vaz[‘,vazj] = 82,-Aj _az]-Ai -I—[Ai,Aj] =0.

In particular, if X is a complex curve, i.e., N = 1, any holomorphic connection on a
holomorphic vector bundle gives rise to a flat connection, and hence an equivalence
class of homomorphisms 7;(X) = GL,(C).!

This completes the story of flat connections on vector bundles, or equivalently,
principal GL,-bundles. Next, we define flat connections on principal G-bundles,
where G is a complex algebraic group.

1.2.4. Flat G -bundles. Recall that a principal G-bundle over a manifold X is a
manifold % which is fibered over X such that there is a natural fiberwise right action
of G on %, which is simply-transitive along each fiber. In addition, it is locally
trivial: each point has a sufficient small open neighborhood U C X over which
the bundle % may be trivialized, i.e., there is an isomorphism gy : P |y UG
commuting with the right actions of G. More concretely, we may describe % by
choosing a cover of X by open subsets Uy, @ € A, and picking trivializations of
% on each U,. Then the difference between the two induced trivializations on the

Note, however, that some holomorphic vector bundles on curves do not carry any holomorphic
connections; for instance, a line bundle carries a holomorphic connection if and only if it has degree 0.
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overlap Uy N Ug will be described by the transition functions geg : Uy NUg — G,
which satisfy the transitivity condition, as in the case of GL,.

A flat structure on such a bundle % is a preferred system of locally transitive
identifications of the fibers of %, or equivalently, a preferred system of transitive local
trivializations (this means that the transition functions g,g are constant G-valued
functions). In order to give a differential geometric realization of flat connections,
we use the Tannakian formalism. It says, roughly, that G may be reconstructed from
the category of its finite-dimensional representations equipped with the structure of
the tensor product, satisfying various compatibilities, and the “fiber functor” to the
category of vector spaces.

Given a principal G-bundle % on X and a finite-dimensional representation V
of G we can form the associated vector bundle

Vo =P x V.
G

Thus we obtain a functor from the category of finite-dimensional representations
of G to the category of vector bundles on X. Both of these categories are tensor
categories and it is clear that the above functor is actually a tensor functor. The
Tannakian formalism allows us to reconstruct the principal G-bundle % from this
functor. In other words, the data of a principal G-bundle on X are encoded by
the data of a collection of vector bundles on X labeled by finite-dimensional
representations of G together with the isomorphisms (V ® W)g ~ Vi ® Wy for
each pair of representations V, W and various compatibilities stemming from the
tensor properties of this functor.

In order to define a flat connection on a holomorphic principal G-bundle ? we
now need to define a flat connection on each of the associated vector bundles V3 in
a compatible way. What this means is that on each sufficiently small open subset
U C X, after choosing a system of local holomorphic coordinates z;,7i =1,..., N,
on U and a holomorphic trivialization of % over U, the data of a flat connection on
% are given by differential operators

Vi, = 0z + Ai(@),

where now the A4;’s are holomorphic functions on U with values in the Lie algebra
gof G.

The transformation properties of the operators Vaz,- under changes of coordinates
and trivializations are given by the same formulas as above. In particular, under
a change of trivialization given by a holomorphic G-valued function g on U we
have

Oz + Ai > 0z +84ig™ —(0,8)g 7. (1.2-4)

Such transformations are called the gauge transformations.
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The meaning of this formula is as follows: the expression gA4; g~ ! — (3, g)g !
appearing in the right hand side is a well-defined element of End V' for any finite-
dimensional representation V' of G. The Tannakian formalism discussed above
then implies that there is a “universal” element of g whose action on V' is given by
this formula.

1.2.5. Regular vs. irregular singularities. In the same way as in the case of GL,,
we obtain that a holomorphic principal G-bundle on a complex variety X with a
holomorphic flat connection gives rise to an equivalence class of homomorphisms
from the fundamental group of X to G. But does this set up a bijection of the
corresponding equivalence classes? If X is compact, this is indeed the case, but, if
X is not compact, then there are more flat bundles than there are representations of
71 (X). In order to obtain a bijection, we need to impose an additional condition
on the connection; we need to require that it has regular singularities at infinity.

If X is a curve obtained from a projective (hence compact) curve X by removing
finitely many points, this condition means that the connection operator 0, + A(z)
has a pole of order at most one at each of the removed points (this condition is
generalized to a higher-dimensional variety X in a straightforward way by restricting
the connection to all curves lying in X).

For example, consider the case when X = A* = Spec C[t, #~!] and assume that
the rank of £ is equal to one, so it is a line bundle. We can embed X into the
projective curve P!, so that there are two points at infinity: # = 0 and = co. Any
holomorphic line bundle on A* can be trivialized. A general connection operator
on A* then reads

M
Vo, =0+ A1), A=) At (1.2-5)
i=N

The group of invertible functions on A* consists of the elements «t”, o € C*, n € Z.
It acts on such operators by gauge transformations (1.2-4), and «¢” acts as follows:

A(t) > A(z)—’;.

The set of equivalence classes of line bundles with a flat connection on A is in
bijection with the quotient of the set of operators (1.2-5) by the group of gauge
transformations, or, equivalently, the quotient of C[¢, #~!] by the additive action of

1
the group Z - —. Thus, we see that this set is huge.

Let us now look at connections with regular singularities only. The condition
that the connection (1.2-5) has a regular singularity at t = 0 means that N > —1.
To see what the condition at = oo is, we perform a change of variables u = ¢~!.
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Then, since 9; = —u29,,, we find that
Vi, = 0u—u2A@u™").

Hence the condition of regular singularity at oo is that M < —1, and so to satisfy
a
both conditions, A(¢) must have the form A(¢) = g

Taking into account the gauge transformations, we conclude that the set of
equivalence classes of line bundles with a flat connection with regular singularity on

A* is isomorphic to C/Z. Given a connection (1.2-5) with A(z) = C;l, the solutions

of the equation
(at + ?) ®(1) =0

are ®¢(¢) = Cexp(—at), where C € C. These are the horizontal sections of
our line bundle. Hence the monodromy of this connection along the loop going
counterclockwise around the origin in A* is equal to exp(—2mia). We obtain a
one-dimensional representation of 71 (A*) ~ Z sending 1 € Z to exp(—2mia). Thus,
the exponential map sets up a bijection between the set of equivalence classes of
connections with regular singularities on A* and representations of the fundamental
group of A*.

But if we allow irregular singularities, we obtain many more connections. For

: . . 1 : . :
instance, consider the connection d; + 2 It has an irregular singularity at ¢ = 0.

The corresponding horizontal sections have the form C exp(—1/7), C € C, and
hence the monodromy representation of 771 (A*) corresponding to this connection
is trivial, and so it is the same as for the connection Vj, = d,. But this connection
is not equivalent to the connection d; under the action of the algebraic gauge
transformations. We can of course obtain one from the other by the gauge action
with the function exp(—1/¢), but this function is not algebraic. Thus, if we allow
irregular singularities, there are many more algebraic gauge equivalence classes of
flat L G-connections than there are homomorphisms from the fundamental group to
La.

1.2.6. Connections as the Langlands parameters. Our goal is to find a geometric
enhancement of the set of equivalence classes of homomorphisms 7; (D*) — LG,
of which there are too few. The above discussion suggests a possible way to do
it. We have seen that such homomorphisms are the same as ©G-bundles on D*
with a connection with regular singularity at the origin. Here by punctured disc

we mean the scheme D> = Spec C((¢)), so that the algebra of functions on D™ is,
by definition, C(#)). Any £G-bundle on D> can be trivialized, and so defining a
connection on it amounts to giving a first order operator

I+ A1), A elg@), (1.2-6)
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where L g is the Lie algebra of the Langlands dual group LG.

Changing trivialization amounts to a gauge transformation (1.2-4) with g €
LG((t)). The set of equivalence classes of £ G-bundles with a connection on D*
is in bijection with the set of gauge equivalence classes of operators (1.2-6). We
denote this set by Locr g (D). Thus, we have

Locrg (D) = {3 + A(1), A1) € “a(@)}/* G (). (1.2-7)

A connection (1.2-6) has regular singularity if and only if A(¢) has a pole of order
at most one at t = 0. If A_ is the residue of A(¢) at ¢ = 0, then the corresponding
monodromy of the connection around the origin is an element of LG equal to
exp(2mwiA—y1). Two connections with regular singularity are (algebraically) gauge
equivalent to each other if and only if their monodromies are conjugate to each other.
Hence the set of equivalence classes of connections with regular singularities is
just the set of conjugacy classes of LG, or, equivalently, homomorphisms Z — L G.
These are the naive Langlands parameters that we saw before (here we ignore the
difference between the topological and algebraic fundamental groups). But now we
generalize this by allowing connections with arbitrary, that is, regular and irregular,
singularities at the origin. Then we obtain many more gauge equivalence classes.

We will often refer to points of Locz (D) as local systems on D>, meaning
the de Rham version of the notion of a local system; namely, a principal bundle
with a connection that has a pole of an arbitrary order at the origin.

Thus, we come to the following proposal: the local Langlands parameters in the
complex setting should be the points of Locz g (D*): the equivalence classes of
flat £ G-bundles on D> or, more concretely, the gauge equivalence classes (1.2-7)
of first order differential operators.

We note that the Galois group of the local field F;(()) has a very intricate
structure: apart from the part coming from Gal(F,/F,) and the tame inertia, which
is analogous to the monodromy that we observe in the complex case, there is also
the wild inertia subgroup whose representations are very complicated. It is an old
idea that in the complex setting flat connections with irregular singularities in some
sense play the role of representations of the Galois group whose restriction to the
wild inertia subgroup is non-trivial. Our proposal simply exploits this idea in the
context of the Langlands correspondence.

1.3. Representations of loop groups

Having settled the issue of the Langlands parameters, we have to decide what it is
that we will be parameterizing. Recall that in the classical setting the homomorphism
Wi — L G parameterized irreducible smooth representations of the group G(F),
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F =TF4((2)). We start by translating this notion to the representation theory of loop
groups.

1.3.1. Smooth representations. The loop group G((¢)) contains the congruence
subgroups

Ky={gedq[lg=1mod "V}, Nez,. (1.3-1)

It is natural to call a representation of G'((¢)) on a complex vector space V' smooth if
for any vector v € V' there exists N € Z4 such that K -v = v. This condition may
be interpreted as the continuity condition, if we define a topology on G((¢)) by taking
as the base of open neighborhoods of the identity the subgroups Ky, N € Z4, as
before.

But our group G is now a complex Lie group (not a finite group), and so G((?)) is
an infinite-dimensional Lie group. More precisely, we view G((¢)) as an ind-group,
i.e., as a group object in the category of ind-schemes. At first glance, it is natural to
consider the algebraic representations of G((¢)). We observe that G((¢)) is generated
by the “parahoric’ algebraic groups P;, corresponding to the affine simple roots.
For these subgroups the notion of algebraic representation makes perfect sense. A
representation of G((¢)) is then said to be algebraic if its restriction to each of the
P;’s is algebraic.

However, this naive approach leads us to the following discouraging fact: an
irreducible smooth representation of G((¢)), which is algebraic, is necessarily one-
dimensional. To see that, we observe that an algebraic representation of G((¢)) gives
rise to a representation of its Lie algebra g((¢)) = g ® C((¢)), where g is the Lie
algebra of G'. Representations of g((¢)) obtained from algebraic representations
of G((¢)) are called integrable. A smooth representation of G((¢)) gives rise to a
smooth representation of g((¢)), i.e., for any vector v there exists N € Z such that

a@NC[[1]]-v=0. (1.3-2)

We can decompose g = gss b t, where t is the center and g is the semi-simple
part. An irreducible representation of g((¢)) is therefore the tensor product of an
irreducible representation of gy and an irreducible representation of t((¢)), which is
necessarily one-dimensional since t((¢)) is abelian. Now we have the following

Lemma 1.3.1. A smooth integrable representation of the Lie algebra g((t)), where
g is semi-simple, is trivial.

Proof. We follow the argument of [Beilinson and Drinfeld 1997], 3.7.11(ii). Let
V' be such a representation. Then there exists N € Z4 such that (1.3-2) holds. Let
us pick a Cartan decomposition g = n_ @ h @ ny (see Appendix A.3 below) of the
constant subalgebra g C g((¢)). Let H be the Cartan subgroup of G corresponding
to h C g. By our assumption, V is an algebraic representation of H, and hence it
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decomposes into a direct sum of weight spaces V' = € V), over the integral weights
x of H. Thus, any vector v € V' may be decomposed as the sum v = erh* Uy,
where vy € V.

Now observe that there exists an element sz € H((¢)) such that

ny Ch(gNC[ph~t.

Then we find that the vector /i - v is invariant under n.. Since the action of n is
compatible with the grading by the integral weights of H, we obtain that each vector
h - vy is also invariant under n. Consider the g-submodule of V' generated by the
vector /1 - vy. By our assumption, the action of g on V' integrates to an algebraic
representation of G on V. Hence V is a direct sum of finite-dimensional irreducible
representations of G with dominant integral weights. Therefore /2-v, = 0, and hence
vy =0, unless x is a dominant integral weight. Next, observe that h= (gt N C[[t])h
contains n_. Applying the same argument to 2~ ! - v, we find that vy = 0 unless x
is an anti-dominant integral weight.

Therefore we obtain that v = v, and hence / - v is invariant under b & n4. But
then the g-submodule generated by / - v is trivial. Hence / - v is g-invariant, and so
v is ' gh-invariant. But the Lie algebras g ® ¢V C[[¢]] and A~ gh, where h runs
over those elements of H((¢)) for which 4(g ® tN C[[¢]]))h~" contains ny, generate
the entire Lie algebra g((¢)). Therefore v is g((¢))-invariant. We conclude that V' is
a trivial representation of g((¢)). O

Thus, we find that the class of algebraic representations of loop groups turns
out to be too restrictive. We could relax this condition and consider differentiable
representations, i.e., the representations of G((¢)) considered as a Lie group. But it is
easy to see that the result would be the same. Replacing G((¢)) by its central extension
G would not help us much either: irreducible integrable representations of G are
parameterized by dominant integral weights, and there are no extensions between
them [Kac 1990]. These representations are again too sparse to be parameterized
by the geometric data considered above. Therefore we should look for other types
of representations.

Going back to the original setup of the local Langlands correspondence, we recall
that there we considered representations of G(F4((7))) on C-vector spaces, so we
could not possibly use the algebraic structure of G(F4((?))) as an ind-group over Fy.
Therefore we cannot expect the class of algebraic (or differentiable) representations
of the complex loop group G((?)) to be meaningful from the point of view of the
Langlands correspondence. We should view the loop group G((¢)) as an abstract
topological group, with the topology defined by means of the congruence subgroups;
in other words, consider its smooth representations as an abstract group.
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To give an example of such a representation, consider the vector space of finite
linear combinations ) 8y, where x runs over the set of points of the quotient
G(t)/Kn. The group G((¢)) naturally acts on this space: g (D_6x) =Y 8g.x. Itis
clear that for any g € G((¢)) the subgroup gK yg~! contains Kjs for large enough
M , and so this is indeed a smooth representation of G((¢)). But it is certainly not an
algebraic representation (nor is it differentiable). In fact, it has absolutely nothing to
do with the algebraic structure of G ((¢)), which is a serious drawback. After all, the
whole point of trying to generalize the Langlands correspondence from the setting
of finite fields to that of the complex field was to be able to use the powerful tools
of complex algebraic geometry. If our representations are completely unrelated to
geometry, there is not much that we can learn from them.

So we need to search for some geometric objects that encapsulate representations
of our groups and make sense both over a finite field and over the complex field.

1.3.2. From functions to sheaves. We start by revisiting smooth representations
of the group G(F), where F' = F,((¢)). We realize such representations more
concretely by considering their matrix coefficients. Let (V, ) be an irreducible
smooth representation of G(F). We define the contragredient representation V'
as the linear span of all smooth vectors in the dual representation V*. This span is
stable under the action of G(F) and so it admits a smooth representation (V, ")
of G(F). Now let ¢ be a K y-invariant vector in V¥, Then we define a linear map

V—>CGF)/KN). v o,

where f,(g) = (nV(g)¢,v). Here C(G(F)/K y) denotes the vector space of C-
valued locally constant functions on G(F)/ K p. The group G(F) naturally acts on
this space by the formula (g - £)(h) = f(g~'h), and the above map is a morphism
of representations, which is non-zero, and hence injective, if (V, 7) is irreducible.

Thus, we realize our representation in the space of functions on the quotient
G(F)/K . More generally, we may realize representations in spaces of functions
on the quotient G((z))/ K with values in a finite-dimensional vector space, by
considering a finite-dimensional subrepresentation of K inside V' rather than the
trivial one.

An important observation here is that G(F)/ K, where F' =[F4((?)) and K is a
compact subgroup of G(F), is not only a set, but it is the set of points of an algebraic
variety (more precisely, an ind-scheme) defined over the field ;. For example, for
Ko = G(Fg4[[t]]), which is the maximal compact subgroup, the quotient G(F)/ K
is the set of F4-points of the ind-scheme called the affine Grassmannian.

Next, we recall an important idea going back to Grothendieck that functions on
the set of [4-points on an algebraic variety X defined over F4 can often be viewed
as the “shadows” of the so-called £-adic sheaves on X .
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Let us discuss them briefly. Let £ be a prime that does not divide ¢. The definition
of the category of £-adic sheaves on X involves several steps (see, e.g., [Milne
1980; Freitag and Kiehl 1988]). First we consider locally constant Z /£ Z-sheaves
on X in the étale topology (in which the role of open subsets is played by étale
morphisms U — X). A Zy-sheaf on X is by definition a system (%F,,) of locally
constant Z/{™7-sheaves satisfying natural compatibilities. Then we define the
category of (Dg-sheaves by killing the torsion sheaves in the category of Z;-sheaves.
In a similar fashion we define the category of E-sheaves on X, where E is a finite
extension of Q. Finally, we take the direct limit of the categories of E-sheaves on
X, and the objects of this category are called the locally constant £-adic sheaves on
X . Such a sheaf of rank # is the same as an n-dimensional representation of the
Galois group of the field of functions on X that is everywhere unramified. Thus,
locally constant £-adic sheaves are the analogues of the usual local systems (with
respect to the analytic topology) in the case of complex algebraic varieties.

We may generalize the above definition of an £-adic local system on X by
allowing the Z/¢" Z-sheaves %, to be constructible, i.e., for which there exists a
stratification of X by locally closed subvarieties X; such that the sheaves F|y, are
locally constant. As a result, we obtain the notion of a constructible £-adic sheaf
on X, or an £-adic sheaf, for brevity.

The key step in the geometric reformulation of this notion is the Grothendieck
fonctions-faisceaux dictionary (see, e.g., [Laumon 1987]). Let % be an {-adic
sheaf and x be an [, -point of X', where ¢; = ¢™. Then we have the Frobenius
conjugacy class Fry acting on the stalk &, of & at x. Hence we can define a
function £, (%) on the set of [, -points of X', whose value at x is Tr(Fry, Fy).
This function takes values in the algebraic closure @, of Q. But there is not much
of a difference between @Qg-valued functions and C-valued functions: since they
have the same cardinality, @; and C may be identified as abstract fields. Besides,
in most interesting cases, the values actually belong to @, which is inside both @
and C.

More generally, if & is a complex of £-adic sheaves, we define a function
f4, (%) on X (Fg4,) by taking the alternating sums of the traces of Fry on the stalk
cohomologies of F at x. The map & — £, (¥) intertwines the natural operations on
sheaves with natural operations on functions (see [Laumon 1987], Section 1.2). For
example, pull-back of a sheaf corresponds to the pull-back of a function, and push-
forward of a sheaf with compact support corresponds to the fiberwise integration of
a function (this follows from the Grothendieck—Lefschetz trace formula).
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Let Ko(Shy) be the complexified Grothendieck group of the category of £-adic
sheaves on X. Then the above construction gives us a map

Ko(&hy) = [ ] X(Fgm).

m=>1

and it is known that this map is injective (see [Laumon 1987]).

Therefore we may hope that the functions on the quotients G(F)/ K, which
realize our representations, arise, via this construction, from £-adic sheaves, or,
more generally, from complexes of £-adic sheaves, on X.

Now, the notion of a constructible sheaf (unlike the notion of a function) has a
transparent and meaningful analogue for a complex algebraic variety X'; namely,
those sheaves of C-vector spaces whose restrictions to the strata of a stratification
of the variety X are locally constant. The affine Grassmannian and more general
ind-schemes underlying the quotients G(F)/ Ky may be defined both over F, and
C. Thus, it is natural to consider the categories of such sheaves (or, more precisely,
their derived categories) on these ind-schemes over C as the replacements for the
vector spaces of functions on their points realizing smooth representations of the
group G(F).

We therefore naturally come to the idea, advanced in [Frenkel and Gaitsgory
2006c¢], that the representations of the loop group G((¢)) that we need to consider
are not realized on vector spaces, but on categories, such as the derived category
of coherent sheaves on the affine Grassmannian. Of course, such a category has a
Grothendieck group, and the group G((¢)) will act on the Grothendieck group as
well, giving us a representation of G ((¢)) on a vector space. But we obtain much
more structure by looking at the categorical representation. The objects of the
category, as well as the action, will have a geometric meaning, and thus we will be
using the geometry as much as possible.

Let us summarize: to each local Langlands parameter y € LocL (D) we wish
to attach a category 6, equipped with an action of the loop group G(()). But what
kind of categories should these €, be and what properties do we expect them to
satisfy?

To get closer to answering these questions, we wish to discuss two more steps
that we can make in the above discussion to get to the types of categories with an
action of the loop group that we will consider in this book.

1.3.3. A toy model. At this point it is instructive to detour slightly and consider
a toy model of our construction. Let G be a split reductive group over Z, and B
its Borel subgroup. A natural representation of G([F,) is realized in the space of
complex- (or @;-) valued functions on the quotient G(F4)/B(Fg). It is natural to
ask what is the “correct” analogue of this representation if we replace the field
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F4 by the complex field and the group G(F,) by G(C). This may be viewed as a
simplified version of our quandary, since instead of considering G (F4((?))) we now
look at G([Fg).

The quotient G([F4)/B([F,) is the set of F4-points of the algebraic variety defined
over Z called the flag variety of G and denoted by Fl. Our discussion in the previous
section suggests that we first need to replace the notion of a function on FI(F,) by
the notion of an £-adic sheaf on the variety Flf, = FI (ZZQ[Fq.

Next, we replace the notion of an £-adic sheaf on Fl, considered as an algebraic
variety over [y, by the notion of a constructible sheaf on Fl¢ = F1 ®C, which is
z

an algebraic variety over C. The complex algebraic group G¢ naturally acts on
Flc and hence on this category. Now we make two more reformulations of this
category.

First of all, for a smooth complex algebraic variety X we have a Riemann—
Hilbert correspondence, which is an equivalence between the derived category of
constructible sheaves on X and the derived category of %-modules on X that are
holonomic and have regular singularities.

Here we consider the sheaf of algebraic differential operators on X and sheaves
of modules over it, which we simply refer to as %-modules. The simplest example
of a 9-module is the sheaf of sections of a vector bundle on X equipped with
a flat connection. The flat connection enables us to multiply any section by a
function and we can use the flat connection to act on sections by vector fields.
The two actions generate an action of the sheaf of differential operators on the
sections of our bundle. The sheaf of horizontal sections of this bundle is then a
locally constant sheaf on X. We have seen above that there is a bijection between
the set of isomorphism classes of rank »n bundles on X with connection having
regular singularities and the set of isomorphism classes of locally constant sheaves
on X of rank n, or, equivalently, n-dimensional representations of 7;(X). This
bijection may be elevated to an equivalence of the corresponding categories, and
the general Riemann—Hilbert correspondence is a generalization of this equivalence
of categories that encompasses more general %-modules.

The Riemann—Hilbert correspondence allows us to associate to any holonomic
9-module on X a complex of constructible sheaves on X', and this gives us a functor
between the corresponding derived categories, which turns out to be an equivalence
if we restrict ourselves to the holonomic 2%-modules with regular singularities (see
[Borel et al. 1987; Gelfand and Manin 1994] for more details).

Thus, over C we may pass from constructible sheaves to @-modules. In our case,
we consider the category of (regular holonomic) %-modules on the flag variety Fl¢.
This category carries a natural action of G¢.
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Finally, let us observe that the Lie algebra g of G¢ acts on the flag variety
infinitesimally by vector fields. Therefore, given a %-module & on Fl¢, the space of
its global sections I"(Flg, %) has the structure of g-module. We obtain a functor I’
from the category of @-modules on Fl¢ to the category of g-modules. A. Beilinson
and J. Bernstein have proved that this functor is an equivalence between the category
of all @-modules on Fl¢ (not necessarily regular holonomic) and the category €
of g-modules on which the center of the universal enveloping algebra U(g) acts
through the augmentation character.

Thus, we can now answer our question as to what is a meaningful geometric
analogue of the representation of the finite group G([F4) on the space of functions on
the quotient G(F,)/B(F4). The answer is the following: it is a category equipped
with an action of the algebraic group G¢. This category has two incarnations: one
is the category of %-modules on the flag variety Flc, and the other is the category
%, of modules over the Lie algebra g with trivial central character. Both categories
are equipped with natural actions of the group Gc.

Let us pause for a moment and spell out what exactly we mean when we say
that the group G¢ acts on the category 6y. For simplicity, we will describe the
action of the corresponding group G(C) of C-points of G¢.>2 This means the
following: each element g € G gives rise to a functor Fg on € such that F is the
identity functor, and the functor Fy—1 is quasi-inverse to Fg. Moreover, for any pair
g.h € G we have a fixed isomorphism of functors ig j, : Fgp, — Fg o F}, so that for
any triple g, 1, k € G we have the equality iy, xig px = ig,pign i Of isomorphisms
Fopx — Fg o Fj o Fi. (We remark that the last condition could be relaxed: we
could ask only that iy xig nk = Vg, hkig high k> Where Vg p i 18 @ non-zero complex
number for each triple g, &, k € G; these numbers then must satisfy a three-cocycle
condition. However, we will only consider the situation where yg , x = 1.)

The functors Fg are defined as follows. Given a representation (V, ) of g and an
element g € G(C), we define a new representation Fg ((V, 7)) = (V, mg), where by
definition g (x) = m(Adg(x)). Suppose that (V, mr) is irreducible. Then it is easy
to see that (V, mg) =~ (V, m) if and only if (V, ) is integrable, i.e., is obtained from
an algebraic representation of . This is equivalent to this representation being
finite-dimensional. But a general representation (V/, 7r) is infinite-dimensional, and
so it will not be isomorphic to (V, g), at least for some g € G.

Now we consider morphisms in 6y, which are just g-homomorphisms. Given a
g-homomorphism between representations (V, ) and (V’, '), i.e., a linear map

2More generally, for any C-algebra R, we have an action of G(R) on the corresponding base-
changed category over R. Thus, we are naturally led to the notion of an algebraic group (or, more
generally, a group scheme) acting on an abelian category, which is spelled out in [Frenkel and
Gaitsgory 2006c], Section 20.
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T :V — V' such that Tn(x) = /(x)T for all x € g, we set Fg(T) = T. The
isomorphisms i, 5 are all equal to the identity in this case.

The simplest examples of objects of the category 6, are the Verma modules
induced from one-dimensional representations of a Borel subalgebra b C g. The
corresponding ¥-module is the ¥-module of “delta-functions” supported at the point
of Fl¢ stabilized by b. In the Grothendieck group of the category € the classes
of these objects span a subrepresentation of G(C) (considered now as a discrete
group!), which looks exactly like the representation we defined at the beginning of
Section 1.3.2. What we have achieved is that we have replaced this representation
by something that makes sense from the point of view of the representation theory
of the complex algebraic group G (rather than the corresponding discrete group);
namely, the category 6.

1.3.4. Back to loop groups. In our quest for a complex analogue of the local
Langlands correspondence we need to decide what will replace the notion of a
smooth representation of the group G(F), where F = F,4((¢)). As the previous
discussion demonstrates, we should consider representations of the complex loop
group G((¢)) on various categories of %-modules on the ind-schemes G((z))/ K,
where K is a “compact” subgroup of G((¢)), such as G[[¢]] or the Iwahori subgroup
(the preimage of a Borel subgroup B C G under the homomorphism G[[¢]] - G),
or the categories of representations of the Lie algebra g((¢)). Both scenarios are
viable, and they lead to interesting results and conjectures, which we will discuss in
detail in Chapter 10, following [Frenkel and Gaitsgory 2006c]. In this book we will
concentrate on the second scenario and consider categories of (projective) modules
ove the loop algebra g((¢)).

The group G((¢)) acts on the category of representations of g((¢)) in the way that we
described in the previous section. In order to make the corresponding representation
of G((¢)) smooth, we need to restrict ourselves to those representations on which
the action of the Lie subalgebra g ® ¢V C[[¢]] is integrable for some N > 0. Indeed,
on such representations the action of g ® ¢V C[[¢]] may be exponentiated to an
action of its Lie group, which is the congruence subgroup K. If (V, ) is such
a representation, then for each g € K the operator of the action of g on V will
provide an isomorphism between (V, 7) and Fg((V, )). Therefore we may say
that (V, ) is “stable” under Fj.

As the following lemma shows, this condition is essentially equivalent to the
condition of a g((z))-module being smooth, i.e., such that any vector is annihilated
by the Lie algebra g ® t™ C[[¢]] for sufficiently large M.

Lemma 1.3.1. Suppose that (V, ) is a smooth finitely generated module over the
Lie algebra g((t)). Then there exists N > 0 such that the action of the Lie subalgebra
a@tNC[[t]] on V is integrable.
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Proof. Letvy, ..., v; be a generating set of vectors in V. Since (V, i) is smooth,
each vector v; is annihilated by a Lie subalgebra g ® ¢V C[[¢]] for some N;. Let M;
be the induced representation

) _
Mi = Indgvicn & = VO g®t1\(§0[[t]]c

Then we have a surjective homomorphism @f;l M; — V sending the generating

vector of M; to v; foreachi = 1,...,k. Let N be the largest number among
Ny, ..., Ni. Then the action of g ® ¢"V C[[t]] on each M; is integrable, and hence
the same is true for V. O

1.3.5. From the loop algebra to its central extension. Thus, we can take as the
categorical analogue of a smooth representation of a reductive GOP over a local
non-archimedian field the category of smooth finitely generated modules over the
Lie algebra g((¢)) equipped with a natural action of the loop group G((¢)). (In what
follows we will drop the condition of being finitely generated.)

Let us observe however that we could choose instead the category of smooth
representations of a central extension of g((¢)). The group G((¢)) still acts on such a
central extension via the adjoint action. Since the action of the group G((¢)) on the
category comes through its adjoint action, no harm will be done if we extend g((¢))
by a central subalgebra.

The notion of a central extension of a Lie algebra is described in detail in
Appendix A.4. In particular, it is explained there that the equivalence classes of
central extensions of g((¢)) are described by the second cohomology H?(g((?)), C).>

We will use the decomposition g = g @ t, where t is the center and g is the
semi-simple part. Then it is possible to show that

H?(g(1)), C) ~ H*(955(1)), ©) & H*(x(1)), C).

In other words, the central extension of g((z)) is determined by its restriction to
gss((7)) and to v((¢)). The central extensions that we will consider will be trivial on
the abelian part t((¢)), and so our central extension will be a direct sum g, @ t((7)).
An irreducible representation of this Lie algebra is isomorphic to the tensor product
of an irreducible representation of g and that of v((¢)). But the Lie algebra v((?)) is
abelian, and so its irreducible representations are one-dimensional. It is not hard to
deal with these representations separately, and so from now on we will focus on
representations of central extensions of g((¢)), where g is a semi-simple Lie algebra.

3Here we need to take into account our topology on the loop algebra g((¢)) in which the base of
open neighborhoods of zero is given by the Lie subalgebras g ® ¢V C[[¢]], N € Z. Therefore we
should restrict ourselves to the corresponding continuous cohomology. We will use the same notation
H?(g((1)), C) for it.
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If g is semi-simple, it can be decomposed into a direct sum of simple Lie algebras
gi,i =1,...,m, and we have

m
H*(g((1).©) ~ @) H?(gi(1)). C).
i=1
Again, without loss of generality we can treat each simple factor g; separately.
Hence from now on we will assume that g is a simple Lie algebra. In this case we
have the following description of H?(g((t)), C).
Recall that a inner product x on a Lie algebra g is called invariant if

k(x.yl.2) +k(p.[x.2) =0,  Vx,y.zeg.

This formula is the infinitesimal version of the formula k (Ad g-y,Ad g-z) =k (), z)
expressing the invariance of the form with respect to the Lie group action (with
g being an element of the corresponding Lie group). The vector space of non-
degenerate invariant inner products on a finite-dimensional simple Lie algebra g
is one-dimensional. One can produce such a form starting with any non-trivial
finite-dimensional representation py : g — End V' of g by the formula

ky(x,y) =Try (o (x)py (y)).

The standard choice is the adjoint representation, which gives rise to the Killing
form k4. The following result is well-known.

Lemma 1.3.2. For a simple Lie algebra g the space H*(g((t)), C) is one-dimen-
sional and is identified with the space of invariant bilinear forms on g. Given such
a form k, the corresponding central extension can be constructed from the cocycle

c(A® f(t), BRg(t)) =—«(A, B)Res;~o fdg. (1.3-3)
Here for a formal Laurent power series a(t) = ) _,c; ant" we set

Res;—ga(t)dt =a_;.

1.3.6. Affine Kac—Moody algebras and their representations. The central exten-
sion

0—>Cl—>g,—g()—0
corresponding to a non-zero cocycle « is called the affine Kac-Moody algebra .

We denote it by g,.. It is customary to refer to « as the level. As a vector space, it
is equal to the direct sum g((¢)) @ C1, and the commutation relations read

[A® f(t),. BRg(1)]=[4, BI® f(1)g(t) — (k(A4, B)Res fdg)l,  (1.3-4)
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where 1 is a central element, which commutes with everything else. Note that the
Lie algebra g, and g, are isomorphic for non-zero inner products «, «’. Indeed, in
this case we have k = Ak’ for some A € C*, and the map g, — @,/, which is equal
to the identity on g((¢)) and sends 1 to A1, is an isomorphism. By Lemma 1.3.2,
the Lie algebra g, with non-zero « is in fact a universal central extension of g((¢)).
(The Lie algebra g, is by definition the split extension g((z)) & C1.)

Note that the restriction of the cocycle (1.3-3) to the Lie subalgebra

a@NC[[], N € Z4

is equal to 0, and so it remains a Lie subalgebra of g,. A smooth representation of
0, is a representation such that every vector is annihilated by this Lie subalgebra
for sufficiently large V. Note that the statement of Lemma 1.3.1 remains valid if
we replace g((7)) by g,

Thus, we define the category g, -mod whose objects are smooth g, -modules on
which the central element 1 acts as the identity. The morphisms are homomorphisms
of representations of g,. Throughout this book, unless specified otherwise, by a
“g,-module” we will always mean a module on which the central element 1 acts as
the identity.*

The group G((¢)) acts on the Lie algebra g, for any «. Indeed, the adjoint action
of the central extension of G((¢)) factors through the action of G((¢)). It is easy to
compute this action and to find that

g- (A +c1) = (g4()g™" +Res;=o k((3:8)g ™", A1) .

It is interesting to observe that the dual space to g, (more precisely, a hyperplane
in the dual space) may be identified with the space of connections on the trivial
G-bundle on D* so that the coadjoint action gets identified with the gauge action of
G((¢)) on the space of such connections (for more on this, see [Frenkel and Ben-Zvi
2004], Section 16.4).

We use the action of G (7)) on g, to construct an action of G((¢)) on the category
9, -mod, in the same way as in Section 1.3.3. Namely, suppose we are given an
object (M, p) of g, -mod, where M is a vector space and p : g, — End M is
a Lie algebra homomorphism making M into a smooth g,-module. Then, for
each g € G((1)), we define a new object (M, pg) of g, -mod, where by definition
pg(x)=m(Adg(x)). If we have a morphism (M, p) — (M’, p) ing, -mod, then we
obtain an obvious morphism (M, pg) — (M, pé). Thus, we have defined a functor
Fg : g, -mod — g, -mod. These functors satisfy the conditions of Section 1.3.3.
Thus, we obtain an action of G (7)) on the category g, -mod.

#Note that we could have 1 act instead as A times the identity for A € C*; but the corresponding
category would just be equivalent to the category ’Q\AK -mod.
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Recall the space Locr g (D) of the Langlands parameters that we defined in
Section 1.2.6. Elements of Locr (D) have a concrete description as gauge
equivalence classes of first order operators d; + A(t), A(¢) € Lg((¢)), modulo the
action of L G((?)) (see formula (1.2-7)).

We can now formulate the local Langlands correspondence over C as the follow-
ing problem:

To each local Langlands parameter x € Locr g(D™) associate a
subcategory g, -mody of §, -mod which is stable under the action
of the loop group G((t)).

We wish to think of the category g, -mod as “fibering” over the space of local
Langlands parameters Locrz g (D™), with the categories g, -mod, being the “fibers’
and the group G ((¢)) acting along these fibers. From this point of view the categories
9, -mod,, should give us a “spectral decomposition” of the category g, -mod over
Locrg(D>).

In Chapter 10 of this book we will present a concrete proposal made in [Frenkel

9

and Gaitsgory 2006c¢] describing these categories in the special case when k = k.
is the critical level, which is minus one half of kg4, the Killing form defined above.
This proposal is based on the fact that at the critical level the center of the category
@¢, -mod, which is the same as the center of the completed universal enveloping
algebra of g, is very large. It turns out that its spectrum is closely related to
the space LocL (D) of Langlands parameters, and this will enable us to define
B¢, -mody as, roughly speaking, the category of smooth g, -modules with a fixed
central character.

In order to explain more precisely how this works, we need to develop the
representation theory of affine Kac—Moody algebras and in particular describe the
structure of the center of the completed enveloping algebra of g,. In the next
chapter we will start on a long journey towards this goal. This will occupy the main
part of this book. Then in Chapter 10 we will show, following the papers [Frenkel
and Gaitsgory 2004; Frenkel and Gaitsgory 2006¢; Frenkel and Gaitsgory 2006a;
Frenkel and Gaitsgory 2005; Frenkel and Gaitsgory 2006b; Frenkel and Gaitsgory
2007c], how to use these results in order to construct the local geometric Langlands
correspondence for loop groups.



CHAPTER 2

Vertex algebras

Let g be a simple finite-dimensional Lie algebra and g, the corresponding affine
Kac—Moody algebra (the central extension of g((¢))), introduced in Section 1.3.6.
We have the category g, -mod, whose objects are smooth g,-modules on which the
central element 1 acts as the identity. As explained at the end of the previous chapter,
we wish to show that this category “fibers” over the space of Langlands parameters,
which are gauge equivalence classes of L G-connections on the punctured disc D>
(or perhaps, something similar). Moreover, the loop group G((¢)) should act on this
category “along the fibers.”

Any abelian category may be thought of as “fibering” over the spectrum of its
center. Hence the first idea that comes to mind is to describe the center of the
category g, -mod in the hope that its spectrum is related to the Langlands parameters.
As we will see, this is indeed the case for a particular value of «.

In order to show that, however, we first need to develop a technique for dealing
with the completed universal enveloping algebra of g,.. This is the formalism of
vertex algebras. In this chapter we will first motivate the necessity of vertex algebras
and then introduce the basics of the theory of vertex algebras.

2.1. The center

2.1.1. The case of simple Lie algebras. Let us first recall what is the center of an
abelian category. Let € be an abelian category over C. The center Z(%) is by
definition the set of endomorphisms of the identity functor on 6. Let us recall
that such an endomorphism is a system of endomorphisms eps € Homeg (M, M),
for each object M of ¢, which is compatible with the morphisms in €: for any
morphism f : M — N in 6 we have foeps = epn o f. Itis clear that Z (%) has a
natural structure of a commutative algebra over C.

Let S = Spec Z(%). This is an affine algebraic variety such that Z(6) is the
algebra of functions on S. Each point s € S defines an algebra homomorphism

31
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(equivalently, a character) pg : Z (%) — C (evaluation of a function at the point s).
We define the full subcategory 6 of € whose objects are the objects of ‘6 on which
Z (%) acts according to the character py. It is instructive to think of the category 6
as “fibering” over S, with the fibers being the categories €.

Now suppose that € = A -mod is the category of left modules over an associative
(C-algebra A. Then A4 itself, considered as a left A-module, is an object of ¢, and
so we obtain a homomorphism

Z(€) — Z(Endy A) = Z(AP) = Z(A),

where Z(A) is the center of A. On the other hand, each element of Z(A) defines
an endomorphism of each object of 4 -mod, and so we obtain a homomorphism
Z(A) — Z(6). It is easy to see that these maps define mutually inverse isomor-
phisms between Z(6€) and Z(A4).

If g is a Lie algebra, then the category g-mod of g-modules coincides with
the category U(g) -mod of U(g)-modules, where U(g) is the universal enveloping
algebra of g (see Appendix A.2). Therefore the center of the category g-mod is
equal to the center of U(g), which by abuse of notation we denote by Z(g).

Let us recall the description of Z(g) in the case when g is a finite-dimensional
simple Lie algebra over C of rank £ (see Section A.3). It can be proved by a
combination of results of Harish-Chandra and Chevalley (see [Dixmier 1977]).

Theorem 2.1.1. The center Z(g) is a polynomial algebra C[P;];—, .. ¢ generated
by elements P;,i = 1,...,4, of orders d; + 1, where d; are the exponents of g.

An element P of U(g) is said to have order i if it belongs to the ith term U(g)<;
of the Poincaré-Birkhoff—Witt filtration on U(g) described in Appendix A.2, but
does not belong to U(g)<(i—1)-

The exponents form a set of positive integers attached to each simple Lie algebra.
For example, for g = sl, this set is {1,...,n — 1}. There are several equivalent
definitions, and the above theorem may be taken as one of them (we will encounter
another definition in Section 4.2.4 below).

The first exponent of any simple Lie algebra g is always 1, so there is always
a quadratic element in the center of U(g). This element is called the Casimir
element and can be constructed as follows. Let {J%} be a basis for g as a vector
space. Fix any non-zero invariant inner product o on g and let {J,;} be the dual
basis to {J4} with respect to x. Then the Casimir element is given by the formula

1dimg
_ a
P_§Z:1J Ja.
a:

Note that it does not depend on the choice of the basis {J¢}. Moreover, changing
Ko to K would simply multiply P by a scalar A such that k = Akg.
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It is a good exercise to compute this element in the case of g = sl,. We have the
standard generators of sl,

() () ()

and the inner product
ko(a,b) = Trab.

Then the Casimir element is
P ! f+ fe+ 1h2
= —\le e — o
2 2

2.1.2. The case of affine Lie algebras. We wish to obtain a result similar to The-
orem 2.1.1 describing the universal enveloping algebra of an affine Kac—-Moody
algebra.

The first step is to define an appropriate enveloping algebra whose category of
modules coincides with the category @, -mod. Let us recall from Section 1.3.6 that
objects of g, -mod are g,-modules M on which the central element 1 acts as the
identity and which are smooth, that is, for any vector v € M we have

(@gtNC[[t])-v=0 (2.1-1)

for sufficiently large V.

As a brief aside, let us remark that we have a polynomial version ’g\ﬁm of the affine
Lie algebra, which is the central extension of the polynomial loop algebra g[¢, 1~ 1].
Let g2 -mod be the category of smooth §2°'-modules, defined in the same way as
above, with the Lie algebra g ® 1 C[¢] replacing g ® t"V C[[t]]. The smoothness
condition allows us to extend the action of ’g\ﬁOl on any object of this category to an
action of g,.. Therefore the categories ﬁffl and g, -mod coincide.

Here it is useful to explain why we prefer to work with the Lie algebra g, as
opposed to ’g\i(ﬂ. This is because g, is naturally attached to the (formal) punctured
disc D* = Spec C((¢)), whereas as ’g\ff’l is attached to C* = Spec C[t, 1~!] (or the
unit circle). This means in particular that, unlike G5, the Lie algebra §, is not tied
to a particular coordinate ¢, but we may replace ¢ by any other formal coordinate
on the punctured disc. This means, as we will do in Section 3.5.2, that g, may be
attached to the formal neighborhood of any point on a smooth algebraic curve, a
property that is very important in applications that we have in mind, such as passing
from the local to global Langlands correspondence. In contrast, the polynomial
version EEO] is forever tied to C*.

Going back to the category g, -mod, we see that there are two properties that its
objects satisfy. Therefore it does not coincide with the category of all modules over
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the universal enveloping algebra U(g,) (which is the category of all g,-modules).
We need to modify this algebra.

First of all, since 1 acts as the identity, the action of U(g,,) factors through the
quotient

U@ EUG)/1-1).

Second, the smoothness condition (2.1-1) implies that the action of U, (g) extends
to an action of its completion defined as follows.

Define a linear topology on U, (g) by using as the basis of neighborhoods for 0
the following left ideals:

In=Uc@@NC[[7]), N=o0.

Let U « (@) be the completion of Uy (g) with respect to this topology. We call it that
completed universal enveloping algebra of g,. Note that, equivalently, we can
write

Ue(@® = lim U @)/ In-

Even though the I ’s are only left ideals (and not two-sided ideals), one checks that
the associative product structure on U, (g) extends by continuity to an associative
product structure on U « () (this follows from the fact that the Lie bracket on
Uy (@) is continuous in the above topology). Thus, Uk (9) is a complete topological
algebra. It follows from the deﬁmtlon that the category g, -mod c01nc1des with the
category of discrete modules over U (g) on which the action of U « (@) is pointwise
continuous (this is precisely equivalent to the condition (2.1-1)).

It is now easy to see that the center of our category @, -mod is equal to the center
of the algebra U, (g), which we will denote by Z,(g). The argument is similar to
the one we used above: though U « (@) itself is not an object of g, -mod, we have a
collection of objects Uy (9)/In. Using this collection, we obtain an isomorphism
between the center of the category g, -mod and the inverse limit of the algebras
Z (End/g\ U (§)/Ix), which, by definition, coincides with Z,(g).

Now we can formulate our first question:

describe the center Z,(g) for all levels k.

We will see that the center Z,(g) is trivial (i.e., equal to the scalars) unless
K = k¢, the critical level. However, at the critical level Z,, (g) is large, and its
structure is reminiscent to that of Z(g) described in Theorem 2.1.1. For the precise
statement, see Theorem 4.3.6.
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2.1.3. The affine Casimir element. Before attempting to describe the entire center,
let us try to construct some central elements “by hand.” In the finite-dimensional
case the simplest generator of Z(g) was particularly easy to construct. So we start
by attempting to define a similar operator in the affine case.

Let A be any element of g and n an integer. Then 4 ® " is an element of
g ® C((?)) and hence of g,. We denote this element by A,. We collect all of the
elements associated to A € g into a single formal power series in an auxiliary
variable z:

A(z) = ZA,,Z_”_I.
nez

The shift by one in the exponent for z may seem a little strange at first but it is
convenient to have. For example, we have the following formula

An =Res;—o A(2)z"dz.

Note that this is just a formal notation. None of the power series we use actually
has to converge anywhere.
Now, an obvious guess for an equivalent to the Casimir operator is the formal
power series
dim g

1
3 > T2 a(2). (2.1-2)
a=1

There are, however, many problems with this expression. If we extract the coeffi-
cients of this sum, we see that they are two-way infinite sums. The infinity, by itself,
is not a problem, because our completed enveloping algebra Uk (9) contains infinite
sums. But, unfortunately, here we encounter a “wrong infinity,” which needs to be
corrected.

To be more concrete, let us look in detail at the case of g = sl,. Then our
potential Casimir element is

P(z) = % (e(z)f(z) + f(2)e(z) + %h(z)h(z)) . (2.1-3)

It is easy to write down the coefficients in front of particular powers of z in this

series. If we write
P(z) = Z Pyz N2,
nez

then

1
Py =3 (emfut fmen+ Shmhn). (2.1-4)
m+n=N

None of these expressions belongs to U, (s:\[z).
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To see this, let us observe that, by definition, an element of U r (;[2) may be
written in the form
K+ Z(Qnen + Ry fn+ Snhn),
n=0
where K, Q,, Ry, Sy are finite linear combinations of monomials in the generators

em, fm,hm,meZ.
Let us examine the first term in (2.1-4). It may be written as the sum of two

terms
Z em.fn + Z em fn- (2.1-5)

n+m=N;n>0 n+m=N;n<0
The first of them belongs to U K (5:\[2), but the second one does not: the order of
the two factors is wrong! This means that this element does not give rise to a
well-defined operator on a module from the category ;[2,,C -mod. Indeed, we can
write
em Jn = Jnem +em, ful = Jnem + hm+n.

Thus, the price to pay for switching the order is the commutator between the two
factors, which is non-zero. Therefore, while the sum

Z fnem

n+m=N;n<0

belongs to U o (s?[z) and its action is well-defined on any module from ;[2,,( -mod,

the sum
Z €m fn

n+m=N;n<0
that we are given differs from it by /1,4, added up infinitely many times, which is
meaningless.
To resolve this problem, we need to redefine our operators Py so as to make
them fit into the completion U, (;[2). There is an obvious way to do this: we just
switch by hand the order in the second summation in (2.1-5) to comply with the

requirements:
Yo embt D Juem. (2.1-6)
n+m=N;n>0 n+m=N;n<0
Note, however, that this is not the only way to modify the definition. Another way

to do it is
D emfat D Juem @2.1-7)
n+m=N;m<0 n+m=N;m=0
Since n and m are constrained by the equation n +m = N, it is easy to see that
this expression also belongs to U r (5[2) But it is different from (2.1-6) because
the order of finitely many terms is switched. For example, if N > 0, the terms
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em fn,0 <m < N, in (2.1-6) are replaced by f,e;, in (2.1-7). So the difference
between the two expressions is (N + 1)/1;,4,, which is of course a well-defined
element of the enveloping algebra.

Thus, the upshot is that there are several inequivalent ways to “regularize” the
meaningless expression (2.1-5), which differ at finitely many places. In what follows
we will use the second scenario. To write it down in a more convenient way, we
introduce the notion of normal ordering. For any A, B € sl, (or an arbitrary simple
Lie algebra g) we will set

AmBnd;f Aman m<0a
B,Ay, m=>0.

Then (2.1-7) may be rewritten as

Z em [,

n+m=N

which is the z=N

by linearity.
Now we apply the normal ordering to the formal power series P(z) given by
formula (2.1-3). The result is another formal power series

~2 coefficient of :e(z) f(z):, where we apply the normal ordering

S(2)=) Syz V= % (:e(z) f@):+:f(2)e(z): + %:h(z)h(z):) . (2.1-8)

Nez
The corresponding coefficients S are now well-defined elements of the completion
Ui(shy).
For a general simple Lie algebra, we write

dim g
_N_ 1
S@)=)_ SyzN7?= 3 D T2 a(2): (2.1-9)
Nez a=1
Note that S(z) is independent of the choice of the basis {J¢}. The coefficients
SN € Ui (g) of S(z) are called the Segal-Sugawara operators. Are they central
elements of U, (g)? To answer this question, we need to compute the commutators

[Sna Am] = SnAm - AmSn

in U «(g) for all A € g. The elements Sy, are central if and only if these commutators
vanish.

This computation is not an easy task. Let us first give the answer. Let k. be the
critical invariant inner product on g defined by the formula

1
ke(A. B) =~ Trgad Aad B. (2.1-10)



38 2. VERTEX ALGEBRAS

Then we have

K
[Sp, Am] = — nAnim. (2.1-11)

Since the invariant inner products on a simple Lie algebra g form a one-dimensional
vector space, the ratio appearing in this formula is well-defined (recall that k¢ 7% 0
by our assumption).

Formula (2.1-11) comes as a surprise. It shows that the Segal-Sugawara operators
are indeed central for one specific value of «, but this value is not k = 0, as one
might naively expect, but the critical one, k = k.! This may be thought of as a
“quantum correction” due to our regularization scheme (the normal ordering). In
fact, if we just formally compute the commutators between the coefficients of the
original (unregularized) series (2.1-2) and A,,, we will find that they are central
elements at k = 0, as naively expected. But these coefficients are not elements of
our completion U «(9), so they cannot possibly define central elements in U «(@).
(They belong to a different completion of U, (g), one that does not act on smooth
,-modules and hence is irrelevant for our purposes.) The regularized elements
Sy, become central only after we shift the level by «.. This is the first indication
of the special role that the critical level «. plays in representation theory of affine
Kac—Moody algebras.

How does one prove formula (2.1-11)? A direct calculation is tedious and not
very enlightening. Even if we do make it, the next question will be to compute the
commutation relations between the S;,’s (this is related to the Poisson structure on
the center, as we will see below), which is a still harder calculation if we approach
it with “bare hands.” This suggests that we need to develop some more serious tools
in order to perform calculations of this sort. After all, we are now only discussing
the quadratic Casimir element. But what about higher-order central elements?

The necessary tools are provided in the theory of vertex algebras, which in
particular gives us nice and compact formulas for computing the commutation
relations such as (2.1-11). The idea, roughly, is that the basic objects are not the
elements J¢ of g, and the topological algebra U « (9) that they generate, but rather
the generating series J“(z) and the vertex algebra that they generate. We will take
up this theory in the next section.

2.2. Basics of vertex algebras

In this section we give a crash course on the theory of vertex algebras, following
[Frenkel and Ben-Zvi 2004], where we refer the reader for more details.

Vertex algebras were originally defined by R. Borcherds [1986], and the founda-
tions of the theory were laid down in [Frenkel et al. 1988; Frenkel et al. 1993]. The
formalism that we will use in this book is close to that of [Frenkel and Ben-Zvi 2004;
Kac 1998], and all results on vertex algebras presented below are borrowed from
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these two books. We also note that vertex algebras have geometric counterparts:
chiral algebras and factorization algebras introduced in [Beilinson and Drinfeld
2004]. The connection between them and vertex algebras is explained in [Frenkel
and Ben-Zvi 2004].

2.2.1. Fields. Let R be an algebra over C; a formal power series over R in the
variables zq, ..., z, is a sum of the form

.. il,,, in
E ARTe -« L ERY -

i1y..00in€”Z

The set of all such formal power series is denoted by R[[Zlil, cee, Z,:fl]].

Note carefully the difference between formal power series R[[z*!]] (which can
have arbitrarily large and small powers of z), Taylor power series R[[z]] (which
have no negative powers of z) and Laurent power series R((z)) (which have negative
powers of z bounded from below).

What operations can be performed on formal power series? We can certainly add
them, differentiate them, multiply them by polynomials. However, we cannot mul-
tiply them by other formal power series. The reason for this is that the coefficients
of the product will consist of infinite sums, e.g.,

(1)) -5 0e

n i+j=n

Nevertheless, we can multiply two formal power series if the variables they are in
are disjoint, so for example f(z)g(w) makes sense as a formal power series in the
two variables z and w.

A particularly important example of a field is the formal delta-function. This
is denoted by §(z — w)! and is defined by the formula

§z-—w)=)Y "wl.
nez
It has the following easy to check properties:

(1) A(z)é(z—w) = A(w)d(z —w),
2) (z—w)d(z—w) =0,

(3) (z—w)" 19 §(z —w) = 0.

The first of these properties tells us that
Res;—g (A4(2)8(z —w)dz) = A(w),

!t is not a function of z — w. This is just notation indicating that the properties of this formal
delta-function correspond closely with properties of the usual delta-function.
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which is a property we would expect the delta-function to have.

We can make the analogy between C[[z*!]] and distributions more precise in the
following way. Given a formal power series A(z) in z, define a linear functional
(“distribution”) ¢4 on the space of polynomials C[z, z~!] by the formula

$4(/f(2)) =Res A(z) f (z)dz.

Recall that the product A(z) f(z) is well-defined, since f(z) is a polynomial and
so only finite sums turn up in the product. Conversely, given a distribution ¢ on
Clz, z™ 1], define a formal power series Ag by

Ag(z) =D (""",

nez

It is easy to see that these two operations are inverse to each other. Hence C[[z*1]]
is exactly the space of all distributions on the space of polynomials C[z, z™!].

We can now think of §(z — w) as being a formal power series in the variable z
with w € C* any non-zero complex number. Under the above identification it is
easy to see that we get a delta-function corresponding to w in the usual sense.

Next we define fields as special types of formal power series. Let V' be a vector
space over C, so End V is an algebra over C. A field is a formal power series in
End V[[z*!]]. We write the field as follows

A(z) = Z Az "L

nez

The power of z chosen is one that will later make much of the notation simpler.
Fields must satisfy the following additional property: For each v € V there is an
integer N = 0 such that A, -v = 0 for alln = N. We may rephrase this condition
as saying that A(z) - v is a Laurent polynomial for any v € V.

If the vector space V is Z-graded, i.e., V = @nez V,, then we have the usual
concept of homogeneous elements of V' as well as homogeneous endomorphisms:
¢ € End V is homogeneous of degree m if ¢ (V) C Vy44, for all n. In the case of
vertex algebras it is common to call the homogeneity degree of a vector in V' the
conformal dimension.

2.2.2. Definition. Now we are ready to give the definition of a vertex algebra.
A vertex algebra consists of the following data:

(1) A vector space V' (the space of states);
(2) A vector in V' denoted by |0) (the vacuum vector);

(3) An endomorphism 7" : V' — V (the translation operator);
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(4) A linear map Y (-, z) : V — End V[[z%!]] sending vectors in V to fields on V
(also called vertex operators)

A€V >Y(A2)=) Agz """
nez
(the state-field correspondence).
These satisfy the following axioms:
(1) Y(0).2) = idy;
2) Y(A4,2)|10) =A+z(...) e V[z]];
3) [T.Y(4.2)] = ;Y (4. 2);
@) T0) =0
(5) (locality) For any two vectors A, B € Z there is a non-negative integer N such
that
(z—w)V[Y(4,2), Y(B,w)]=0.

It follows from the axioms for a vertex algebra that the action of 7" may be
defined by the formula

T(A)=A|0),

so 7" is not an independent datum. However, we have included it in the set of data,
because this makes axioms more transparent and easy to formulate.

A vertex algebra is called Z- (or Z4-) graded if V is a Z- (resp., Z+-) graded
vector space, |0) is a vector of degree 0, T is a linear operator of degree 1, and for
A € Vyy, the field Y (A, z) has conformal dimension m, i.e.,

deg Ay =—n+m—1.

A particularly simple example of a vertex algebra can be constructed from a
commutative associative unital algebra with a derivation.

Let V' be a commutative associative unital algebra with a derivation 7. We define
the vertex algebra structure as follows:

Y(|0), z) = Iy,
n
Y(4,2) =Y —-mult(T" 4) = mult(e”? 4), (2.2-1)
n!
n=0
70 = 71! (2.2-2)

Here the operators mult(A4) in the power series are left multiplication by A.
It is an easy exercise to check that this is a vertex algebra structure. The vertex
algebra structure is particularly simple because the axiom of locality has become a
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form of commutativity
[Y(4,z2),Y(B,w)]=0.

This is a very special property. Any vertex algebra with this property is called
commutative. Another property that this vertex algebra structure has that is unusual
is that the formal power series that occur have only non-negative powers of z. It
turns out that these two properties are equivalent.

Lemma 2.2.1. A vertex algebra is commutative if and only if Y (A, z) € End V|[z]]
forall AeV.

Proof. If V' is commutative then
Y(A4,2)Y(B,w)|0) =Y (B,w)Y(4,z)]0).

Expanding these in powers of w and taking the constant coefficient in w using
axiom (ii), we see that Y(A4,z)B € V|[z]] for any A and B. This shows that
Y(A4,z) € End V[[z]].

Conversely, if Y(A4,z) € End V[[z]] for all A € V, then Y(A4,z)Y(B,w) €
End V{[z, w]]. Locality then says that

z—w)NY(4,2)Y(B,w)=(z—w)NY (B, w)Y(4,z).

As (z—w)™ has no divisors of zero in End V[[z, w]], it follows that V' is commuta-
tive. O

So we have seen that commutative associative unital algebra with a deriva-
tion gives rise to a commutative vertex algebra. It is easy to see that the above
construction can be run in the other direction and so these two categories are
equivalent. In particular, Z-graded commutative vertex algebras correspond to
Z-graded commutative associative algebras with a derivation of degree 1.

2.2.3. More on locality. We have just seen that the property of commutativity in
a vertex algebra is very restrictive. The point of the theory of vertex algebras is
that we replace it by a more general axiom; namely, locality. In this sense, one
may think of the notion of vertex algebra as generalizing the familiar notion of
commutative algebra. In this section we will look closely at the locality axiom and
try to gain some insights into its meaning.

Let v € V be a vector in V and ¢ : V — C a linear functional on V. Given
A, B € V we can form two formal power series

(¢p,Y(A,2)Y (B, w)v) and (¢, Y(B,w)Y (A4, z)v)

These two formal power series, which are a priori elements of C[[z+!, w*!]],

actually belong to the subspaces C((z))(w)) and C(w))(z)), respectively. These
two subspaces are different: the first consists of bounded below powers of w, but
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powers of z are not uniformly bounded, whereas the second consists of bounded
below powers of z but not uniformly bounded powers of w.

The intersection of the two spaces consists of those series in z and w which have
bounded below powers in both z and w. In other words, we have

C(2)(w) NC(w)(2) = Cllz, wllz"", w™']. (2.2-3)

Note that C((z))(w)) and C(w))((z)) are closed under multiplication and are actually
fields (here we use the terminology “field” in the usual sense!). Their intersection is
a subalgebra C[[z, w]|[z~!, w™!]. Therefore within each of the two fields we have
the fraction field of C[[z, w]][z~!, w™!]. This fraction field is denoted by C((z, w))
and consists of ratios f(z, w)/g(z, w), where f, g are in Cl[[z, w]].

However, the embeddings C((z, w)) into C((z))(w)) and C(w))((2)) are different.
These embeddings are easy to describe; we simply take Laurent power series
expansions assuming one of the variables is “small.” We will illustrate how this

Assume that w is the “small” variable, and so |w| < |z|. Then we can expand

Z—lu) Z(l— _IZ( )

in positive powers of w/z. Note that the result will have bounded below powers of
w and so will lie in C(z))(w)).
Assume now that z is the “small” variable, and so |z| < |w|. We can then expand

Z—lw: w(l—i) _IZ< )

in negative powers of w/z because |z| < |w|. Note that the result will have bounded
below powers of z and so will lie in C(w))(2)).

It is instructive to think of the two rings C(w))((z)) and C((z))(w)) as representing
functions in two variables, which have one of their variables much smaller than the
other. The “domains of definition” of these functions are |w| > |z| and |z| > |w],
respectively.

So we have now seen that elements in C(w))(z)) and C((z))(w)), although they
can look very different, may in fact be representing the same element of C((z, w)).
This is very similar to the idea of analytic continuation from complex analysis.
When these two different elements come from the same rational function in z and
w we could think of them as “representing the same function” (we could even think
of the rational function as being the fundamental object rather than the individual
representations).
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What locality is telling us precisely that the formal power series
(¢, Y(A,2)Y (B, w)v) and (¢, Y(B,w)Y (A4, z)v) (2.2-4)

represent the same rational function in z and w in C(w))(z)) and C(z))(w)),
respectively.
Indeed, the locality axiom states that

z—w)N (¢, Y(A,2)Y (B, w)v) and (z—w)N (¢, Y (B, w)Y (4, 2)v)

are equal to each other, as elements of C[[z*!, w®!]]. Due to the equality (2.2-3),
we find that both of them actually belong to C[[z, w]][z~', w™!]. So, the formal
power series (2.2-4) are representations of the same element of C[[z, w]][z~!, w™!,
(z—w) 'in C(w))(2)) and C((z))(w)), respectively. If we ask in addition that as
v and ¢ vary there is a universal bound on the power of (z — w) that can occur in
the denominator, then we obtain an equivalent form of the locality axiom. This is a

reformulation that will be useful in what follows.?2

2.2.4. Vertex algebra associated to g,. We now present our main example of a
non-commutative vertex algebra, based on the affine Kac-Moody algebra g,.. Many
of the interesting properties of vertex algebras will be visible in this example.

Let g be a finite-dimensional complex simple Lie algebra with an ordered basis
{J%}, where a =1, ...,dim g (see Section A.3). Recall that the affine Kac-Moody
algebra g has a basis consisting of the elements Ji.a=1,...,dimg,n € Z, and 1.

Previously, we grouped the elements associated to J¢ into a formal power series

J4 z) = Z Joz—n1,

nez

This gives us a hint about what some of the fields in this vertex algebra should be.

We should first describe the vector space V' on which the vertex algebra is built.
We know that we will need a special vector |0) in V' to be the vacuum vector. We
also know that if J“(z) are indeed vertex operators, then the J’s should be linear
operators on V and, by axiom (i), the elements J for n > 0 should annihilate the
vacuum vector |0).

Notice that the set of Lie algebra elements which are supposed to annihilate
|0) form the Lie subalgebra g[[¢]] of g,. Thus, C|0) is the trivial one-dimensional
representation of g[[¢]]. We also define an action of the central element 1 on |0) as
follows: 1]|0) = 1. Let us denote the resulting representation of g[[¢]] & C1 by C,.

21t may seem slightly strange that we only allow three types of singularities: at z = 0, w = 0, and
z = w. But these are the only equations that do not depend on the choice of coordinate, which is a
valuable property for us as we will need a coordinate-free description of vertex operators and algebras.
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We can now define a g,-module by using the induction functor:

Vie(g) = Indg"

dimeciCc=U@) ® Ce.

U(glls]l®C1)
It is called the vacuum Verma module of level «.

Recall that « is unique up to a scalar. Therefore it is often convenient to fix a
particular invariant inner product k¢ and write an arbitrary one as k = kkg, k € C.
This is the point of view taken, for example, in [Frenkel and Ben-Zvi 2004], where
as ko we take the inner product with respect to which the squared length of the
maximal root is equal to 2, and denote the corresponding vacuum module by V. (g).

The structure of Vi (g) is easy to describe. By the Poincaré-Birkhoff—Witt
theorem, Vi (g) is isomorphic to U(g ® ¢t ~'C[t~'])|0). Therefore it has a basis of
lexicographically ordered monomials of the form

Jar .. Jgm)o), (2.2-5)

where ny <n, <...<n, <0, and if n; = n;4+, then a; < a;;+;. We define
a Z-grading on g, and on Vi (g) by the formula deg /¢ = —n, deg|0) = 0. The
homogeneous graded components of V,(g) are finite-dimensional and they are non-
zero only in non-negative degrees. Here is the picture of the first few homogeneous
components of Vi (g):

T5103 e JEN0)}

g0

The action of g, is described as follows. The action of J with n < 0 is just
the obvious action on U(g ® t ' C[t!]) ~ Vi (g). To apply J¢# with n = 0, we use
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the commutation relations in the Lie algebra g, to move this term through to the
vacuum vector, which the J#’s with n > 0 annihilate.

Let us illustrate the structure of Vi (g) in the case of the affine Lie algebra ;[2.
The elements J are now denoted by e, f, & and the commutation relations between
them are

[h.e]=2e,  [h. fl==2f  [e.fl=h.

For example, consider the vector
e—1/=210) € Vi(sly).
If we apply /4 to it, we obtain

hie—1 f~210) = ([h1,e—1]+e—1hy) f—2|0)
= (2e0 +e—1N1) /=2 10)
=2([eo, /2] + f=2€0) |0) + e—1 ([h1, f—2] + f=2h1) |0)
— 25 [0) +0—2e_; f_1 [0) 40
=2(h—y—e—1/~1)10).

So, at each step we are simply moving the annihilation operators closer and closer
to the vacuum until we have made them all disappear.

We now have the vector space V' = V(g) and vacuum vector |0) for our vertex
algebra. We still need to define the translation operator 7" and the state-field
correspondence Y (-, z).

The translation operator 7" is defined by interpreting it as the vector field —d;
(the reason for this will become more clear later on). This vector field naturally
acts on the Lie algebra g((¢)) and preserves the Lie subalgebra g[[¢]]. Therefore it
acts on Vi (g). Concretely, this means that we have the commutation relations

[T,J2]=-nJg

n—1°
and the vacuum vector is invariant under 7,
T10) =0,

as required by axiom (iv) of vertex algebras. These two conditions uniquely specify
the action of 7" on the vector space Vi (g).

2.2.5. Defining vertex operators. Finally, we need to define the state-field corre-
spondence. For the vacuum vector this is determined by axiom (i):

Y(|0),2) =1d.
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The elements of the next degree, namely 1, are of the form J<, |0). To guess the
form of the vertex operators Y (J2, |0), z) corresponding to them, we first look at
the associated graded space of Vi (g), which is a commutative vertex algebra.

To describe this associated graded space, we observe that the Poincaré—Bikhoff—
Witt filtration on U(g, ) induces one on Vi (g). The ith term of this filtration, which
we denote by Vi (g)<;, is the span of all monomials (2.2-5) with m < i. The
associated graded algebra gr Vi (g) with respect to this filtration is the symmetric
algebra with generators corresponding to J; with n < 0. To distinguish them from
the actual J’s, we will denote these generators by 72.

Recall that for any Lie algebra g, the associated graded gr U(g) is isomorphic to
Sym g. This implies that for any « we have

gr Vie(g) = Sym(g(#))/gl[])) =~ Sym(: " g[[t~"]).

Thus, gr Vi (g) is a commutative unital algebra with a derivation 7" corresponding
to the vector field —d,. It is uniquely determined by the formula 7’ -7; = —n_z_l.
Therefore, according to the discussion of Section 2.2.2, gr Vi.(g) has a natural
structure of a commutative vertex algebra. By definition (see formula (2.2-1)), in

this vertex algebra we have

_ 7N _ _
Y(IZy.2) =Y —omult(T" -T2 = ) S mult(T2, =",
n=0 n=0

By abusing notation, we will write this as

YT, 2)=) Tpz ™! (2.2-6)

m<0

with the understanding that on the right hand side 7?,, stands for the corresponding
operator of multiplication acting on gr Vi (g).

In formula (2.2-6) only “half” of the generators of g, is involved; namely, those
with m < 0. This ensures that the resulting sum has no negative powers of z, as
expected in a commutative vertex algebra. Now we generalize this formula to
the case of a non-commutative vertex algebra Vi (g), in which we are allowed to

have negative powers of z appearing in the vertex operators. This leads us to the
following proposal for the vertex operator corresponding to J4, [0) € Vi (9):3

Y(J4,10),2) = Z Jez7m1 = Ja(z).

nez

It is easy to see that these vertex operators satisfy the relations
Y(J2,10),2)[0) = J2 10) +z(...),  [T.Y(J4,10),2)] =03.Y(J% 10),z2)

3note that J 2 refers here to the operator of action of J on the representation Vi (g)
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required by the axioms of vertex algebras.
We should also check that these vertex operators satisfy the locality axiom. To
do this we use the commutation relations

[JE, 2] =[J%, T lnsm + nic(J?, T2)8n—m1 (2.2-7)
in g, to evaluate the commutator of J%(z) and J b(w):

[J“(z), Jb(w)] - [J“, Jb] (W)S(z —w) + ik (J, J)dud(z — w).

Now, recalling from 2.2.1 that (z — w)? annihilates both §(z —w) and its derivative,
we see that the locality axiom is satisfied.

We now need to define the vertex operators corresponding to the more general
elements of Vi (g). In fact, we will see in Theorem 2.2.5 below that the data that
we have already defined: [0), 7" and Y (J¢, [0), z) uniquely determine the entire
vertex algebra structure on Vi (g) (provided that it exists!). The reason is that the
vectors J¢, |0) generate Vi (g) in the following sense: Vi (g) is spanned by the
vectors obtained by successively applying the coefficients of the vertex operators
Y(J4,10), z) to the vacuum vector |0).

Here we will motivate the remaining structure from that on the associated graded
algebra gr Vi (g). First of all, we find by an explicit calculation that in gr V,(g) we
have

—a on— 1 —m— 1
Y(J,.2) = rE— 1)' R Y
m<0
This motivates the formula
1 _
YU 10).2) = gy @)

in Vi (g).
Next, observe that in any commutative vertex algebra V' we have the following
simple identity
Y(AB,z) =Y(4,2)Y(B, 2),
which follows from formula (2.2-1) and the Leibniz rule for the derivation 7" (here
on the left hand side A B stands for the ordinary product with respect to the ordinary

commutative algebra structure).
Therefore it is tempting to set, for example,

Y(J%,J8,10),2) = Y(J%,, 2)Y(J2,,2) = J°(2) I8 (2).

However, we already know that the coefficients of the product on the right hand
side are not well-defined as endomorphisms of V,(g). The problem is that the
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annihilation operators do not appear to the right of the creation operators. We had
also suggested a cure: switching the order of some of the terms.

We will now define this procedure, called normal ordering, in a more systematic
way. Let us define, for a formal power series

[ =) faz" € R[],

nez

where R is any C-algebra, the series f(z)+ to be the part with non-negative powers
of z and f(z)— to be the part with strictly negative powers of z:

@ =) R @)= "

n=0 n<0
The normally ordered product of two fields A(z) and B(z) is then defined to be

‘A(2)B(2): ¥ A(z) 4+ B(z) + B(z)A(z)—.

It is an easy exercise (left for the reader) to check that : A(z) B(z): is again a field
(although the coefficients of z may be infinite sums, when applied to a vector they
become finite sums). When we have more than two fields, the normally ordered
product is defined from right to left, e.g.,

:A(z)B(z)C(2): =:A(z) :B(z)C(2):):.

This formula looks somewhat ad hoc, but we will see in Theorem 2.2.5 below
that it is uniquely determined by the axioms of vertex algebra.

Another way to write the definition for normally ordered product is to use residues.
For a function in two variables F'(z, w) define F|,|> | to be the expansion assuming
z is the “large” variable (and similarly for F|y|> ;). For example

(5) =2 (H), = 26

n=0

Then we can represent the normally ordered product as

:A(z)B(2): =

Resy—o ( 1_ ) A(w)B(z)—(;_) B(z)A(w) | dw
W=Z/ w|>|z| W=2/ 2> wl
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This identity is easy to see from the following formulas
1
Res,—¢ | A(2) ( ) dz = A(w)4,
27 W zl>w]

Res;=o (A(Z) (z—lw)l = |) dz =—A(w)_,

and these may be proved by simple calculation.

Using the normal ordering by induction, we arrive at the following guess for a
general vertex operator in Vi (g):

Y(Jul...Jgm|0),2) =

1 1
;Mg (z) . 9y g (2): . (2.2-8
eriesmyEC
Theorem 2.2.2. The above formulas define the structure of a Z4+-graded vertex
algebra on Vi (g).

2.2.6. Proof of the Theorem. We have Y (|0),z) = Id by definition. Next, we
need to check

Y(4,2)]0)=A+z(...)

to see that the vacuum axiom holds. This is clearly true when 4 = |0). We then
prove it in general by induction: assuming it to hold for Y (B, z), where B € V,.(g9)<i,
we find for any A4 € g that

1
Y(A_,B|0),z2)|0) = m:a;"—lA(z) Y(B,z):10) = A—y B +z(...).
The translation axiom (iii) boils down to proving the identity

[T, :A(z)B(z):] = 0;:A(z) B(2):,

assuming that [T, A(z)] = d;A(z) and [T, B(z)] = 0, B(z). We leave this to the
reader, as well as the fact that the Z -grading is compatible with the vertex operators.

The locality follows from Dong’s lemma presented below, which shows that
normally ordered products of local fields remain local. It is also clear that derivatives
of local fields are still local. So, all we need to do is check that the generating fields
J%(z) are mutually local. From the commutation relations we obtain that

[J“(z), Jb(w)] — [J”, Jb] (W)8(z — w) — Kk (J, T2)y8(z — w).
From this it is clear that

(z —w)> [J“(z), Jb(w)] —0,
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and so we have the required locality.
This completes the proof modulo the following lemma.

Lemma 2.2.3 (Dong). If A(z), B(z), C(z) are mutually local fields, then
A(z)B(z): and C(2)
are mutually local as well.

Proof. The result will follow (by taking Resy—¢) if we can show that the
following two expressions are equal after multiplying by a suitable power of (y —z):

F=( : ) A(X)B(y)C(Z)—(;) BO)AX)C(),
X =V /) x>y X=V /) 1y>x|

1 1
G = ( ) C(2)A(x)B(y) = (—) C(2)B(y)A(x).
YTV Ixi=1y) Y=V 1y>x]

As A, B and C are mutually local, we know that there is an integer N such that

(x =N AX)B(y) = (x — y)Y B(y) A(x)
(y—2)NB()C(2) = (y —2)N C(2) B(y)
(x—2)NAX)C(z) = (x —2)NC(2)A(x).

We will now show that
(y-2NF=(y-2*"G.

The binomial identity gives

2N
-2V =>" (25)(y—X)2N_”(x—Z)”(y—Z)N-

n=0

Now, if 0 <n < N the power of (y — x) is large enough that we can swap A(x)
and B(y); the two terms in F (and G) then cancel, so these do not contribute. For
n > N the powers of (x —z) and (y — z) are large enough that we can swap A(x),
C(z) as well as B(y), C(z). This allows us to make terms in F the same as those
in G. Hence

v-2NF=(-2°"G,
and we are done. |
The proof of Theorem 2.2.2 works in more generality than simply the case of

an affine Kac—Moody algebra. In this form it is called the (weak) reconstruction
theorem.
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Theorem 2.2.4 (Weak Reconstruction). Let V' be a vector space, |0) a vector of 'V,
and T an endomorphism of V. Let

—n—1
a%*(z) = Za‘("n)z =

nez
where o runs over an ordered set I, be a collection of fields on V such that
(1) [T, a%(2)] = 9za%(2);
2) T10)=0,a%2)|0) =a*+z(...);
(3) a%(2) and aP(z) are mutually local;
(4) the lexicographically ordered monomials a‘(xnll) .. .a?};’jn) |0) withn; <0 forma

basis of V.

Then the formula
o - .
Y(dgy,y - dgpmy10).2) =
1 1 o o
GioDl G @ e ), 229)
4 m !

where n; < 0, defines a vertex algebra structure on V such that |0) is the vacuum

vector, T is the translation operator and Y (a*,z) = a*(z) forall o € 1.

To prove this we simply repeat the proof used for the case of V' = V,.(g).

The reconstruction theorem is actually true in a much less restrictive case: we
do not have to assume that the vectors in (iv) form a basis, merely that they span
V. And even in this case it is possible to derive that the resulting vertex algebra
structure is unique.

Theorem 2.2.5 (Strong Reconstruction). Let V' be a vector space, equipped with

the structures of Theorem 2.2.4 satisfying conditions (i)—(iii) and the condition
(iv’) The vectors a‘(x_ljl_l) ‘e a((xfjn_l) |0) with j; = 0 span V. Then these

structures together with formula (2.2-9) define a vertex algebra structure on V.
Moreover; this is the unique vertex algebra structure on V satisfying conditions

(i)—(iii) and (iv’) and such that Y (a*,z) = a%(z) foralla € I.

We will not prove this result here, referring the reader to [Frenkel and Ben-Zvi
2004], Theorem 4.4.1. In particular, we see that there there was no arbitrariness in
our assignment of vertex operators in Section 2.2.5.

2.3. Associativity in vertex algebras

We have now made it about half way towards our goal of finding a proper formal-
ism for the Segal-Sugawara operators S, defined by formula (2.1-9). We have
introduced the notion of a vertex algebra and have seen that vertex algebras neatly
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encode the structures related to the formal power series such as the generating series
S(z) of the Segal-Sugawara operators. In fact, the series S(z) itself is one of the
vertex operators in the vertex algebra Vi (g):

1
S() =5 Y Y2 Ja10).2).
a=1

What we need to do now is to learn how to relate properties of the vertex operators
such as S(z), emerging from the vertex algebra structure, and properties of their
Fourier coefficients S,, which are relevant to the description of the center of the
completed enveloping algebra of g, that we are interested in. In order to do that,
we need to develop the theory of vertex algebras a bit further, and in particular
understand the meaning of associativity in this context.

2.3.1. Three domains. We have already seen that locality axiom for a vertex alge-
bra is telling us that the two formal power series

Y(A4,2)Y(B,w)C  and  Y(B,w)Y(4,z)C

are expansions of the same element from V[[z, w]z=', w™!, (z — w)™!] in two
different domains. One of these expansions, V((z))(w)), corresponds to w being
“small;” the other, V((w))(2)), corresponds to z being “small.” If we think of the
points z and w as being complex numbers (in other words, points on the Riemann
sphere), we can think of these two expansions as being done in the domains “w is
very close to 0” and “w is very close to co.” There is now an obvious third choice:
“w is very close to z,” which we have not yet discussed.

Algebraically, the space corresponding to the domain “w is very close to z” is
V({(w)(z —w)) (or alternatively, V((z))(z — w)); these are actually identical). The
expression, in terms of vertex algebras, that we expect to live in this space is

YY(A,z—w)B,w)C.

To see this, we look at the case of commutative vertex algebras. In a commutative
vertex algebra, locality is equivalent to commutativity,

Y(4,2)Y(B,w)C =Y(B,w)Y(4,z)C,
but we also have the identity
Y(A,2)Y(B,w)C =YY (A,z—w)B,w)C

which expresses the associativity property of the underlying commutative algebra.
In a general vertex algebra, locality holds only in the sense of “analytic continuation”
from different domains. Likewise, we should expect that the associativity property
also holds in a similar sense. More precisely, we expect that Y (Y (4, z—w) B, w)C
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is the expansion of the same element of V[[z, w]|[z~', w™!, (z — w)~!], as for the
other two expressions, but now in the space V(w))(z —w)) (i.e., assuming z — w
to be “small”). We will now show that this is indeed the case.

2.3.2. Some useful facts. We start with a couple of basic but useful results about
vertex algebras.

Lemma 2.3.1. Suppose that U is a vector space, f(z) € U[|z]] is a power series,
and R € End U is an endomorphism. If f(z) satisfies

39z f(z) = Rf(2),
then it is uniquely determined by the value of f(0).

Proof. A simple induction shows that f(z) must be of the form

R? R3
f() =K+ R(K)z+ 7(K)z2 + ?(K)f +...,
so it is determined by K = f(0). O

Corollary 2.3.1. For any vector A in a vertex algebra V we have
Y(A4,z)]0) =e?T 4.

Proof. Both sides belong to V[[z]]. Therefore, in view of Lemma 2.3.1, it suffices
to show that they satisfy the same differential equation, as their constant terms are
both equal to A. It follows from the vertex algebra axioms that

3,Y(A,2)|0) = [T, Y(4,2)]|0) = TY(4,2)|0).

On the other hand, we obviously have d,¢? T g =TeT 4. O

Lemma 2.3.2. In any vertex algebra we have
e?TY(4,2)e T = Y(4,z+ w),

where negative powers of (z + w) are expanded as power series assuming that w is
“small” (i.e., in positive powers of w/z).

Proof. In any Lie algebra we have the following identity:

wn
T Ge T = Z — (ad "G
n!

n=0
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So, in our case, using the formula [7, Y (A4, z)] = 0;Y (A4, z) and the fact that
[T, 0] =0, we find that

n
Ty (A4, e T =Y %(ad TY'Y (A, 2)

n=0

n
=) (V)
n!
n=0

=e®:y(4, 7).

To complete the proof, we use the identity e®? f(z) = f(z 4+ w) in R[[z*!, w]],
which holds for any f(z) € R[[z*']] and any C-algebra R. |

This lemma tells us that exponentiating the infinitesimal translation operator 7’
really does give us a translation operator z > z + w.

Proposition 2.3.2 (Skew Symmetry). In any vertex algebra we have the identity
Y(A,2)B=¢"TY(B,—2)4
in V((z)).
Proof. By locality, we know that there is a large integer N such that
z—w)NY(A4,2)Y(B,w)|0) = (z—w)NY(B,w)Y(4,2)]0).

This is actually an equality in V[[z, w]] (note that there are no negative powers of
w on the left and no negative powers of z on the right). Now, by the above results
we compute

z—w)NY(A4,2)Y(B,w)|0) = (z—w)NY (B, w)Y(4,z)0)

= z—w)NY(4,2)e*TB = z—w)NY (B, w)e?T A

= z—w)NY(4,2)e*TB = z—w)Ve?TY(B,w—2)A
= @NY(4,2)B = (2)Ve?TY(B,—2)A

= Y(A,z)B = ¢*TY(B,—2)4

In the fourth line we have set w = 0, which is allowed as there are no negative
powers of w in the above expressions. O

In terms of the Fourier coefficients, we can write the skew symmetry property as

1
A B = (—1)n+1 (B(n)A —T(Bu—nA) + ETZ(B(n_z)A) =aq ) .
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2.3.3. Proof of associativity. We now have enough to prove the associativity prop-
erty.

Theorem 2.3.3. In any vertex algebra the expressions
Y(A4,2)Y(B,w)C, Y(B,w)Y(4,z2)C, and YY(A,z—w)B,w)C
are the expansions, in

V) (wy,  V(w)(z). and  V(w)(z—w),
respectively, of one and the same element of V{[z, w]]z=!, w™!, (z —w)™'].

Proof. We already know this from locality for the first two expressions, so we
only need to show it for the first and the last one. Using Proposition 2.3.2 and
Lemma 2.3.2, we compute

Y(A,2)Y(B,w)C = Y(4,2)e*TY(C,—w)B
=e®TY(4,z—w)Y(C,—w)B
(note that it is okay to multiply on the left by the power series e®” as it has no
negative powers of w). In this final expression we expand negative powers of (z—w)
assuming that w is “small.” This defines a map V(z — w)(w) — V({(z)(w)),
which is easily seen to be an isomorphism that intertwines the embeddings of
Vz, wl[z=!, w™!, (z—w)~!] into the two spaces.
On the other hand, we compute, again using Proposition 2.3.2,

Y(Y(A,z—w)B,w)C =Y (Z AmyB(z —w)™ 1, w) C
= Y(A@B. w)C(z—w)™"!
=> e"TY(C.—w) Ay B(z —w) ™"~

=Ty (C,—w)Y(A4,z—w)B.

This calculation holds in V(w))(z — w)).
By locality we know that

Y(C,—w)Y(A,z—w)B and Y(A,z—w)Y(C,—w)B

are expansions of the same element of V[[z, w]][z"!, w™!, (z —w)™!]. This implies
that Y (Y(A,z—w)B,w)C and Y (A, z)Y (B, w)C are also expansions of the same
element. |
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We have now established the associativity property of vertex algebras. It is
instructive to think of this property as saying that

Y(A,2)Y(B,w)=Y (Y (A,z—w)B,w) = Z Y(A@w)B, w)(z—w)™" L (2.3-1)

nez

This is very useful as it gives a way to represent the product of two vertex operators
as a linear combination of vertex operators. However, we have to be careful in
interpreting this formula. The two sides are formal power series in two different
vector spaces, V((z)) and V(w))(z — w)). They do “converge” when we apply the
terms to a fixed vector C € V, but even then the expressions are not equal as they
are expansions of a common “function” in two different domains.

Written in the above form, and with the above understanding, (2.3-1) is known
as the operator product expansion (or OPE). Formulas of this type originally
turned up in the physics literature on conformal field theory. One of the motivations
for developing the theory of vertex algebras was to find a mathematically rigorous
interpretation of these formulas.

2.3.4. Corollaries of associativity. We now look at consequences of the associativ-
ity law. In particular, we will see that our previous definitions of normally ordered
product and the formula for the vertex operators in the case of V,(g) are basically
unique.

Lemma 2.3.4. Suppose that ¢(z) and ¥ (w) are two fields. Then the following are
equivalent:

N—-1
) BE. Y= 3 2riw),56—w);
i=0
N-—1 1
@ sV =Y yiw) (m)| e

i=0

N—-1
and Ypw)p @) = 3 yi(w)( @Y W)
i=0

=)

(Z - w)i+1 |w|>|z|

where the y; (w) are fields, N is a non-negative integer and
P2V (w): = d4 @)Y (w) + ¥ (w)p—(2).

Proof. Assuming (ii) we see the commutator [¢(z), ¥ (w)] is the difference of
expansions of (z —w) =1 in the domains |z| > |w| and |w| > |z|. It is clear that

(), (), oo
270 2> |wl 27 W/ wl> |
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Differentiating i times with respect to w, we obtain

1 1
= L 5w,
((Z— )l+1)|z|>|u)| ((Z— )l+1)|u)|>|z| pwdE =)

This gives us (i).
Conversely, assume (i) and write

P2V (w) = (9(2)+ + ¢ (2)-) ¥ (w)
=(@)+v (W) + ¥ (w)p(2)-) + (6 (2)-¥ (w) — ¥ (w)p(2)-)
=0 Y (w): +[p(2)-. ¥ (w)].

Taking the terms with powers negative in z in the right hand side of (i), we obtain
the first formula in (ii). The same calculation works for the product ¥ (w)¢(z). O

Now suppose that the fields ¢(z) and 1 (w) are vertex operators Y (A4, z) and
Y (B, w) in a vertex algebra V. Then locality tells us that the commutator

[Y(4,2). Y (B, w)]

is annihilated by (z — w)" for some N. It is easy to see that the kernel of the
operator of multiplication by (z — w)® in End V[[z*!, w*!]] is linearly generated
by the series of the form y (w)d!,8(z —w),i =0,..., N — 1. Thus, we can write

N-1
1 .
[Y(4.2), Y(B.w)] = ) —yi(w)d,8(z —w),
i=0
where y;(w),i =0,..., N —1, are some fields on V' (we do not know yet that they

are also vertex operators). Therefore we obtain that Y (4, z) and Y (B, w) satisty
condition (i) of Lemma 2.3.4. Hence they also satisfy condition (ii):

N-—1
Y(4.2)Y(Bw)= Y % £Y(4,2)Y(B, w): (2.3-2)

i=0

where by (z —w)~! we understand its expansion in positive powers of w/z.
We obtain that for any C € V the series Y (A4, z)Y (B, w)C € V((z))(w)) is an
expansion of

N—-1 )
(Z @ il—,(vugﬂ +:Y(4,2)Y(B, w): ) CeV[zwlz"", w, z—w)™].
i=0
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Using the Taylor formula, we get that the expansion of this element in V(w))(z—w))
is equal to

N-—1 (W) (z —w)™
Z (ZKZW + Z Tia"w’Y(A, w)-Y(B,w): | C. (2.3-3)

i=0 m=0

The coefficient in front of (z — w)X, k € Z, in the right hand side of (2.3-3) must
be equal to the corresponding term in the right hand side of formula (2.3-1). Let us
first look at the terms with & > 0. Comparison of the two formulas gives

;:82_”_1Y(A,z)-Y(B,z):, n<o0. (2.3-4)
(—n—1)!

In particular, setting B = |0), n = —2 and recalling that A(_5)|0) = T4, we find
that

Y(AwB,z) =

Y(TA,z) = 3,Y(4,2). (2.3-5)

Using formula (2.3-4), we obtain the following corollary by induction on m
(recall that our convention is that the normal ordering is nested from right to left):

Corollary 2.3.3. Forany A', ..., A" €V, andny, ..., n, <0, we have
1
Y(A(nl) ... A'(t'1m)|0), z)

1 1
= ;MY (Al 2) - L 9 m T Y (4™ )
(_nl _1)' (—nm—l)' z ( Z) V4 ( Z)
This justifies formulas (2.2-8) and (2.2-9).
Now we compare the coefficients in front of (z — w)k, k <0, in formulas (2.3-1)
and (2.3-3). We find that

vi(w) =Y (Au) B, w), i >0,
and so formula (2.3-2) can be rewritten as

Y(A(n)B, w)
(Z _ w)n—H

Y(A.2)Y(B.w) =)

n=0

1Y (A,2)Y (B, w): . (2.3-6)

Note that unlike formula (2.3-1), this identity makes sense in End V [z}, w™1]] if
we expand (z —w)~! in positive powers of w/z.
Now Lemma 2.3.4 implies the following commutation relations:

[Y(4.2).Y(B.w)] =) _ %Y(A(H)B, w)d §(z — w). (2.3-7)

n=0
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Expanding both sides of (2.3-7) as formal power series and using the equality
1 n _ m —m—1, m—n
aawS(z—w)—Z(n)z w ,
mezZ

we obtain the following identity for the commutators of Fourier coefficients of
arbitrary vertex operators:

[Amy. Byl =Y (}Z ) (An)B) m+k—n)- (2.3-8)

n=0
Here, by definition, for any m € Z,

(m):m(m—l)...(m—n—l-l) neZoy (m)zl'

n n! 0

Several important remarks should be made about this formula. It shows that the
collection of all Fourier coefficients of all vertex operators form a Lie algebra; and
the commutators of Fourier coefficients depend only on the singular terms in the
OPE.

We will usually simplify the notation in the above lemma, writing

N-1

POV =Y yi(w>( :
i=0

Gow)yitt

)H OV

as
N-1

PV W)~ Y

i=0

In the physics literature this is what is usually written down for an OPE. What we

have basically done is to remove all the terms which are non-singular at z = w. We

can do this because the structure of all the commutation relations depends only on
the singular terms.

vi(w)
(z _ w)i—i—l :



CHAPTER 3

Constructing central elements

In the previous chapter we started investigating the center of the completed
enveloping algebra U « (@) of g,. After writing some explicit formulas we realized
that we needed to develop some techniques in order to perform the calculations.
This led us to the concept of vertex algebras and vertex operators. We will now use
this formalism in order to describe the center.

In Section 3.1 we will use the general commutation relations (2.3-8) between the
Fourier coefficients of vertex operators in order to prove formula (2.1-11) for the
commutation relations between the Segal-Sugawara operators and the generators
of g,. However, we quickly realize that this proof gives us the commutation
relations between these operators not in Uk (9), as we wanted, but in the algebra
of endomorphisms of V. (g). In order to prove that the same formula holds in
U «(@), we need to work a little harder. To this end we associate in Section 3.2 to
an arbitrary vertex algebra V' a Lie algebra U(V'). We then discuss the relationship
between U(V,(g)) and U «(@). The conclusion is that formula (2.1-11) does hold
in the completed enveloping algebra U « (). In particular, we obtain that the Segal—
Sugawara operators are central elements of Uy (g) when k = «, the critical level.

Next, in Section 3.3 we introduce the notion of center of a vertex algebra. We
show that the center of the vertex algebra Vi (g) is a commutative algebra that is
naturally realized as a quotient of the center of Uk (g). We show that the center of
Vie(g) is trivial if k # k.. Our goal is therefore to find the center 3(g) of Vi, (g).
We will see below that this will enable us to describe the center of U «(@) as well.
As the first step, we discuss the associated graded analogue of 3(g). In order to
describe it we need to make a detour to the theory of jet schemes in Section 3.4.

The results of Section 3.4 are already sufficient to find 3(g) for g = sl,: we show
in Section 3.5 that 3(5/1\[2) is generated by the Segal-Sugawara operators. However,
we are not satisfied with this result as it does not give us a coordinate-independent
description of the center. Therefore we need to find how the group of changes of

61



62 3. CONSTRUCTING CENTRAL ELEMENTS

coordinates on the disc acts on 3(;[2). As the result of this computation, performed
in Section 3.5, we find that 5(;[2) is canonically isomorphic to the algebra of
functions on the space of projective connections on the disc. This is the prototype
for the description of the center 3(g) obtained in the next chapter, which is one of
the central results of this book.

3.1. Segal-Sugawara operators

Armed with the technique developed in the previous chapter, we are now ready to
prove formula (2.1-11) for the commutation relations between the Segal-Sugawara
operators S, and the generators J of g,.

3.1.1. Commutation relations with g,.. We have already found that the commuta-
tion relations (2.2-7) between the J’s may be recorded nicely as the commutation
relations for the fields J4(z):

[J“(z), Jb(w)] — [J“, Jb] W)8(z —w) + K (J%, T)yd(z — w).

Using the formalism of the previous section, we rewrite this in the equivalent form
of the OPE

[Ja,Jb:I (w) K(J“,Jb)
(z—w) (z—w)?

J(2) I (w) ~
Now recall that

S(z) = ZY(J“ Ja,-110),2) = Z J4(@)Ja(2):

where {J,} is the dual basis to {J¢} under some fixed inner product ky. We know
from our previous discussions about normally ordered products that this is a well-
defined field, so we would now like to work out the commutation relations of the
Fourier coefficients of S(z) and the J, &)’s, which are the Fourier coefficients of
J(2).

Let

1
V= QZJ(a—l)Ja,(—l) |0), (3.1-1)
a
so that S is the element of V. (g) generating the field S(z):
S@=Y(S.2) =Y Smz""

nez
Note that since we defined the operators S, by the formula

S(@) =) Suz "2,

nez
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we have
Sn = S(n+l)-
We need to compute the OPE

b
Y(J(H)S, w)

(z— w)n—H ’

Y(JP Y (S.w)~ )

n=0

This means we need to compute the elements
1
500 2T a0 € Viel@).  nz0.
a

As we will see, this is much easier than trying to compute the commutators of the
infinite sum representing S,, with J,f’,.

The vertex algebra V(g) is Zy-graded, and the degree of S is equal to 2.
Therefore we must have n < 2, for otherwise the resulting element is of negative
degree, and there are no such non-zero elements. Thus, we have three cases to
consider:

n=2.: In this case, repeatedly using the commutation relations and the invariance
of the inner product k¥ quickly shows that the result is

%ZK (7°.19% Ja) l0).

If we now choose {J?} to be an orthonormal basis, which we may do without
loss of generality, so that J¢ = J,;, we see that this is 0.

n=1.: We obtain

S Ja 2 10) + 5 S I Jak110).

a a

The first of these terms looks like the decomposition of J v , using the basis J¢,.
However, we have to be careful that « is not necessarily the same inner product
as ko; they are multiples of each other. So, the first term is just KLOJ i 1 10).

The second term is the action of the Casimir element of U(g) on the adjoint
representation of g, realized as a subspace g®¢~!|0) C V,.(g). This is a central
element and so it acts as a scalar, A, say. Any finite-dimensional representation
V' of g gives rise to a natural inner product by

ky(x,y) =Tr py(x)py(p).

In particular kg is the inner product from the adjoint representation known
as the Killing form which we have seen before in Section 1.3.5. If we pick
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Ko = Kg, it is obvious that the scalar A should be 1/2 (due to the overall factor

1
1/2 in the formula). So, for a general k¢ the second term is E&J © 1 10).
Ko

n=0.: We get
1
5 (V441 Jalo1 + 198, T 1 da ).
a

This corresponds to taking the commutator with the Casimir element and hence
is 0 (as the Casimir is central).

Hence the OPE is
K+ %Kg Jb(w)
(z-w)?’

So, we find that there is a critical value for the inner product «, for which these
two fields, S(z) and J?(z) (and hence their Fourier coefficients), commute with
each other. The critical value is k. = —%Kg.

Using formula (2.3-8) and the first form of the OPE, we immediately obtain the
commutation relations

JP(2)S(w) ~

K —K
[J7 Sem] = TC”J:+m—1-

Recall that we define Sy to be S, 1). In other words, we shift the grading by 1,
so that the degree of S, becomes —n (but note that we have J = J, (‘; )). Then we
obtain the following formula, which coincides with (2.1-11):

K —Ke

a
nJytm-

aj _

[Sn’ Jm] - Ko
Thus, we find that when k = k. the operators S, commute with the action of the
Lie algebra g, which is what we wanted to show.

We remark that the ratio %z—g is related to the dual Coxeter number of g. More
precisely, if k¢ is chosen so that the maximal root has squared length 2, which is the
standard normalization [Kac 1990], then this ratio is equal to /", the dual Coxeter
number of g (for example, it is equal to n for g = sl,). For this choice of k¢ the

above formula becomes
[Sn, I = —(k + hv)nJ,‘,‘+m.

Even away from the critical value the commutation relations are quite nice. To
simplify our formulas, for ¥ # k. we rescale S and S(w) by setting

~ K’O

5= 0

5, S(z) = -
K+ 3Kg K+ 3Kg

S(2).
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Then we have the OPE 7 (w)
~ w
JY)S(w) ~ ———=.
@8w)~ =
Note that often this is written in the opposite order, which can be achieved by using
locality, swapping z and w and using Taylor’s formula:
J4(w) i 0w J%(w)
(z—w)?  (z—w)

Using formula (2.3-8) and the first form of the OPE, we find that

S(2)J%(w) ~ (3.1-2)

[JE, S (my] = nJ?

n+m—1-
Let us set :Svn = §(n+1). Then the commutation relations may be rewritten as
follows:
[gn’ Jr[rlt] =—-m r;l+m'
These commutation relations are very suggestive. Reczgl that J; stands for the
element J? ® t" in g,. Thus, the operations given by ad(S) look very much like

ad(S,) = —"t19;.

One can now ask if the operators ad(§ n) actually generate the Lie algebra of vector
fields of this form. It will turn out that this is almost true (“almost” because we will
actually obtain a central extension of this Lie algebra).

To see that, we now compute the OPE for §(z)§(w).

3.1.2. Relations between Segal-Sugawara operators. To perform the calculation
we need to compute the element of V. (g) given by the formula

1 Ko a
2K —ke ; T Taenlo)

for n > 0. From the grading considerations we find that we must have n < 3
(otherwise the resulting element is of negative degree). So there are four cases to
consider:

g(n)

n=3: In this case, repeatedly using the above commutation relations quickly
shows that the result is

1 Ko
= Kk (J%, J,)|0).
2K —Ke ; ( a) 10)
Hence we obtain % - fKC dim g |0)
n=2: We obtain
Ko

> 1 Tal=1) 10) .

2K —Ke -
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which is 0, as we can see by picking J¢ = J,.

n=1: We obtain 1

2K/<

which is just 25
n=0: We obtain
1 Ko

2K —Ke

) (J(a—l)Ja,(—Z) + J(a—z)Ja,(—l)) 0},
a

which is just 7'(S).
Thus, we see that the OPE is

dimg/2 2§ 9w S
5w ~ 2 W) JuSw)
(z—w)* (z—w)*  (z—-w)
We denote the constant occurring in the first term as ¢, /2 (later we will see that

¢i 18 the so-called central charge). We then use this OPE and formula (2.3-8) to
compute the commutation relations among the coefficients S, = S, 41):

= = nd—n
[Sn, Sml=(—m)Snim + Tclcan,—m- (3.1-3)

These are the defining relations of the Virasoro algebra, which we discuss in the
next section.

3.1.3. The Virasoro algebra. Let 3 = C((¢)) and consider the Lie algebra
DerH = C((2))0;
of (continuous) derivations of J{ with the usual Lie bracket
[f()0:. ()31 = (f()g'(t) — 1" (1) g (1))0s.

The Virasoro algebra is the central extension of Der X. The central element is
denoted by C and so we have the short exact sequence

0— CC — Vir — Der¥{ — 0.
As a vector space, Vir = Der @ CC, so Vir has a topological basis given by
Ly=—t"t19,, nez,

and C (we include the minus sign in order to follow standard convention). The Lie
bracket in the Virasoro algebra is given by the formula

l’l3 —n
[Lns Lm] = (n—m)Lytm + T(gn—i-mc- (3.1-4)
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In fact, it is known that Vi r is the universal central extension of Der X, just like
0, is the universal central extension of g((2)).

The relations (3.1-4) become exactly the relations between the operators S, 7
found in formula (3.1-3) if we identify C with ¢,. This means that the §n’s generate
an action of the Virasoro algebra on V,.(g) for x # k.

We now construct a vertex algebra associated to the Virasoro algebra in a similar
way to the affine Kac—Moody algebra case.

Let O = C[[¢]] and consider the Lie algebra DerO = C[[t]]o; C Der¥. Tt is
topologically generated by {L_1, Lg, L1,...}. The Lie algebra Der 0 @ CC has a
one-dimensional representation C, where Der O acts by 0 and the central element
C acts as the scalar ¢ € C. Inducing this representation to the Virasoro algebra
gives us a Vir-module, which we call the vacuum module of central charge c,

Vite = Ind} /o occ Ce = U(Vir) voeZace) Ce.
This will be the vector space underlying our vertex algebra. By the Poincaré-
Birkhoff-Witt theorem, a basis for this module is given by the monomials

Lnanz "'an |0) ’

where ny < np, <--- < m, < —1 and |0) denotes a generating vector for the
representation C.. This will be the vacuum vector of our vertex algebra.

We define a Z-grading on Vir by setting deg L,, = —n. Setting deg |0) = 0, we
obtain a Z-grading on Vir.. Note that the subspace of degree 1 is zero, and the
subspace of degree 2 is one-dimensional, spanned by L_;|0).

Recall that the operator L _ realizes —d;, and so we choose it to be the translation
operator 7. We then need to define the state-field correspondence. By analogy with
the vertex algebra V,(g), we define

Y(L210).2)=T()E Y Loz "2

nez

Note that the power of z in front of L, has to be —n — 2 rather than —n — 1, because
we want Vir, to be a Z-graded vertex algebra (in the conventions of Section 2.2.2).
The commutation relations (3.1-4) imply the following formula:

(@
[T(z), T(w)] = EB?US(Z —w) + 2T (w)0ydw(z —w) + 0w T (W) - §(z — w).
Therefore
(z = w)*[T(2), T(w)] = 0.
Thus, we obtain that the vertex operator Y (L_5 |0), z) is local with respect to

itself. Hence we can apply the reconstruction theorem to give Vir. a vertex algebra
structure.
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Theorem 3.1.1. The above structures endow Vir. with a vertex algebra structure.
The defining OPE is

c/2 T(w) 0w T (w)
C-wi T eowE  Gow)

T)T (w) ~

The number ¢ is known as the central charge.

3.1.4. Conformal vertex algebras. The Virasoro algebra plays a prominent role
in the theory of vertex algebras and in conformal field theory. Its Lie subalgebra
Der 0 = C[[t]]0; may be viewed as the Lie algebra of infinitesimal changes of
variables on the disc D = Spec C[[¢]], which is an important symmetry that we
will extensively use below. Moreover, the full Virasoro algebra “uniformizes” the
moduli spaces of pointed curves (see Chapter 17 of [Frenkel and Ben-Zvi 2004]).
Often this symmetry is realized as an “internal symmetry” of a vertex algebra V,
meaning that there is an action of the Virasoro algebra on V' that is generated by
Fourier coefficients of a vertex operator Y (w, z) for some w € V. This prompts the
following definition.

A Z—graded vertex algebra V is called conformal, of central charge c, if we
are given a non-zero conformal vector w € V; such that the Fourier coefficients
JL ,11/ of the corresponding vertex operator

Y(w.2)=) L)z " (3.1-5)

nez

satisfy the defining relations of the Virasoro algebra with central charge ¢, and in
addition we have LKI = Iy L(I)/|Vn = n Id. Note that we have LL/ = O(n+1)-

An obvious example of a conformal vertex algebra is Vir, itself, with w = L_,|0).
Another example is Vi (g), with k # k.. In this case, as we have seen above, w = S
gives it the structure of a conformal vertex algebra with central charge c.

It is useful to note that a conformal vertex algebra V' is automatically equipped
with a homomorphism ¢ : Vir, — V', which is uniquely determined by the property
that ¢ (L _,|0)) = w.

Here by a vertex algebra homomorphism we understand a linear map ¢ : V' —
V’, where V and V' are vertex algebras (homogeneous of degree 0 if V and V'
are Z-graded), such that

(1) ¢ sends |0) to |0)';
(2) ¢ intertwines T and 7', i.e., po T =T o ¢;

(3) ¢ intertwines Y and Y/, i.e.,

$oY(4,2)B=Y'(¢(4),2)¢(B).
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Lemma 3.1.2. A Z—graded vertex algebra V' is conformal, of central charge c, if
and only if it contains a non-zero vector w € V, such that the Fourier coefficients
L,I,/ of the corresponding vertex operator

Y(w,z) = Z LYz 72

nez

satisfy the following conditions: LKI =T, L(I)/ is the grading operator and L g W=
£10).

Moreover, in that case there is a unique vertex algebra homomorphism Vir, — V
such that |0) — |0) and L_v, — w.

The proof is left to the reader (see [Frenkel and Ben-Zvi 2004], Lemma 3.4.5,
where one needs to correct the statement by replacing “Z-graded” by “Z -graded”).

3.1.5. Digression: Why do central extensions keep appearing? It seems like an
interesting coincidence that the Lie algebras associated to the punctured disc D™ =
Spec C((¢)), such as the formal loop algebra g((¢)) and the Lie algebra Der ¥ of
vector fields on D* come with a canonical central extension. It is therefore natural
to ask whether there is a common reason behind this phenomenon.

It turns out that the answer is “yes.” This is best understood in terms of a certain
“master Lie algebra” that encompasses all of the above examples. This Lie algebra
is E[oo, whose elements are infinite matrices (a;;);, jez With finitely many non-zero
diagonals. The commutator is given by the usual formula [A, B] = AB — BA. This
is bigger than the naive definition of gl,, as the direct limit of the Lie algebras gl,
(whose elements are infinite matrices with finitely many non-zero entries).

If g is a finite-dimensional Lie algebra, then g ® C[¢, 1 ~!] acts on itself via the
adjoint representation. Choosing a basis in g, we obtain a basis in g ® C[t,77!]
labeled by the integers. Therefore to each element of g ® C[¢, #~!] we attach an infi-
nite matrix, and it is clear that this matrix has finitely many non-zero diagonals (but
infinitely many non-zero entries!). Thus, we obtain a Lie algebra homomorphism
gC[t,t7 - E[oo, which is actually injective.

Likewise, the adjoint action of the Lie algebra Der C[¢, '] = C[t,z7']d; on
itself also gives rise to an injective Lie algebra homomorphism Der C[z, '] — g[oo.

Now the point is that E[oo has a one-dimensional universal central extension, and
restricting this central extension to the Lie subalgebras

g®Clr,t™'] and DerC[t,t7 1],

we obtain the central extensions corresponding to the affine Kac—-Moody and Vira-
soro algebras, respectively. !

I'More precisely, of their Laurent polynomial versions, but if we pass to a completion of glog. We
obtain in the same way the central extensions of the corresponding complete topological Lie algebras.
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The two-cocycle defining this central extension may be defined as follows. Let

us write the matrix A as
A+ A++
A__|Ay_ )’

Then the two-cocycle for the extensions is given by
y(4,B) =Tr(A4+B———B41A_-).

It is easy to check that the expression in brackets has finitely many non-zero entries,
and so the trace is well-defined. Since we can regard our Lie algebras as embedded
inside am, we obtain a central extension for each of them by using the central
extension of aoo. If we work out what these extensions are in our cases, they
turn out to be exactly the central extensions we have been using. This gives us an
explanation of the similarity between the structures of the Virasoro and Kac—Moody
central extensions.

3.2. Lie algebras associated to vertex algebras

Let us summarize where we stand now in terms of reaching our goal of describing
the center of the completed universal enveloping algebra U «(@).

We have constructed explicitly quadratic elements S, of Uk (9), the Segal—
Sugawara operators, which were our first candidates for central elements. Moreover,
we have computed in Section 3.1 the commutation relations between the S,’s and
0, and between the S,’s themselves. In particular, we saw that these operators
commute with g, when k = «,.

However, there is an important subtlety which we have not yet discussed. Our
computation in Section 3.1 gave the commutation relations between Fourier coef-
ficients of vertex operators coming from the vertex algebra V. (g). By definition,
those Fourier coefficients are defined as endomorphisms of V. (g), not as elements
of U «(@). Thus, a priori our computation is only valid in the algebra End V. (g), not
inU «(@). Nevertheless, we will see in this section that the same result is valid in
U «(@). In particular, this will imply that the Segal-Sugawara operators are indeed
central elements of U ().

This is not obvious. What is fairly obvious is that there is a natural Lie algebra
homomorphism U «(@) — End V,(g). If this homomorphism were injective, then
knowing the commutation relations in End Vi (g) would suffice. But precisely at the
critical level k =« this homomorphism is not injective. Indeed, the Segal-Sugawara
operators Sy, n > —1, annihilate the vacuum vector |0) € Vi, (g), and, because they
are central, they are mapped to 0 in End V.. (g). Therefore we need to find a way
to interpret our computations of the relations between Fourier coefficients of vertex
operators in such a way that it makes sense inside Uk (g) rather than End V. (g).
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In this section we follow closely the material of [Frenkel and Ben-Zvi 2004],
Sects. 4.1-4.3.

3.2.1. Lie algebra of Fourier coefficients. Let us define, following [Borcherds

1986], for each vertex algebra V, a Lie algebra U(V) that is spanned by formal

symbols Ap,), A € V,n € Z, and whose Lie bracket emulates formula (2.3-8).
Here is a more precise definition. Let U’ (V') be the vector space

VQC[tt']/Imd, where d=TQ®1+1Q0;.

We denote by A[,) the projection of 4 ® 1" € V ® C[t, t~' onto U'(V). Then
U’(V) is spanned by these elements modulo the relations

(TA)[,,] = —I’lA[n_l]. (3.2-1)
We define a bilinear bracket on U’(V') by the formula
m
[Am)> Bix)l = 2(:) ( " ) (A @) B)m-+k—n] (3:2-2)
n=

(compare with formula (2.3-8)). Using the identity
[T, A@wy) = —nAu-1)

in End V', which follows from the translation axiom, one checks easily that this
map is well-defined.

If V is Z—graded, then we introduce a Z—gradation on U’(V), by setting, for
each homogeneous element A of V', deg A[,) = —n + deg A — 1. The map (3.2-2)
preserves this gradation.

We also consider a completion U(V) of U’(V) with respect to the natural
topology on C[t, 7 !]:

UV)=(V®&C(t))/Imoa.

It is spanned by linear combinations ), > nr fnA[n], fn €C, A€V, N € Z, modulo
the relations which follow from the identity (3.2-1). The bracket given by formula
(3.2-2) is clearly continuous. Hence it gives rise to a bracket on U(V).

We have a linear map U(V) — End V,

D fnAm = Y faAm) =Res;— Y(4.2) [(2)dz,
n>N n>N
where f(z) =) ,>n fuz" € C(2).

Proposition 3.2.1. The bracket (3.2-2) defines Lie algebra structures on U’ (V') and
on U(V). Furthermore, the natural maps U'(V) — End V and U(V) — End V
are Lie algebra homomorphisms.
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Proof. Let us define U’ (V)o C U(V) as the quotient
UWV)=V/ImT =(V®1)/Ima,

so it is the subspace of U’(V') spanned by the elements A[q) only.
The bracket (3.2-2) restricts to a bracket on U’(V)y:

[A[o} Bloj] = (4 0) B)pa)- (3.2-3)

We first prove that it endows U’ (V') with the structure of a Lie algebra under the
defined bracket. We need to show that it is antisymmetric and satisfies the Jacobi
identity. Recall the identity

Y(A,2)B=e’TY(B,—z)4
from Proposition 2.3.2. Looking at the z~! coefficient gives
A(O)B = —B(O)A +T(--).

Taking the [0] part of this and recalling that we mod out by the image of T', we see
that

(A(0)B)1o] = —(Bo)4o]-
In other words, the bracket is antisymmetric.
The Jacobi identity is equivalent to

[Cloy- [4[07- Brojll = [[Clo1- Afog]: Bojl + [4[o1: [Clog Brojll-

The right hand side of this gives

((C0)4)0)B)o] + (A0)(CioyB))joy-

But from the commutation relations (2.3-8) for the Fourier coefficients of vertex
operators we know that

[C(0)> 4] = (C(0)4) (0)-

This shows the Jacobi identity.

We will now derive from this that the bracket (3.2-2) on U’(V) satisfies the
axioms of a Lie algebra by constructing a bigger vertex algebra W such that U’ (V')
is U’(W)q (which we already know to be a Lie algebra).

As C[t,t7'] is a commutative, associative, unital algebra with the derivation
T = —d;, we can makKe it into a commutative vertex algebra, as explained in
Section 2.2.2. Let W = V ® C[t, t '] with the vertex algebra structure defined in
the obvious way. Then U’(V) = U’'(W)o. We now show that formula (3.2-2) in
U’(V) coincides with formula (3.2-3) in U’(W)q. The latter reads

[(A®1")0). (BR1™)o)] = (A®1")(0)(B ®1™))[0]-
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Suppose that /() is an element of C[¢,#~!]. Then the vertex operator associated
to f(¢) is
Y(f(t).2) = mult(e*” /(1)) = mult(f(t + 2)),

where necessary expansions are performed in the domain |z| < |¢|. In our case this
means that we need the z~! coefficient of

Y(A4,2) Q@ (t +2)",

which is

m _
2 (n)A(") @I

n=0

Putting this together gives

[(A® ™)) (BR )] = > (,:Z)(A(n)B) & (k.

n=0

which coincides with formula (3.2-2) we want for U’ (V).

The fact that the map U’ (V) — End V is a Lie algebra homomorphism follows
from the comparison of formulas (2.3-8) and (3.2-2). The fact that the Lie bracket on
U’(V) extends to a Lie bracket on U (V') and the corresponding map U(V) —End V
is also a Lie algebra homomorphism follow by continuity. This completes the proof.
O

Given a vertex algebra homomorphism ¢ : V — V', we define a to be the map
U(V)— U'(V) sending A, — ¢(A)[,) (and extended by continuity). This is a
Lie algebra homomorphism. To see that, we need to check that

5([A[n], Bim))) = [a(A[n]), a(B[m])]-

Expanding the left hand side, using the definition of the bracket, and applying the
definition of ¢ to each side reduces it to

¢ (AmyB) = ¢(A) ()9 (B).

But this follows from the fact that ¢ is a vertex algebra homomorphism.

Thus, we obtain that the assignments V +> U’ (V') and V +> U(V) define functors
from the category of vertex algebras to the categories of Lie algebras and complete
topological Lie algebras, respectively.

Finally, we note that if V' is a Z-graded vertex algebra, then the Lie algebra U’ (V')
is also Z-graded with respect to the degree assignment deg A, = —n +deg 4 — 1.
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3.2.2. From vertex operators to the enveloping algebra. Let us now look more
closely at the Lie algebra U(V,(g)). By Theorem 2.2.2, the vertex operators
corresponding to elements of Vi (g) are finite linear combinations of the formal
power series

LT (z) e A T (2):

This means that we may think of elements of U(V,(g)) as finite linear combinations
of Fourier coefficients of these series. Each of these coefficients is, in general, an
infinite series in terms of the basis elements J¢ of g. However, one checks by
induction that each of these series becomes finite modulo the left ideal U «(g) -
g ® tVC[[t]], for any N > 0. Therefore each of them gives rise to a well-defined
element of U «(@). We have already seen that in the case of the Segal-Sugawara
elements (2.1-9): they are bona fide elements of U «(@).

Thus, we have a linear map V ® C((¢)) — Uy (9), and it is clear that it vanishes
on the image of d. Therefore we obtain a linear map U(V,(g)) — U, (@). It is not
difficult to show that it is actually injective, but we will not use this fact here. The
key result which will allow us to transform our previous computations from End V'
to U (@) is the following:

Proposition 3.2.1. The map U(V,(g)) — Uk (9) is a Lie algebra homomorphism.

The proof involves some rather tedious calculations, so we will omit it, referring
the reader instead to [Frenkel and Ben-Zvi 2004], Proposition 4.2.2.
Now we see that all of our computations in Section 3.1 are in fact valid in U ; (g).

Corollary 3.2.2. For k = k. the Segal-Sugawara operators Sy are central in
U, (9). For k # k. they generate the Virasoro algebra inside U . (g).

3.2.3. Enveloping algebra associated to a vertex algebra. Here we construct an
analogue of the topological associative algebra U « (@) for an arbitrary Z-graded
vertex algebra V.

Note that the image of U(Vi(g)) in U, (@) is not closed under multiplication.
For instance, U(V(g)) contains g as a Lie subalgebra. It is spanned by 4, =
(A-1]0))[n). A € g.n € Z, and (|0))[—1]. But U(V,(g)) does not contain products
of elements of g, such as 4, By. In fact, all quadratic elements in U(V,(g)) are
infinite series.

However, we can obtain U (9) as a completion of the universal enveloping
algebra of U(V,(g)) modulo certain natural relations. An analogous construction
may in fact be performed for any Z-graded vertex algebra V' in the following way.
Denote by U(U(V')) the universal enveloping algebra of the Lie algebra U(V).
Define its completion

UUu)) =lim UUV))/In,
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where I}y is the left ideal generated by A, A € Vi, n = N +m.2 LetU (V') be the
quotient of U (U(V')) by the two-sided ideal generated by the Fourier coefficients
of the series

Y[A_1)B.z]—:Y[A,Z]Y[B,z],  A,BeV,

Y[A.z]=) Apz",

nez
and the normal ordering is defined in the same way as for the vertex operators
Y(4,z).

Clearly, U (V) is a complete topological associative algebra (with the topology
for which a basis of open neighborhoods of 0 is given by the completions of the
left ideals I, N > 0). The assignment V' +— U (V') gives rise to a functor from
the category of vertex algebras to the category of complete topological associative
algebras.

The associative algebra U (V') may be viewed as a generalization of the completed
enveloping algebra Uk gj) because, as the following lemma shows, for V = V. (g)
we have U (Vi (g)) = U, (g).

Lemma 3.2.2. There is a natural isomorphism U (Vie(g)) ~ Uk (@) for all k € C.

where we set

Proof. We need to define mutually inverse algebra homomorphisms between
U (Ve(g)) and U (g). The Lie algebra homomorphism U(V,(g)) — U «(3) of
Proposition 3.2.1 gives rise to a homomorphism of the universal enveloping algebra
of the Lie algebra U(Vi(g)) to Uy (g). It is clear that under this homomorphism
any element of the ideal /p is mapped to the left ideal of U(V,(g)) generated by
Ay, A €g,n> M, for sufficiently large M . Therefore this homomorphism extends
to a homomorphism from the completion of the universal enveloping algebra of
U(Ve(g)) to Uk (). But according to the definitions, this map sends the series
Y[A(~1)B, z] precisely to the series :Y[A4, Z]Y[B z]: for all A, B € Vi.(g). Hence
we obtain a homomorphism U (Vie(g)) — U «(@).

To construct the inverse homomorphism, recall that g is naturally a Lie subalgebra
of U(Vi(g)). Hence we have a homomorphism from Uy (g) to the universal envelop-
ing algebra of the Lie algebra U(V (g)). This homomorphism extends by continuity
to a homomorphism from U « (@) to the completion of the universal enveloping
algebra of U (Vi (g)), and hence to U (Vi (g)). Now observe that the resulting map
U «(@) — U (Vi (g)) is surjective, because each series Y[4, z] is a linear combination
of normally ordered products of the generating series J¥(z) = >, o, Joz ™"~ .
of the elements J of g. Furthermore, it is clear from the construction that the

2Here we correct an error in [Frenkel and Ben-Zvi 2004], Section 4.3.1, where this condition was
written as 7 > N'; the point is that deg A[,] = —n + m — 1 (see the end of Section 3.2.1).
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composmon U K(g) U (Vie(g)) > U K(g) is the identity. This implies that the
map U « (@) — U (Vi (g)) is also injective. Therefore the two maps indeed define
mutually inverse isomorphisms. O

3.3. The center of a vertex algebra

According to Corollary 3.2.2, the Segal-Sugawara elements are indeed central
elements of the completed enveloping algebra U « (@) for a special level k = k..
Now we would like to see if there are any other central elements, and, if so, how to
construct them.

3.3.1. Definition of the center. In order to do this we should think about why the
elements we constructed were central in the first place.

Lemma 3.3.1. The elements Ay, A € Vi(g).n € Z, of Uk (9) are central if A is
annihilated by all operators J;! withn = 0.

Proof. This follows from the commutation relations formula (3.2-2). O

The elements JZ, n > 0, span the Lie algebra g[[¢]]. This leads us to define the
center 3(Vi(g)) of the vertex algebra V. (g) as its subspace of g[[¢]]-invariants:

3(Ve(9)) = Vie ()11, (3.3-1)

In order to generalize this definition to other vertex algebras, we note that any

element B € 3(Vi(g)) satisfies A(,) B =0 for all A € V,.(g) and n > 0. This follows

from formula (2.2-8) and the definition of normal ordering by induction on m.
Thus, we define the center of an arbitrary vertex algebra V' to be

E(V)={BeV|AyB=0forall A€V,n>0j.
By the OPE formula (2.3-7), an equivalent definition is
¥(V)={BeV|[Y(4,2),Y(B,w)]=0forall A€ V}.

Formula (3.2-2) implies that if B € Z(V'), then By, is a central element in U (V')
and in U (V) for all n € Z.

The space %(V) is clearly non-zero, because the vacuum vector |0) is contained
in (V).
Lemma 3.3.2. The center %(V') of a vertex algebra V is a commutative vertex
algebra.

Proof. We already know that |0) is in the center. A simple calculation shows
that 7" maps %(V) into Z(V'):

A(n)(TB) = T(A(n)B) - [T, A(n)]B = nA(,,_l)B =0.
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Let B, C € #(V) be central. Then
AmyBm)C = By Am)C + [An). Bm)lC = 0.

Therefore #(V) is closed under the state-field correspondence. The commutativity
is obvious. 0

3.3.2. The center of the affine Kac—Moody vertex algebra. So our plan is now to
study the center of the vertex algebra Vi (g) and then to show that we obtain all
central elements for U () from the elements in %(V,(g)) by taking their Fourier
coefficients (viewed as elements of U @)).

Since Vi (g) is much smaller than U «(9), this looks like a good strategy. We
start with the case when x # k..

Proposition 3.3.3. If k # k., then the center of Vi.(g) is trivial, i.e.,
E(Vie(9)) =C-0).

Proof. Suppose that 4 is a homogeneous element in the center %(V,(g)). Let
S be the vector introduced above generating the Virasoro field

Y(S.z2) = Z L,z "2,

nez

Recall that we need x # k. for this element to be well-defined as we needed to
divide by this factor. Now, if B € #(Vi(g)), then A,y B = 0 for all 4 € Vi.(g)
and n > 0, as we saw above. In particular, taking 4 = S and n = 1 we find that
LoB =0 (recall that Ly = §(1)), But L is the grading operator, so we see that B
must have degree 0, hence it must be a multiple of the vacuum vector |0). O

Note that a priori it does not follow that the center of U « (@) for K # K. is trivial.
It only follows that we cannot obtain non-trivial central elements of U «(g) from
the vertex algebra Vi (g) by the above construction. However, we will prove later,
in Proposition 4.3.9, that the center of U, (9) is in fact trivial.

From now on we will focus our attention on the critical level ¥ = k.. We will see
that the center of U «. (@) may be generated from the center of the vertex algebra
V. (g). From now on, in order to simplify the notation we will denote the latter by
3(g), so that

3(@) = Z(Vie (9)).

We now discuss various interpretations of 3(g).

The commutative vertex algebra structure on 3(g) gives rise to an ordinary
commutative algebra structure on it. Note that it is Z-graded. It is natural to ask
what the meaning of this algebra structure is from the point of view of V. (g).
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According to (3.3-1), we have

3@) = Vi, (@)1, (3.3-2)

This enables us to identify 3(g) with the algebra of g, .-endomorphisms of Vi (g).
Indeed, a g[[¢]]-invariant vector A € Vi (g) gives rise to a non-trivial endomorphism
of V', which maps the highest weight vector vy, to 4. On the other hand, given an
endomorphism e of Vi (g), we obtain a g[[¢]]-invariant vector e(|0)). It is clear that
the two maps are inverse to each other, and so we obtain an isomorphism

Vee @¥V ~ Ends Vi (0).

Now let A; and A4, be two g[[¢]]-invariant vectors in V. (g). Let e; and e; be
the corresponding endomorphisms of Vj..(g). Then the image of |0) under the
composition e e, equals

e1(Az) =e10(A42)(=1)l0) = (A2)(=1)cer(|0)) = (42)(1)A1.

The last expression is nothing but the product 4, A; coming from the commutative
algebra structure on 3(g). Therefore we find that as an algebra, 3(g) is isomorphic

to the algebra Endﬁ Vi.(g) with the opposite multiplication. But since 3(g) is

commutative, we obtain an isomorphism of algebras
3(8) >~ Endg Vi (0). (3.3-3)

In particular, we find that the algebra EndA V. (g) is commutative, which is a

priori not obvious. (The same argument also works for other levels Kk, but in those
cases we find that 3(V(g)) >~ EndA Vie(g) = C, according to Proposition 3.3.3.)

Finally, we remark that Vj._.(g) is 1somorph1c to the universal enveloping algebra
U(g®t~'C[t~!]) (note however that this isomorphism is not canonical: it depends
on the choice of the coordinate #). Under this isomorphism, we obtain an injective
map

3@ = Uge'cr').

It is clear from the above calculation that this is a homomorphism of algebras. Thus,
3(g) may be viewed as a commutative subalgebra of U(g ® t~'C[t~1]).

3.3.3. The associated graded algebra. Our goal is to describe the center 3(g) of
Vi.(g). It is instructive to describe first its graded analogue. Recall that in Sec-
tion 2.2.5 we defined a filtration on Vi (g) that is preserved by the action of g, and
such that the associated graded space is

gr Vie(g) = Sym(g(@))/gllz1D-
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The topological dual space to g((¢))/g[[¢]] is naturally identified with the space
g*[[t]]dt with respect to the pairing

(p(t)dt, A(1)) = Res;=o (¢ (1), A(1))d1.

This pairing is canonical in the sense that it does not depend on the choice of
coordinate ¢.

However, to simplify our formulas below, we will use a coordinate ¢ to identify
g*[[t]ldt with g*[[¢]]. This is the inverse limit of finite-dimensional vector spaces

g*[[1]] = lim g* ® Cl[¢])/ (™).

and so the algebra of regular functions on it is the direct limit of free polynomial
algebras

Fun g*([¢]] = lim Fun(g* ® C[l«]]/(t™)).

Since g*[[¢]] is isomorphic to the topological dual vector space to g(¢))/g[[t]], we
have a natural isomorphism

Sym(g((#))/all#]]) ~ Fun g*[[¢]],
and so we have
gr Vie(g) ~ Fun g”[[7]].
Now the filtration on V., (g) induces a filtration on 3(g). Let
gr3(g) C Fung™[[7]]

be the associated graded space. The commutative algebra structure on 3(g) gives
rise to such a structure on gr3(g). Note also that the Lie algebra g[[¢]] acts on itself
via the adjoint representation, and this induces its action on Fun g*[[7]].

Lemma 3.3.1. We have an injective homomorphism of commutative algebras

grg(ﬁ) s (Fung*[[t]])g[[t]] )

Proof. The fact that the embedding gr3(g) < Fun g*[[¢]] is a homomorphism
of algebras follows from the isomorphism (3.3-3).
Suppose now that A € Vi (g)<;, and denote the projection of A onto

gr; (Vi (9) = Vi, (9)<i / Vi, (g)s(i—l)
by Symb; (A4). It is easy to see that
Symb; (x - A) = x - Symb; (A) for x € g[[¢]].

If A € 3(g), then x- 4 =0 and so x - Symb;(A) = 0. O
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Thus, the symbols of elements of 3(g) are realized as g[[¢]]-invariant functions on
g*[[¢]]. We now begin to study the algebra of these functions, which we denote by

Inv g*[[7]] = (Fun g*[[¢]]) ).

Note that the action of the Lie algebra g[[¢]] on Fun g*[[¢]] comes from the
coadjoint action of g on g*. This action may be exponentiated to the adjoint action
of the group G[[t]], where G is the connected simply-connected Lie group with Lie
algebra g. Therefore G[[¢]] acts on Fun g*[[¢]]. Since G[[¢]] is connected, it follows
that

Inv g*[[¢]] = (Fun g*[[¢]}) 1.

If we can work out the size of this algebra of invariant functions, then we will be
able to place an upper bound on the size of 3(g) and this will turn out to be small
enough to allow us to conclude that the elements we subsequently construct give us
the entire center of Vi, (g) (and ultimately of U . (@))-

3.3.4. Symbols of central elements. 1t is instructive to look at what happens in the
case of a finite-dimensional simple Lie algebra g. In this case the counterpart of 3(g)
is the center Z(g) of the universal enveloping algebra U(g) of g. Let gr U(g) be
the associated graded algebra with respect to the Poincaré-Birkhoff—Witt filtration.
Then

grU(g) = Symg = Fung®.

Let gr Z(g) be the associated graded algebra of Z(g) with respect to the induced
filtration. In the same way as in Lemma 3.3.1 we obtain an injective homomorphism

gr Z(g) < Inv g* = (Fung*)? = (Fun g*)G.

It is actually an isomorphism, because U(g) and Sym g are isomorphic as g-
modules (with respect to the adjoint action). This follows from the fact that both
are direct limits of finite-dimensional representations, and there are no non-trivial
extensions between such representations.

Recall that by Theorem 2.1.1 we have

Z(g) = C[Pili=1,...-

Let P; be the symbol of P; in Fun g*. Then

Inv g* = C[Pili=1,...¢-
According to Theorem 2.1.1, deg P; = d; + 1.
We will now use the elements P; to create a large number of elements in
Inv g*[[¢]]. We will use the generators 7?,, n <0, of Sym(g((#))/gl[¢]]) = Fun g*[[z]],
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which are the symbols of J?|0) € Vi (g). These are linear functions on g*[[¢]]
defined by the formula

Tn(@(1)) = Res;—o(p(1), J4)"dt. (3.3-4)

We will also write

Suppose that we write P; as a polynomial in the linear elements, P; (7”). Define
a set of elements P;, € Fun g*[[¢]] by the formula

Pi(J @)= Pinz """

n<o0
Note that each of the elements P;, is a finite polynomial in the 7Z’s.
Lemma 3.3.4. The polynomials P; , are in Inv g*[[]].

The proof is straightforward and is left to the reader.
Thus, we have a homomorphism

C[Fi,n]i=l,...,€;n<0 —> Inv g*[[t]]

We wish to show that this is actually an isomorphism, but in order to do this we
need to develop some more technology.

3.4. Jet schemes

Let X be a complex algebraic variety. A jet scheme of X is an algebraic object
that represent the “space of formal paths on X, i.e., morphisms from the disc
D = Spec C[[¢]] to X. We wish to treat it as a scheme, i.e., something glued from
affine algebraic varieties defined by polynomial equations in an affine space. In
this section we give a precise definition of these objects. We are interested in these
objects because of the simple fact that g*[[¢]] is the jet scheme of g*, considered as
an affine algebraic variety. The technique of jet schemes will allow us to describe
the algebra of invariant functions on g*[[¢]].

3.4.1. Generalities on schemes. In algebraic geometry it is often convenient to
describe the functor of points of an algebraic variety (or a scheme). For example,
an affine algebraic variety X over a field k is completely determined by the ring of
regular functions on it. Let us denote it by Fun X, so we can write X = Spec(Fun X).
Now, given a k-algebra R, we define the set of R-points of X', denoted by X (R), as
the set of morphisms Spec R — X . This is the same as the set of homomorphisms
Fun X — R of k-algebras.
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If R =k, we recover the usual notion of k-points of X, because each homo-
morphism Fun X' — k corresponds to taking the value of a function at a point
x € X (k). However, the set of k-points by itself does not capture the entire
structure of X in general. For example, if k is not algebraically closed, the set
X (k) may well be empty, but this does not mean that X is empty. Consider the
case of X = Spec R[x]/(x? + 1). Then X (R) is empty, but X(C) consists of one
element. Therefore we see that we may well lose information about X if we look at
its k-points. If X is an affine algebraic variety, then it is the algebra Fun X which
captures the structure of X, not the set X' (k). For a general algebraic variety X, it
is the structure of a scheme on X', which essentially amounts to a covering of X by
affine algebraic varieties, each described by its algebra of regular functions.

Now, fixing X, but letting the k-algebra R vary, we obtain a functor from the
category of commutative k-algebras to the category of sets which satisfies some
natural conditions (it is a “sheaf” on the category of k-algebras, in the appropriate
sense). These conditions ensure that it extends uniquely to a functor from the
category of schemes over k (as those are the objects “glued” from the affine
algebraic varieties) to the category of sets. This is what is referred to as the “functor
of points.”

One defines in a similar way the functor of points of an arbitrary algebraic variety
X (not necessarily affine) over k. An important result is that this functor determines
X uniquely (up to isomorphism). Such functors from the category of k-algebras (or
from the category of schemes over k) to the category of sets are called representable,
and in that case we say that the variety X represents the corresponding functor.
Thus, if we want to define a “would be” algebraic variety X, we do not lose any
information if we start by defining its “would be” functor of points. A priori, it may
be unclear whether the functor is a functor of points (i.e., that it may be realized
by the above construction). So the question we need to answer is whether this
functor is representable. If it is, then the object that represents it is the sought-after
algebraic variety.

3.4.2. Definition of jet schemes. Let us see now how this works in the case of jet
schemes. In this case the “would be” functor of points is easy to define. Indeed, let
X is an algebraic variety, which for definiteness we will assume to be defined over C.
Then an R-point of X is a morphism Spec R — X, or equivalently a homomorphism
of algebras Fun X’ — R. An R-point of the “would be” jet scheme JX should be
viewed as a morphism from the disc over Spec(R), which is Spec(R([¢]]), to X
Thus, we define the functor of points of J X as the functor sending a C-algebra R to
the set of morphisms Spec(R|[[¢]]) — X, and homomorphisms R — R’ to obvious
maps between these sets. It is not difficult to see that this functor is a “sheaf,” and
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so in particular extends in a unique way to the category of all schemes over C. In
what follows we will just look at this functor on the category of C-algebras.

If X is an affine variety, then a morphism Spec R[[¢]] — X is the same as a
homomorphism Fun X — R[[¢]], so we obtain a very concrete realization of the
“would be” functor of points of the set scheme JX.

For example, suppose that X is the affine space AY. Choosing coordinate

functions x,..., Xy on AN | we obtain that Fun AN = C[x1,...,xn]. In other
words, AV = Spec C[x1, ..., xn]. Thus, C-points of AV are homomorphisms ¢ :
Cl[x1,...,xny]— C. Those are given by n-tuples of complex numbers (ay, ..., ay),

such that ¢ (x;) = a;, as expected. Likewise, its R-points are n-tuples of elements
of R.

By definition, the set of R-points of the jet scheme JAY should now be given
by homomorphisms

Clx1s...,xn]— RJ[z]].

Such a homomorphism is uniquely determined by the images of the generators x;,
which are now formal power series

ai(t)=) aint™'.  ain€Ri=1..N (3.4-1)
n<o0

(the indices are chosen so as to agree with the convention of our previous formulas).
Note that there are no conditions of convergence on the formal power series. In
other words, it is really “formal” paths that we are describing.

We can equivalently think of the collection of N formal power series as a
collection of all of their Fourier coefficients. Hence the set of R-points of JAN is

{aineR|i=1,...,N;n<0}.
The corresponding functor is representable by
JAN E Spec Clxinli=1,... Nin<o-

Thus we obtain the definition of the jet scheme JAYN of AN . As expected, JAY is
an infinite-dimensional affine space (inverse limit of finite-dimensional ones).

Suppose now that we have a finite-dimensional affine algebraic variety X'. What
does its jet scheme look like? We may write

X = Spec (C[x1,...,xN]l/{(F1,..., Fpm)),

where the F;’s are polynomials in the variables xq, ..., xp. This means that the
complex points of X are n-tuples of complex numbers (aq, ...,ay) satisfying the
equations

Fi(ai,...,an)=0 foralli.
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By definition, the set of R-points of the jet scheme JX of X is the set of
homomorphisms

@[Xl,...,XN]/ (Fl,...,FM) —)R[[l]]

Such a homomorphism is again uniquely determined by the images of the x;’s
which are formal power series @;(¢) as in formula (3.4-1), but now they have to
satisfy the equations

Fi(a1(t),....an(t))=0, i=1,...,N. (3.4-2)

We obtain the equations on the Fourier coefficients a; , by reading off the coefficients
of t™.

A compact way to organize these equations is as follows. Define a derivation T’
of the algebra C[x; ;] by the formula

T(Xjpn)=—nxj 1.

Let us replace x; by x; _; in the defining polynomials F; and call these F; again.
Then the equations that come from (3.4-2) are precisely

T"F; =0, i=1,...,N;:m>0.

Therefore we find that this functor of points is representable by the scheme

JX = Spec (CLlimt,...Nm<0/ (T Fi)ioy rpmso) -

This is the jet scheme of X.

In particular, we see that the algebra of functions on JX carries a derivation 7,
inherited from C[x; n]j=1,...,N;n<0. Therefore it is a commutative vertex algebra.

Now we have the definition of the jet scheme of an arbitrary affine scheme. What
about more general schemes? An arbitrary scheme has a covering by affine schemes.
To define the jet scheme of X we simply need to work out how to glue together
the jet schemes for the affine pieces. For example P! can be decomposed into two
affine schemes A! UA!, where these are the complements of oo and 0 respectively.
Therefore they are given by Spec(C[x]) and Spec(C[y]) with identification given by
x <> y~1. We already know how to get the jet schemes of these affine components.
The obvious way to generalize the gluing conditions is to substitute formal power
series into them, i.e.,

x(t) «<— y()~ .

In order to write y(¢)~! as a formal power series in ¢ it is only necessary to invert
y_1, which is invertible on the overlap of the two affine lines in P!. Therefore this

formula is well-defined on the overlap, and it glues together the jet schemes of the
two affine lines into the jet scheme of P!,
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A similar statement is true in general and makes the gluing possible (the only
difficulties come from the inverted variables, but these are compatible as they were
compatible for the original scheme). Therefore we have constructed the scheme
JX associated to any scheme X (of finite type).

Let

Dy = Spec(Cl[7]}/ ("))

be the nth order neighborhood of a point. We can construct nth order jet schemes
Jn X which represent the maps from Dj to X. The natural maps D,_; — D, give
rise to maps J, X — J,—1 X. We may then represent the (infinite order) jet scheme
J X as the inverse limit of the finite jet schemes:

JX =lim J, X.
<«

This gives a realization of the jet scheme as an inverse limit of schemes of finite
type.

The following lemma follows immediately from the criterion of smoothness: a
morphism ¢ : X — Y of schemes of finite type over C is smooth if and only if
for any C-algebra R and its nilpotent enlargement Ry, (i.e., a C-algebra whose
quotient by the ideal generated by nilpotent elements is R) and a morphism

p :Spec(R) — Y,
which lifts to X via ¢, any extension of p to a morphism
Spec(Rpip) = ¥

also lifts to X.
We will say that a morphism of C-schemes X — Y is surjective if the corre-
sponding map of the sets of C-points X (C) — Y (C) is surjective.

Lemma 3.4.1. [f a morphism ¢ : X — Y is smooth and surjective, then the corre-
sponding morphisms of jet schemes Jy,¢ : JuX — J,Y and J¢ : JX — JY are
(formally) smooth and surjective.

3.4.3. Description of invariant functions on Jg. We now use the notion of jet
schemes to prove the following theorem about the invariant functions on g*[[z]],
which is due to A. Beilinson and V. Drinfeld [1997] (see also Proposition A.1 of
[Mustata 2001]). Recall that g is a simple Lie algebra of rank £.

Theorem 3.4.2. The algebra Inv g*([t]] is equal to C[P; n)i=1..... £;n<0-

Proof. Recall that Inv g*[[¢]] is the algebra of G[[¢]]-invariant functions on g*[[¢]].
In terms of jet schemes, we can write g*[[¢]] = Jg*, G[[t]] = J G, and so the space
Inv g*[[¢]] = (Fun Jg*)? ¢ should be thought of as the algebra of functions on the
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quotient Jg*/JG. Unfortunately, this is not a variety, as the structure of the orbits
of JG in Jg* is rather complicated.

More precisely, define % to be Spec Inv g* = Spec@[?,-]ﬁl,.__,g. Thus, % is the
affine space with coordinates ?,-,i = 1,...,L. The inclusion Inv g* <> Fung*
gives rise to a surjective map p : g* — P. The group G acts along the fibers, but
the fibers do not always consist of single G-orbits.

For example, the inverse image of 0 is the nilpotent cone. Let us identify g
with g* by means of a non-degenerate invariant inner product. Then in the case
of g = sl, the nilpotent cone consists of all nilpotent n x n matrices in sl,,. The
orbits of nilpotent matrices are parameterized by the Jordan forms, or, equivalently,
partitions of 7. There is one dense orbit consisting of matrices with one Jordan
block and several smaller orbits corresponding to other Jordan block forms. It is
these smaller orbits that are causing the problems. In particular, the morphism
g* — P is not smooth. So we throw these orbits away by defining the open dense
subset of regular elements

g = {x € g% | dim gy = £}

where g, is the centralizer of x in g.3
The map obtained by restriction

Preg : Oreg —> P

is already smooth. Furthermore, it is surjective and each fiber is a single G-orbit
[Kostant 1963].
Applying the functor of jet schemes, we obtain a morphism

IPreg I Oreg —> J P,
which is (formally) smooth and surjective, by Lemma 3.4.1. Here
JP = Spec (D[?i,n]i=l,...,€;n<0

is the infinite affine space with coordinates ?i,n,i =1,....4;n<0.
We want to show that the fibers of Jpy; also consist of single J G-orbits. To
prove that, consider the map

* * *
G X Breg — Breg X Ireg:

This is again a smooth morphism. But note now that its surjectivity is equivalent to
the fact that the fibers of g;“eg —> P consist of single orbits. Taking jet schemes,

3This is the minimal possible dimension the centralizer can have.



3.5. THE CENTER IN THE CASE OF sl 87

we obtain a morphism
JG % Jgieg — Jgfegjxg)]g;"eg.

It is (formally) smooth and surjective by Lemma 3.4.1. This shows that each fiber
of Jpreg 18 a single J G-orbit.

This implies that the algebra of J G-invariant functions on J g;“eg is equal to
Fun(J?) = G:[Pi,n]i=1 ..... 4;n<0-

To be precise, we prove first the corresponding statement for finite jet schemes.
For each N > 0 we have a morphism Jy g;keg — JNP, equipped with a fiberwise
action of JyG. We obtain in the same way as above that each fiber of this mor-
phism is a single Jn G-orbit. Proposition 0.2 of [Mumford 1965] then implies
that the algebra of J G-invariant functions on Jy gl’.“eg is equal to Fun(Jy %) =

ClPinli=1,.. .6;~N-1<n<0-

Now, any J G-invariant function on J gfeg comes by pull-back from a JyG-
invariant function on Jygy,. Hence we obtain that the algebra of JG-invariant
functions on Jg;"eg is equal to Fun(J%) = (D[?i,n]i=1,...,ﬁ;n<0-

But regular elements are open and dense in g*, and hence J Ng;“eg is open
and dense in Jyg*, for both finite and infinite N. Therefore all functions on
Jng* are uniquely determined by their restrictions to Jy g;“eg, for both finite and
infinite N. Therefore the algebra of Jn G-invariant functions on Jyg* is equal to

Fun(JNP) = C[Pinli=1,.. .4;~N—1<n<o0- O

3.5. The center in the case of sl,

Thus, we have now been able to describe the graded analogue gr 3(g) of the center
3(9)-

It is now time to describe the center 3(g) itself. We start with the simplest case,
when g = sl,.

3.5.1. Firstdescription. We know from Lemma 3.3.1 that there is an injection from
the associated graded gr 3(g) of the center 3(g) of Vi (g) into the algebra Inv g*[[¢]]
of invariant functions on g*[[¢]]. We have just shown that the algebra Inv g*[[¢]] is
equal to the polynomial ring C[ﬁi,n]i=l,...,€;n<0- In the case of g = sl,(C) this
is already sufficient to determine the structure of the center 3(;[2) of the vertex

algebra Vi (sl;). Namely, we prove the following:

Theorem 3.5.1. The center 3(5/:\[2) of the vertex algebra Vi (sl) is equal to
C[Sn]nf—z |0> 0

Here, the Sy, ’s are the Segal-Sugawara operators (note that the operators Sy, n >
—1, annihilate the vacuum vector |0)).
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Proof. We already know that the Segal-Sugawara operators S, n € Z, are central
elements of the completed enveloping algebra of critical level. Therefore we have a
map

ClSnlnz—2 10) = Vi, (sl2)*2MA = 5(aL). (3.5-1)

We need to prove that this map is an equality, i.e., the operators Sj,,n < —2, are
algebraically independent and there are no other elements in 3(sl,). For that it is
sufficient to show that the map of associated graded algebras is an isomorphism.

Recall that 1
Sn=7 SN I (3.5-2)
a j+k=n
For n < —2 some of these terms will have both j and k negative and the rest will
have at least one of j and k positive; the former will act

V(g)<i — V(@)<i+2)

(because they are creation operators) and the rest act

Vg)<i — V(@ <i+1)

(because they have at least one annihilation operator). Hence the latter terms will be
removed when looking at the symbol, and we find that the symbol of the monomial
Sny .- Sn,, withn; <—-2isequal to Py ,,41... P1p,,+1. Here

Pi) = Y Pip ™ =2 T @70
n<0 a

is the first (and the only, for g = sl,) of the generating series P;(z) considered
above.

In particular, we see that the map (3.5-1) is compatible with the natural filtrations,
and the corresponding map of associated graded spaces factors as follows

gr C[Snln=—2 10) = C[Puluz—z — (gr Vi, (512)) ™2 ~ Inv(s,) *[[1]],

where the first map sends S, +— ?1,,,. We obtain from Theorem 3.4.2 that the
second map is an isomorphism. Therefore we have

gr C[Snln=—2 10) = Inv(sly) *[[]].
But we know that
gr C[Snln=—2 10) C gr3(sly) C Inv (s1,)*[[7]]

(see Lemma 3.3.1). Therefore both of the above inclusions are equalities, and
so gr C[Sy]n<—2 |0) = grj(sl,). Since we know that C[S,],<—2 |0) C 3(sl), this
implies that C[Sy],<—2 [0) = 3(sl>). |
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A similar result may be obtained for the center of the completed universal
enveloping algebra U Ke (;[2): the center is topologically generated by S, n € Z (so
this time all of the S),’s are used). The argument is essentially the same, but we
will postpone this proof till Section 4.3.2.

We will see below that both of these results remain true in the case of a more
general Lie algebra g. In other words, we will show that 3(g) is “as large as possible,”
that is, gr3(g) = Inv g*[[¢]]. This is equivalent to the existence of central elements
S;i € 3(g) C Vi.(g), whose symbols are equal to 7,-,_1 € Inv g*[[¢]]. It will then
follow in the same way as for g = sl, that

3©@) = CIS;i [n]li=1.....;n<0

where the S; [,;)’s are the Fourier coefficients of the formal power series Y[S;, z].
Moreover, it will follow that the center of U, «. (@) is topologically generated by
Si i = l,....0;neZ.

We have already constructed the first of these elements; namely, the quadratic
element %J @, Ja,~110) € 3(g) whose symbol is %7‘117&_1, corresponding to the
quadratic Casimir element P ;. Unfortunately, the formulas for the central elements
corresponding to the higher order Casimir elements Fi,—l ,i > 1, are unknown in
general (the leading order terms are obvious, but it is finding the lower order terms
that causes lots of problems). So we cannot prove this result directly, as in the case
of g = sl,. We will have to use a different argument instead.

3.5.2. Coordinate-independence. Our current approach suffers from another kind
of deficiency: everything we have done so far has been coordinate-dependent. We
started with a Lie algebra g and constructed the Lie algebra g as the central extension
of g ® C((z)). However, there are many local fields which are isomorphic to the
field C((¢)), but not naturally.

For example, let X be a smooth algebraic curve over C, and x any point on X.
The choice of x gives rise to a valuation |- |, on the field of rational functions C(.X).
The valuation is defined to be the order of vanishing of f at x and is coordinate-
independent. The completion of the algebra of functions under this valuation is
denoted by ¥ . Let us pick a local coordinate at x, that is, a rational function
vanishing to order 1 at x (more generally, we may choose a “formal coordinate,”
which is an arbitrary element of J{ vanishing at x to order 1). If we denote this
function by 7, then we obtain a map C((¢)) — ¥ which is an isomorphism. Thus,
we identify Jx with C((¢)) for each choice of a coordinate at x. But usually there is
no preferred choice, and therefore there is no canonical isomorphism H, >~ C((7)).

However, all of the objects that we have discussed so far may be attached
canonically to ¥, without any reference to a particular coordinate. Indeed, we
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define the affine Kac—-Moody algebra g,  attached to ¥ as the central extension
0—Cl—gx —g®Hx—0
given by the two-cocycle
c(A® f.B®g) =—«(A, B)Resx(f dg).

This formula is coordinate-independent as f dg is a one-form, and so its residue is
canonically defined. We then define a coordinate-independent vacuum g, ,,-module
associated to the point x as

o~

Ve(@)x = Indse gc,C. (3.5-3)

where Oy is the ring of integers of J (comprising those elements of I, which
have no pole at x).
Now our task is to describe the algebra

3@x = End/g\x Vie (8)x = (V. (9)x)g®@x, (3.5-4)

and we should try to do this in a coordinate-independent way. Unfortunately,
everything we have done so far has been pegged to the field C((z)), and so to
interpret our results for an arbitrary local field 7, we need to pick a coordinate
t at x. The problem is that we do not know yet what will happen if we choose
another coordinate #’. Therefore at the moment we cannot describe 3(g)x using
Theorem 3.5.1, for example, because it does not describe the center in intrinsic
geometric terms. For that we need to know how the Segal-Sugawara operators
generating the center transform under changes of coordinates. We will address
these questions in the next section.

3.5.3. The group of coordinate changes. We start off by doing something which
looks coordinate-dependent, but it will eventually allow us to do things in a coordi-
nate-independent way.

Let 9 denote the complete topological algebra C((¢)), and O = CJ[[¢]] with the
induced topology. We study the group of continuous automorphisms of 0, which
we denote by AutO. It can be thought of as the group of automorphisms of the
disc D = Spec 0.* As ¢ is a topological generator of the algebra 0, a continuous
automorphism of O is determined by its action on 7. So we write

p(t) = ag +ait+ar®+....

4Sometimes D is referred to as a “formal disc,” but we prefer the term “disc,” reserving “formal
disc” for the formal scheme SpfO (this is explained in detail in Appendix A.1.1. of [Frenkel and
Ben-Zvi 2004]).
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In order for this to be an automorphism it is necessary and sufficient that ag = 0
and a; # 0. Note the composition formula in Aut 0:

p(1) o ¢(t) = ¢(p(2)).

Let x be a smooth point of a complex curve X. We have the local field ¥, and
its ring of integers O defined in the previous section. The ring Oy is a complete
local ring, with the maximal ideal my consisting of those elements that vanish at x.
By definition, a formal coordinate at x is a topological generator of m,. We define
Auty to be the set of all formal coordinates at x. The group Aut O naturally acts
on Aut, by the formula ¢ — p(¢). Note that according to the above composition
formula this is a right action.

Recall that if G is a group, then a G-torsor is a non-empty set S with a right
action of G, which is simply transitive. By choosing a point s¢ in S, we obtain an
obvious isomorphism between G and S : g — g(s¢). However, a priori there is no
natural choice of such a point, and hence no natural isomorphism between the two
(just the G-action).

Given a G-torsor S and a representation M of G we can twist M by S by
defining

M=Sx M.
G

It is instructive to think of a G-torsor S as a principal G-bundle over a point. Then
J is the vector bundle over the point associated to the representation M .

Now observe that the above action of Aut O makes Hut, into an Aut O-torsor.
Hence we can twist representations of AutO. The most obvious representations are
CJ[z]] and C((2)). Not surprisingly, we find that

Ox =sluty x Clll.  9x=sluty x C(). (3.5-5)

In other words, we can recover the local field K and its ring of integers O from
C((?)) and CJ[¢]] using the action of the group AutO. This gives us a hint as to how
to deal with the issue of coordinate-independence that we discussed in the previous
section: if we formulate all our results for the field C((¢)) keeping track of the action
of its group of symmetries Aut O, then we can seamlessly pass from C((¢)) to an
arbitrary local field ¥, by using the “twisting by the torsor” construction. In order
to explain this more precisely, we discuss the types of representations of Aut O that
we should allow.

3.5.4. Action of coordinate changes. Let Auty O be the subgroup of AutO con-
sisting of those p(¢) as above that have a; = 1. The group Aut O is the semi-direct
product

Aut0 = C* x Auty 0,
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where C* is realized as the group of rescalings ¢ +— at.
Denote the Lie algebra of AutO (resp., Auty O) by Derg O (resp., Der4 0). It is
easy to see that

Dero 0 = ¢C[[t]]9;, Der, 0 = t2C[[1]]0;.

In particular, this shows that Dery O is a pro-nilpotent Lie algebra and hence Auty O
is a pro-unipotent group.’

We wish to describe the category of continuous representations of Aut O on vector
spaces with discrete topology. As Auty O is a pro-unipotent group we know that
the exponential map from Der4 O to Aut4 O is an isomorphism. Hence a discrete
representation of Auty O is the same as a discrete representation of Der4 O, i.e.,
such that for any vector v we have ¢"d; - v = 0 for n greater than a positive integer
N.

The Lie algebra of the group C* = {¢ > at} of rescalings is Ctd; >~ C. Here
we have a discrepancy as the Lie algebra has irreducible representations parame-
terized by complex numbers, whereas C* only has representations parameterized
by integers: on the representation corresponding to n € Z the element a € C*
acts as a”. Furthermore, any linear transformation 7" on a vector space V defines
a representation of C, A — T (in particular, non-trivial extensions are possible
because of non-trivial Jordan forms), but any representation of C* is the direct sum
of one-dimensional representations labeled by integers. So the only representations
of the Lie algebra C that lift to representations of C* are those on which the element
1 € C (which corresponds to the vector field 79d; in our case) acts semi-simply and
with integer eigenvalues.

To summarize, a discrete representation of Aut O is the same as a discrete rep-
resentation of the Lie algebra Der( O such that the generator 9, acts semi-simply
with integer eigenvalues. In most cases we consider, the action of the Lie algebra
Derg 0 may be augmented to an action of Der O = C|[[¢]]d;. (The action of the
additional generator d; is important, as it plays the role of a connection that allows
us to identify the objects associated to nearby points x, x” of a curve X.)

In Section 3.1.3 we introduced a topological basis of the Virasoro algebra. The
elements L, = —t"1! % of this basis with n > 0 (resp., n > 0) generate Dery O
(resp., Dert 0). The Lie algebra C is generated by Lo = —¢9;. Suppose that V' is
a representation of Derg O, on which L acts semi-simply with integer eigenvalues.
Thus, we obtain a Z-grading on V. The commutation relations in Derg O imply that
L, shifts the grading by —n. Therefore, if the Z-grading is bounded from below,

31t may appear strange that the Lie algebra of Aut 0 is Der( O and not Der O = C[[t]]d;. The reason
is that the part of Der O spanned by the translation vector field d, cannot be exponentiated within the
realm of algebraic groups, but only ind-groups, see [Frenkel and Ben-Zvi 2004], Section 6.2.3, for
more details.
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then any vector in V' is annihilated by L, for sufficiently large n, and so V is a
discrete representation of Dergy O, which then may be exponentiated to AutO.

An example of such a representation is given by the vacuum module V(g).
The Lie algebra Derg O (and even the larger Lie algebra Der O) naturally acts on it
because it acts on g((z)) and preserves the Lie subalgebra g[[¢]] & C1 from which
Vic(g) is induced. In particular, Ly becomes the vertex algebra grading operator,
and since this grading takes only non-negative values, we find that the action of
Dero O may be exponentiated to AutO. The center 3(g) is a subspace of Vi, (g)
preserved by AutO, and hence it is a subrepresentation of V.. (g).

Thus, we can apply the twisting construction to V,(g) and 3(g). Using formulas
(3.5-5), we find that

Aut Vie(g) =V, , Aut 9) =3()x,
“xA;i@ () i (9)x UxAi(t@Z)(g) 3(9)x

where Vi (g)x and 3(g)x are defined by formulas (3.5-3) and (3.5-4), respectively.

Thus, we have found a way to describe all spaces 3(g), for different local fields
¥ x, simultaneously: we simply need to describe the action of Der O on 3(g). We
will now do this for g = sl5.

3.5.5. Warm-up: Kac-Moody fields as one-forms. Let us start with a simpler
example: consider the algebra gr Vi.(g). As we saw previously, it is naturally
isomorphic to

Sym(g((#))/gll¢]]) = Fun g*[[7]Jdt.

In Section 3.3.3 we had identified g*[[¢]]d¢ with g*[[¢]], but now that we wish to
formulate our results in a coordinate-independent way, we are not going to do that.

Given a smooth point x of a curve X, we have the disc D, = Spec O and the
punctured disc D = Spec ¥ at x. Let Qg, be the Ox-module of differentials.
We may think of elements of Qg, as one-forms on the disc Dy. Consider the g -
module Vi (g)y attached to x and its associated graded gr Vi (g)x. Now observe
that

Auty R (g™[[t]ldt) = g™ ® Qo, .

Thus, gr Vi (g)x is canonically identified with the algebra of functions on the space
of g*-valued one-forms on Dy.

Now we wish to obtain this result from an explicit computation. This computation
will serve as a model for the computation performed in the next section, by which
we will identify ;,(;[2) x with the algebra of functions on the space of projective
connections on Dy.

Let us represent an element ¢ € g*[[¢]]d? by the formal power series

(=T 0= Tu™'.  a=1....dimg.

n<0
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Then the 7Z’s are coordinates on g*[[¢]]d¢, and we have
Fun g*([1]}d? = C[TJa=1....im gin<o-

The Lie algebra Der O acts on Fun g*[[¢]]dt by derivations. Therefore it is sufficient
to describe its action on the generators 7;1”:

LT (3.5-6)

a
m

_ —m7z+m ifn+m<—1
0 otherwise

We already know from the previous discussion that

Tiydt = Y T
m<—1
is a canonical one-form on the disc D = Spec 0. Now we rederive this result using
formulas (3.5-6). What we need to show is that T (t)dt is invariant under the
action of the group AutO of changes of coordinates on D, or, equivalently (since
Aut O is connected), under the action of the Lie algebra Dery O. This Lie algebra
acts in two different ways: it acts on the elements 7; as in (3.5-6) and it acts on
t~"~1dt in the usual way. What we claim is that these two actions cancel each
other.
Indeed, the action of L, on t~™~1dt is given by

Lyo (™™ Ydt) = (m—n)t"" Vds.

Therefore
Ly T@dt = " (La- Tyt ™™ 't + Y T (L -t d1)
m<—1 m<—1
=— Z Myt ™1+ Z T (m—n)" "1y
m<—1ln+m<—1 m<—1
=Y (m—k)Tg" e+ > (m—n) T
k<—1 m<—1
=10

as expected. This implies that for any local field 3, we have a canonical isomor-
phism gr Vi (g)x =~ Fung* ® Q¢ , but now we have derived it using nothing but
the transformation formula (3.5-6).

Of course, in retrospect our calculation seems tautological. All we said was that
under the action of Aut O the generators 73 of gr Vi (g) (for fixed a) transform in the
same way as t" € ¥/0. We have the residue pairing between 3 /0 = C((¢))/C[[¢]]
and Q¢ = C[[t]]dt with respect to which {t"},-o and {t""'dt},~o are dual
(topological) bases. The expression T (t)dt pairs these two bases. Since the
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residue pairing is Aut O-invariant, it is clear that T (¢) is also Aut O-invariant. Thus,
the fact that J* (¢) is a canonical one-form follows immediately once we realize
that the generators {73} of gr Vi(g) transform in the same way as the functions
{t"} under the action of AutO. In the next section we will obtain an analogue of
this statement for the Segal-Sugawara operators S, the generators of the center
3(;[2). This will enable us to give a coordinate-independent description of 5(5/;\[2).

3.5.6. The transformation formula for the central elements. From the analysis of
the previous section it is clear what we need to do to obtain a coordinate-independent
description of 3(;[2): we need to find out how the generators S of 3(;[2) transform
under the action of Der 0. A possible way to do it is to use formula (3.5-2) and the
formula

L,-Ji=-m (3.5-7)

for the action of Der O on the Kac—-Moody generators J. 5.6 This is a rather cumber-
some calculation, but, fortunately, there is an easier way to do it.

Let us suppose that ¥ # «.. Then we define the renormalized Segal-Sugawara
operators §n = K_‘L n > —1, as in Section 3.1.1. These are elements of the

n+m

completed enveloping algebra U « (@), which commute with the elements g in the
same way as the operators L, = —t"+19,,n > —1; see formula (3.5-7). Therefore
the action of L, on any other element X of U, (g) is equal to [§n, X].

We are interested in the case when X = S;,. The corresponding commutators
have already been computed in formula (3.1-3). This formula implies the following:

3

< n"—n . K
Lyp-Sm=1[Sn,Sml=(n—m)Spym+ dlm(g)agn =

Though this formula was derived for k # k., it has a well-defined limit when k = «,

and therefore gives us the sought-after transformation formula

3
Ly-Sm= (}’l _m)Sn+m +

" 4im(g) <58y —m (3.5-8)
12 Ko ’

(it depends on k¢ because k¢ enters explicitly the definition of S;,).

Let us specialize now to the case of sl,. We will use the inner product ko defined
by the formula «¢(A4, B) = Trp2(AB). Then k. = —2k¢, and formula (3.5-8)
becomes

1
Ly-Sm=n—m)Sp+m— 5(”3 —1)8n,—m.

6Note the difference between formulas (3.5-6) and (3.5-7). The former describes the action of
Der O on the associated graded algebra gr Vi (g), whereas the latter describes the action on Vi (g) or
on U ,C(\) The two actions are different: for instance, i -1 >0, acts by 0 on gr Vie(g), but JZ,n >0,
act non-trivially on Vi (g).
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This is the transformation formula for the elements S;, of U Ke (5[2) In particular,
it determines the action of the group AutO on the center of U ke (5[2) which is
topologically generated by the Sy,’s. We would like however to understand first the
action of Aut© on the center 3(;[2) of the vertex algebra Vi, (sl,).

According to Theorem 3.5.1, we have a homomorphism

ClSmlmez = 3(h), X > X|0),

and it induces an isomorphism between the quotient of C[S),|uecz by the ideal
generated by Sj,,m > —1 and 3(;[2). This ideal is preserved by the action of Der 0.
Thus, to find the action of Der O on 3(5:\[2) ~ C[Sm]m<—> we simply need to set
Sm,m > —1, equal to 0.

This results in the following transformation law:

(n—m)Sy+m ifn+m< =2
Ly-Sp=1{ —3(®—n) ifn+m=0 (3.5-9)
0 otherwise.

We now want to work out what sort of geometrical object gives rise to transformation
laws like this. It turns out that these objects are projective connections on the disc
D = Spec C[[z]].

3.5.7. Projective connections. A projective connection on D = Spec C[[]] is a
second order differential operator

p:Qg'? — @32 (3.5-10)

such that the principal symbol is 1 and the subprincipal symbol is 0.

Let us explain what this means. As before, 2¢ is the O-module of differentials,
i.e., one-forms on D. These look like this: f(¢)dt. Now we define the O-module
Qé as the set of “A-forms”, that is, things which look like this: f(z)(dt)*. Itis a
free 0-module with one generator, but the action of vector fields &(z)d; Der O on
it depends on A. To find the transformation formula we apply the transformation
t —t + €£(¢), considered as an element of the group Aut O over the ring of dual
numbers Cle]/(€2), to f(¢)(dr)*. We find that

FOED! > [t +eE(1))d((t + ek ().

Now we take the e-linear term. The result is

ENd; - f(O)(dt) = @) f'0) + Lf (DE (1)) (dn)*.

Note, however, that the action of #d; is semi-simple, but its eigenvalues are of
the form A +n,n € Z. Thus, if A € Z, the action of Der O cannot be exponentiated
to an action of AutO and we cannot use our twisting construction to assign to Qé‘
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a line bundle on a disc Dx = Spec O, (or on an arbitrary smooth algebraic curve
for that matter). If A is a half-integer, for instance, A = 1/2, we may construct
Ql/2 by extracting a square root from 2. On a general curve this is ambiguous:
the line bundle we wish to construct is well-defined only up to tensoring with a
line bundle ¥, such that $®? is canonically trivialized. But on a disc this does not
create a problem, as such ¥ is then trivialized almost canonically; there are two
trivializations which differ by a sign, so this is a very mild ambiguity.

In any case, we will not be interested in Qé/ ? itself, but in linear operators
(3.5-10). Once we choose one of the two possible modules Qé/ 2, we take its

inverse as our Q 1/2 and its third tensor power (over O) as our Qé/ % The space of
differential operators between them already does not depend on any choices. The
same construction works for an arbitrary curve, so for example if X is compact,
there are 228 different choices for /2 (they are called theta characteristics), but
the corresponding spaces of projective connections are canonically identified for all
of these choices.

Now, a second order differential operator (3.5-10) is something that can be
written in the form

0 = v2(t)9% 4+ vy (£)dr + vo ().

Note here that each v;(¢) € C[[¢]], but its transformation formula under the group
AutO is a priori not that of a ordinary function, as we will see below.

The principal symbol of this differential operator is the coefficient v, (¢). So
the first condition on the projective connection means that p is of the form

0 =07 +v(t)d; +vo(t).

The subprincipal symbol of this operator is the coefficient v{(¢). The vanishing
of vy (¢) means that the operator is of the form

d
p(t) = 2 v(?),

where we have set v(f) = —vg(¢) for notational convenience.

How do projective connections transform under the action of a vector field
£(1); € Der 0? As we already know the action of £(7)d; on Q~'/2 and Q3/2, it is
easy to find out how it acts on p: 271/2 — ©3/2. Namely, we find that

£ (02 v fO@d)™/?)
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= £ (/"0 —v() f©O)dD)*?)
= (s OO =0 f O =) /(1)

+ U0~ v(t)f(t))é’(t)) (dn)*'?

and

@ (@) (502, - f )™ V?)

=@ -10) (£0 O~ 37 OE O ) @2
~ (360 O+50770 08050
= SOF" O+ 3OS0 D) @

The action on the projective connection will come from the difference of these two
expressions:

—EOV' (1) —20(E (1) + %S”/(t)-

Thus, under the action of the infinitesimal change of coordinates ¢ — ¢ 4 €£(¢) we
have

v(t) = v(t) +e(E@)V (1) +20()E (1) — %g”’(z)). (3.5-11)

It is possible to exponentiate the action of Der O to give the action of Aut© on
projective connections. This may done by an explicit, albeit tedious, computation,
but one can follow a faster route, as explained in [Frenkel and Ben-Zvi 2004],
Section 9.2. Suppose that we have two formal coordinates ¢ and s related by the
formula ¢ = @(s). Suppose that with respect to the coordinate ¢ the projective
connection p has the form 32 — v(¢). Then with respect to the coordinate s it has
the form 82 —(s), where

Ts) = vp()g ()7 ~ 515},
and

(3.5-12)

S\

N W
A/
s\|€\
N——
[\S)

{(P»S}:_,_
4

is the so-called Schwarzian derivative of ¢.



3.5. THE CENTER IN THE CASE OF sl 99

3.5.8. Back to the center. Now we can say precisely what kinds of geometric ob-
jects the Segal-Sugawara operators Sy, are: the operator Sy, behaves as the function
on the space of projective connections 9 — v(¢) picking the ="~ 2-coefficient of

v(t).
Lemma 3.5.1. The expression
m<—2
defines a canonical projective connection on the disc D = Spec C[[t]], i.e., it is

independent of the choice of the coordinate t.

Proof. The proof is similar to the argument used in Section 3.5.5. We need
to check that the combined action of L,,n > —1, on pg, coming from the action
on the S;,’s (given by formula (3.5-9)) and on the projective connection (given by
formula (3.5-11)), is equal to 0.

We find that the former is

e 1 e
— Z (n—m)Sppmt ™2 + Z E(n3—n)t m=2

m<—2;n+m<-—2 m<—2;n+m=0
1
=— 2n—k)Spt" K2 4 —(n® — )" 2,
2
k<-2

and the latter is

1
"N () 4+ 2(n 4+ Di"u(r) — 5(n3 —n)t"?

1
-y (—(m £ 2)Smt" M2 £ 2(n + 1)sz"—'"—2) — 3 ="

m<-—2
1
= Z 21 —m) Sy, t""2 5(113 —n)t" 2.
m<-—2
Summing them gives 0. O

Thus, the geometric meaning of the center 3(;[2) of the ;[2 vertex algebra at the
critical level is finally revealed:

The center 3(;[2) is isomorphic to the algebra of functions on the
space Proj(D) of projective connections on D.

Applying the twisting by the torsor Aut, to Theorem 3.5.1, we obtain the
following result.
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Theorem 3.5.2. The center 3(;[2) x attached to a point x on a curve is canoni-
cally isomorphic to Fun Proj(Dy), where Proj(Dy) is the space of projective
connections on the disc Dx = Spec O around the point x.

Likewise, we obtain a coordinate-independent description of the center Z (s:\IZ’ )

of the completed universal enveloping algebra U K (;Iz, x) (this will be proved in
Section 4.3.2).

Corollary 3.5.2. The center Z (;[2) x attached to a point x on a curve X is canoni-
cally isomorphic to the algebra Fun Proj(D3) on the space of projective connec-
tions on the punctured disc DY = Spec Hx around the point x.

We can use Theorem 3.5.2 to construct a family of glzi,cc,x—modules parame-
terized by projective connections on Dy. Namely, given p € Proj(Dx) we let
0 :3(slp)x — C be the corresponding character and set

Vp = Vi (sl2)/ Im(Ker p).

We will see below that all of these modules are irreducible, and these are in fact
all possible irreducible unramified ;[2,,(6, x-modules. Thus, we have been able to
link representations of an affine Kac—Moody algebra to projective connections,
which are, as we will see below, special kinds of connections for the group PG L,
the Langlands dual group of SL,. This is the first step in our quest for the local
Langlands correspondence for loop groups.

But what are the analogous structures for an arbitrary affine Kac-Moody algebra
of critical level? In the next chapter we introduce the notion of opers, which are
the analogues of projective connections for general simple Lie groups. It will turn
out that the center 3(g) of Vi, (g) is isomorphic to the algebra of functions on the
space of L' G-opers on the disc, where LG is the Langlands dual group to G.



CHAPTER 4

Opers and the center for a general Lie
algebra

We now wish to generalize Theorem 3.5.2 describing the center 3(g) of the vertex
algebra V. (g) for g = sl to the case of an arbitrary simple Lie algebra g. As the
first step, we need to generalize the notion of projective connections, which, as we
have seen, are responsible for the center in the case of g = sl;, to the case of an
arbitrary g. In Section 4.1 we revisit the notion of projective connection and recast
it in terms of flat PG L,-bundles with some additional structures. This will enable
us to generalize projective connections to the case of an arbitrary g, in the form of
opers. In Section 4.2 we will discuss in detail various definitions and realizations
of opers and the action of changes of coordinates on them.

Then we will formulate in Section 4.3 our main result: a canonical isomorphism
between the center 3(g) and the algebra of functions on the space of opers on the disc
associated to the Langlands dual group £ G. The proof of this result occupies the
main part of this book. We will use it to describe the center Z(g) of the completed
enveloping algebra U «. (@) at the critical level in Theorem 4.3.6. Finally, we will
show in Proposition 4.3.9 that the center of U « (9) is trivial away from the critical
level.

4.1. Projective connections, revisited

In this section we discuss equivalent realizations of projective connections: as
projective structures and as PG Lj-opers. The last realization is most important
to us, as it suggests how to generalize the notion of projective connection (which
naturally arose in our description of the center 3(g) for g = sl,) to the case of an
arbitrary simple Lie algebra g.

101
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4.1.1. Projective structures. The notion of projective connections introduced in
Section 3.5.7 makes perfect sense not only on the disc, but also on an arbitrary
smooth algebraic curve X over C. By definition, a projective connection on X is
a second order differential operator acting between the sheaves of sections of the
following line bundles:

p: Q' — 2 (4.1-1)
such that the principal symbol is 1 and the subprincipal symbol is 0. Here we need

to choose the square root Q;(/Z of the canonical line bundle 2x on X. However,

as explained in Section 3.5.7, the spaces of projective connections corresponding to
different choices of Q)l(/z are canonically identified.

We will denote the space of projective connections on X by Proj(X).

It is useful to observe that Proj(X) is an affine space modeled on the vector
space HO(X, Q §() of quadratic differentials. Indeed, given a projective connection,
i.e., a second order operator p as in (4.1-1), and a quadratic differential @ €
HO(X, QEY), the sum p + @ is a new projective connection. Moreover, for any pair
of projective connections p, o’ the difference p — p’ is a zeroth order differential

12 _, Qj(/z, which is the same as a section of 2. One can show that

operator 2,
for any smooth curve (either compact or not) the space Proj (X) is non-empty (see
[Frenkel and Ben-Zvi 2004], Section 8.2.12). Therefore it is an H® (X, Q g()—torsor.

Locally, on an open analytic subset U, C X, we may choose a coordinate z
and trivialize the line bundle Q1/2. Then, in the same way as in Section 3.5.7, we
see that p, = p|y, may be written with respect to this trivialization as an operator
of the form Bga — Vg (zg). In the same way as in Section 3.5.7 it follows that on the

overlap Uy N Ug, with z4 = @ug(2zg), we then have the transformation formula

dpus 2 1
“‘3) ~ 5 {0ap. 28}. (4.1-2)

vg(28) = va(@ap(zp)) ( e

We will now identify projective connections on X with a different kind of
structures, which we will now define.

A projective chart on X is by definition a covering of X by open subsets Uy, o €
A, with local coordinates z, such that the transition functions zg = f,8(z4) on the
overlaps Uy N Ug are Mobius transformations

fo) =212 (‘C’ 2) e PGL,(C).

Two projective charts are called equivalent if their union is also a projective chart.
The equivalence classes of projective charts are called projective structures.

Proposition 4.1.1. There is a bijection between the set of projective structures on
X and the set of projective connections on X .
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Proof. It is easy to check that for a function ¢(z) the Schwarzian derivative
{@, z} is 0 if and only if ¢(z) is a Mobius transformation. Hence, given a projective
structure, we can define a projective connection by assigning the second order
operator 8§a on each chart Uy. According to formula (4.1-2), these transform
correctly.

Conversely, given a projective connection, consider the space of solutions of the
differential equation

(92, ~ve) $za) = 0
on Uy. This has a two-dimensional space of solutions, spanned by ¢; o and ¢, 4.

Choosing the cover to be fine enough, we may assume that ¢, is never 0 and the
Wronskian of the two solutions is never 0. Define then

. ¢1,a

¢2,a
This is well defined and has a non-zero derivative (since the Wronskian is non-zero).
Hence, near the origin it gives a complex coordinate on U,. In a different basis it
is clear that the ’s will be related by a Mobius transformation. O

Mo

4.1.2. PGLy-opers. We now rephrase slightly the definition of projective struc-
tures. This will give us another way to think about projective connections, which
we will be able to generalize to a more general situation.

We can think of a Mdbius transformation as giving us an element of the group
PGL,(C). Hence, if we have a projective structure on X, then to two charts U,
and Ug which overlap we have associated a constant map

fup : Ua NUg —> PGL,(C).

As explained in Section 1.2.4, this gives us the structure of a flat PG L,(C)-bundle.
Equivalently, as explained in Section 1.2.3, it may be represented as a holomorphic
PGL,-bundle & on X with a holomorphic connection V (which is automatically
flat as X is a curve).

However, we have not yet used the fact that we also had coordinates z, around.

The group PGL,(C) acts naturally on the projective line P!. Let us form the
associated P!-bundle

PL=% x P!
PGL,(C)

on X. The flat structure on % induces one on [P’I%. Thus, we have a preferred system
of identifications of nearby fibers of [P’lg. Now, by definition of &, on each U, our
bundle becomes trivial, and we can use the coordinate z, to define a local section
of PL|y, = Uy x P1. We simply let the section take value z4(x) € C C P! at the
point x.
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This is actually a global section of [P’I@, because the coordinates transform between
each other by exactly the same element of PG L,(C) which we used as the transition
function of our bundle on the overlapping open subsets. As z, is a coordinate, it
has non-vanishing derivative at all points. Therefore the coordinates are giving us
a global section of the P!-bundle [P’lg which has a non-vanishing derivative at all
points (with respect to the flat connection on IP’OIJ).

One may think of this structure as that of a compatible system of local identifica-
tions of our Riemann surface with the projective line. Hence the name “projective
structure.”

We now define a PGL,-oper on X to be a flat PGL,(C)-bundle & over X
together with a globally defined section of the associated P!-bundle [P’éj which has
a nowhere vanishing derivative with respect to the connection.

So, we have seen that a projective structure, or, equivalently, a projective connec-
tion on X, gives rise to a PG L,(C)-oper on X. It is clear that this identification is
reversible: namely, we use the section to define the local coordinates; then the flat
PG L,-bundle transition functions define the Mobius transformations of the local
coordinates on the overlaps. Hence we see that projective structures (and hence
projective connections) on X are the same thing as PG L,-opers on X .

Now our goal is to generalize the notion of PG L,-oper to the case of an arbitrary
simple Lie group. This will enable us to give a coordinate-independent description
of the center of the completed enveloping algebra associated to a general affine
Kac-Moody algebra g, .

In order to generalize the concept of oper we need to work out what P! has to do
with the group PGL,(C) and what the non-vanishing condition on the derivative
of the section is telling us.

The group PGL,(C) acts transitively on P!, realized as the variety of lines in
C? = span(ey, e,), and the stabilizer of the line span(e;) is the Borel subgroup
B C PGL,(C) of upper triangular matrices. Thus, P! may be represented as a
homogeneous space PGL,(C)/B. The Borel subgroup is a concept that easily
generalizes to other simple Lie groups, so the corresponding homogeneous space
G/ B should be the correct generalization of P!.

Now, an element of P! can be regarded as defining a right coset of B in G.
Hence, our section of [P’lg gives us above each point x € X a right B-coset in
the fiber %,. This means that this section gives us a subbundle of the principal
G-bundle, which is a principal B-bundle.

We recall that a B-reduction of a principal G-bundle % is a B-bundle & p and
an isomorphism & ~ Fp >§ G. In other words, we are given a subbundle of %,

which is a principal B-bundle such that the action of B on it agrees with the action
restricted from G.
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So, a PG L,-oper gives us a flat PG L,-bundle (%, V) with a reduction Fpg of F
to the Borel subgroup B. The datum of & p is equivalent to the datum of a section
of IPGIJ;. We now have to interpret the non-vanishing condition on the derivative of
our section of [P’l9 that appears in the definition of PGL,-opers in terms of Fp.
This condition is basically telling us that the flat connection on & does not preserve
the B-subbundle % p anywhere. Let us describe this more precisely.

As explained in Section 1.2.4, if we choose a local coordinate 7 on an open
subset U C X and trivialize the holomorphic PG L,-bundle %, then the connection
V gives rise to a first order differential operator

_ a(t) b(1)
Vs, —8t+(c(t) d([)), (4.1-3)

where the matrix is in the Lie algebra g = s[,(C), so a(¢) +d(¢) = 0). This operator
is not canonical, but it gets changed by gauge transformations under changes of
trivialization of & (and it also gets transformed under changes of the coordinate ¢#).

Our condition on the PG L,-oper may be rephrased as follows: let us choose a
local trivialization of % on U which is horizontal with respect to the connection, so
V3, = ;. Then our section of IP’I@ may be represented as a function f: U — P!, and
the condition is that its derivative with respect to ¢ has to be everywhere non-zero.

4.1.3. More on the oper condition. The above description is correct, but not very
useful, because in general it is difficult to find a horizontal trivialization explicitly.
For that one needs to solve a system of differential equations, which may not be
easy.

It is more practical to choose instead a trivialization of & on U C X that is
induced by some trivialization of g on U. Then f becomes a constant map
whose value is the coset of B in P! = PGL,/B. But the connection now has
the form (4.1-3), where the matrix elements are some non-trivial functions. These
functions are determined only up to gauge transformations. However, because
our trivialization of % is induced by that of % p, the ambiguity consists of gauge
transformations with values in B only. Any conditions on Vj, that we wish to
make now should be invariant under these B-valued gauge transformations (and
coordinate changes of ¢). For example, connections that preserve our B-reduction
are precisely the ones in which ¢(z) = 0; this is clearly a condition that is invariant
under B-valued gauge transformations.

Our condition is, to the contrary, that the derivative of our function f : U — P!
(obtained from our section of [P’l9 using the trivialization of Fpg) with respect to
Vy, is everywhere non-zero. Note that the value of this derivative at a point x € U
is really a tangent vector to P! at f(x). Since f(x) = B € PGL,/B = P!, the
tangent space at f(x) is naturally identified with s[,/b. Therefore our derivative
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is represented by the matrix element ¢(¢) appearing in formula (4.1-3). So the
condition is simply that ¢(¢) is nowhere vanishing.

Connections satistying this property may be brought to a standard form by using
B-valued gauge transformations. Indeed, first we use the gauge transformation by
0 1/2

0 c(r) /2
bring the connection operator to the form (4.1-3) with ¢(z) = 1. Next, we follow
with the upper triangular transformation

1 —a a b 1 a(z) 0 b+a*>+0:a
(76 E)G) =0 (™)

The result is a connection operator of the form

V=8t+((1) vg))‘ (4.1-4)

the diagonal matrix ( ) (note that it is well-defined in PG L) to

It is clear from the above construction that there is a unique B-valued function,
the product of the above diagonal and upper triangular matrices, that transforms
a given operator (4.1-3) with nowhere vanishing ¢(z) to this form. Thus, we have
used up all of the freedom available in B-valued gauge transformations in order to
bring the connection to this form.

This means that on a small open subset U C X, with respect to a coordinate ¢ (or
on a disc Dy around a point x € X, with respect to a choice of a formal coordinate
t), the space of PGL,-opers is identified with the space of operators of the form
(4.1-4), where v(z) is a function on U (respectively, v(t) € C[[]]).

As is well known from the theory of matrix differential equations, the differential
equation V®(¢) = 0 is equivalent to the second order differential equation (87 —
v(2))®P(¢) = 0. Thus, we may identify the space of opers with the space of operators
d2—v(¢). These look like projective connections, but to identify them with projective
connections we still need to check that under changes of coordinates they really
transform as differential operators Q)_(l/ 2 52;(/2.

To see this, we realize our flat PG L,-bundle & as an equivalence class of rank
two flat vector bundles modulo tensoring with flat line bundles. Using the freedom
of tensoring with flat line bundles, we may choose a representative in this class
such that its determinant is the trivial line bundle with the trivial connection. We
will denote this representative also by Z. It is not unique, but may be tensored with
any flat line bundle (£, V) whose square is trivial. The B-reduction Fp gives rise
to a line subbundle %; C %, defined up to tensoring with a flat line bundle (£, V)
as above.

A connection V is a map ¥ ® Tx — %, or equivalently, # - F ® Qy, since
Qx and Iy are dual line bundles. What is the meaning of the oper condition from
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this point of view? It is precisely that the composition
v
F1—>FRQLy > (F/F1)  Qx

is an isomorphism of line bundles (it corresponds to the function ¢ (¢) appearing in
(4.1-3)).

Since we have already identified detF ~ F; ® (¥/%,) with Oy, this means
that (%;)®2 ~ Qy, and so F; ~ Q}/%. This also implies that F/F; ~ Q;'/>.
Both isomorphisms do not depend on the choice of Q)l(/z as &, is anyway only
defined modulo tensoring with the square root of the trivial line bundle. Let us pick

a particular square root Qj‘/z. Then we may write

/2

0— QY —F— ;' —o.

Assume for a moment that X is a projective curve of genus g. Then we have

Ext' (5% @V = H' (X, Qx) = H(X,0x)* =~ C,

so that there may be at most two isomorphism classes of extensions of Q)_(l/ 2 by

Q)l(/zz the split and the non-split ones. If the extension were split, then there would
be an induced connection on the line bundle Q;(/z. But this bundle has degree g — 1
and so cannot carry a flat connection if g #% 1. Thus, for g # 1 we have a unique
oper bundle corresponding to a non-zero class in H!(X, Qy). (For g = 1 the two
extensions are isomorphic to each other, so there is again a unique oper bundle.)
For an arbitrary smooth curve X, from the form of the connection we obtain that

/2

if we have a horizontal section of %, then its projection onto Q)_(l is a solution of

a second order operator, which is our 8? —v(?). Itis also clear that this operator acts
from Q)_(l/ % to Q;(/z, and hence we find that it is indeed a projective connection.
Since flat bundles, as well as projective connections, are uniquely determined by
their horizontal sections, or solutions, we find that PG L,-opers X are in one-to-one
correspondence with projective connections.

We have made a full circle. We started out with projective connections, have
recast them as projective structures, translated that notion into the notion of PG L,-
opers, which we have now found to correspond naturally to projective connections
by using canonical representatives of the oper connection. Thus, we have found
three different incarnations of one and the same object: projective connections,
projective structures and PG L,-opers. It is the last notion that we will generalize
to an arbitrary simple Lie algebra in place of sl,.
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4.2. Opers for a general simple Lie algebra

In this section we introduce opers associated to an arbitrary simple Lie algebra, or
equivalently, a simple Lie group of adjoint type. We will see in the next section that
opers are to the center of the vertex algebra Vi (g) what projective connections
are to the center of V., (sly). But there is an important twist to the story: the
center is isomorphic to the algebra of functions on the space of opers on the disc,
associated not to G, but to the Langlands dual group G of G. This appearance
of the dual group is very important from the point of view of the local Langlands
correspondence.

4.2.1. Definition of opers. Let G be a simple algebraic group of adjoint type, B
its Borel subgroup and N = [B, B] its unipotent radical, with the corresponding
Lie algebrasn C b C g.

Thus, g is a simple Lie algebra, and as such it has the Cartan decomposition

g=n_dhdny.

We will choose generators ey, . .., eg (resp., f1,..., f¢) of ny (resp., n—). We have
ng; = Cej,n_q, = Cf;, see Appendix A.3. We take b = h @ n as the Lie algebra
of B. Then n is the Lie algebra of N. In what follows we will use the notation n
for ny.

It will be useful for us to assume that we only make a choice of n = ny and
b="h®ny, but not of h or n_. We then have an abstract Cartan Lie algebra h =b/n,
but no embedding of § into b. We will sometimes choose such an embedding, and
each such choice then also gives us the lower nilpotent subalgebra n_ (defined as
the span of negative root vectors corresponding to this embedding). Likewise, we
will have subgroups N C B C G and the abstract Cartan group H = G/ B, but no
splitting H < B. Whenever we do use a splitting fj < b, or equivalently, H — B,
we will explain how this choice affects our discussion.

Let [n, n]- C g be the orthogonal complement of [n, n] with respect to a non-
degenerate invariant inner product «y. We have

L
[n, n]+/b ~ @n_ai.

i=1

Clearly, the group B acts on n'-/b. Our first observation is that there is an open
B-orbit O C n't/b C g/b, consisting of vectors whose projection on each subspace
N_g; is non-zero. This orbit may also be described as the B-orbit of the sum of the
projections of the generators f;,i = 1,..., ¥, of any possible subalgebra n_, onto
g/b. The action of B on O factors through an action of H = B/N. The latter is
simply transitive and makes O into an H-torsor (see Section 3.5.3).
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Let X be a smooth curve and x a point of X. As before, we denote by O, the
completed local ring and by ¥y its field of fractions. The ring Oy is isomorphic,
but not canonically, to C[[¢]]. Then Dy = Spec Oy is the disc without a coordinate
and D} = Spec ¥ is the corresponding punctured disc.

Suppose now that we are given a principal G-bundle & on a smooth curve X, or
Dy, or D, together with a connection V (automatically flat) and a reduction Fp to
the Borel subgroup B of G. Then we define the relative position of V and Fp (i.e.,
the failure of V to preserve Fp) as follows. Locally, choose any flat connection
V' on F preserving Fp, and take the difference V — V’, which is a section of
975 ® Qx. We project it onto (g/b)g, ® Qx. It is clear that the resulting local
section of (g/b)g, ® Qx is independent of the choice V’. These sections patch
together to define a global (g/b)g,-valued one-form on X, denoted by V/Fp.

Let X be a smooth curve, or Dy, or D. Suppose we are given a principal
G-bundle ¥ on X, a connection V on % and a B-reduction % g. We will say that Fp
is transversal to V if the one-form V/%p takes values in Og, C (g/b)g,. Note
that O is C*-invariant, so that O ® Qy is a well-defined subset of (g/b)g, ® Qx.

Now, a G-oper on X is by definition a triple (%, V, ¥ p), where % is a principal
G-bundle & on X, V is a connection on % and % g is a B-reduction of %, such that
% p 1s transversal to V.

This definition is due to A. Beilinson and V. Drinfeld [1997] (in the case when X
is the punctured disc opers were introduced earlier by V. Drinfeld and V. Sokolov
in [1985]).

It is clear that for G = PGL, we obtain the definition of PGL-oper from
Section 4.1.2.

4.2.2. Realization as gauge equivalence classes. Equivalently, the transversality
condition may be reformulated as saying that if we choose a local trivialization of
% p and a local coordinate ¢ then the connection will be of the form

{
V=084 i) fi +v(), 4.2-1)

i=1

where each ¥;(¢) is a nowhere vanishing function, and v(z) is a b-valued function.
One shows this in exactly the same way as we did in Section 4.1.3 in the case of
G = PGL,.

If we change the trivialization of % p, then this operator will get transformed
by the corresponding B-valued gauge transformation (see Section 1.2.4). This
observation allows us to describe opers on the disc D = Spec O and the punctured
disc DY = Spec J{, in a more explicit way. The same reasoning will work on any
sufficiently small analytic subset U of any curve, equipped with a local coordinate
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t, or on a Zariski open subset equipped with an étale coordinate. For the sake of
definiteness, we will consider now the case of the base D.

Let us choose a coordinate ¢ on Dy, i.e., an isomorphism Oy >~ CJ[[¢]]. Then
we identify Dy with D = Spec C[[t]]. The space Opg (D) of G-opers on D is
the quotient of the space of all operators of the form (4.2-1), where v;(¢) €
Cll#]), ¥i(0) #0,i =1,...,£, and v(¢) € b[[¢]], by the action of the group B][¢]] of
gauge transformations:

g0+ A1) =03, +gA)g ' —g 'o,g.

Let us choose a splitting 1 : H — B of the homomorphism B — H. Then
B becomes the product B = H x N. The B-orbit O is an H-torsor, and so
we can use H-valued gauge transformations to make all functions v;(¢) equal
to 1. In other words, there is a unique element of H|[[¢]], namely, the element
]_[le @; (Yi (1)), where @; : C* — H is the i th fundamental coweight of G, such
that the corresponding gauge transformation brings our connection operator to the
form

L
V=0;+Y fi+v@). v et (4.2-2)

i=1

What remains is the group of N -valued gauge transformations. Thus, we obtain
that Opg (D) is equal to the quotient of the space Opg (D) of operators of the form
(4.2-2) by the action of the group N[[¢]] by gauge transformations:

Opg (D) = Opg (D)/NI[t]]-

This gives us a very concrete realization of the space of opers on the disc as
gauge equivalence classes.

4.2.3. Action of coordinate changes. In the above formulas we use a particular
coordinate ¢ on our disc Dy (and we have identified D, with D using this coor-
dinate). As our goal is to formulate all of our results in a coordinate-independent
way, we need to figure out how the gauge equivalence classes introduced above
change if we choose another coordinate.

So suppose that s is another coordinate on the disc D, such that = ¢(s). In
terms of this new coordinate the operator (4.2-2) will become

14
Vat = V(p’(s)—las = (0/(5)_18s + Z fl + V((p(S)).

i=1
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Hence we find that

L
Va, = 0s +9'(9) Y fi +¢'(s)-V(9(s)).
i=1

In order to bring it back to the form (4.2-2), we need to apply the gauge trans-
formation by p(¢’(s)), where p : C* — H is the one-parameter subgroup of H
equal to the sum of the fundamental coweights of G, p = Zf=1 @;. (Here we again
choose a splitting 7 : H — B of the homomorphism B — H). Then, considering p
as an element of the Lie algebra h = Lie H, we have [p, ¢;] = ¢; and [p, fi] = —fi
(see Appendix A.3). Therefore we find that

&
P ()| 85+ /() Y fi +¢/(5)-Vig(s))

i=1

@" (s)
@' (s)

L
=05+ ) fi+ 0 OB ) V6D Bl @) =5 (

i=1

) . (4.2-3)

The above formula defines an action of the group Aut O on the space Opg (D)
of opers on the standard disc,

D = Spec C[[¢]].

For a disc Dy around a point x of smooth curve X we may now define Opg(Dy)
as the twist of Op (D) by the Aut O-torsor uty (see Section 3.5.2).

In particular, the above formulas allow us to determine the structure of the H-
bundle g = ¥p g H = %p/N. Let us first describe a general construction of

H-bundles which works on any smooth curve X, or a disc, or a punctured disc.

Let P be the lattice of cocharacters CX — H. Since G is the group of adjoint
type associated to G, this lattice is naturally identified with the lattice of integral
coweights of the Cartan algebra b, spanned by w;,i = 1,...,£. Let P be the lattice
of characters H — C*. We have a natural pairing (-,-) : P X P — 7 obtained
by composing a character and a cocharacter, which gives us a homomorphism
C* — C* that corresponds to an integer.

Given an H-bundle g on X, for each A € P we have the associated line
bundle ¥, = Fg I)1<I C,., where C, is the one-dimensional representation of H

corresponding to A. The datum of F g is equivalent to the data of the line bundles
{&5.. A € P}, together with the isomorphisms &£, ® £, ~ ¥, 4, satisfying the
obvious associativity condition.
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Now, given [t € P, we define such data by setting &) = Qf,?’“’ ). Let us denote
the corresponding H-bundle on X by Q. It is nothing but the push-forward
of the C*-bundle 2* with respect to the homomorphism C* — H given by the
cocharacter [t.

More concretely, the H-bundle QA may be described as follows: for each choice
of a local coordinate ¢ on an open subset of X" we have a trivialization of Qy
generated by the section d?, and hence of each of the line bundles &£;. If we chose
a different coordinate s such that t = ¢(s), then the two trivializations differ by
the transition function (A, ft(¢’(s))). In other words, the transition function for
Q" is j1(¢'(s)). These transition functions give us an alternative way to define the
H-bundle Q#.

Lemma 4.2.1. The H-bundle g = %p E H = %pg/N is isomorphic to QP.

Proof. It follows from formula (4.2-3) for the action of the changes of coordinates
on opers that if we pass from a coordinate ¢ on D, to the coordinate s such that
t = ¢(s), then we obtain a new trivialization of the H-bundle % g7, which is related to
the old one by the transition function p(¢’(s)). This precisely means that F g ~ Qh.
O

4.2.4. Canonical representatives. In this section we find canonical representatives
in the N[[¢]]-gauge classes of connections of the form (4.2-2).

In order to do this, we observe that the operator ad p defines a gradation on
g, called the principal gradation, with respect to which we have a direct sum
decomposition g = @i g;. In particular, we have b = @izo b;, where by = b.

Let now ,
p-1= Z fi-
i=1
The operator ad p_; acts from b; 1 to b; injectively for all i > 0. Hence we can
find for each i > 0 a subspace V; C b;, such that b; = [p_1,b;41]® V;. Itis
well-known that V; # 0 if and only if / is an exponent of g, and in that case dim V;
is equal to the multiplicity of the exponent i. In particular, Vy = 0.

Let V =@;cg Vi Cn, where E = {d;,...,d,} is the set of exponents of g
counted with multiplicity. These are exactly the same exponents that we have
encountered previously in Section 2.1.1. They are equal to the orders of the
generators of the center of U(g) minus 1.

We note that the multiplicity of each exponent is equal to 1 in all cases except
the case g = D, d, = 2n, when it is equal to 2.

Lemma 4.2.2 ([Drinfel’d and Sokolov 1985]). The action of N|[[t]] on 6{)G (D) is
free.
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Proof. We claim that each element of 0,4+ p_; +Vv(¢) € EEG (D) can be uniquely
represented in the form

dr + p—1 + V() =exp (adU)- (9 + p—1 +¢(1)), (4.2-4)

where U € n][t]] and ¢(¢) € V[[t]]. To see this, we decompose with respect to
the principal gradation: U = ;5o Uj, V(1) = ;5o Vi (1), €(t) = D _;cp ¢ (0).
Equating the homogeneous components of degree j in both sides of (4.2-4), we
obtain that ¢; 4 [U; 41, p—1] is expressed in terms of v;,¢;, j <i,and Uj, j <1i.
The injectivity of ad p_; then allows us to determine uniquely ¢; and U; ;. Hence
U and c satisfying equation (4.2-4) may be found uniquely by induction, and the
lemma follows. O

There is a special choice of the transversal subspace V = @, Vi. Namely,
there exists a unique element p; in n, such that {p_;, 2p, p;} is an sl,-triple. This
means that they have the same relations as the generators {e, /1, '} of sl, (see
Section 2.1.1).

For example, for g = sl (with the rank £ = n — 1) we have

0o ...
10
po1 = 1 0 ,
1 0
n—1
n—3
Po = n—=>5 s
—n+1
01(n—1)
0 2(n—2)
0 3(n—13)
P1= . )
(n—1)1
0

In general, we have p; = Zf=1 m;e;, where the e;’s are generators of ny
and the m;’s are certain coefficients uniquely determined by the condition that

{p—1,2p, p1} is an sl,-triple.
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Let V" = @, g V" be the space of ad p;-invariants in n. Then p; spans
Vi Let pj be a linear generator of Vj;‘“. If the multiplicity of d; is greater than
1, then we choose linearly independent vectors in V;]'f‘“.

In the case of g = sl,, we may choose as the elements p;, j =1,...,n—1, the
matrices p{ (with respect to the matrix product).

According to Lemma 4.2.2, each G-oper may be represented by a unique operator
V =0;+ p_1 +v(t), where v(t) € V[¢]], so that we can write

44

Vi) =) vi(0)-pj,  vi(0) €Cl]l.

j=1

Let us find out how the group of coordinate changes acts on the canonical
representatives.

Suppose now that ¢ = @(s), where s is another coordinate on D, such that
t = ¢(s). With respect to the new coordinate s, V becomes equal to d;5 + V(s),
where V(s) is expressed via v(z) and ¢(s) as in formula (4.2-3). By Lemma 4.2.2,
there exists a unique operator ds + p—; + V(s) with v(s) € V[[s]] and g € B][s]],
such that

ds+ p—1 +V(s) = g- (35 +V(5)) . (4.2-5)

It is straightforward to find that

1 /!
g =exp (E(p—, : pl) p(¢"), (4.2-6)
2
1
U1(s) = vi(e()) (¢')" — 5 p. 53, (4.2-7)
Ui () = vie) (@) >, (4.2-8)

where {¢@, s} is the Schwarzian derivative (3.5-12).

Formula (4.2-6) may be used to describe the B-bundle % p. Namely, in Sec-
tion 4.1.3 we identified the PG L, bundle ¥ pir, underlying all PG L,-opers and
its Bpg,-reduction %BPGLZ' Let:: PGL, — G be the principal embedding
corresponding to the principal sl, subalgebra of g that we have been using (recall
that by our assumption G is of adjoint type). We denote by 1p the corresponding
embedding Bpgr, <> B. Then, according to formula (4.2-6), the G-bundle %
underlying all G-opers and its B-reduction ¥p are isomorphic to the bundles
induced from Fpgr, and Fp, . L, under the embeddings 7 and 13, respectively.

Formulas (4.2-7) and (4.2-8) show that under changes of coordinates, v trans-
forms as a projective connection, and v;, j > 1, transforms as a (d; + 1)-differential
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on D,. Thus, we obtain an isomorphism

{
. di+1
Opg (Dx) = Proj(Dx) x P 8", (4.2-9)

j=2

where Qg;" is the space of n-differentials on Dy and Proj(Dy) is the Qgg’xz—torsor
of projective connections on D.

This analysis carries over verbatim to the case of the punctured disc D3. In
particular, we obtain that for each choice of coordinate + on D, we have an
identification between Opg (D5 ) with the space of operators V = 0, + p_; + v(t),
where now v(¢) € V' ((¢)). The action of changes of coordinates is given by the
same formula as above, and so we obtain an analogue of the isomorphism (4.2-9):

L
Opg (D) ~ Proj (D) xR @™V, (4.2-10)
j=2

The natural embedding Opg(Dx) < Opg(D%) is compatible with the natural
embeddings of the right hand sides of (4.2-9) and (4.2-10).
In the same way we obtain an identification for a general smooth curve X:

¢
Opg (X) ~ Proj(X) x P T (X, Q?(dj-‘rl)).
j=2

Just how canonical is this “canonical form”? Suppose we do not wish to make any
choices other than that of a Borel subalgebra b in g. The definition of the canonical
form involves the choice of the sl,-triple {p_1, 20, p1}. However, choosing such
an sl,-triple is equivalent to choosing a splitting h < b of the projection b/n — h
and choosing the generators of the corresponding one-dimensional subspaces n_g; .
It is easy to see that the group B acts simply transitively on the set of these choices,
and hence on the set of sl-triples.

Given an sl,-triple {p_1,2p, p1}, we also chose basis elements p;,i € E, of
Ve homogeneous with respect to the grading defined by p. This allowed us to
make the identification (4.2-9). However, even if the multiplicity of d; is equal to
one, these elements are only well-defined up to a scalar. Therefore, if we want a
truly canonical form, we should consider instead of the vector space @f:z Qg; - Di
that we used in (4.2-9), the space

VA =T (Dy, Q a:XX V),

>1,x

where V(1) is the vector space €D, V" with the grading shifted by 1, which

>0 "q
no longer depends on the choice of a basis. Then we obtain a more canonical
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identification

Opg(Dx) =~ Proj(Dy) x VST (4.2-11)

>1,x"

and similarly for the case of DY and a more general curve X, which now depends
only on the choice of sl,-triple. In particular, since Proj(Dy) is an ng—torsor,

we find, by identifying Qg’xz = Qéx - p1, that Opg (D) is a V*-torsor, where

V=T (D, Q% x V(1)

Suppose now that we have another sl,-triple {p_,, 2,0 D1}, and the correspond-
ing space V™. Then both are obtained from the original ones by the adjoint action
of a uniquely determined element » € B. Given an oper p, we obtain its two
different canonical forms:

V=0;+p_1+vi(®)p1 +v>1(), V=0 +7_ +01()P; +V=1(0),

where v(¢) € VST and V(1) € Vf;l But then it follows from the construction that
we have V = hVh~!, which means that v (¢) = v; (¢) and

Voi1(t) =bvaq ()b L.

Since all possible subspaces V7" are canonically identified with each other in
this way, we may identify all of them with a unique “abstract” graded vector space
Vi‘kis (note however that Vjtis cannot be canonically identified with a subspace of
b). We define its twist V;‘lis . In the same way as above. Then the “true” canonical

s

form of opers is the identification

Opg(Dx) =~ Proj(Dx) x VAT . (4.2-12)
which does not depend on any choices (and similarly for the case of D3 and a more
general curve X). In particular, we find, as above, that Opg (Dyx) is a V®*-torsor,
where V;‘bs is the twist of the abstract graded space V' defined as before.

4.2.5. Alternative choice of representatives for sl,. In the case of g = sl, there
is another choice of representatives of oper gauge classes which is useful in appli-
cations. Namely, we choose as the transversal subspace V' = @1_1 V; the space of
traceless matrices with non-zero entries only in the first row (so its ith component
V; is the space spanned by the matrix £y ;j41).
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The corresponding representatives of PG Ly-opers have the form

0 uy up +++ up—y
10 0 -~ 0

+101 0 - 0 |, (4.2-13)
00 -- 1 0

In the same way as in the case of sl, one shows that this space coincides with the
space of nth order differential operators

" —u ("2 4. 4 uya (1) — (=) up_1 () (4.2-14)

acting from Q=(r=1D/2 o Q(r+1)/2, They have principal symbol 1 and subprincipal
symbol 0.

The advantage of this form is that it is very explicit and gives a concrete realization
of PG Ly-opers in terms of scalar differential operators. There are similar realiza-
tions for other classical Lie groups (see [Drinfel’d and Sokolov 1985; Beilinson and
Drinfeld 2005]). The disadvantage is that this form is not as canonical, because the
“first row” subspace is not canonically defined. In addition, the coefficients u;(¢) of
the operator (4.2-14) transform in a complicated way under changes of coordinates,
unlike the coefficients v;(¢) of the canonical form from the previous section.

4.3. The center for an arbitrary affine Kac-Moody algebra

We now state one of the main results of this book: a coordinate-independent
description of the center 3(g) of the vertex algebra V.. (g). This description, given
in Theorems 4.3.1 and 4.3.2, generalizes the description of 3(;[2) given in Theo-
rem 3.5.2. We will use it to describe the center Z(g) of the completed enveloping
algebra U «. (@) at the critical level in Theorem 4.3.6. Finally, we will show in
Proposition 4.3.9 that the center of U «(9) is trivial away from the critical level.

4.3.1. The center of the vertex algebra. Let us recall from Section 3.5.2 that for
any smooth point x of a curve X we have the affine Kac-Moody algebra g,
associated to x and the algebra 3(g)y defined by formula (3.5-4).

Let LG be the simple Lie group of adjoint type associated to the Langlands
dual Lie algebra L g of g. By definition, Lg is the Lie algebra whose Cartan matrix
is the transpose of the Cartan matrix of g (see Appendix A.3). Thus, LG is the
Langlands dual group (as defined in Section 1.1.5) of the group G, which is the
connected simply-connected simple Lie group with the Lie algebra g.

The following theorem proved by B. Feigin and myself [1992] (see also [Frenkel
2005b]) is the central result of this book. The detailed proof of this result will be
presented in the following chapters.
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Theorem 4.3.1. The algebra 3(g)~ is naturally isomorphic to the algebra of func-
tions on the space Opr g(Dx) of L' G-opers on the disc Dy.

Equivalently, we may consider the algebra 3(g) corresponding to the standard
disc D = Spec 0, 0 = (CJ[t]], but keep track of the action of the group Aut©O and
the Lie algebra Der 0. They act on 3(g) C Vi, (g) and on the space OpL (D) (and
hence on the algebra Fun Op_. g (D) of functions on it).

Theorem 4.3.2. The center 3(g) is isomorphic to the algebra FunOpLg (D) in a
(Der O, Aut 0)-equivariant way.

Using the isomorphism (4.2-9), we obtain an isomorphism
Opz (D) = C[[1]]®*

(of course, it depends on the coordinate 7). Therefore each oper is represented by

an {-tuple of formal Taylor series (v (¢),...,vs(¢)). Let us write
vi(t) = Z U,',nl_n_l.
n<0

Then we obtain an isomorphism
FunOp. g (D) = Clvinli=1,....;n<o0- (4.3-1)
Let S;,i =1,..., 4, be the elements of 3(g) corresponding to
vi.—1 € FunOpr (D)

under the isomorphism of Theorem 4.3.2. Let us use the fact that it is equivariant
under the action of the operator L_; = —0d; € Der O. On the side of Fun Op. 5 (D) it
is clear that % (—0¢)™v; —1 = Vi —m—1. Hence we obtain that under the isomorphism
of Theorem 4.3.2 the generators v; _,;,—1 g0 to

1 1
—L" S;==T"§$;,
m! m!
because L_; coincides with the translation operator 7" on the vertex algebra V.. (g).
This implies that
Vi,—m—1 > Si,(—m—1)|0>’

where the S; (,)’s are the Fourier coefficients of the vertex operator

Y(Si,z)= Z Simyz !

n<0

Indeed, we recall that 3(g) is a commutative vertex algebra, and so we can use
formula (2.2-1). Note that the operators S; (), 7 = 0, annihilate the vacuum vector
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|0), and because they commute with the action of g,_, their action on Vi (g) is
identically equal to zero.

Furthermore, we obtain that any polynomial in the v; ,’s goes under the isomor-
phism of Theorem 4.3.2 to the corresponding polynomial in the S; (,)’s, applied to
the vacuum vector |0) € Vi, (g). Thus, we obtain that

3(/9\) = C[Si,(n)]i=l,...,K;n<0|0>- (4.3-2)

This identification means, in particular, that the map gr3(g) < Inv g*[[¢]] from
Lemma 3.3.1 is an isomorphism.!

To see that, we recall the description of the algebra Inv g*[[¢]] from Theo-
rem 3.4.2:

Inv g*[[7]] = ClPinli=1,...n<05

where P;,i =1, ..., £, are homogeneous generators of the algebra Inv g* of degrees
di+1,i =1,...,L. To compare the two spaces, gr 3(g) and Inv g*[[¢]], we compute
their formal characters, i.e., the generating function of their graded dimensions with
respect to the grading operator Ly = —10d;.

If V is a Z-graded vector space V = €D, V» with finite-dimensional graded
components, we define its formal character as

chV =" dimVyq".

nez

Now, it follows from the definition of the generators P;, of Inv g*[[¢]] given in
Section 3.3.4 that deg P; ,, = d; —m. Therefore we find that

£
chivg* [l =] [ a-¢"7" (4.3-3)

i=1n;>d;+1

On the other hand, from the description of Opr 5 (D) given by formula (4.2-9)
we obtain the action of —#d, € Der O on the generators v; ,,. We find that deg v; ,, =
d; —m. Hence the character of Fun Opz (D) (and therefore the character of 3(g))
coincides with the right hand side of formula (4.3-3). Since we have an injective
map gr3(g) < Inv g*[[¢]] of two graded spaces whose characters coincide, we obtain
the following:

Proposition 4.3.3. The natural embedding gr 3(g) < Inv g*[[¢]] is an isomorphism.

In other words, the center 3(g) is “as large as possible.” This means that the
generators ?,-,_1 of the algebra Inv g*[[¢]] may be “lifted” to g[[¢]]-invariant vectors
S; €3(g).i =1,...,L. In other words, Fi,_l is the symbol of S;. It then follows
that P; , is the symbol of Si.m)0) € 3(g) for all n < 0.

IWe remark that this is, in fact, one of the steps in our proof of Theorem 4.3.2 given below.
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In particular, ?1,_1 is the quadratic Casimir generator given by the formula

P L7e 7
1,-1= EJ—lja,—l,
up to a non-zero scalar. Its lifting to 3(g) is the Segal-Sugawara vector Sy given by
formula (3.1-1). Therefore the generators Sy (,),n < 0, are the Segal-Sugawara
operators Sy_1.

It is natural to ask whether it is possible to find explicit liftings to 3(g) of other
generators P; _1,i = 1,...,£, of Inv g*[[¢]]. So far, the answer is known only in
special cases. For g = sl, explicit formulas for ?i,_l may be constructed using
the results of R. Goodman and N. Wallach [1989] which rely on some intricate
invariant theory computations.? For g of classical types A, By, C; another approach
was suggested by T. Hayashi in [1988]: he constructed explicitly the next central
elements after the Segal-Sugawara operators, of degree 3 in the case of 4y, and
of degree 4 in the case of By and Cy. He then generated central elements of
higher degrees by using the Poisson structure on the center of U «. () discussed in
Section 8.3.1 below (which Hayashi had essentially introduced for this purpose).
Unfortunately, this approach does not not give the entire center when g = Dy (as
the Pfaffian appears to be out of reach) and when g is an exceptional Lie algebra.
For g of types Ay, By, Cy one can prove in this way the isomorphism (4.3-2), but
not Theorem 4.3.2 identifying the center 3(g) with the algebra Fun Opr g (D).

The proof of Theorem 4.3.2 given by B. Feigin and myself [1992; 2005b], which
is presented in this book, does not rely on explicit formulas for the generators of the
center. Instead, we identify 3(g) and Fun OpL (D) as two subalgebras of another
algebra, namely, the algebra of functions on the space of connections on a certain
L H-bundle on the disc, where £ H is a Cartan subgroup of £G.

4.3.2. The center of the enveloping algebra. We now use the above description of
the center of 3(g) to describe the center Z(g) of the completed enveloping algebra
U «. (@) at the critical level (see Section 2.1.2 for the definition).

Let B €3(g) C Vi.(g). Then g[[¢]]- B =0 and formula (3.2-2) for the commutation
relations imply that all elements By € U «.(8), as defined in Section 3.2.1, commute
with the entire affine Kac-Moody algebra g,... Therefore they are central elements
of U «.(@). Moreover, any element of UG@) cU (Vi (9) = U «.(8) is also
central (here we use the enveloping algebra functor U defined in Section 3.2.3 and
Lemma 3.2.2). Thus, we obtain a homomorphism U (3(3)) — Z ().

Now, the algebra U (3(9)) is a completion of a polynomial algebra. Indeed,
recall from the previous section that we have elements S;,i = 1,..., ¢, in 3(g)

2Recently, an elegant formula of a different kind for g = s(;, was obtained in [Chervov and Talalaev
2006].
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which give us the isomorphism (4.3-2). Let S;[,}.n € Z, be the elements of
U «. (@) corresponding to S; € V.(g) (see Section 3.2.1). It follows from the
definition that the topological algebra U (3(g)) is the completion of the polynomial
algebra C[S; [n))i=1,...,¢;nez With respect to the topology in which the basis of open
neighborhoods of 0 is formed by the ideals generated by S; [,.i =1,...,¢;n >
N +d; + 1, for N € Z. This topology is equivalent to the topology in which the
condition n > N + d; + 1 is replaced by the condition n > N.

__Thus, the completed polynomial algebra U (3(g)) maps to the center Z(g) of
Ut (@)

Proposition 4.3.4. This map is an isomorphism, and so Z(g) is equal to U (3(g)).

Proof. We follow the proof given in [Beilinson and Drinfeld 1997], Theorem
3.7.7.

We start by describing the associated graded algebra of Z(g). The Poincaré—
Birkhoff-Witt filtration on U, (g) induces one on the completion U «.(@). The
associated graded algebra gr Uy (g) (recall the definition given in Section 3.2.3)
is the algebra Sym g(()) = B, Sym’ g((r)). Let Iy be the ideal in Sym g((t))
generated by g®¢~ C[[¢]]. The associated graded algebra gr U «. (@) is the completion

Symg((t) = ;o Sym a(?)) of Sym g (1)), where

Sym' g(1) = lim Sym' g(1)/(Ty N Syn g((1).

In other words, gﬁllg((t)) is the space Fun’(g* ® t~NCJ[[]]) of polynomial
functions on g((z)) >~ g*(¢)dt >~ g*(¢)) of degree i. By such a function we
mean a function on g*((z)) such that for each N € Z its restriction to g* ®
t~NC[[t]] is a polynomial function of degree i (i.e., it comes by pull-back from a
polynomial function on a finite-dimensional vector space g* & (t~N C[[¢]]/t"C][[¢]])
for sufficiently large n).

The Lie algebra g((z)) naturally acts on each space Sf;r/nlg((t)) via the adjoint
action, and its Lie subalgebra g[[¢]] preserves the subspace I y NSym* g((¢)) of those
functions which vanish on g ® tNC[[1]].

Let Invg*(¢)) = Diso Inv' g((¢)) be the subalgebra of g((¢))-invariant elements

of S}?r/n g((?)). For each N € Z4 we have a surjective homomorphism obtained by
taking the quotient by 7 y:

Sym (1) — Fun' (g* ® =N C[[e])).

The image of IAn(/ig*((z)) under this homomorphism is contained in the space of
gl[¢]]-invariants in Fun’(g* ® ¢t~V C[[]]).
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But we have a natural isomorphism
Fun(g* ® 1~V C[[¢])) ~ Fun(g*[[/]])

(multiplication by V) which commutes with the action of g[[¢]]. Since we know
the algebra of g[[¢]]-invariant functions on g*[[¢]] from Theorem 3.4.2, we find the
algebra of g[¢]]-invariant functions on g* ® ¢~V C[[¢]] by using this isomorphism.
To describe it, let 7: be a linear functional on g*((7)) defined as in formula (3.3-4).
Note that the restriction of 7?,, n>N,tog*®:~NC[[f]] is equal to 0. Let us write

Pie)=Pi(T @) =) _ Pinz ™",

nez

where
Tz = 2732_”_1.
nez

Now we obtain from the above isomorphism that the algebra of g[[¢]]-invariant
functions on g* ® =N CJ[[t]] is the free polynomial algebra with the generators
?i,n,n <(di +1)N.

However, one checks explicitly that each P;, is not only g[[t]]-invariant, but
g((?))-invariant. This means that the homomorphism

fov g* (1) — (Fun(g* & t~ NV C[[¢]))) ]

is surjective for all N € Z. Hence it follows that Inv g% (7)) is the inverse limit of
the algebras (Fun(g* ® r~N C[[¢]]))ell]].
Therefore Inv g* (7)), is the completion of the polynomial algebra

C[Pi,n]i=1,...,£;nez

with respect to the topology in which the basis of open neighborhoods of 0 is formed
by the subspaces of the polynomials of fixed degree that lie in the ideals generated
by ?i,n, withn > N, for N € Z4 (using the last condition is equivalent to using
the condition n > (d; + 1) N, which comes from the above analysis).

Now we are ready to prove the proposition. Recall the definition of U «. (@) as
the inverse limit of the quotients of Uy (g)/In by the left ideals 7 generated by
g ® tVC[[t]]. Therefore

2@ =1imZ@/Z@ N ly.

We have an injective map Z(§)/Z (@) N Ix <= (Us, @)/ 1), In addition, we
have an injective map

2r((Ue, @/ In) W)  (gr Ue, @) /Tn) Y = (Fun(g* @ N C[[e]))) e,
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We already know that C[S; [n]]i=1,... ¢:nez is a subalgebra of Z(g). By construction,
the symbol of S; ] is equal to ﬁ,n Therefore the image of C[S; ]li=1,....t:nez
under the composition of the above maps is the entire (Fun(g* ® ¢~ C[[7]]))ell]l.

This implies that all the intermediate maps are isomorphisms. In particular, we
find that for each N € Z4 we have

Z@)/Z@) NIN = C[Sinli=1.....e:n; <N(d;+1)-

Therefore the center Z(g) is equal to the completion of the polynomial algebra
CISi [(n)li=1,...,e:nez With respect to the topology in which the basis of open neigh-
borhoods of 0 is formed by the ideals generated by S; [,}.i = 1,...,4;n > N. But
this is precisely U (3(@)). This completes the proof. |

As a corollary we obtain that Z(g) is isomorphic to U (Fun OpL g (D)).

Lemma 4.3.5. The algebra U (Fun OpL (D)) is canonically isomorphic to the
topological algebra Fun OpL g (D™) of functions on the space of LG-opers on the
punctured disc D* = Spec C((2)).

Proof. As explained in Section 4.3.1, the algebra Fun Op. g (D) is isomorphic
to the polynomial algebra C[v; »]i—1,... ¢;n<0, Where the v; ;s are the coefficients
of the oper connection

L
V=0i+p1+ Y vil)pi (43-4)

i=1

where v; (1) = Y, o Vint """ !. The construction of the functor U implies that
the algebra U (Opr G(D)KCY) is the completion of the polynomial algebra in the
variables v; ,,1 = 1,...,{;n € Z, with respect to the topology in which the base
of open neighborhoods of 0 is formed by the ideals generated by v; ,,n > N. But
this is precisely the algebra of functions on the space of opers of the form (4.3-4),
where v; (t) = Y ,c7 Viat "1 € C(2)). O

Now Theorem 4.3.2, Proposition 4.3.4 and Lemma 4.3.5 imply the following:

Theorem 4.3.6. The center Z(g) is isomorphic to the algebra Fun OpL g (D) in
a (Der O, Aut 0)-equivariant way.

We will see later that there are other conditions that this isomorphism satisfies,
which fix it almost uniquely.

Using this theorem, we can describe the center Z(g,) of the enveloping algebra
U ke (@)x of the Lie algebra g, .

Corollary 4.3.7. The center Z(g,) is isomorphic to the algebra FunOprg(DY)
of functions on the space of L G-opers on D%.
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We also want to record the following useful result, whose proof is borrowed
from [Beilinson and Drinfeld 1997], Remark 3.7.11(iii). Note that the group G((¢))
acts naturally on U, (g).

Proposition 4.3.8. The action of G((t)) on Z(§) C U «. (@) is trivial.

Proof. Let U «.(@)<i be the ith term of the filtration on U «. (@) induced by
the PBW filtration on Uy, (g) (see the proof of Proposition 4.3.4). It is clear that
the union of U «.(@)<i,i >0, is dense in U «.(@). Moreover, it follows from the
description of the center as a completion of the algebra C[S; [n)]i=1,....¢:nez that
the union of Z(§) N U «.(@)<i,i >0, is dense in Z(g). Therefore it is sufficient
to prove that G((¢)) acts trivially on Z(g) N U «. (@) (clearly, G((?)) preserves each
term U, (§)<i).

In Proposition 4.3.4 we described the associated graded algebra gr Z(g) of Z(g)
with respect to the above filtration. Namely, gr Z(g) is a completion of a polynomial
algebra. Using explicit formulas for the generators Fi,n of this algebra presented
above, we find that G((¢)) acts trivially on gr Z(g). Therefore the action of G((?))
on Z(g) N U «. (@) factors through a unipotent algebraic group U. But then the
corresponding action of its Lie algebra g((¢)) factors through an action of the Lie
algebra of U. From our assumption that G is simply-connected we obtain that
G((¢)) is connected. Therefore U is also connected.

Clearly, the differential of a non-trivial action of a connected unipotent Lie group
is also non-trivial. Therefore we find that if the action of G((7)) on Z(g§) N U «. (@) is
non-trivial, then the action of its Lie algebra g((¢)) is also non-trivial. But it is obvious
that g((¢)) acts by 0 on Z(g). Therefore the action of G((7)) on Z(g§) N U «. (@), and
hence on Z(g), is trivial. This completes the proof.

Note that if we had not assumed that G were simply-connected, then the funda-
mental group of G would be a finite group I', which would coincide with the group
of components of G((¢)). The above argument shows that the action of G((¢)) factors
through I'". But a finite group cannot have non-trivial unipotent representations.
Hence we obtain that G((¢)) acts trivially on Z(g) even without the assumption that
G is simply-connected. O

4.3.3. The center away from the critical level. The above results describe the
center of the vertex algebra V,(g) and the center of the completed enveloping
algebra U « (@) at the critical level k = k.. But what happens away from the critical
level?

In Proposition 3.3.3 we have answered this question in the case of the vertex
algebra: it is trivial, i.e., consists of scalars only. Now, for completeness, we answer
it for the completed enveloping algebra U « (@) and show that it is trivial as well.
Therefore we are not missing anything, as far as the center of U (g) is concerned,
outside of the critical level.
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Proposition 4.3.9. The center of U, (9) consists of the scalars for k # Ke.

Proof. Consider the Lie algebraﬁjc = Cd x g,., where d is the operator whose
commutation relations with g, correspond to the action of the vector field 79;.
Let U/ (g) be the quotient of the universal enveloping algebra of /jfc by the ideal
generated by 1— 1, and U :C (g) its completion defined in the same way as Uk @).

Now, the algebra U, (9), kK # K¢, contains the operator Lq, which commutes
with g, as —d. Therefore Lo - + d is a central element of U, (9), and U@ is
isomorphic to the quotient of U (@) by the ideal generated by Lo +d.

Let Z,(g) be the center of U K(g) and Z,.(g) the center of U «(0). We have a
natural embedding U «(@) — U K(g). Since any element A4 of Z, (g) must satisfy
[Lo, A] = 0, we find that the image of A in U :C (g) is also a central element.
Therefore we find that Z},(g) = Z,(g) ®c C[L¢ + d].

The description of the center Z,(g) follows from the results of V. Kac [1984].
According to Corollary 1 of [Kac 1984], for k # k. there is an isomorphism between
Z.(g) and the algebra of invariant functions on the hyperplane (H);‘, corresponding
to level k, in the dual space to the extended Cartan subalgebraHz heH)dCleld,
with respect to the (p-shifted) action of the affine Weyl group. But it is easy to
see that the polynomial functions on (ﬁ),’: satisfying this condition are spanned by
the powers of the polynomial on (H): obtained by restriction of the invariant inner
product on B* This quadratic polynomial gives rise to the central element L + d.
Therefore Z,.(g) = Z,(g) ®c C[L¢ + d], and so Z,(g) = C. O



CHAPTER 5

Free field realization

We now set out to prove Theorem 4.3.2 establishing an isomorphism between
the center of the vertex algebra Vj..(g) and the algebra of functions on the space of
L G-opers on the disc. An essential role in this proof is played by the Wakimoto
modules over §,... Our immediate goal is to construct these modules and to study
their properties. This will be done in this chapter and the next, following [Feigin
and Frenkel 1990a; Frenkel 2005b].

5.1. Overview

Our ultimate goal is to prove that the center of the vertex algebra V., (g) is isomor-
phic to the algebra of functions on the space of £ G-opers on the disc. It is instructive
to look first at the proof of the analogous statement in the finite-dimensional case,
which is Theorem 2.1.1. The most direct way to describe the center Z(g) of U(g)
is to use the so-called Harish-Chandra homomorphism Z(g) — Fun b*, where b is
the Cartan subalgebra of g, and to prove that its image is equal to the subalgebra
(Fun b*)"" of W-invariant functions, where W is the Weyl group acting on h*
(see Appendix A.3). How can one construct this homomorphism? One possible
way is to use geometry; namely, the infinitesimal action of the Lie algebra g
on the flag manifold FIl = G/B_, where B_ is the lower Borel subgroup of G.
This action preserves the open dense B -orbit U (where By is the upper Borel
subgroup of G) in Fl, namely, B4 -[1] >~ N4+ =[B+, B+]. Hence we obtain a Lie
algebra homomorphism from g to the algebra % (/N4 ) of differential operators on
the unipotent subgroup N4+ C G.

One can show that there is in fact a family of such homomorphisms parameterized
by h*. Thus, we obtain a Lie algebra homomorphism g — Fun h* ® %(N4), and
hence an algebra homomorphism U(g) — Fun h* ® @(Ny). Next, one shows that
the image of Z(g) C U(g) lies entirely in the first factor, which is the commutative
subalgebra Fun h*, and this is the sought-after Harish-Chandra homomorphism.

127
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One can then prove that the image is invariant under the simple reflections s;, the
generators of W. After this, all that remains to complete the proof is to give an
estimate on the “size” of Z(g).

We will follow the same strategy in the affine case. Instead of an open B -orbit
of Fl, isomorphic to N4, we will consider an open orbit of the “loop space” of
Fl, which is isomorphic to N4 ((¢)). The infinitesimal action of g((z)) on N4 ((z))
gives rise to a homomorphism of Lie algebras g((z)) — Vect N+((¢)). However,
there is a new phenomenon which did not exist in the finite-dimensional case:
because N4 ((¢)) is infinite-dimensional, we must consider a completion @(N+ ()
of the corresponding algebra of differential operators. It turns out that there is
a cohomological obstruction to lifting our homomorphism to a homomorphism
a(?) — @(N_F (?))). But we will show, following [Feigin and Frenkel 1990a;
Frenkel 2005b], that this obstruction may be partially resolved, giving rise to a
homomorphism of the central extension g, of g((#)) to @(N +(2)), such that 1+ 1.
Thus, any module over @(N.,. (1)) is a @, -module of critical level. This gives us
another explanation of the special role of the critical level.

The above homomorphism may be deformed, much like in the finite-dimensional
case, to a homomorphism from g, (and hence from U «.(8)) to a (completed)
tensor product of g(N (z))) and Fun h*((¢)). However, we will see that in order to
make it Aut O-equivariant, we need to modify the action of Aut O on h*((¢)): instead
of the usual action on h* (7)) >~ h* ® Qg we will need the action corresponding
to the Qg -torsor Conn(27°) px of connections on the L H-bundle Q7" on the
punctured disc. Here L H is the Cartan subgroup of the Langlands dual group (its
Lie algebra is identified with h*). This is the first inkling of the appearance of
connections and of the Langlands dual group.

Next, we show that under this homomorphism the image of the center Z(g) C
U «. (@) is contained in the subalgebra Fun Conn(Q27”) p=. Furthermore, we will
show that this image is equal to the centralizer of certain “screening operators”
Vi[1].i =1, ..., (one may think that these are the analogues of simple reflections
from the Weyl group). On the other hand, we will show that this centralizer is also
equal to the algebra Fun Opr (D), which is embedded into Fun Conn(£27°) px
via the so-called Miura transformation.

Thus, we will obtain the sought-after isomorphism Z(g) ~ Fun Opr g(D*) of
Theorem 4.3.6 identifying the center with the algebra of functions on opers for the
Langlands dual group. Actually, in what follows we will work in the setting of
vertex algebras and obtain in a similar way an isomorphism 3(g) 2~ Fun Op. (D)
of Theorem 4.3.2. (As we saw in Section 4.3.2, this implies the isomorphism of
Theorem 4.3.6.)

The homomorphism U . (@) = @(N (1))® Fun h*((¢)) and its vertex algebra
version are called the free field realization of g, . It may also be deformed away
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from the critical level, as we will see in the next chapter. This realization was
introduced in 1986 by M. Wakimoto [1986] in the case of ;[2 and in 1988 by B.
Feigin and the author [Feigin and Frenkel 1988] in the general case. It gives rise to
a family of g,-modules, called Wakimoto modules. They have many applications
in representation theory, geometry and conformal field theory.

In this chapter and the next we present the construction of the free field realization
and the Wakimoto modules. In the case of g = sl, the construction is spelled out
in detail in [Frenkel and Ben-Zvi 2004], Ch. 11-12, where the reader is referred
for additional motivation and background. Here we explain it in the case of an
arbitrary g. We follow the original approach of [Feigin and Frenkel 1990a] (with
some modifications introduced in [Frenkel 2005b]) and prove the existence of the
free field realization by cohomological methods. We note that explicit formulas for
the Wakimoto realization have been given in [Feigin and Frenkel 1988] for g = sl
and in [de Boer and Fehér 1997] for general g. Another proof of the existence
of the free field realization has been presented in [Feigin and Frenkel 1999]. The
construction has also been extended to twisted affine algebras in [Szczesny 2002].

Here is a more detailed description of the contents of this chapter. We begin in
Section 5.2 with the geometric construction of representations of a simple finite-
dimensional Lie algebra g using an embedding of g into a Weyl algebra which
is obtained from the infinitesimal action of g on the flag manifold. This will
serve as a prototype for the construction of Wakimoto modules presented in the
subsequent sections. In Section 5.3 we introduce the main ingredients needed for
the constructions of Wakimoto modules: the infinite-dimensional Weyl algebra
549, the corresponding vertex algebra M and the infinitesimal action of the loop
algebra Lg on the formal loop space LU of the big cell U of the flag manifold
of g. We also introduce the local Lie algebra &Qil’g of differential operators on
LU of order less than or equal to one. We show that it is a non-trivial extension
of the Lie algebra of local vector fields on LA by local functionals on LU and
compute the corresponding two-cocycle (most of this material has already been
presented in [Frenkel and Ben-Zvi 2004], Chapter 12). In Section 5.4 we give a
vertex algebra interpretation of this extension. We prove that the embedding of the
loop algebra Lg into the Lie algebra of local vector fields on LU may be lifted to an
embedding of the central extension g to &Qgﬂ’g. In order to do that, we need to show
that the restriction of the above two-cocycle to Lg is cohomologically equivalent
to the two-cocycle corresponding to its Kac—Moody central extension (of level k).
This is achieved in Section 5.5 by replacing the standard cohomological Chevalley
complex by a much smaller local subcomplex (where both cocycles belong). In
Section 5.6 we compute the cohomology of the latter and prove that the cocycles
are indeed cohomologically equivalent.
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5.2. Finite-dimensional case

In this section we recall the realization of g-modules in the space of functions on the
big cell of the flag manifold. This will serve as a blueprint for the construction of
the free field realization of the affine Kac—-Moody algebras in the following sections.

5.2.1. Flag variety. Let again g be a simple Lie algebra of rank £ with its Cartan
decomposition

g=nidhdn_, (5.2-1
where b is the Cartan subalgebra and ny are the upper and lower nilpotent subalge-
bras. Let

b =h®dny

be the upper and lower Borel subalgebras. We will follow the notation of Appendix
A3.

Let G be the connected simply-connected Lie group corresponding to g, and N+
(resp., B4+) the upper and lower unipotent subgroups (resp., Borel subgroups) of G
corresponding to ni (resp., by).

The homogeneous space F1 = G/ B_ is called the flag variety associated to g.
For example, for G = SL, this is the variety of full flags of subspaces of C":
Vic...CVy—y CC" dimV; =i. The group SL, acts transitively on this variety,
and the stabilizer of the flag in which V; = span(ey, ..., e,—i+1) is the subgroup
B_ of lower triangular matrices.

The flag variety has a unique open N -orbit, the so-called big cell U = N -
[1] C G/ B—, which is isomorphic to N4. Since N4 is a unipotent Lie group, the
exponential map ny — N4 is an isomorphism. Therefore N4 is isomorphic to the
vector space n. Thus, N4 is isomorphic to the affine space Al2+], where A is
the set of positive roots of g. Hence the algebra Fun N of regular functions on
N is a free polynomial algebra. We will call a system of coordinates {ya jaea |
on Nt homogeneous if

h-yy =—a(h)yy, heb.
In what follows we will consider only homogeneous coordinate systems on N.

Note that in order to define U it is sufficient to choose only a Borel subgroup
B4 of G. Then N4+ =[B4, B+] and AU is the open N_-orbit in the flag manifold
defined as the variety of all Borel subgroups of G (so U is an N-torsor). All
constructions of this chapter make sense with the choice of B4 only, i.e., without
making the choice of an embedding of H = B4 /[B+, B4] into B4 (which in
particular gives the opposite Borel subgroup B_, see Section 4.2.1). However, to
simplify the exposition we will fix a Cartan subgroup H C By as well. We will
see later on that the construction is independent of this choice.
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The action of G on G/B_ gives us a map from g to the Lie algebra of vector
fields on G/ B_, and hence on its open dense subset U >~ Ny. Thus, we obtain a
Lie algebra homomorphism g — Vect N.

This homomorphism may be described explicitly as follows. Let G° denote
the dense open submanifold of G consisting of elements of the form g4+ g_, g+ €
N4, g— € B_ (note that such an expression is necessarily unique since B_N Ny =1).
In other words, G° = p~!(A), where p is the projection G — G/B_. Given a € g,
consider the one-parameter subgroup y (¢) = exp(ea) in G. Since G° is open and
dense in G, y(€)x € G° for € in the formal neighborhood of 0, so we can write

y(©)'x = Zi(e)Z_(e), Zi(€)e Ny, Z_(¢)€ B_.

The factor Z (€) just expresses the projection of the subgroup y(€) onto Ny >~
AU C G/ B- under the map p. Then the vector field &, (equivalently, a derivation of
Fun Ny ) corresponding to a is given by the formula

d
a0 = (414 6522)

€=0

To write a formula for &, in more concrete terms, we choose a faithful repre-
sentation V' of g (say, the adjoint representation). Since we only need the e-linear
term in our calculation, we can and will assume that €2 = 0. Considering x € N
as a matrix whose entries are polynomials in the coordinates yo, o € A4, which
expresses a generic element of N4 in End V', we have

(1—€ea)x = Z(e)Z_(e). (5.2-3)

We find from this formula that Z (¢) = x —|—€ZS_1), where Zf,_l) eng,and Z_(e) =
1+€ZW where Z() € b_. Therefore we obtain from formulas (5.2-2) and (5.2-3)
that

Ea-x =—x(x"lax)y, (5.2-4)
where z denotes the projection of an element z € g onto ny along b_.

For example, let g = sl,. Then G/B_ = P!, the variety of lines in C2. As an
open subset of CP! we take

%:{C(_yl)}ccuml

(the minus sign is chosen here for notational convenience). We obtain a Lie algebra
homomorphism sl, — VectAU sending « to &;, which can be calculated explicitly
by the formula

d
(va - f)(y) = - f(exp(—€a) y)|e=o-



132 5. FREE FIELD REALIZATION

It is easy to find explicit formulas for the vector fields corresponding to elements
of the standard basis of sl, (see Section 2.1.1):

0 0 0

e —, h>—2y—, f>—y>—. (5.2-5)
dy dy dy

5.2.2. The algebra of differential operators. The algebra % (°U) of differential op-

erators on 9 is isomorphic to the Weyl algebra with generators {yy, d/0ya jaca | »

and the standard relations

il R Ert ] RS
aya’yﬂ a,Bs aya’ayﬂ ya’yﬂ .

The algebra 9 (W) has a natural filtration {2 <; (W)} by the order of the differential
operator. In particular, we have an exact sequence

0 — FunU — %<1 (U) — VectU — 0, (5.2-6)

where FunU ~ Fun N4 denotes the ring of regular functions on AU, and VectU
denotes the Lie algebra of vector fields on AU. This sequence has a canonical
splitting: namely, we lift £ € VectU to the unique first order differential operator
D¢ whose symbol equals & and which kills the constant functions, i.e., such that
D¢ -1 = 0. Using this splitting, we obtain an embedding g — %< (N+), and hence
the structure of a g-module on the space of functions Fun Ny = ClygJaca -

5.2.3. Verma modules and contragredient Verma modules. By construction, the
action of ny on Fun V4 satisfies ¢4 - yo = 1 and ey - yg = 0 unless « is less
than or equal to B with respect to the usual partial ordering on the set of positive
roots (for which & < B if B —« is a linear combination of positive simple roots
with non-negative coefficients). Therefore, we obtain by induction that for any
A € Fun N4 there exists P € U(ny) such that P-4 = 1.
Consider the pairing
Umy) xFun Ny — C,

which maps (P, A) to the value of the function P - A4 at the identity element of V.
This pairing is ny-invariant. Moreover, both U(n4) and Fun N are graded by the
positive part Q4 of the root lattice of g (under the action of the Cartan subalgebra
h):
Unp) = P Umy)y.  FunNy= P FunNy),,
yeQ+ ve0

where

¢
0+ = Z”iai ni €24 ¢,

i=1
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and this pairing is homogeneous. This means that the pairing of homogeneous
elements is non-zero only if their degrees are opposite.

Let us look at the restriction of the pairing to the finite-dimensional subspaces
U(ny)y and (Fun N4)_,, for some y € Q. Consider he Poincaré-Birkhoff-Witt
basis elements

k
€q(l) - - - Ca(k)> Z(X(i) =y (5.2-7)
i=1

(with respect to some lexicographic ordering) of U(n), and the monomial basis

m
{yﬂ(l) e VB(m)> Zﬂ(i) = V}
i=1
of Fun N4.
Using formula (5.2-4) we obtain the following formulas for the action of the
vector field corresponding to e, on Fun N4:

0 0
wr ot Y PR, (5.2-8)
Yo BeEAL B> VB

where Pg € Fun NV is a polynomial of degree o — 8, which is a non-zero element
of —Q 4 (this is what we mean by 8 > « in the above formula).

Let us choose the lexicographic ordering of our monomials (5.2-7) in such a way
that a(i) > (/) only if i > j. Then it is easy to see from formula (5.2-8) that the
matrix of our pairing, restricted to degree y, is diagonal with non-zero entries, and
so it is non-degenerate.

Therefore we find that the n-module Fun Ny is isomorphic to the restricted
dual U(n4)Y of U(ng):

Un)YE @ Uh)y)*,
veQ+

Now we recall the definition of the Verma modules and the contragredient Verma
modules.

For each x € h*, consider the one-dimensional representation C,, of b+ on which
b acts according to x, and ny acts by 0. The Verma module A, with highest
weight y € b* is the induced module

M,=Ind? C, ¥ U@ ® C,.
X by —X vy "

The Cartan decomposition (5.2-1) gives us an isomorphism of vector spaces

U(g) > U(n-) ® U(by).
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Therefore, as an n_-module, M, >~ U(n_).
The contragredient Verma module M ; with highest weight y € h* is defined
as the (restricted) coinduced module

def

My = Coind] C, = Hom,, ,(U(g), Cy). (5.2-9)

Here, we consider homomorphisms invariant under the action of U(b_) on U(g)
from the left, and the index “res” means that we consider only those linear maps
U(g) — C, which are finite linear combinations of maps supported on the direct
summands U(b_) ® U(ny), of U(g) with respect to the isomorphism of vector
spaces U(g) ~ U(b-) ® U(ny). Then, as an ny-module, M* ~ U(n4)".

5.2.4. Identification of FunN4 with M ;. The module M is isomorphic to Fun
N4 with its g-module structure defined above. Indeed, the vector 1 € Fun N4 is
annihilated by ny and has weight 0 with respect to /. Hence there is a non-zero
homomorphism ¢ : Fun Ny — M sending 1 € Fun N4 to a non-zero vector
vy € M, of weight 0. Since Fun N4 is isomorphic to U(n4)" as an n-module,
this homomorphism is injective. Indeed, for any P € Fun N there exists u € U(ny)
such that U- P = 1. Therefore u-¢(P) = ¢(1) =v; # 0, and so ¢(P) # 0. But since
M )’(" is also isomorphic to U(n4)" as an n4-module, we find that ¢ is necessarily
an isomorphism.

Now we identify the module M )’(" with an arbitrary weight y with Fun N1, where
the latter is equipped with a modified action of g.

Recall that we have a canonical lifting of g to @< (N+), a — &,. But this lifting
is not unique. We can modify it by adding to each &, a function ¢, € Fun N4+ so that
Da+b = Pa +Pp. One readily checks that the modified differential operators &; + ¢4
satisfy the commutation relations of g if and only if the linear map g — Fun N
given by a — ¢, is a one-cocycle of g with coefficients in Fun V.

Each such lifting gives Fun N the structure of a g-module. Let us impose
the extra condition that the modified action of § on V' remains diagonalizable.
This means that ¢, is a constant function on N4 for each /i € b, and therefore
our one-cocycle should be h-invariant: ¢, 4] = & - ¢, for all 1 € h,a € g. We
claim that the space of h-invariant one-cocycles of g with coefficients in C[N4] is
canonically isomorphic to the first cohomology of g with coefficients in C[N4], i.e.,
H'(g, C[N+)).

Indeed, it is well-known (see, e.g., [Fuks 1986]) that if a Lie subalgebra h of g acts
diagonally on g and on a g-module M, then h must act by 0 on H'(g, M ). Hence
H'(g, C[N4]) is equal to the quotient of the space of h-invariant one-cocycles by
its subspace of h-invariant coboundaries (i.e., those cocycles which have the form
¢p = vp - f for some f € C[N4]). But it is clear that the space of h-invariant
coboundaries is equal to 0 in our case, hence the result.
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Thus, the set of liftings of g to @< (/N4+) making C[N4] into a g-module with
diagonal action of b is naturally isomorphic to H'(g, C[N4]). Since

Fun Ny = M§ = Coind{_Co,
we find from the Shapiro lemma (see [Fuks 1986], Section 5.4) that
H'(g.Fun Ny) >~ H'(b_,Co) = (b_/[b_, b_])* ~ b*,

Thus, for each x € h* we obtain a Lie algebra homomorphism p, : g = D<;(N4)
and hence the structure of an h*-graded g-module on Fun N. Let us analyze this
g-module in more detail.

We have &, - yo = —a(h) yo, @ € A4, so the weight of any monomial in Fun N4
is equal to a sum of negative roots. Since our one-cocycle is h-invariant, we obtain
that

En " Peo = Plheq) = (M) e, » @€y,

so the weight of ¢, has to be equal to the positive root . Therefore ¢, = 0 for all
a« € Ay. Thus, the action of ny on Fun N is not modified. On the other hand, by
construction, the action of / € b is modified by 4 +— h + x(h). Therefore the vector
1 € Fun Ny is still annihilated by n4, but now it has weight x with respect to /.
Hence there is a non-zero homomorphism Fun Ny — M )’(“ sending 1 e Fun Ny toa
non-zero vector vy € M, of weight x. Since both Fun N and M are isomorphic
to U(n4)Y as niy-modules, we obtain that this homomorphism is an isomorphism
(in the same way as we did at the beginning of this section for y = 0). Thus, under
the modified action obtained via the lifting p,, the g-module Fun N is isomorphic
to the contragredient Verma module M ;(" .
To summarize, we have constructed a family of Lie algebra homomorphisms

Py 8 —>D<1(Ny) = D(Ny), x€h,
which give rise to homomorphisms of algebras
Py U@ —9(Ny),  xeb*
These homomorphisms combine into a universal homomorphism of algebras

7:U(g) — Funb* @ G(Ny), (5.2-10)

such that for each x € h* we recover p, as the composition of p and the evaluation
at x homomorphism Fun h* — C along the first factor.
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5.2.5. Explicit formulas. Choose a basis {J%},—;
morphism p,, we have

dimg Of g. Under the homo-

.....

J9 > Py (ya, ! ) + Ja(Ya), (5.2-11)

9ya
where P, is a polynomial in the y,’s and d/0y,’s of degree one in the d/dy4’s,
which is independent of x, and f; is a polynomial in the y4’s only, which depends
on .

Let e;, hi, fi,i = 1,...,£, be the generators of g. Using formula (5.2-4) we
obtain the following formulas:

prle) ==—+ ) ﬂ(ya) (5.2-12)
Yo peny
prlhi) ==Y B(hi )yﬂ—+x(h) (5.2-13)
Bedy 9
pr(f)= ) Qﬂ(ya) >+ xi) e (5.2-14)
BeAy

for some polynomials P, Q;;} in yg, o0 € Ay

In addition, we have a Lie algebra anti-homomorphism pRing > D<1(N+),
which corresponds to the right action of ny on Ni. The dlfferentlal operators
pR(x),x € ny, commute with the differential operators Py (x), x" € ny (but their
commutation relations with py (x/ ), x" &n, are complicated in general). We have

+ Y P (ya)

BeAy

pR(er) =

Vo
for some polynomials Pée *in Ya, ¢ € Ay.

5.3. The case of affine algebras

In this section we develop a similar formalism for the affine Kac—Moody algebras.
This will enable us to construct Wakimoto modules, which is an important step in
our program.

5.3.1. The infinite-dimensional Weyl algebra. Our goal is to generalize the above
construction to the case of affine Kac—Moody algebras. Let again AU be the open
N -orbit of the flag manifold of G, which we identify with the group N4 and hence
with the Lie algebra n4. Consider the formal loop space LU = U((¢)) as a complete
topological vector space with the basis of open neighborhoods of 0 € LA formed
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by the subspaces U @ tVC[[t]] C LU, N € Z. Thus, LA is an affine ind-scheme
LU =limu®:NC[:], N <O0.
—

Using the coordinates yy, € A4, on AU, we can write

U INC[ =~ D yant” = Spec C[Yanln=N-

n>N [XEA+

Therefore we obtain that the ring of functions on LU, denoted by Fun LA, is the
inverse limit of the rings C[yg,nleea, n>n, N < 0, with respect to the natural
surjective homomorphisms

SN,M C[ya,n]aeA+,nZN - C[J’a,n]aeA.;.,nZM’ N < M,

such that yg , — 0 for N <n < M and ygn > YVan,n = M. This is a complete
topological ring, with the basis of open neighborhoods of 0 given by the ideals
generated by yy,n,n <N, i.e., the kernels of the homomorphisms s a7 : Fun LU —
Funa ® ¢V C[[t]].

A vector field on L9 is by definition a continuous linear endomorphism & of
Fun LU which satisfies the Leibniz rule: £( fg) =&(f)g + f&(g). In other words,
a vector field is a linear endomorphism & of Fun LAl such that for any M < 0 there
exist N < M and a derivation

é§_N,M : C[}%x,n]aeA.;.,nZN - C[ya,n]aeA+,nZM,

which satisfies
Soo,ME - f) =EN,M *Soo,N ()

for all € Fun L. The space of vector fields is naturally a topological Lie algebra,
which we denote by Vect L.
More concretely, an element of Fun LU may be represented as a (possibly

infinite) series
Z Po.mya,m,
m=<—M

where the Py ;;’s are arbitrary (finite) polynomials in yy .7 € Z. In this formula
and in analogous formulas below the summation over o € A is always understood.

The Lie algebra Vect LU may also be described as follows. Identify the tangent
space Ty LA at the origin in LU with LA, equipped with the structure of a complete
topological vector space. Then Vect LU is isomorphic to the completed tensor
product of Fun LU and L. This means that vector fields on LU can be described
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more concretely as series

D Pupr—

ne? 8yoe o

where Py, € Fun LU satisfies the following property: for each M > 0, there
exists K > M such that each P,,n < —K, lies in the ideal generated by the
Yam, ¥ €A, m=—M.

Such an element may be written as follows:

2 Pang,—+ D YamVam: (5.3-1)
n>N O m=—M
where the P, ,’s are polynomials and the Vy 5,’s are polynomial vector fields.

In other words, Vect LU is the completion of the Lie algebra of polynomial
vector fields in the variables yy 5, n € Z, with respect to the topology in which the
basis of open neighborhoods of 0 is formed by the subspaces TN,  Which consist
of the vector fields that are linear combinations of vector fields Py ,0/0yq.n,n > N,
and yo,mVam.m = —M.

The Lie bracket of vector fields is continuous with respect to this topology. This
means that the commutator between two series of the form (5.3-1), computed in
the standard way (term by term), is again a series of the above form.

5.3.2. Action of Lg on LAU. From now on we will use the notation Lg for g((¢))
(L stands for “loops”).
We have a natural Lie algebra homomorphism

p: Lg— Vect L,

which may be described explicitly by the formulas that we obtained in the finite-
dimensional case, in which we replace the ordinary variables y, with the “loop
variables” yq . More precisely, we have the following analogue of (5.2-3):

(1—eAR ™)X (t) = Z1(€)Z_(€)

where x € N4 (1)), Z+(€) =x (1) +eZP, Z eny (1), and Z_(€) = 142D,
ZW € b_((1)). As before, we choose a faithful finite-dimensional representation
V of g and consider x(¢) as a matrix whose entries are Laurent power series in ¢
with coefficients in the ring of polynomials in the coordinates yy 5.0 € Ay, n € Z,
expressing a generic element of N4 ((¢)) in End V((7)). We define p by the formula

pla®i™)-x(t)=2zW.
Then we have the following analogue of formula (5.2-4):

a @™ -x(t) = —x(t) (x(z)—1 @® z'”)x(z))+ , (5.3-2)
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where z4 denotes the projection of an element z € g((¢)) onto n4 ((¢)) along b_((?)).
This formula implies that for any @ € g the series

pla@) =) pla®i™)z"""!
nez
may be obtained from the formula for pg(a) = &, by the substitution

Ya Z J/ot,nzn,

nez

0 0

— >
Ya,n

z &L

Yo

nez
5.3.3. The Weyl algebra. Let 49 be the Weyl algebra with generators

0

= ’ a;,n:J’a,—n, aeAy,ne’,
aya,n

Ao,n
and relations

[ a:;’m] = 80, 80n,—m, [aan, agm] = [az’n, az’m] =0. (5.3-3)

The change of sign of 7 in the definition of ag, ,, is made so as to have §,,—, in
formula (5.3-3), rather than §,_,,. This will be convenient when we use the vertex
algebra formalism.

Introduce the generating functions

aq(z) = ) aunz " (5.3-4)
nez

ay(z) =Y ay,z " (5.3-5)
nez

Consider a topology on $4¢ in which the basis of open neighborhoods of 0 is
formed by the left ideals Iy ar, N, M € Z, generated by aqn,0 € Ay,n > N,
and a;’m, o€ Ay,m> M. The completed Weyl algebra A% is by definition the
completion of ¢ with respect to this topology. The algebra 4° should be thought
of as an analogue of the algebra of differential operators on LA (see [Frenkel and
Ben-Zvi 2004], Chapter 12, for more details).

In concrete terms, elements of A4° may be viewed as arbitrary series of the form

Z Pa,naa,n + Z Qa,ma;,m, Py, Qm € A°. (5.3-6)
n>=N m>M

*
o G AL B E X

and Eg its completion in A%, Next, let &4951 be the subspace of #® spanned by the

Let &Qg be the (commutative) subalgebra of s{9 generated by «
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products of elements of &ﬁg and the generators ay ,. Denote by Qgﬂ its completion
in s¢°. Thus, &Qil consists of all elements P of s4° with the property that

P mod Iy, p € 42 mod I, VN, M €Z.

Here is a more concrete description of Qg and ngl using the realization of s4°
by series of the form (5.3-6). The space Qg consists of series of the form (5.3-6),
where all Py, =0 and Qg,m € s4g. In other words, these are the series which do
not contain ay ., 1 € Z. The space ggﬂ consists of elements of the form (5.3-6),
where Py, € &ﬁg and Qg ,m € &ﬂil

Proposition 5.3.1. There is a short exact sequence of Lie algebras
0 — Fun LU — A2, — Vect LU — 0. (5.3-7)

Proof. The statement follows from the following three assertions:
(1) gil is a Lie algebra, and Qg is its ideal.
(2) sd8 ~ Fun L.
(3) There is a surjective homomorphism of Lie algebras gél — Vect LU whose
kernel is Q(g)

(1) follows from the definition of &ﬁq and &QO as completions of s42 < and A2,
respectively, the fact that &ﬁ‘;l is a Lie algebra containing &Slg as an ideal and the
continuity of the Lie bracket.

(2) follows from the definitions.

To prove (3), we construct a surjective linear map Qil — Vect LU whose kernel
is &3 and show that it is a homomorphism of Lie algebras.

A general element of Qil may be written in the form

ZPanaan+ Z Z Qaﬂkmaﬂkaam+ Z Q((ngn Ao,m>

n>N m>M, kekK,, m=>M>

for some integers N, My, M,, where Py 5. QSZ‘} P Q(Z) € sﬁg andeach K, CZ
is a finite set. We define our map by sending this element to

Z Ponaan+ Z Z aamQ((xﬂkm ag.k>

n>N m>M, keK,,

which is a well-defined element of Vect LA according to its description given at
the end of Section 5.3.1.

It is clear that elements of Qil which are in the left ideal generated by aq ,, n =
N, and ag ,,,n > M, are mapped to the elements of Vect LU which are in the sum
of the left ideal of aq,n,n > N, and the right ideal of ag, ,,, m > M. Therefore we
obtain a map of the corresponding quotients. Since elements of these quotients
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are represented by finite linear combinations of elements of #¢ and Vect LA,
respectively, we obtain that this map of quotients is a Lie algebra homomorphism.
The statement that our map is also a Lie algebra homomorphism then follows by
continuity of the Lie brackets on &ﬂq and Vect LA with respect to the topologies
defined by the respective ideals. O

Thus, we obtain from Proposition 5.3.1 that Qgﬂ is an extension of the Lie
algebra Vect LA by its module Qg = Fun L.

This extension is however different from the standard (split) extension defining
the Lie algebra of the usual differential operators on LU of order less than or
equal to 1 (it corresponds to another completion of differential operators defined in
[Frenkel and Ben-Zvi 2004], Section 12.1.3). The reason is that the algebra 4° does
not act on the space of functions on LU = AU((¢)) (see the discussion in [Frenkel
and Ben-Zvi 2004], Chapter 12, for more details). It acts instead on the module
M defined below. This module may be thought of as the space of “delta-functions™
supported on the subspace LU = AU[[¢]]. Because of that, the trick that we used
in the finite-dimensional case, of lifting a vector field to the differential operator
annihilating the constant function 1, does not work any more: there is no function
annihilated by all the a4 ,’s in the module M, ! Therefore there is no obvious
splitting of the short exact sequence (5.3-7). In fact, we will see below that it is
non-split.

Because of that we cannot expect to lift the homomorphism p : Lg — Vect LU
to a homomorphism Lg — @gﬂ, as in the finite-dimensional case. Nevertheless,
we will show that the homomorphism p may be lifted to a homomorphism

ﬁxcegil, 1—1,

where @, is the affine Kac—-Moody algebra at the critical level defined in Sec-
tion 1.3.6.

Our immediate goal is to prove this assertion. We will begin by showing in
the next section that the image of the embedding Lg — Vect LU belongs to a Lie
subalgebra of “local” vector fields glgoc C Vect LU. This observation will allow
us to replace the extension (5.3-7) by its “local” part, which is much smaller and
hence more manageable.

5.4. Vertex algebra interpretation

It will be convenient to restrict ourselves to smaller, “local” subalgebras of the Lie
algebras appearing in the short exact sequence (5.3-7). These smaller subalgebras
will be sufficient for our purposes because, as we will see, the image of g((¢)) lands
in the “local” version of Vect L. In order to define these subalgebras, we recast
everything in the language of vertex algebras.
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5.4.1. Heisenberg vertex algebra. Let M be the Fock representation of 49 gen-
erated by a vector |0) such that

agnl0) =0, n=>0; ay,l0) =0, n>0.

It is clear that the action of #{% on M extends to a continuous action of the topologi-
cal algebra A? (here we equip M with the discrete topology). Moreover, M carries
the structure of a Z -graded vertex algebra defined as follows (see Section 2.2.2
for the definition of vertex algebras and the Reconstruction Theorem 2.2.4, which
we use to prove that the structures introduced below satisfy the axioms of a vertex
algebra):

o 7-grading: degaq,n = degay, , = —n,deg|0) = 0;

e vacuum vector: |0);

e translation operator: 7'|0) =0, [7T,dgn] = —nagn—1,[T.ay,] = —(1n—

Da*

a,n—1°

e vertex operators:

Y(da,-110).2) = aa(z),  Y(ag,l0).2) = ag(2),

k [
1 1
Y(ao‘l’”l "'a“k’”ka;;l,ml "'aZl,mll())’Z) = 1_[ (—n; —1)! l_[ (—m~)|'
i=1 ! ti=1 77

07" gy (2) . 07 gy (2)0; M ap (2) ... 8™ R (2):

Here we use the normal ordering operation (denoted by the columns) introduced
in Section 2.2.5. In the general case it is defined inductively and so is rather
inexplicit, but in the case at hand it can be defined in a more explicit way which we
now recall.

Let us call the generators aq ,,n > 0, and a;’m, m > 0, annihilation operators,
and the generators ay ,, n <0, and a(’;, m+ M =0, creation operators. A monomial P
in ag,n and ag, ,, is called normally ordered if all factors of P which are annihilation
operators stand to the right of all factors of P which are creation operators. Given
any monomial P, we define the normally ordered monomial : P: as the monomial
obtained by moving all factors of P which are annihilation operators to the right,

and all factors of P which are creation operators to the left. For example,

gl sy, Ay 30 =dp sy _30g4dy -
Note that since the annihilation operators commute with each other, it does not
matter how we order them among themselves. The same is true for the creation
operators. This shows that : P: is well-defined by the above conditions.
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Given two monomials P and Q, their normally ordered product is by definition
the normally ordered monomial : PQ:. By linearity, we define the normally ordered
product of any number of vertex operators from the vertex algebra M by applying
the above definition to each monomial appearing in each Fourier coefficient of the
product.

Now let

U(My) = (My® C(1))/ Im(T @ 1 + 14 ®,).

be the Lie algebra attached to M as in Section 3.2.1.

As explained in Section 3.2.1, U(My) may be viewed as the completion of the
span of all Fourier coefficients of vertex operators from M. Moreover, we show in
the same way as in Proposition 3.2.1 that the map

UMgy) — A, A® f(z)—Res,=o Y(4,2) f(z)dz

is a homomorphism of Lie algebras.

Note that U(My) is a Lie algebra, but not an algebra. For instance, it contains
the generators aq y, a;"l’n of the Heisenberg algebra, but does not contain monomials
in these generators of degree greater than one. However, we will only need the Lie
algebra structure on U (M g).1

The elements of Qg = Fun LA which lie in the image of U(M) are usually
called local functionals on L. The elements of & which belong to U(My) are
given by (possibly infinite) linear combinations of Fourier coefficients of normally
ordered polynomials in aq(z), a,(z) and their derivatives. We refer to them as local
elements of 1°.

5.4.2. More canonical definition of M 4. The above definition of the vertex alge-
bra Mg referred to a particular system of coordinates yy,a € A4, on the group
Ny. If we choose a different coordinate system y,,o € Ay, on N4, we obtain
another Heisenberg algebra with generators a&’ 5 and a;';,n/ and a vertex algebra M é.
However, the vertex algebras M, é and M are canonically isomorphic to each other.
In particular, it is easy to express the vertex operators a,(z) and a}’(z) in terms of
aq(z) and aj(z). Namely, if y, = Fy(yg), then

ay(z) > Y By, Falaj(2) ay(2):,

yeEAL
a3/ (2) > Fa(ay()).

I As in Lemma 3.2.2 it follows that si° is isomorphic to 5(M a), Where U is the functor introduced
in Section 3.2.3, but we will not use this fact.



144 5. FREE FIELD REALIZATION

Note that the homogeneity condition on the coordinate systems severely restricts
the possible forms of the functions Fy:

Fa:Caya+ Z cﬂ] ..... ,Bkyﬂ]"'yﬂk’
Bi1+...+Br=a

where cg, g, € Cand cy # 0.
It is also possible to define M without any reference to a coordinate system on
N4 . Namely, we may identify M, as an ny ((¢))-module, with

My =1Ind™ {0 Fun(N, [1]) = Uny ® 171 Clr™']) @ Fun(N 4 [[1]).

where Fun(N4[[¢]]) is the ring of regular functions on the pro-algebraic group
N4[[t]], considered as an n. [[¢]]-module. If we choose a coordinate system

{yot}oteA+ on N+’

then we obtain a coordinate system

{Ya,n}aeA+,n20 on Ny [[z]].

Then u @ P(ya,n) € My, where

ueUmy @t~ 'Ct'])  and P(ya,n) € Fun(N4[[r]]) = Clya,nlaea .n=0

correspond to u - P(ag, ,,) in our previous description of M.

It is straightforward to define a vertex algebra structure on My (see [Feigin
and Frenkel 1999], Section 2). Namely, the vacuum vector of M is the vector
1 ® 1 € M. The translation operator 7" is defined as the operator —d,, which
naturally acts on Fun(N4[[¢]]) as well as on ny ((¢)) preserving n4[[¢]]. Next, we
define the vertex operators corresponding to the elements of M of the form x_;|0),
where x € ny, by the formula

Y(x-110).2) = Y xnz ™,

nez

where x, = x ® t"*, and we consider its action on M, viewed as the induced
representation of n ((¢)). We also need to define the vertex operators

Y(Pl0).2) =) Puyz """

nez
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for P € Fun(N4[[t]]). The corresponding linear operators P(,) are completely
determined by their action on |0):

Pupl0)=0, n>0,

P(syl0) = 7771 Plo),

1
(=n—1)

their mutual commutativity and the following commutation relations with ny ((z)):

[om. Pyl =) (’: ) (Xn* P)n+k—n)-

n=0

Using the Reconstruction Theorem 2.2.4, it is easy to prove that these formulas
define a vertex algebra structure on M.

In fact, the same definition works if we replace N4 by any algebraic group G. In
the general case, it is natural to consider the central extension g, of the loop algebra
g((?)) corresponding to an invariant inner product « on g defined as in Section 5.3.3.
Then we have the induced module

Indg K

pinEe! Fun(G[[7]]),

where the central element 1 acts on Fun(G|[z]]) as the identity. The corresponding
vertex algebra is the algebra of chiral differential operators on G, considered in
[Gorbounov et al. 2001; Arkhipov and Gaitsgory 2002]. As shown in [Gorbounov
et al. 2001; Arkhipov and Gaitsgory 2002], in addition to the natural (left) action of
0, on this vertex algebra, there is another (right) action of ﬁ_K_Kg, which commutes
with the left action. Here « is the Killing form on g, defined by the formula
Kkg(x,y) =Trg(ad x ad y). In the case when g = n, there are no non-zero invariant
inner products (in particular, k,, = 0), and so we obtain a commuting right action
of ny ((r)) on My. We will use this right action below (see Section 6.1.1).
The above formulas in fact define a canonical vertex algebra structure on

t
Indy 1) Fun(ur])).

which is independent of the choice of identification N4 =~ U. Recall that in order
to define U we only need to fix a Borel subgroup B of G. Then A is defined
as the open B -orbit of the flag manifold and so it is naturally an N -torsor. In
order to identify U with N4 we need to choose a point in U, i.e., an opposite Borel
subgroup B_, or, equivalently, a Cartan subgroup H = B4 N B_ of B4. Butin the
above formulas we never used an identification of N4 and U, only the canonical
action of n4 on AU, which determined a canonical Ln4-action on L.

If we do not fix an identification N1 =~ 9, then the right action of n4 on
N discussed above becomes an action of the “twisted” Lie algebra ny q;, where
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Ny =AU A>’< ny. It is interesting to observe? that unlike n., this twisted Lie
+
algebra n g, has a canonical decomposition into the one-dimensional subspaces

ng,q corresponding to the positive roots o € A 4. Indeed, for any point u € U we
have an identification U ~ N4 and a Cartan subgroup H, = B4+ N B, where B,
is the stabilizer of u. The subspaces ny g, are defined as the eigenspaces in n
with respect to the adjoint action of Hy,. If we choose a different point u’ € AU, the
identification U ~ N4 and H, will change, but the eigenspaces will remain the
same!

Therefore there exist canonical (up to a scalar) generators eiR of the right action
of ng; a on AU. We will use these operators below to define the screening operators,
and their independence of the choice of the Cartan subgroup in B4 implies the
independence of the kernel of the screening operator from any additional choices.

5.4.3. Local extension. For our purposes we may replace A°, which is a very large
topologlcal algebra by a relatively small “local part” U(My). Accordingly, we
replace &ﬁo and ﬂ<1 by their local versions s = &QO NU(Mg) and A2 <1loc =
AL, NU(My).

Let us describe g . and 42, | - more explicitly. The space sdg . is spanned
(topologically) by the Fourier coefficients of all polynomials in the 8" ) (2),n>0.
Note that because the a; , S commute among themselves, these polynomials are
automatically normally ordered. The space %
coefficients of the fields of the form

P(ay(2),0za5(2), .. .)ap(z):

(the normally ordered product of P(aj(z),dzay(2),...) and ag(z)).
Here we use the fact that the Fourier coefficients of all fields of the form

:P(ay(z),0za5(2), ... )00 ap(z):, m >0,

0,loc

<1.loc is spanned by the Fourier

may be expressed as linear combinations of the Fourier coefficients of the fields of
the form
P(ay(2),0za5(2),...)ap(z): . (5.4-1)
Further, we define a local version glgoc of Vect LA as the subspace which consists
of finite linear combinations of Fourier coefficients of the formal power series

P(aX(2). 0,a%(2). .. Jag(2). (5.4-2)

where aq(z) and a}(z) are given by formulas (5.3-4), (5.3- 5)

Since &ﬁi’l Joc is the intersection of Lie subalgebras of A° it is also a Lie

subalgebra of A°. By construction, its image in Vect LU under the homomorphism

2] thank D. Gaitsgory for pointing this out.
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Qil — Vect LU equals Jo_ﬁ)c. Finally, the kernel of the resulting surjective Lie
equals s

algebra homomorphism (% —s G 0.10c HeEnce we obtain that the
extension (5.3-7) restricts to the “local” extension

<1,loc loc

0— 2

8 o= AL > T 0. (5.4-3)

<l1,loc loc

This sequence is non-split as will see below. The corresponding two-cocycle will
be computed explicitly in Lemma 5.5.2 using the Wick formula (it comes from the
“double contractions” of the corresponding vertex operators).

According to Section 5.3.2, the image of Lg in Vect LU belongs to gﬁ)c. We
will show that the homomorphism Lg — 9”]% . may be lifted to a homomorphism
B — oA

<1.loc’ where g, is the central extension of Lg defined in Section 5.3.3.

5.5. Computation of the two-cocycle
Recall that an exact sequence of Lie algebras
0—>h—->g—>g—0,

where b is an abelian ideal, with prescribed g-module structure, gives rise to a
two-cocycle of g with coefficients in h. It is constructed as follows. Choose a
splitting 1 : g — ‘g of this sequence (considered as a vector space), and define
o: /\2 g — b by the formula

o(a.b) =1([a,b]) —[1(a). 1 (D)].

One checks that o is a two-cocycle in the Chevalley complex of g with coefficients
in b, and that changing the splitting  amounts to changing o by a coboundary.
Conversely, suppose we are given a linear functional o : /\2 g — bh. Then we
associate to it a Lie algebra structure on the direct sum g & h. Namely, the Lie
bracket of any two elements of § is equal to 0, [X,h]= X -h forall X e g,h € b,
and
(X, Y]=[X,Y]g+0o(X,Y), X,Y €g.

These formulas define a Lie algebra structure on g if and only if o is a two-cocycle
in the standard Chevalley complex of g with coefficients in j. Therefore we obtain
a bijection between the set of isomorphism classes of extensions of g by h and the
cohomology group H?(g, h).

5.5.1. Wick formula. Consider the extension (5.4-3). The operation of normal
ordering gives us a splitting 1 of this extension as vector space. Namely, 1 maps
the nth Fourier coefficient of the series (5.4-2) to the nth Fourier coefficient of the
series (5.4-1). To compute the corresponding two-cocycle we have to learn how to
compute commutators of Fourier coefficients of generating functions of the form
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(5.4-1) and (5.4-2). Those may be computed from the operator product expansion
(OPE) of the corresponding vertex operators. We now explain how to compute the
OPEs of vertex operators using the Wick formula.

In order to state the Wick formula, we have to introduce the notion of contraction
of two fields. In order to simplify notation, we will assume that g = sl, and suppress
the index « in aq , and ag, ,. The general case is treated in the same way.

From the commutation relations, we obtain the following OPEs:

a(z)a*(w) = ;—i- a(z)a* (w):,

a*(z)a(w) = —;—i- a*(2)a(w): .

We view them now as identities on formal power series, in which by 1/(z —w) we
understand its expansion in positive powers of w/z. Differentiating several times,
we obtain
(n+m)!
(Z _ w)n+m+1
(n+m)!
(z —w)ntm+1

dra(z)dpa*(w) = (—1)" +:9%a(z)da* (w):, (5.5-1)

Ma*(2)0% a(w) = (—1)™+! +:07a* ()3 a(w): (5.5-2)
(here again by 1/(z — w)" we understand its expansion in positive powers of w/z).

Suppose that we are given two normally ordered monomials in a(z),a*(z) and
their derivatives. Denote them by P(z) and Q(z). A single pairing between P(z)
and Q(w) is by definition either the pairing (d%a(z), 977a* (w)) of d%a(z) occurring
in P(z) and 97)a*(w) occurring in Q(w), or the pairing (07'a*(z), 0% a(w)) of
07'a*(z) occurring in P(z) and 97, a(w) occurring in Q(w). We attach to it the
functions

_tm)t and (_1)m+1—(n+m)! ,
(Z_w)n—i-m—H (Z_w)n—i-m—H

="

respectively. A multiple pairing B is by definition a disjoint union of single
pairings. We attach to it the function fg(z, w), which is the product of the functions
corresponding to the single pairings in B.

Note that the monomials P(z) and Q(z) may well have multiple pairings of
the same type. For example, the monomials :a*(z)?0.a(z): and :a(w)d2a*(w):
have two different pairings of type (a*(z),a(w)); the corresponding function is
—1/(z —w). In such a case we say that the multiplicity of this pairing is 2. Note
that these two monomials also have a unique pairing (3,a(z), 32 a*(w)), and the
corresponding function is —6/(z — w)*.

Given a multiple pairing B between P(z) and Q(w), we define (P(z)Q(w))p
as the product of all factors of P(z) and Q(w) which do not belong to the pairing (if
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there are no factors left, we set (P(z) Q(w))g = 1). The contraction of P(z)Q(w)
with respect to the pairing B, denoted : P(z) Q(w):p, is by definition the normally
ordered formal power series :(P(z) Q(w))g: multiplied by the function fp(z, w).
We extend this definition to the case when B is the empty set by stipulating that

P(2)Q(w):g =:P(2)Q(w):.

Now we are in a position to state the Wick formula, which gives the OPE of two
arbitrary normally ordered monomial vertex operators. The proof of this formula is
straightforward and is left to the reader.

Lemma 5.5.1. Let P(z) and Q(w) be two monomials as above. Then the product
P(z)Q(w) equals the sum of terms : P(z) Q(w):p over all pairings B between P

and Q including the empty one, counted with multiplicity.

Here is an example:

:a*(2)20,a(z): :a(w)da* (w): = :a*(2)*0,a(z)a(w)da* (w):—

2 :a*(z)aza(z)aﬁa*(w):—La (2)%a(w): + 1z, *(2).
—w (z—w)* (z—w)>

5.5.2. Double contractions. Now we can compute our two-cocycle. For this, we
need to apply the Wick formula to the fields of the form

‘R(a*(2), 0,a*(2), .. )a(z): ,

whose Fourier coefficients span the preimage of Jo in $4<j joc under our splitting
1. Two fields of this form may have only single or double pairings, and therefore
their OPE can be written quite explicitly.

A field of the above form may be written as Y (P (a};)a—y, z) (or Y(Pa—_y, z) for
short), where P is a polynomial in the a;,n < 0 (recall that a;;, n < 0, corresponds
to 8;"a*(z)/(-n)!).> Applying the Wick formula, we obtain

3In what follows we will write, by abuse of notation, Y (4, z) for the series that, strictly speaking,
should be denoted by Y[4, z]. The reason is that the homomorphism U(Mg) — End My, A[,;+= A,
is injective, and so we do not lose anything by considering the image of U(Mg) in End M.
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Lemma 5.5.2.
Y(Pa_y1,2)Y(Qa—1,w) =:Y(Pa_q, Z)Y(Qa—l, w):

+Z )n+1 Y (P, )Y(aQalw)

P

_’; (z—w)""'l Y (Bain a_l,z) Y(Q,w):
1 9P 90
= 2 oy (8atn’z) ! (8atm’w)'

n,m=0

Note that we do not need to put normal ordering in the last summand.

Using this formula and the commutation relations (3.2-2), we can now easily
obtain the commutators of the Fourier coefficients of the fields Y (Pa_q,z) and
Y(Qa—q,w).

The first two terms in the right hand side of the formula in Lemma 5.5.2 corre-
spond to single contractions between Y (Pa_q,z) and Y (Qa—_q, w). The part in
the commutator of the Fourier coefficients induced by these terms will be exactly
the same as the commutator of the corresponding vector fields, computed in Jqc.
Thus, we see that the discrepancy between the commutators in # < joc and in
T10c (as measured by our two-cocycle) is due to the last term in the formula from
Lemma 5.5.2, which comes from the double contractions between Y (Pa_,z)
and Y(Qa—_y,w).

Explicitly, we obtain the following formula for our two-cocycle

o((Pa—1)x), (Qa—1)[s) =
—ZRe Sw=0 ——————— ! ——__grimily a—P,z Y 90 ,w)zFws
(rtm 1! 1as, ") \aar,,

5.5.3. The extension is non-split. For example, let us compute the cocycle for the
elements h,, defined by the formula

dw. (5.5-3)

Z=w

Y(aga—y,z) =:a*(z)a(z): = Zhnz_"_l,

nez

so that

h, = Z a¥ pan gk

kez

According to formula (5.5-3), we have

w(hy, hy) = —Resy—o nw" ™V dw = —né, _pn.
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As the single contraction terms cancel each other, we obtain the following commu-
tation relations in &<y joc:

[hn, hm] - _nén’—m.

On the other hand, we find that the image of hy, in I, is the vector field

These vector fields commute with each other.

If the sequence (5.3-7) (or (5.4-3)) were split, then we would be able to find
“correction terms” fp, € Fun C((?)) (or in sdg 1oc) such that the lifting h, —h,+ f,
preserves the Lie brackets, that is,

[hn+fnahm+fm]zo, Vn,meZ.
But this is equivalent to the formula
En : fm _Em : fn = _Vl(sn,_m.

But since h,, is a linear vector field (i.e., linear in the coordinates y on LAL), the
left hand side of this formula cannot be a non-zero constant for any choice of
fm.,nelz.

Thus, we find that the sequences (5.3-7) and (5.4-3) do not split as exact sequences
of Lie algebras.

5.5.4. A reminder on cohomology. Thus, we cannot expect to be able to lift the
homomorphism p : Lg — Joc to @ homomorphism Lg — QQSUOC, as in the finite-
dimensional case. The next best thing we can hope to accomplish is to lift it to a
homomorphism from the central extension g, of Lg to gil’loc. Let us see what
cohomological condition corresponds to the existence of such a lifting.
So let again
0—h —ST—>1-0

be an extension of Lie algebras, where h is an abelian Lie subalgebra and an ideal
in'T. Choosing a splitting 7 of this sequence considered as a vector space we define
a two-cocycle of [ with coefficients in h as in Section 5.5. Suppose that we are
given a Lie algebra homomorphism « : g — [ for some Lie algebra g. Pulling back
our two-cocycle under @ we obtain a two-cocycle of g with coefficients in .

On the other hand, given a homomorphism b’ N h of g-modules we obtain a
map i, between the spaces of two-cocycles of g with coefficients in h and §’. The
corresponding map of the cohomology groups H?(g, b’) — H?(g, b) will also be
denoted by ix.
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Lemma 5.5.3. Suppose that we are given a two-cocycle o of g with coefficients in
b such that the cohomology classes of ix(0) and w are equal in H?*(g,b’). Denote
by g the extension of g by b/ corresponding to o defined as above. Then the map
g — [may be augmented to a map of commutative diagrams

0 h T [ 0
T T T (5.5-4)
0 b’ ] g 0.

Moreover, the set of isomorphism classes of such diagrams is a torsor over H'(g,h).

Proof. If the cohomology classes of i« (0) and w coincide, then ix(0) +dy = w,
where y is a one-cochain, i.e., a linear functional g — fj. Define a linear map
B :§ — I as follows. By definition, we have a splitting § = g @ b’ as a vector
space. We set B(X) =1(x(X))+y(X) forall X e gand B(h) =i(h) forall h €.
Then the above equality of cocycles implies that § is a Lie algebra homomorphism
which makes the diagram (5.5-4) commutative. However, the choice of y is not
unique as we may modify it by adding to it an arbitrary one-cocycle y’. But the
homomorphisms corresponding to y and to y + y’, where Y’ is a coboundary, lead
to isomorphic diagrams. This implies that the set of isomorphism classes of such
diagrams is a torsor over H'(g, b). O

5.5.5. Two cocycles. Restricting the two-cocycle @ of T, with coefficients in
&dg loc Corresponding to the extension (5.4-3) to Lg C Jjoc, We obtain a two-
cocycle of Lg with coefficients in &dg loe- We also denote it by w. The Lg-module

‘ﬂg

0.loc contains the trivial subrepresentation C, i.e., the span of |0)[—;j (which we

view as the constant function on L), and the inclusion C N &dg’loc induces a
map i of the corresponding spaces of two-cocycles and the cohomology groups
H*(Lg,C) — H*(Lg, g ,.)-

As we discussed in Section 5.3.3, the cohomology group H?(Lg, C) is one-
dimensional and is isomorphic to the space of invariant inner products on g. We
denote by o the class corresponding to the inner product k., = —llcg, where kg4

2
denotes the Killing form on g. Thus, by definition,

1
Ke(x,y) = s Tr(ad x ad y).
The cocycle o is then given by the formula
o(Jy, Jrl:z) = n8p,—mke(J, Jb) (5.5-5)

(see Section 5.3.3).
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In the next section we will show that the cohomology classes of i (c0) and w
are equal. Lemma 5.5.3 will then imply that there exists a family of Lie algebra
homomorphisms g, — A2 <1 Joc such that 1+ 1.

5.6. Comparison of cohomology classes

Unfortunately, the Chevalley complex that calculates H?(Lg, &Qg loc) 18 unmanage-
ably large. So as the first step we will show in the next section that w and o actually
both belong to a much smaller subcomplex, where they are more easily compared.

5.6.1. Clifford algebras. Choose a basis {J%},=1
t". Introduce the Clifford algebra with generators

dimg of g, and set J;! = J ®

.....

lﬂa’n,l//:’m,QZI,...,dimg; m,nez,

with anti-commutation relations

[Wa,na 1ﬁb,n]Jr = W:,n» W}im]Jr =0, [Wa,n’ W[im]Jr = 5a,b5n,—m

Let A\ o be the module over this Clifford algebra generated by a vector |0) such

that
VYanl0) =0, n>0, Vanl0) =0, n>0.

Then /\ o carries the following structure of a 7. -graded vertex superalgebra (see
[Frenkel and Ben-Zvi 2004], Section 15.1.1):

o 74-grading: deg Vq,n = deg ¥, , = —n,deg|0) = 0;

e vacuum vector: |0);

e translation operator: 7'|0) = 0, [T, Va,nl = —nVan—1,[T, V5] =

—(n— 1)1'//c>zl<,n—l;
e vertex operators:

Y(‘/’a,—l [0),2) = Val(z) = Z 1/fa,nz_n_l,

nez

Y(Uz0l0).2) = v5 (@) =) vaaz "

nez

k

l
Y(Wal,nl ---Wak,nkllf;l,ml ---W}j,,mlm)»z) l_[( —n; _1) l_[

mJ)'

az_nl_ll/fal (Z) o az_nk_ll/fak (Z)az—ml wbl (Z) e az_ml w;l (Z): .
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The tensor product of two vertex superalgebras is naturally a vertex superalgebra
(see Lemma 1.3.6 of [Frenkel and Ben-Zvi 2004]), and so My ® /\ g is a vertex
superalgebra.

5.6.2. The local Chevalley complex The ordinary Chevalley complex computing
the cohomology H®(Lg, ., )is C*(Lg, A 0 1) = DPiso Ci(Lg, &flg loc)» Where

C! (Lg &40 loc = Homcont(/\ (Lg), &Qo 10(:)

0 loc

where /\i (Lg) stands for the natural completion of the ordinary i th exterior power
of the topological vector space Lg, and we consider all continuous linear maps.

For f € &401 oc We denote by 1//,’;1 ey 1//2‘, ki f the linear functional

¢ € Homeon( /\(Lg) A 10c)
defined by the formula

ST A AT =

{(—1)“% (@, my),..., (ai,mp) = t((by, k1), . .., (bi, ki),
O’ ((Cll,l’?’ll), ey (aivmi)) 7é 'L'((bl,k]), cees (bi,ki)),

where 7 runs over the symmetric group on i letters and /(7) is the length of 7. Then
any element of the space C'(Lg, o{ 0.1 OC) may be written as a (possibly infinite)
linear combination of terms of this form.

The differential d : C'(Lg, &ig’loc) — C'tI(Lyg, &ﬂg’loc) is given by the formula

(5.6-1)

i+1
dp)(X1..... Xy D)=) ()T Xjo(X1..... Xj..... Xig1)
j=1
Y DI (X X XL X X X
j<k

It follows from the definition of the vertex operators that the linear maps
/Y(w;l,nl ~--1ﬁ;i,nia;bml c a] P |0), z) dz, np <0,mp <0. (5.6-2)
from /\i(L g) to ‘Sﬁg,loc are continuous. Here and below we will use the notation
/f(z)dz =Res,—¢ f(z)dz.

Let Cl’oc(Lg, 0. 1OC) be the subspace of the space Homcom(/\ (Lg), 5&0 ioc)?
spanned by all linear maps of the form (5.6-2).
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Lemma 5.6.1. The Chevalley differential maps the subspace CI’;)C(Lg, &Qg 1oe) C
Ci(Lg, A8 ,..)to CEY (Lg, 43 ) C CHI(Lg, A8, ), and so

loc 0,loc 0,loc
CI:)C (Lg, ‘Sﬁg,loc) = @ Cll;)c (Lg’ ‘Sﬁg,loc)
i=0

. ° g
is a subcomplex of C*(Lg, &QO’IOC).

Proof. The action of the differential d on [ Y (A, z)dz, where A is of the form
(5.6-2), may be written as the commutator

[ [ ec: | Y(A,z)dz} |

00 = Y IOV 5 X HPHI OV e, (563)

a,b,c

where Q(z) is the field

where ,u?b denotes the structure constants of g. Therefore it is equal to

Y (/ Q(z)dz-A,Z) ,

which is of the form (5.6-2). O
We call Cl’;)C(Lg, &ﬁg 1oc) the local subcomplex of C*(Lg, &ig )

Lemma 5.6.2. Both » and i+(0) belong to CZ (Lg. g, .)-

Proof. We begin with o, which is given by formula (5.5-5). Therefore the

cocycle ix(0) is equal to the following element of Clgc(L g, &dg Too):

ix(0) = Z Z’Q‘(Jav ]b)nljl;;’_ni,/f[;k,n

a<bnez

— ZKC(J”,J”)/Y(w;’_lwg‘,ow),z) dz. (5.6-4)

a<b

Next we consider w. Combining the discussion of Section 5.3.2 with formulas
of Section 5.2.5, we obtain that

(= > / Y(RE(ak o)ag_1|0).z) z"dz,

BeAy
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where Raﬂ is a polynomial. Then formula (5.5-3) implies that

aR%  RY

b b

o(JE, J,)) =— E / (Y (Taa—*”- Py ,w) w"
a,feA B.0 @,0

B
@ 9R
+ nY ( IR b w) w"+m_1) dw.

* * t
8aﬂ’0 Baayo

Therefore

B
dR® OR,

o=- ) / (Y (w:,ow;,oT—aa: 'aa*o’z) (5.6-5)
o,

a<b;a,BeA 4 8,0

9R® oRP
+Y (WZ‘,_MZ‘,O a b z)) dz

— L _Db
Baﬂyo aaa’o

(in the last two formulas we have omitted |0)). Hence it belongs to the space
Clgc (Lg’ ‘ﬂg,loc)' .

We need to show that the cocycles i« (o) and w represent the same cohomology
class in the local complex Cp? (Lg, &Qg’loc). We will show that this is equivalent to
checking that the restrictions of these cocycles to the Lie subalgebra Lh C Lg are
the same. These restrictions can be easily computed and we indeed obtain that they
coincide. The passage to L is achieved by a version of the Shapiro lemma, as we
explain in the next section.

5.6.3. Another complex. Given a Lie algebra [, we denote the Lie subalgebra [[[z]]
of LI=1[(¢) by Ll
Observe that the Lie algebra L g acts naturally on the space

Mg,+ = C[az,n]aeA_,_,nso = C[ya,n]a€A+,n207

which is identified with the ring of functions on the space WU[[z]] ~ N4[[¢]]. We
identify the standard Chevalley complex

C*(Ltg. Mg 1) = Homeon(/\ *L+9. Mg 1)

with the tensor product My  ® /\; 4, Where

Nt = /\Wanso.

Introduce a superderivation 7" on C*(L 4g, Mg ) acting by the formulas

T 'aZ,n =—(n— Da:,n—l’ T- w:,n =—(n— 1)¢;,n—1'
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We have a linear map

/ : C'(L+g, Mg,+) g Cl:)c([‘g’ ‘Sﬁg,loc)

sending A € C*(L4g, Mg 4) to [ Y(A,z)dz (recall that | picks out the (—1)st
Fourier coefficient of a formal power series).

Recall that in any vertex algebra V' we have the identity Y (7TA4,z) = 0,Y (4, z).
Hence if A € Im T, then [ Y (A, z)dz =0.

Lemma 5.6.3. The map f defines an isomorphism

Cioe(Lg. 55 ,.) = C*(L 19, Mg 4)/(Im T +C),

and Ker T = C. Moreover, the following diagram is commutative:

. T . J
C*(L+8, Mgy) ——> C*(Lyg, Mgy) —— Cp(Lg, g )
g /| /]

[ ] T [ ] ‘/
C*(Lyg.Myg4) —— C*(Lyg Myy) —— (Lg, A

loc 0, loc)

Proof. It is easy to see that the differential of the Chevalley complex

C*(Lyg. My 1)

acts by the formula A — [ Q(z)dz- A, where Q(z) is given by formula (5.6-3).
The lemma now follows from the argument used in the proof of Lemma 5.6.1. [J

Consider the double complex

T
C —— C.(L+g,Mg,+) E— C.(L+g,Mg’+) — C

] ‘|
L] T o
C — C*(L4g, Myg4) —— C*(L4g,My4) —— C.

According to the lemma, the cohomology of the complex Cp (Lg, A 0. loc) is given
by the second term of the spectral sequence, in which the zeroth differential is
vertical.

We start by computing the first term of this spectral sequence. Let us observe
that the Lie algebra L yn4 has a Q x Z4 grading, where Q is the root lattice of
g, defined by the formulas deg ey, = (v, n). Therefore the universal enveloping
algebra U(L 4+n4) is also Z4 x Q-graded. Moreover, all homogeneous components
U(Liny)(yn), for y € O,n € Z4, of U(L4ny) are finite-dimensional. The
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corresponding restricted dual space is

ULsni) = @ Usny)gm)™
(y,n)eQxZ4

It carries a natural structure of L4 n4-module.
Now let

2 lb def
ComdLii (= Homr(e]S(LJrh_)(U(LJrg), C)

(compare with formula (5.2-9)). The right hand side consists of all “restricted” linear
functionals U (L 4+ g) — C invariant under the action of U(b_) on U(g) from the left,
where “restricted” means that we consider only those functionals which are finite
linear combinations of maps supported on the direct summands U (b—) @ U (n+) ()
of U(g), with respect to the isomorphism of vector spaces U(g) >~ U(b_) @ U(n4).

In other words, as an L n4-module, Coindiigi C>~U(Lyny)V.

Lemma 5.6.4. The L g-module Mg 1 is isomorphic to the coinduced module

gL+
C01ndL+b_ C.

Proof. We apply verbatim the argument used in our proof given in Sections
5.2.3 and 5.2.4 that Fun N is isomorphic to Coindg_ C as a g-modules. First we
prove that My + = Fun L1 N4 is isomorphic to U(L4ny)Y as an Lny-module
by showing that the monomial basis in M, 1 is dual to a PBW monomial basis
in U(L 4+ny), with respect to an L ny-invariant pairing of the two modules. We
then use this fact to prove that the natural homomorphism M,  — Coindiig_ C
is an isomorphism. O

Define a map of complexes
/,L/ 5 C.(L+g, Mg,+) —> C.(L+b_, (D)
as follows. If y is an i-cochain in the complex

C*(Lyg. M) = Homeon (/\ "L 9. Mg, 4).

then p/(y) is by definition the restriction of y to /\i L b_ composed with the
natural projection My 4 = Coindlljig_
complexes. The following is an example of the Shapiro lemma (see [Fuks 1986],

Section 5.4, for the proof).

C — C. Tt is clear that ' is a morphism of

Lemma 5.6.5. The map |\ induces an isomorphism at the level of cohomologies,
ie.,

H*(Lyg, Mg 1)~ H*(Lg. Coindiig_ C)~ H*(L4+b_,C).  (5.6-6)
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Now we compute the right hand side of (5.6-6). Since Lyn_ C Lb_ is an
ideal, and L4+b_/Lin_ >~ L4h, we obtain from the Serre-Hochschild spectral
sequence (see [Fuks 1986], Section 5.1) that

H'(L4b-.C)= P HP(L+h H(Lyn_.C)).
p+q=n
But h ® 1 € Lib acts diagonally on H®*(L4+n_, C), inducing an inner grading.
According to [Fuks 1986], Section 5.2,
HP(Lib, HY(Lyn_,C)) = H?(L4b, HI(L4n_,C)o),

where H?(L+n_, C)q is the subspace where h ® 1 acts by 0. Clearly, the space
H°(Lyn_,C)y is the one-dimensional subspace of the scalars C € H°(L,n_, C),
and for ¢ # 0 we have H?(L4+n_,C)g = 0. Thus, we find that

HP(Lybh, HI(L4n-,C)) = HP(L4H,C).
Furthermore, we have the following result. Define a map of complexes
p:C*(Ltg, My1) — C*(L+h,C) (5.6-7)
as follows. If y is an i-cochain in the complex

C*(L4g. Mg 1) = Homeon(/\ "L 9. Mg+ ).

then 14(y) is by definition the restriction of y to /\i L composed with the natural
projection

piMy = Coindiiﬁi C - C. (5.6-8)

Lemma 5.6.6. The map [ induces an isomorphism at the level of cohomologies,
ie.,

H*(L+g, Mg4) = H*(L4h,0).
In particular, the cohomology class of a cocycle in the complex C* (L1 g, M, a,+) IS
uniquely determined by its restriction to )\' Lb.

Proof. It follows from the construction of the Serre—Hochschild spectral se-
quence (see [Fuks 1986], Section 5.1) that the restriction map C*(L4+b_,C) —
C*(L4h, C) induces an isomorphism at the level of cohomologies. The statement
of the lemma now follows by combining this with Lemma 5.6.5. O

Since L4 is abelian, we have
H*(L4h.C) = /\ *(L4+h)*,

and so
H*(Lig Mg+) = \*(LyD)".
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It is clear that this isomorphism is compatible with the action of 7" on both sides.
The kernel of 7" acting on the right hand side is equal to the subspace of scalars.
Therefore we obtain

Hyoo(Lg. 513 1) = /\ *(L+5)/(m T +C).

5.6.4. Restricting the cocycles. Any cocycle in loc(Lg, 0 loc) 18 @ cocycle in

C'(Lg. 4f ) = Homeon(/\ " (Lg). 1 ...

and as such it may be restricted to /\ {(LY).
The following lemma is the crucial result, which will enable us to show that @
and i« (o) define the same cohomology class.

Lemma 5.6.7. Any two cocycles in C ' (Lg, s 0, 10C), whose restrictions to /\ {(Lp)
coincide, represent the same cohomology class.

Proof. We need to show that any cocycle ¢ in lOC(L g, . ), whose restriction

0 loc”?
to /\ *(Lb) is equal to zero, is equivalent to the zero cocycle. According to the

above computation, ¢ may be written as [ Y (A4, z)dz, where 4 is a cocycle in
Cl(Lyg, Mgy) = Homcom(/\i Lyg, Mgy ). But then the restriction of 4 to
/\i LihC /\i L g, denoted by A, must be in the image of the operator 7', and
hence so is p(A) = u(A) € /\i(L+h)* (here p is the projection defined in (5.6-8)
and p is the map defined in (5.6-7)). Thus, u(A4) = T (h) for some / € /\i(L+b)*.
Since 7" commutes with the differential and the kernel of 7" on /\i (L+bH)* consists
of the scalars, we obtain that / is also a cocycle in C' (L1 h,C) = /\i(L+f))*.
According to Lemma 5.6.6, the map p induces an isomorphism on the coho-
mologies. Hence / is equal to 4(B) for some cocycle B in C/(L g, Mg ). It
is clear from the definition that © commutes with the action of the translation
operator T'. Therefore it follows that the cocycles 4 and T'(B) are equivalent in
C'(Lyg, M, a,+). But then ¢ is equivalent to the zero cocycle. O

Now we are ready to prove the main result of this chapter.

Theorem 5.6.8. The cocycles w and i« (o) represent the same cohomology class in
(Lg, &Q 0.loc ). Therefore there exists a lifting of the homomorphism Lg — T3

loc loc

to a homomorphism g, O, — A2 such that 1 +— 1. Moreover, this homomorphism

=<1,loc
may be chosen in such a way that

JU(z) > Y (Palay o, ag,—1)10),2) + Y (Ba, 2), (5.6-9)

where P, is the polynomial introduced in formula (5.2-11) and B, is a polynomial
inagy ,,n =0, of degree 1 (with respect to the assignment degag, , = —n).
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Proof. By Lemma 5.6.7, it suffices to check that the restrictions of @ and i (o)
to /\Z(Lh) coincide. We have

ix(0)(hn, h;n) = nkc(h, h,)(gn,—m

for all 1, i’ € h. Now let us compute the restriction of w. We find from the formulas
given in Section 5.2.5 and Section 5.3.2 that

1(h(2) == Y a(h):ay(2)ae(z): (5.6-10)

OlGA+

(recall that h(z) = Y, c7 hnz""""). Therefore we find, in the same way as in the
computation at the end of Section 5.5.3, that

@(hy. ) = —n8pm Y a(m)a(l).

aceAy
Now the key observation is that
> ala(h) =ke(h '), (5.6-11)
aEA
because by definition k. (-, ) = —%Kg(-, -) and for the Killing form k4 we have

kg(h ) =2 3" a(h)a(h).

aE€EA L

Therefore we find that
w(hy, h;n) = nkc(h, h/)gn,—m,

and so the restrictions of the cocycles w and ix(0) to /\Z(Lf)) coincide. By

Lemma 5.6.7, they represent the same class in ngc (Lg, &dg ioc)"
Hence there exists y € Ckl)c (Lg, &d(g) o

y as

o) such that @ +dy =ix(0). We may write

y = Z/w;(z)Y(Ba,z) dz,  Bg€ Mgy.

It follows from the computations made in the proof of Lemma 5.6.2 that both @
and i, (o) are homogeneous elements of Ckz)C (Lg, &ngloc) of degree 0. Therefore y
may be chosen to be of degree 0, i.e., B, may be chosen to be of degree 1.

Then by Lemma 5.5.3 formulas (5.6-9) define a homomorphism of Lie algebras

B, — A2 of the form (5.6-9) such that 1+ 1. This completes the proof. [

<l,loc
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5.6.5. Obstruction for other flag varieties. The key fact that we used in the proof
above is that the inner product on b defined by the left hand side of formula (5.6-11)
is the restriction to  of an invariant inner product on g. We then find that this
invariant inner product is the critical inner product k..

Let us observe that the necessary and sufficient condition for an inner product
on h to be equal to the restriction to h of an invariant inner product on g is that it
is W-invariant, where W is the Weyl group of g acting on h. In the case of the
inner product defined by the left hand side of formula (5.6-11) this is obvious as
the set Ay is W-invariant. But this observation also singles out the “full” flag
variety G/ B_ as the only possible flag variety of G for which the cohomological
obstruction may be overcome.

Indeed, consider a more general flag variety G/ P, where P is a parabolic
subgroup. For example, in the case of g = sl, conjugacy classes of parabolic
subgroups correspond to non-trivial partitions of 7. The standard (lower) parabolic
subgroup corresponding to a partition n = ny + ...+ ny consists of “block lower
triangular” matrices with the blocks of sizes ny, ..., ng. The corresponding flag
variety is the variety of flags V73 C ... C Vy—; C C"*, where dim V; = n; +...+n;.

Let P be a parabolic subgroup that is not a Borel subgroup and p the correspond-
ing Lie subalgebra of g. We may assume without loss of generality that p contains
b_ and is invariant under the adjoint action of H. Then we have a decomposition
g = p dn, where n is a Lie subalgebra of n4., spanned by generators ¢,, where o«
runs over a proper subset Ap C A. We can develop the same formalism for G/ P
as for G/B_. The Lie subalgebra n will now play the role of n: its Lie group is
isomorphic to an open dense subset of G/ P, etc. In particular, formula (5.6-10)
is modified: instead of the summation over A4 we have the summation only over
As. Therefore in the corresponding cocycle we obtain the inner product on b given
by the formula

vp(h i)y = 3" a(ha().
a€Ap
But no proper subset of Ay is W-invariant. Therefore the inner product vp is not
W -invariant and hence cannot be obtained as the restriction to h of an invariant
inner product on g. Therefore our argument breaks down, and we see that in the case
of a parabolic subgroup P other than the Borel we cannot lift the homomorphism
from Lg to the corresponding Lie algebra of vector fields to a homomorphism from
a central extension g, to the algebra of differential operators.

This illustrates the special role played by the full flag variety G/ B—_. It is closely
related to the fact that the first Pontryagin class of G/B_ vanishes while it is non-
zero for other flag varieties, which leads to an “anomaly.” Nevertheless, we will
show in Section 6.3 how to overcome this anomaly in the general case. The basic
idea is to add additional representations of the affinization of the Levi subgroup
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m of p. By judiciously choosing the levels of these representations, we cancel the
anomaly.

To summarize the results of this chapter, we have now obtained a “free field
realization” homomorphism from g, to the Lie algebra &iil loc
cients of vertex operators built from “free fields” ay(z) and 52’(2) corresponding to

of Fourier coeffi-

differential operators on the flag variety G/ B—. In the next chapter we will interpret
this homomorphism in the vertex algebra language.



CHAPTER 6

Wakimoto modules

In this chapter we extend the free field realization constructed above to non-
critical levels and recast it in the vertex algebra language. In these terms the free field
realization amounts to a homomorphism from the vertex algebra V. (g) associated to
0, to a “free field” vertex algebra My ® ng ~¥e associated to an infinite-dimensional
Heisenberg Lie algebra.

Modules over the vertex algebra My ® Jrg ¢ now become g, -modules, which
we call the Wakimoto modules. They were first constructed by M. Wakimoto
[1986] in the case g = 5:\[2 and by B. Feigin and the author [1988; 1990a] for
general g. The Wakimoto modules may be viewed as representations of g which are
“semi-infinitely induced” from representations of its Heisenberg subalgebra E In
contrast to the usual induction, however, the level of the /f)\—module gets shifted by
the critical value «.. In particular, if we start with an /b\—module of level zero (e.g., a
one-dimensional module corresponding to a character of the abelian Lie algebra
L), then the resulting g-module will be at the critical level. This is the reason why
it is the critical level, and not the zero level, as one might naively expect, that is the
“middle point” among all levels.

The Wakimoto modules (of critical and non-critical levels) will be crucial in
achieving our ultimate goal: describing the center of V.. (g) (see Chapter 8).

Here is a more detailed description of the material of this chapter. We start in
Section 6.1 with the case of critical level. Our main result is the existence of a vertex
algebra homomorphism Vi (g) — My ® mo, where g is the commutative vertex
algebra associated to Lh. Using this homomorphism, we construct a g-module
structure of critical level on the tensor product My ® N, where N is an arbitrary
(smooth) Lh-module. These are the Wakimoto modules of critical level (we will
see below that they are irreducible for generic values of the parameters).

165
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In Section 6.2 we generalize this construction to arbitrary levels. We prove the
existence of a homomorphism of vertex algebras

wie : Vie(g) > Mg®my *,

where JTg e

is the vertex algebra associated to the Heisenberg Lie algebra EK_KC.
As in our earlier discussion of the center, we pay special attention to the action of
the group Aut O of coordinate changes on the Wakimoto modules. This is necessary
to achieve a coordinate-independent construction of these modules, which we will
need to obtain a coordinate-independent description of the center of V. (g). To do
this, we describe the (quasi)conformal structure on My ® ng ~¥¢ corresponding to
the Segal-Sugawara (quasi)conformal structure on Vi (g).

Next, we extend the construction of the Wakimoto modules in Section 6.3 to
a more general context in which the Lie subalgebra E is replaced by a central
extension of the loop algebra of the Levi subalgebra of an arbitrary parabolic Lie
subalgebra of g following the ideas of [Feigin and Frenkel 1990a]. Thus, we
establish a “semi-infinite parabolic induction” pattern for representations of affine
Kac—Moody algebras, similar to the parabolic induction for reductive groups over
local non-archimedian fields.

6.1. Wakimoto modules of critical level

In this section we will recast the free field realization obtained in the previous
chapter as a homomorphism of vertex algebras Vi (g) — My ® mg, where m is
the commutative vertex algebra associated to L.

6.1.1. Homomorphism of vertex algebras. Recall that to the affine Kac—-Moody
algebra g, we associate the vacuum g,-module V. (g), as defined in Section 2.2.4.
We have shown in Theorem 2.2.2 that V. (g) is a Z-graded vertex algebra.

We wish to interpret a Lie algebra homomorphism g, — A2

<1,loc I terms of a
homomorphism of vertex algebras.

Lemma 6.1.1. Defining a homomorphism of Z-graded vertex algebras Vi (g) — V
is equivalent to choosing vectors Tt 110)y e V,a=1,...,dimg, of degree 1 such
that the Fourier coefficients .7: of the vertex operators

YT, 100y, 2) =Y Tpz
nez
satisfy the relations (1.3-4) with 1 = 1.
Proof. Given a homomorphism p : Vi.(g) — V, set ?11 |0)y = p(J4,|0)). The

fact that p is a homomorphism of vertex algebras implies that the OPEs of the
~a 2
vertex operators Y (J_;|0)y, z) will be the same as those of the vertex operators
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J%(z), and hence the commutation relations of their Fourier coefficients 7: are the
same as those of the J’s.

Conversely, suppose that we are given vectors Tt 110)y satisfying the condition
of the lemma. Define a linear map p : Vi (g) — V by the formula

TFa1 Tam

b T 0y e Ty T 10).
It is easy to check that this map is a homomorphism of Z-graded vertex algebras. [J

The vertex algebra Mg is Z-graded (see Section 5.4.1). The following is a
corollary of Theorem 5.6.8.

Corollary 6.1.2. There exists a homomorphism of Z-graded vertex algebras
Vi (9) = M.

Proof. According to Theorem 5.6.8, there exists a homomorphism g, — U (M)
such that 1+ 1 and

J(2) = Y(Palag g.ap,—1)10).2) + Y (Ba, 2),

where the vectors P, and B, have degree 1. Therefore by Lemma 6.1.1 we obtain
a homomorphism of vertex algebras Vi (g) — M such that

J2,10) Pa(a;,o,aﬂﬁ_1)|0) + B,.

|

The complex Cp? .(Lg. &Qg loc) Which we used to prove Theorem 5.6.8 carries a

gradation with respect to the root lattice of g defined by the formulas

wtay , = —a, Wty , =—wtJ, wt|0) =0

so that wt [ Y(4, z)dz = wt A. The differential preserves this gradation, and it is
clear that the cocycles w and i« (o) are homogeneous with respect to it. Therefore
the element y introduced in the proof of Theorem 5.6.8 may be chosen in such a
way that it is also homogeneous with respect to the weight gradation. This means
that B, € My 4 may be chosen in such a way that wt B, = wt J“, in addition to
the condition deg B, = 1.

We then necessarily have B, = 0 for all J¢ € h & n4, because there are no
elements of such weights in M . Furthermore, we find that the term B, corre-
sponding to J¢ = f; must be proportional to azl_ —1 |0) € Mg, +. Using the formulas
of Section 5.2.5 and the discussion of Section 5.3.2, we therefore obtain a more
explicit description of the homomorphism V. (g) — M,:
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Theorem 6.1.3. There exist constants ¢; € C such that the Fourier coefficients of
the vertex operators

ei(z) =ag; () + Y :Phlaz(2)ap(2):,

BeAy
hi(z)=— ) Bhi):ap(z)ag(2):,
BeAy
fie) =Y 0% (2)apz): + cidzay, (2),
BeAy

where the polynomials P%, Q% are introduced in formulas (5.2-12)—(5.2-14), gener-
ate an action of g, on M.

In addition to the above homomorphism of Lie algebras wy, : g, — &dgﬁl loc?
there is also a Lie algebra anti-homomorphism

g

R.
w Ll‘l+ — ngl,loc

which is induced by the right action of n4 on N4 (see Section 5.2.5). By construc-
tion, the images of Ln under w,, and w® commute. We have

wR(ei(2) = a0, )+ Y- Pgl(a}(2)ag(2), (6.1-1)
BeAy

where the polynomials PﬂR " were defined in Section 5.2.5. More generally, we
have

We (ea(2) =aa(2)+ Y, PF(@}(2)ag(2), (6.1-2)
BeAL ;B>

wRea(2) =ae()+ Y. PFa}(@)ap(2), (6.1-3)
BeA ;B>

for some polynomials Pg and Pée ** where the condition 8 > a comes from the
commutation relations

[h, eq] = a(h)eq, [h.eRl=a(h)eR,  hen.

Note that there is no need to put normal ordering in the above three formulas,
because Pg and P; ‘% cannot contain a;g, for the same reason.

6.1.2. Other g-module structures on My In Theorem 6.1.3 we constructed the
structure of a g, -module on M. To obtain other g, -module structures of critical

level on My, we need to consider other homomorphisms g, — &fli 1.loc lifting the
g

homomorphism Lg — J, .. According to Lemma 5.5.3, the set of isomorphism
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classes of such liftings is a torsor over H!(Lg, 42, ), which is the first cohomology

of the “big” Chevalley complex

Ci(Lg, 0 loc) = Homcont(/\ (Lg) ‘%0 loc)

0 loc’?

Recall that our complex C2 (Lg, s 0, 1OC) has a weight gradation, and our cocycle
o has weight 0. Therefore among all hftmgs we consider those which have weight
0. The set of such liftings is in bijection with the weight 0 homogeneous component

1
of H (Lg’ 0, loc)

Lemma 6.1.4. The weight 0 component of H'(Lg, &ig loc) IS isomorphic to the
(topological) dual space (Lh)* to L.

Proof. First we show that the weight 0 component of H!(Lg, &40 loc) 18 180~
morphic to the space of weight 0 cocycles in C! (L g, ‘SﬂO,loc)' Indeed, since
wtag , = —a, the weight 0 part of C%Lg, A 0, loc) = 0 o
consists of the constants. If we apply the differential to a constant, we obtain 0, and
so there are no coboundaries of weight 0 in C!(Lg, &Qo ioc)*

Next, we show that any weight 0 one-cocycle ¢ is umquely determined by its
restriction to Lh C Lg, which may be an arbitrary (continuous) linear functional
on Lb. Indeed, since the weights occurring in &ig’loc are less than or equal to 0, the
restriction of ¢ to Ln_ is equal to 0, and the restriction to L takes values in the
constants C C #§ . Now let us fix ¢| 1. We identify (Lh)* with h*(7))d7 using

0,loc”
the residue pairing, and write ¢|y, as x(¢)dt using this identification. Here

XO =Y xt™ xmeb*,
nez
where x,(h) = ¢(hy). We denote (x(2), h;) by xi(z).
We claim that for any x(¢)dt € b*((¢))dt, there is a unique one-cocycle ¢ of
weight 0 in C!(Lg, 543 ) such that

is one-dimensional and

¢(ei(z)) =0, (6.1-4)
@ (hi(2)) = xi(2), (6.1-5)
o (fi(2)) = xi(2)ay ,(2). (6.1-6)

Indeed, having fixed ¢ (e;(z)) and ¢ (h;(z)) as in (6.1-4) and (6.1-5), we obtain
using the formula
¢ ([ei,n’ fj,m]) = €in ¢(fj,m) - fj,m ‘¢(ei,n)
that
5i,in,n+m =¢€in- ¢(fj,m)
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This equation on ¢ ( f; ;») has a unique solution in &ig’loc of weight —;, namely,

the one given by formula (6.1-6). The cocycle ¢, if it exists, is uniquely determined
once we fix its values on ¢; 5, hi n, and f; ,. Let us show that it exists. This is
equivalent to showing that the Fourier coefficients of the fields

€i(z) =ag;(2)+ ) LPylagy(2))ap(2):, (6.1-7)
BeA
hi(z) =~ ) Blh)yag(2)ag(z): + xi(2). (6.1-8)
BeAy
fi@) =Y 05(as(2)ap2): +cidzal, () + xi(D)ak (). (6.1-9)
BeAy

satisfy the relations of g, with 1= 1.

Let us remove the normal ordering and set ¢; = 0,i = 1,...,£. Then the
corresponding Fourier coefficients are no longer well-defined as linear operators
on M. But they are well-defined linear operators on the space Fun LAU. The
resulting Lg-module structure is easy to describe. Indeed, the Lie algebra Lg
acts on Fun L by vector fields. More generally, for any Lb_-module R we
obtain a natural action of Lg on the tensor product Fun LU® R (this is just the
topological Lg-module induced from the Lb_-module R). If we choose as R
the one-dimensional representation on which all f;, act by 0 and /;, acts by
multiplication by x;, foralli =1,...,£ and n € Z, then the corresponding Lg-
action on Fun LU® R ~ Fun LAl is given by the Fourier coefficients of the above
formulas, but with the normal ordering removed and ¢; = 0. Hence if we remove
the normal ordering and set ¢; = 0, then these Fourier coefficients do satisfy the
commutation relations of Lg.

When we restore the normal ordering, these commutation relations may in
general be distorted, due to the double contractions, as explained in Section 5.5.2.
But we know from Theorem 6.1.3 that when we restore normal ordering and set
all x;,» = 0, then there exist the numbers ¢; such that these Fourier coefficients
satisfy the commutation relations of ’g\,cc with 1 = 1. The terms (6.1-4)—(6.1-6)
will not generate any new double contractions in the commutators. Therefore the
commutation relations of ﬁkc are satisfied for all non-zero values of ¥;,. This
completes the proof. O

Corollary 6.1.5. For each x(t) € b*((¢)) there is a g-module structure of critical
level on M, with the action given by formulas (6.1-7)—(6.1-9).

We call these modules the Wakimoto modules of critical level and denote them
by Wx(t).
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Let 7o be the commutative algebra C[b; ,];=;
given by the formula

¢:n<o With the derivation T’

.....

T 'bilsnl o lm nm = z :n] i1,ny -~ l] hnj—1° bimJlm'

Then 7 is naturally a commutative vertex algebra (see Section 2.2.2). In particular,
we have

Y(bi1,2) =bi() = ) binz "
n<0
Using the same argument as in the proof of Lemma 6.1.4, we now obtain a stronger
version of Corollary 6.1.2.

Theorem 6.1.6. There exists a homomorphism of vertex algebras
Wy, : Vi, (9) = My ® 7o
such that

ei(z) > ag; (2) + Y Phlan(2)ap(z):,

BeAL

hi(z) > — > Bhi):ay(z)ag(z): + bi(2), (6.1-10)

BeAy

fie) > Y :0p(ay(2)ap(2): + cidzay, (2) + bi(2)ay, (2).

BeA+
where the polynomials PE, Qig are introduced in formulas (5.2-12)—(5.2-14).

Thus, any module over the vertex algebra M &g becomes a V. (g)-module, and
hence a g-module of critical level. We will not require that the module is necessarily
Z-graded. In particular, for any x(7) € h*((¢)) we have a one-dimensional 7ro-module
Cy()» on which b; , acts by multiplication by x; . The corresponding g, -module
is the Wakimoto module W, (;) introduced above.

6.2. Deforming to other levels

In this section we extend the construction of Wakimoto modules to non-critical
levels. We prove the existence of a homomorphism of vertex algebras

ke Vie(g) > Mg®my ",

where ng e

is the vertex algebra associated to the Heisenberg Lie algebra ’f)\,c_,cc ,
and analyze in detail the compatibility of this homomorphism with the action of
the group Aut O of changes of coordinate on the disc. This will enable us to give a

coordinate-independent interpretation of the free field realization.
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6.2.1. Homomorphism of vertex algebras. As before, we denote by h the Cartan
subalgebra of g. Let /h\,c be the one-dimensional central extension of the loop algebra
LY = bh((¢)) with the two-cocycle obtained by restriction of the two-cocycle on Lg
corresponding to the inner product k. Then according to formula (1.3-4), /b\,c isa
Heisenberg Lie algebra. We will consider a copy of this Lie algebra with generators
bin,i=1,...,4,n€Z, and 1 with the commutation relations

[bin. bjm] = nk(hi. hj)op,—m1. (6.2-1)

Thus, the b; 5,’s satisfy the same relations as the /; ,’s. Let 7 denote the HK -module
induced from the one-dimensional representation of the abelian Lie subalgebra of
EK spanned by b; ,,i =1,...,£,n >0, and 1, on which 1 acts as the identity and
all other generators act by 0. We denote by |0) the generating vector of this module.
It satisfies b; ,|0) = 0,n > 0. Then 7§ has the following structure of a Z -graded
vertex algebra (see Theorem 2.3.7 of [Frenkel and Ben-Zvi 2004]):

Z+-grading: deg bi, n, ... bi .0, 10) = — > 7L ni;

vacuum vector: |0);

translation operator: 7°|0) = 0, [T, b; 4] = —nb; p—1;

vertex operators:

Y(bi,—l |0>, Z) = bi(Z) — Z bi,nz_n_l,
nez

- 1

Y(bil,nl . bim,nm |0>, Z) — l_[

j=1

G @ )

The tensor product My ® ﬂg ~¥¢ also acquires a vertex algebra structure.

The following theorem extends the result of Theorem 6.1.6 away from the critical
level.

Theorem 6.2.1. There exists a homomorphism of vertex algebras
Wit Vie(g) > Mg® ng—xc
such that

ei(z) — aq; (z) + Z :Pé(a; (2))ap(2):,

BeAy
hi(z) > — > Bhi):ay(z)ag(): + bi(2),
ﬂ§+ P (6.2-2)
fi@) > Y 0h(ag(2))ap(z):

BeA
+ (¢i + (kK = Ke)(ei 1) 0zaq, (2) + bi(2)ag, (2),
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where the polynomials Pk, Qfg were introduced in formulas (5.2-12)—(5.2-14).

Proof. Denote by Qﬁ)c the Lie algebra U(My ® ng ). By Lemma 6.1.1,
in order to prove the theorem, we need to show that formulas (6.2-2) define a
homomorphism of Lie algebras g, — ngoc sending the central element 1 to the
identity.

Formulas (6.2-2) certainly define a linear map wy : Lg — Qﬁm. Denote by w,
the linear map /\2 Lg— Qﬁ)c defined by the formula

we(f.8) = [We (/). we (] —we (/. gD

Evaluating it explicitly in the same way as in the proof of Lemma 5.6.2, we find
that wy takes values in #4S . C s . Furthermore, by construction of Wy, for any

0,loc
X e &ﬂg 1oc and /"€ Lg we have [wi(f), X]= f - X, where in the right hand side

we consider the action of f on the Lg-module &flg loe- This immediately implies

g

that w, is a two-cocycle of Lg with coefficients in &do’loc.

local, i.e., belongs to C2.(Lg. g, ).

0,loc

By construction, wy is

Let us compute the restriction of wy to /\2 LY. The calculations made in the
proof of Lemma 5.6.8 imply that

Wi (hy, h;n) =n(ke(h,h') + (k —ke)(h, b)) = nk(h, ).

Therefore this restriction is equal to the restriction of the Kac—Moody two-cocycle
o, on Lg corresponding to k. Now Lemma 5.6.7 implies that the two-cocycle wy is
cohomologically equivalent to i (o, ). We claim that it is actually equal to i (o).

Indeed, the difference between these cocycles is the coboundary of some element

€ Ckl)C (Lg, &ig,loc). The discussion before Theorem 6.1.3 implies that y (e;(z)) =
y(hi(z))=0and y(fi(z)) = clfaza;';i (z) for some constants ¢; € C. In order to find
the constants ¢; we compute the value of the corresponding two-cocycle w, + dy
one¢;, and f; —,. We find that it is equal to noy(e; n, fi,—n) + clfn. On the other
hand, the commutation relations in g, require that it be equal to noy (e n, fi,—n)-
Therefore ¢; =0 foralli =1,...,¢, and so y = 0. Hence we have w;, = ix(0y).
This implies that formulas (6.2-2) indeed define a homomorphism of Lie algebras
O — sﬁiuoa sending the central element 1 to the identity. This completes the

proof. O

Now any module over the vertex algebra My ® Jrg ~¥¢ becomes a Vi (g)-module
and hence a g,-module (with K acting as 1). For A € h*, let nf_'c" be the Fock

representation of /[)\K_KC generated by a vector |A) satisfying

binlA) =0, n>0,  biolA) =A(hi)|A),  1A)=]A).
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Then
def K—Kc
Wiw =Mg®m A
isan My ® Jrg ~““_module, and hence a g,-module. We call it the Wakimoto
module of level « and highest weight A.

6.2.2. Wakimoto modules over ;[2. In this section we describe explicitly the Waki-
moto modules over ;[2.

Let {e, &, [} be the standard basis of the Lie algebra sl,. Let ko be the invariant
inner product on sl, normalized in such a way that ko (&, h) = 2. We will write an
arbitrary invariant inner product « on sl, as kkg, where k € C, and will use k in
place of k in our notation. In particular, k. corresponds to k = —2. The set At
consists of one element in the case of sl,, so we will drop the index « in ay(z) and
a}(z). Likewise, we will drop the index 7 in b;(z), etc., and will write M for My, .
We will also identify the dual space to the Cartan subalgebra h* with C by sending
x € b* to x(h).

The Weyl algebra slq, has generators a,,a,.n € Z, with the commutation
relations

[an, a:;l] - Sn’_m.

Its Fock representation is denoted by M. The Heisenberg Lie algebra Ek has
generators by, n € Z, and 1, with the commutation relations

[bn, bm] == 2kn8n’_m 1,
and n)’f is its Fock representation generated by a vector |A) such that
bulA) =0, n>0;  bo|d) =A[A);  1|A) =[A).

The module Jr(])‘ and the tensor product M ® Jr(])‘ are vertex algebras.
The homomorphism wy, : Vi (sly) > M & n(])‘ *2 of vertex algebras is given by

the following formulas:

e(z)—~a(z)
h(z) — —2:a*(2)a(z): + b(2) (6.2-3)
f(2) > —a*(2)%a(2): + kdza*(2) + a*(2)b(z).

The Wakimoto module M ® n)lf *2 will be denoted by W) x and its highest
weight vector will be denoted by |A).

We will use these explicit formulas in Chapter 7 in order to construct intertwining
operators between Wakimoto modules.
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6.2.3. Conformal structures at non-critical levels. In this section we show that
the homomorphism w, of Theorem 6.2.1 is a homomorphism of conformal vertex
algebras when k # k. (see Section 3.1.4 for the definition of conformal vertex
algebras). This will allow us to obtain a coordinate-independent version of this
homomorphism. By taking the limit k — k., we will also obtain a coordinate-
independent version of the homomorphism wy, .

The vertex algebra Vi (g), k # k¢, has the structure of a conformal vertex algebra
given by the Segal-Sugawara vector

1
Se =22 7% Ja110). (6.2-4)
a

where {J,} is the basis of g dual to the basis {J*} with respect to the inner product
k —K. (see Section 3.1.4, where this vector was denoted by .S'). We need to calculate
the image of Sy under w.

Proposition 6.2.2. The image of Sy under w, is equal to

14
1 .
> a1y 5 biably —pa |10), (6.2-5)
aEAL i=1

where {b'} is a dual basis to {b;} and p is the element of by corresponding to p € h*
under the isomorphism induced by the inner product (k — k¢)|y.

The vector wy(Sy) defines the structure of a conformal algebra and hence an
action of the Virasoro algebra on Mg ® ng X0 The homomorphism w, intertwines
the corresponding action of (Der 0, Aut0) on My ® ng X0 and the natural action

of (Der O, Aut0) on Vi (g).

K—K¢

Proof. The vertex algebras Vi (g) and My ® 7, carry Z-gradings and also
weight gradings by the root lattice of g coming from the action of h (note that
Wtdgy = —wt a;,n = o, wtb; , = 0). The homomorphism w, preserves these
gradings. The vector S, € Vi (g) is of degree 2 with respect to the Z-grading and of
weight 0 with respect to the root lattice grading. Hence the same is true for wy (Si).

The basis in the corresponding homogeneous subspace of My ® JT(’)C ~¥e is formed
by the monomials of the form

*

bi,—lbj,—h bi’_z, aa,_laa’_l, (6.2—6)
* * *

do,—108,—144 odg o do,~1dg obi—1, (6.2-7)

* * * * *
Aa,—244,0> do+p,—29q,098,0° do+B,—19q,—198,0 (6.2-8)
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applied to the vacuum vector |0). We want to show that wy (S, ) is a linear combi-
nation of the monomials (6.2-6).

By construction, the Fourier coefficients L, n € Z, of the vertex operator w, (Si)
preserve the weight grading on M ®ng ~¥¢, and we have deg L, = —n with respect
to the vertex algebra grading on My ® JTg ~X¢. We claim that any vector of the form
P(a;’0)|0) is annihilated by L,,n > 0. This is clear for n > 0 for degree reasons.

To see that the same is true for L, observe that
1
Lo+ P(ag 0)0) = > ) wie(Ja,0)we(J5) - Plag 0)|0).
a

According to the formulas for the homomorphism w, given in Theorem 6.2.1,
the action of the constant subalgebra g C g, on C[a;’o]ae A4 |0), obtained via w,
coincides with the natural action of g on C[yg]yea, = Fun N4, if we substitute
a:‘;,o > Ya. Therefore the action of L on P(a;,0)|0) coincides with the action of

the Casimir operator % Y o JaJ? on C[yalaea ., under this substitution. But as
a g-module, the latter is the contragredient Verma module M as we showed in
Section 5.2.3. Therefore the action of the Casimir operator on it is equal to 0.
The fact that all vectors of the form P(a;,0)|0) are annihilated by L,,n > 0,
precludes the monomials (6.2-7) and the monomials (6.2-8), except for the last one,
from appearing in w, (Si). In order to eliminate the last monomial in (6.2-8) we

will prove that
Ln-aa,_1|0) =0, n>0 Lo-aa,_1|0) =aa,_1|0), oAt

The first formula holds for degree reasons.

To show the second formula, let {eq jaeca, be a root basis of ny C g such that
eq; = ;. Then the vectors ey, —1]0) € Vic(g), and hence wy (eq,—1]0)) € Mg®ng_'cc
are annihilated by L,,n > 0, and are eigenvectors of L with eigenvalue 1. We

have

Welew,—110) =ag, 1100+ Y P§lakoag110), (6.2-9)
BeA ;B>

where the polynomials Pl‘é‘ are found from the following formula for the action of
eq on AU:
d d
€y = 8_ ol P g (ya)a_
Yo BeAL;B>a VB
(see formula (6.1-2)).
Starting from the maximal root opax and proceeding by induction on decreasing
heights of the roots, we derive from these formulas that Lo -aq,—1|0) = aq,—1(0).
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This eliminates the last monomial in (6.2-8) and gives us the formula
we(S) = ) da,-1a;_,10) (6.2-10)
O(EA+

plus the sum of the first two types of monomials (6.2-6). It remains to determine
the coefficients with which they enter the formula.

In order to do that we use the following formula for wy (%; —1|0)), which follows
from Theorem 6.2.1:

we(hi110) = | = > Bhiay gag 1 +bi—1 | |0). (6.2-11)
BeA+

We find from it the action of Lo and L on the first summand of w, (/;—1|0)):

Lo-— Y Blhiaggag_110)=— Y B(hi)ag gag _110),

ﬁeAJr ﬂ€A+
Ly-— Y B(hag gag 110) =— > B(hi)|0) = —2p(h:)|0).
BeAt BeAy

In addition, L,,n > 1, act by 0 on it.

On the other hand, we know that wy (/; —1|0)) has to be annihilated by L,,n >0,
and is an eigenvector of L, with eigenvalue 1. There is a unique combination of
the first two types of monomials (6.2-6) which, when added to (6.2-10), satisfies
this condition; namely,

L
1 .
3 > by bl —pos. (6.2-12)
i=1
This proves formula (6.2-5). Now we verify directly, using Lemma 3.1.2, that the
vector wy (S, ) given by this formula satisfies the axioms of a conformal vector.
This completes the proof. O

6.2.4. Quasi-conformal structures at the critical level. Now we use this lemma
to obtain additional information about the homomorphism wy,. Denote by O the
complete topological ring C[[¢]] and by DerO the Lie algebra of its continuous
derivations. Note that Der O >~ CJ[[¢]]0;.

Recall that a vertex algebra V' is called quasi-conformal if it carries an action
of the Lie algebra Der O satisfying the following conditions:

e the formula

m—+1
[Lm, Ayl = Z (n+1 )(Ln'A)(m+k—n)
n=—1
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holds for all 4 € V;
e the element L._; = —0d; acts as the translation operator 7T';
e the element Ly = —t0d; acts semi-simply with integral eigenvalues;
o the Lie subalgebra Dery O acts locally nilpotently

(see Definition 6.3.4 of [Frenkel and Ben-Zvi 2004]). In particular, a conformal
vertex algebra is automatically quasi-conformal (with the Der O-action coming from
the Virasoro action).

The Lie algebra Der O acts naturally on g, preserving g[[¢]], and hence it acts
on Vi.(g). The Der O-action on Vj,_(g) coincides with the limit k — k. of the
Der O-action on Vi (g), k # k., obtained from the Sugawara conformal structure.
Therefore this action defines the structure of a quasi-conformal vertex algebra on
Vie. (9).

Next, we define the structure of a quasi-conformal algebra on My® ¢ as follows.
The vertex algebra Mg is conformal with the conformal vector (6.2-10), and hence
it is also quasi-conformal. The commutative vertex algebra g is the Kk — k. limit of
the family of conformal vertex algebras ng ¥ with the conformal vector (6.2-12).
The induced action of the Lie algebra Der O on ng ~¥¢ is well-defined in the limit
k — k. and so it induces a Der O-action on (. Therefore it gives rise to the structure
of a quasi-conformal vertex algebra on . The Der O-action is in fact given by
derivations of the algebra structure on ¢ ~ C[b; ], and hence by Lemma 6.3.5
of [Frenkel and Ben-Zvi 2004] it defines the structure of a quasi-conformal vertex
algebra on 7. Explicitly, the action of the basis elements L, = —t"*19,,n > —1,
of Der O on 7 is determined by the following formulas:

Ly 'bi,m = _mbi,n—i-m, —1<n<-m,
Ly -bj_y=nn+1), n>0, (6.2-13)
Ln'bi,m:07 n>-—-m

(note that (p, h;) =1 for all /). Now we obtain a quasi-conformal vertex algebra
structure on My ® 7o by taking the sum of the above Der O-actions.

Since the quasi-conformal structures on V.. (g) and My ® 7 both arose as the
limits of conformal structures as k — k., we obtain the following corollary of
Proposition 6.2.2:

Corollary 6.2.3. The homomorphism wy, : V. — My ® my preserves quasi-
conformal structures. In particular, it intertwines the actions of Der O and AutO on
both sides.

6.2.5. Transformation formulas for the fields. We can now obtain the transfor-
mation formulas for the fields ay(2), ay(z) and b;(z) and the modules My and
.
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From the explicit formula (6.2-5) for the conformal vector w, (S,) we find the
following commutation relations:

[Ln, aa,m] = —Mdm+n, [Ln’a;,m] =—(m— 1)az;,m—l'

In the same way as in Section 3.5.5 we derive from this that a4 (z) transforms as
a one-form on the punctured disc D* = Spec C((z)), while a(z) transforms as a
function on D*. In particular, we obtain the following description of the module
M.

Let us identify U with ny. Consider the Heisenberg Lie algebra I', which is
a central extension of the commutative Lie algebra ny ® X & n*+ ® Qg with the
cocycle given by the formula

£(0).g(0)d1 > / (). g(0))dr.

This cocycle is coordinate-independent, and therefore I" carries natural actions of
Der O, which preserve the Lie subalgebra 'y = n4 ® 0 @ n’} ® Q¢. We identify
the completed Weyl algebra A° with a completion of U(I")/(1— 1), where 1 is the
central element. The module My is then identified with the I"-module induced from
the one-dimensional representation of ' @ C1, on which I'; acts by 0, and 1 acts
as the identity. The Der O-action on M considered above is nothing but the natural
action on the induced module.

Now we consider the fields b;(z) = Y, ¢ bi,nz"""! and the module 7¢. For-
mulas (6.2-13) describe the action of Der O on the b; ,’s and hence on the series
bi(z). In fact, these formulas imply that d, + b;(z) transforms as a connection on
the line bundle Q~{Phi),

More precisely, let £ H be the dual group to H, i.e., it is the complex torus that
is determined by the property that its lattice of characters L H — C* is the lattice
of cocharacters C* — H, and the lattice of cocharacters of  H is the lattice of
characters of H.! The Lie algebra L' of L H is then canonically identified with
h*. Denote by Q7 the unique principal £ H-bundle on the disc D such that the
line bundle associated to any character A:LH X (equivalently, a cocharacter

of H) is Q (e (see Section 4.2.3). Denote by Conn(27")p the space of all
connections on this © H-bundle. This is a torsor over h* @ Q.

The above statement about b;(z) may be reformulated as follows: consider
the h*-valued field b(z) = Zf=1 bi(z)w; such that (b(z), h;) = b;(z). Then the
operator d, + b(z) transforms as a connection on the © H-bundle Q~* over D.
Equivalently, 3, + b;(z) transforms as a connection on the line bundle €~ (-}
over D.

"Thus, L H is the Cartan subgroup of the Langlands dual group LG of G introduced in Sec-
tion 1.1.5.
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To see that, let w be a new coordinate such that z = ¢(w); then the same
connection will appear as dy, + b(w), where

4

b(w) = ¢’ - b(p(w)) + p%. (6.2-14)

It is straightforward to check that formula (6.2-14) is equivalent to (6.2-13).

This implies that 7 is isomorphic to the algebra Fun(Conn(27°)p) of func-
tions on the space Conn(27°)p. If we choose a coordinate z on D, then we
identify Conn(27°)p with h* ® Q¢ this algebra with the free polynomial algebra
Clbinli=1.... 4:n<0, Whose generators b; , are the following linear functionals on
h* ® Q¢ =~ h*[[z]ldz:

bin(x(2)dz) =Res;=o(x(2), hi)z"dz.

6.2.6. Coordinate-independent version. Up to now, we have considered Waki-
moto modules as representations of the Lie algebra g, , which is the central
extension of Lg = g((¢)). As explained in Section 3.5.2, it is important to develop a
theory which applies to the central extension ’g\,c, « of the Lie algebra g(¥x) = g®¥ .,
where ¥ is the algebra of functions on the punctured disc around a point x of a
smooth curve. In other words, ¥ is the completion of the field of functions on X
corresponding to x. It is a topological algebra which is isomorphic to C((?)), but
non-canonically. If we choose a formal coordinate ¢ at x, we may identify ¥, with
C((t)), but this identification is non-canonical as there is usually no preferred choice
of coordinate ¢ at x. However, as we saw in Section 3.5.2, we have a canonical
central extension g, , of g(¥x) and the vacuum g, ,-module

D
Vi(g)x = Indg@@@@K C.

where, as before, Oy denotes the ring of integers in J{x which is isomorphic to

Cll«]1-
As explained in Section 3.5.4, Vi (g), may also be obtained as the twist of V,(g)
by the Aut O-torsor Hut, of formal coordinates at x:

Vi = ddut Vi (9).

e (9)x Ulx A1>1<t© «(9)

Now we wish to recast the free field realization homomorphism
Wy 2 Vie(g) > Mg ® ng_KC

of Theorem 6.2.1 in a coordinate-independent way.
We have an analogue of the Heisenberg Lie algebra I' introduced in the previous
section, attached to a point x. By definition, this Lie algebra, denoted by Iy, is the
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central extension of (n4 ® Hx) ® (n} ® Qg ). Let 'y x be its commutative Lie
subalgebra (n4+ ® Ox) @ (0} ® Qo). Let M be the I'x-module

_ I'x
Mg x = Indl‘+,x®@1 C.

As in the case of Vi (g)x, we have

Mgy = suty x My,
Aut0

where the action of AutO on My comes from the action of coordinate changes on
M induced by its action on the Lie algebra I', as described in the previous section.

Next, we need a version of the Heisenberg Lie algebra b, and its module 7,
attached to the point x.

Consider the vector space Conng, 3 (277) px of A-connections on the L H-bundle
Q7 on D = Spec ¥, for all possible complex values of A. If we choose an
isomorphism ¥, >~ C((¢)), then a A-connection is an operator V. = Ad; + x(¢),
where x(¢) € h*((¢)). We have an exact sequence

0— b* ® Qy, — Conngyy (™) px — Cd; — 0,

where the penultimate map sends V as above to Ad;.
Let b, . be the topological dual vector space to Conngy 3 (277) px. It fits into an
exact sequence (here we use the residue pairing between Qg and Jy)

0—Cl— b, , > h&%Kyx—0,

where 1 is the element dual to d,. The Lie bracket is given by the old formula
(see Section 6.2.1); it is easy to see that this formula (which depends on v) is
coordinate-independent.

Note that this sequence does not have a natural coordinate-independent splitting.
However, there is a natural splitting h ® O, — /[)\v, « (the image is the orthogonal
complement to the space of A-connections on the disc Dy ). Therefore we define an
/h\v, x-module

~

v o bv,x
Ty = Indygo ger A

From the description of the action of AutO on the Lie algebra ’f)\v obtained in the
previous section it follows immediately that

v v
wy . =dAut, X .
Asx Ao~ A

Now we can state a coordinate-independent version of the free field homomor-
phism wy.
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Proposition 6.2.4. For any level k and any point x there is a natural homomor-
phism of Gy x-modules Vi(g)x — Mg x ® ng ;K". Furthermore, for any highest
weight A € b*,

— K—Kc
Wisex = Mgx ® 7,
carries a natural structure of g, ,.-module.

Proof. According to Proposition 6.2.2 and Corollary 6.2.3, the map w,, consid-
ered as a homomorphism of g, ,-modules, is compatible with the action of AutO
on both sides. Therefore we may twist it by the torsor Hut,. According to the
above discussion, we obtain the first assertion of the proposition. Likewise, twisting
the action of g on W), by sdut,, we obtain the second assertion. O

In particular, for v = 0 the Lie algebra /h\o, » 1S commutative. Any connection V
on Q7% over the punctured disc D defines a linear functional on by ., and hence

a one-dimensional representation Cy of Eo, x> considered as a commutative Lie
algebra. If we choose an isomorphism J{ ~ C((¢)), then the connection is given by
the formula V = 9, + x(¢), where x(¢) € h*((z)). The action of the generators b; ,
on Cy is then given by the formula

bip > f(x(z), hi)z"dz.
By Theorem 6.1.6, there exists a homomorphism of vertex algebras
Wi, Vie. (9) = My ® mo.

According to Corollary 6.2.3, it commutes with the action of Aut©O on both sides.
Therefore the corresponding homomorphism of Lie algebras g — U(My ® 7¢) also
commutes with the action of Aut0. Hence we may twist this homomorphism with
the Aut O-torsor dut,. Then we obtain a homomorphism of Lie algebras

Teox = UMy ® o) & slut, X UMy ®o).
u

LetuscallaI'y EB/E)\O’ «-module smooth if any vector in this module is annihilated
by the Lie subalgebra

(- @md) @ (% @mY Qo) ® (hemb),

where m is the maximal ideal of Oy, for sufficiently large N € Z,. Clearly,
any smooth I' EBHO—module is automatically a U(My ® mp)-module. Hence any
smooth I'y @Eo, y-module is automatically a U(My ® mg)x-module and hence a
B¢, x-module.

Proposition 6.2.5. For any connection on the  H-bundle QP over the punctured
disc DY = Spec ¥ x there is a canonical g, -module structure on Mgy .
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Proof. Note that M,y is a smooth I'y-module, and Cy is a smooth /b\O,x'
module for any connection V on the £ H-bundle Q7 over the punctured disc DZ.
Taking the tensor product of these two modules we obtain a’g:,cc’ x-module, which
is isomorphic to M x as a vector space. O

Thus, we obtain a family of g, ,-modules parameterized by the connections on
the £ H-bundle Q" over the punctured disc D.

If we choose an isomorphism Ky ~ C((¢)) and write a connection V as V =
d; + x(t), then the module corresponding to V is nothing but the Wakimoto module
W (z) introduced in Corollary 6.1.5.

6.3. Semi-infinite parabolic induction

In this section we generalize the construction of Wakimoto modules by considering
an arbitrary parabolic subalgebra of g instead of a Borel subalgebra.

6.3.1. Wakimoto modules as induced representations. The construction of the
Wakimoto modules presented above may be summarized as follows: for each
representation N of the Heisenberg Lie algebra /b\,c, we have constructed a g4 -
module structure on My ® N . The procedure consists of extending the Hx—module
by 0 to /b\_,,c, followed by what may be viewed as a semi-infinite analogue of
induction functor from ’b\_,,(—modules t0 Gy« -modules. An important feature
of this construction, as opposed to the ordinary induction, is that the level gets
shifted by «.. In particular, if we start with an Eo—module, or, equivalently, a
representation of the commutative Lie algebra Lb, then we obtain a g, -module of
critical level, rather than of level 0. For instance, we can apply this construction to
irreducible smooth representations of the commutative Lie algebra Lf. These are
one-dimensional and are in one-to-one correspondence with the elements y(¢) of the
(topological) dual space (Lh)* ~ bh*((¢))dt. As the result we obtain the Wakimoto
modules W, () of critical level introduced above. Looking at the transformation
properties of x(¢) under the action of the group AutO of changes of the coordinate
t, we find that x(¢) actually transforms not as a one-form, but as a connection
on a specific ' H-bundle. This “anomaly” is a typical feature of “semi-infinite”
constructions.

In contrast, if ¥ # 0, the irreducible smooth Ek—modules are just the Fock
representations 7, . To each of them we attach a§K+Kc -module Wy .-

Now we want to generalize this construction by replacing the Borel subalgebra
b_ and its Levi quotient h by an arbitrary parabolic subalgebra p and its Levi
quotient m. Then we wish to attach to a module over a central extension of the
loop algebra Lm a g-module. It turns out that this is indeed possible provided
that we pick a suitable central extension of Lm. We call the resulting g-modules
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the generalized Wakimoto modules corresponding to p. Thus, we obtain a functor
from the category of smooth m-modules to the category of smooth g-modules. It is
natural to call it the functor of semi-infinite parabolic induction (by analogy with
a similar construction for representations of reductive groups).

6.3.2. The main result. Let p be a parabolic Lie subalgebra of g. We will assume
that p contains the lower Borel subalgebra b_ (and so, in particular, p contains
h Cb-). Let

p=mdr (6.3-1)

be a Levi decomposition of p, where m is a Levi subgroup containing b and v is the
nilpotent radical of p. Further, let

N
m= @ m; @ my
i=1
be the direct sum decomposition of m into the direct sum of simple Lie subalgebras
m;,i =1,...,s, and an abelian subalgebra m such that these direct summands
are mutually orthogonal with respect to the inner product on g. We denote by «; .
the critical inner product on m;,i =1, ..., s, defined as in Section 5.3.3. We also
set kg,c = 0.

Given a set of invariant inner products x; on m;,0 = 1,...,s, we obtain an
invariant inner product on m. Let m,) be the corresponding affine Kac—-Moody
algebra, i.e., the one-dimensional central extension of Lm with the commutation
relations given by formula (1.3-4). We denote by Vi, (m;),i =1,...,s, the vacuum
module over m; ,, with the vertex algebra structure defined as in Section 6.1.1. We
also denote by Vi, (mg) the Fock representation ngo of the Heisenberg Lie algebra
m,, with its vertex algebra structure defined as in Section 6.2.1. Let

N
i
Vien(m) = ®Vx,- (m;)
i=0

be the vacuum module over M) with the tensor product vertex algebra structure.

Denote by A/, the set of positive roots of g which do not occur in the root space
decomposition of p (note that by our assumption that b_ C p, all negative roots
do occur). Let A% be the Weyl algebra with generators aq , a(’;’n, o€ A/_F, necz,

and relations (5.3-3). Let Mg, be the Fock representation of %" generated by a
vector |0) such that

agn|0) =0, n=>0; ay 410) =0, n>0.

Then Mg, carries a vertex algebra structure defined as in Section 5.4.1.
We have the following analogue of Theorem 6.2.1.
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Theorem 6.3.1. Suppose that k;,i =0, ...,s, is a set of inner products such that
there exists an inner product k on g whose restriction to w; equals k; — k; ¢ for all
i =0,...,s. Then there exists a homomorphism of vertex algebras

WE : Vietie (8) = Mg p ® Vi) (m).

Proof. The proof is a generalization of the proof of Theorem 6.2.1 (in fact,
Theorem 6.2.1 is a special case of Theorem 6.3.1 when p = b_). Let P be the Lie
subgroup of G corresponding to p, and consider the homogeneous space G/ P. It has
an open dense subset U, = Ny -[1], where N, is the subgroup of N corresponding
to the subset A’ C A .. We identify U, with N, and with its Lie algebra n;, using
the exponential map.

Set LUy, = Up((7)). We define functions and vector fields on LIy, denoted by
Fun LUy, and Vect LAy, respectively, in the same way as in Section 5.3.1. The
action of Lg on AUy ((?)) gives rise to a Lie algebra homomorphism Lg — Vect LUy,
in the same way as before. We generalize this homomorphism as follows.

Consider the quotient G/ R, where R is the Lie subgroup of G corresponding to
the nilpotent Lie algebra v appearing in the Levi decomposition (6.3-1). We have
a natural projection G/R — G/ P, which is an M -bundle, where M = P/R is
the Levi subgroup of G corresponding to m. Over U, C G/ P this bundle may be
trivialized, and so it is isomorphic to AUy, x M . The Lie algebra g acts on this bundle,
and hence on U, x M. As the result, we obtain a Lie algebra homomorphism
g — Vect(Uy, x M). It is easy to see that it factors through homomorphisms

g — (VectUp ® 1) @ (Fun Uy ® m)

and m — Vect M.
The loop version of this construction gives rise to a (continuous) homomorphism
of (topological) Lie algebras

Lg — Vect LU, & Fun U, ® Lm.

Moreover, the image of this homomorphism is contained in the “local part,” i.e.,
the direct sum of the local part I ﬁ)’f of Vect LU, defined as in Section 5.4.3 and
the local part 9" of FunU,&® Lm. By definition, $1¥ is the span of the Fourier
coefficients of the formal power series P(0%a(z))J%(z), where P is a differential
polynomial in @} (z), € A’,, and J? € m.

Let &dgfoc and &di"iloe be the zeroth and the first terms of the natural filtration
on the local completion of the Weyl algebra A%, defined as in Section 5.3.3. We
have a non-split exact sequence of Lie algebras

0— AP — % I 0. (6.3-2)

0,loc =<1,loc loc
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Set
}9,13 déf &Qg’p o 5’9”3 (6.3-3)

loc <1,loc loc’

and note that }190’5 is naturally a Lie subalgebra of the local Lie algebra U(Mg , ®
Vi;y(m)). Using the splitting of the sequence (6.3-2) as a vector space via the
normal ordering, we obtain a linear map w;) : Lg — }]go’f.

We need to compute the failure of w,,) to be a Lie algebra homomorphism.

Thus, we consider the corresponding linear map wyy;) : /\2 Lg— }ﬁ)’f defined by
the formula

W (i) (> 8) = [Wie (), wie (@] —wie ([ 1. &])-

Evaluating it explicitly in the same way as in the proof of Lemma 5.6.2, we

find that w;) takes values in &ﬁg’,fo . C glgo’(f’_ Furthermore, sﬁgfo . is naturally an

Lg-module, and by construction of wy,,), for any X € &ﬂg”foc and f € Lg we
have [w,)(f), X] = f - X. This implies that w(,) is a two-cocycle of Lg with
coefficients in &Qg”fo .- By construction, it is local, i.e., belongs to CI%)C(Lg, &ig’,foc)
(defined as in Section 5.6.2).

Following the argument used in the proof of Lemma 5.6.7, we show that any two
cocycles in Ckz)c (Lg, &ﬁg’,foc), whose restrictions to /\ 2(Lm) coincide, represent the
same cohomology class.

Let us compute the restriction of w(;) to /\2 Lm. For this we evaluate w ;)
on elements of Lm. Let {J%*},c A be a basis of ny,. The adjoint action of the Lie
algebra m on g preserves np, and so we obtain a representation pn, of m on ny. For

any element 4 € m we have
puy (A)-J% = Y cj(A)JP
BeA’,
for some cg (A) € C. Therefore we obtain the following formula:
Wi (A@) == Y ch(A)ay(2)ag(z):+ A(z). Aem,  (63-4)
ﬂeA;

where A( (2) =) pez7(4A® t")z7"=1 considered as a generating series of elements
of mC $F

loc *
Let kn, be the inner product on m defined by the formula

Kn, (4,B) = Trnp P, (A)/Onp (B).

Computing directly the commutation relations between the coefficients of the series
(6.3-4), we find that for A € m;, B € m; we have the following formulas:

0y (Ans Bm) = =1k, (A, B)Sp—m, (6.3-5)
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ifi # j, and
() (An, Bm) = n(—kn, (A, B) + ki (A, B))dn,—m, (6.3-6)

if i = j. Thus, the restriction of ;) to /\2 Lm takes values in the subspace of
constants C C &ﬁg’foc.
Let kg4 be the Killing form on g and «y,, the Killing form on m; (in particular,

Km, = 0). Then we have

kg(A, B) = km; (4, B) + 2iw, (4, B), if =7, (6.3-7)
Kkg(A, B) = 2k, (4, B), if i#].

The factor of 2 is due to the fact that we have to include both positive and negative
roots. Recall our assumption that m; and m; are orthogonal with respect to k4 for
all i # j. This implies that (4, B) =0, if i # j.
Recall that by definition k. = —%Kg, and kj . = —%Km,.. Hence formula (6.3-7)
implies that
Kny |mg = —Ke +Kic.

Therefore we find that if k; = k|, + &, for some invariant inner product « on g,
then

_Knplm,- + ki = (k +Kc)|m,--

By inspection of formulas (6.3-5) and (6.3-6), we now find that if « is an invariant
inner product on g whose restriction to m; equals k; —k; ¢ foralli =0,...,s, then
the restriction of the two-cocycle w(,;) to /\ 2(Lm) is equal to the restriction to
/\ 2(Lm) of the two-cocycle oy 4. on Lg (this is the cocycle representing the
one-dimensional central extension of g corresponding to the inner product « +
on g).

Applying the argument used in the proof of Lemma 5.6.7, we find that under
the above conditions, which are precisely the conditions stated in the theorem, the
two-cocycle ;) on Lg is equivalent to the two-cocycle oy 4, -

Therefore we obtain, in the same way as in the proof of Theorem 5.6.8, that
under these conditions the linear map w;) : Lg — }ﬁ;f may be modified by the

addition of an element of Ckl)C (Lg, &dg’foc) to give us a Lie algebra homomorphism

Betee = Fioe C UMyp ® Vi (m).
Now Lemma 6.1.1 implies that there exists a homomorphism of vertex algebras
WE  Vieque, (8) > Mg p ® Vi) (m).

This completes the proof. |
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Let us call an m,,)-module smooth if any vector in it is annihilated by the Lie
subalgebra m ® N C[[¢]] for sufficiently large N .

Corollary 6.3.2. For any smooth W, -module R with the k;’s satisfying the con-
ditions of Theorem 6.3.1, the tensor product My, ® R is naturally a smooth
§K+Kc -module. There is a functor from the category of smooth ﬁ(Ki)—modules to the
category of smooth §K+KC -modules sending a module R to My, ® R and M,)-
homomorphism Ry — R to the gy -homomorphism Mg, ® Ry — Mg, ® R;.

We call the @y, -module Mg, ® R the generalized Wakimoto module cor-
responding to R.

Consider the special case when R is the tensor product of the Wakimoto modules
Wy, «; over m;,i =1,...,s, and the Fock representation nfg over the Heisenberg
Lie algebra mg. In this case it follows from the construction that the corresponding
Oi+x,-module My, ® R is isomorphic to the Wakimoto module W) ., over
itk Where A = (4;).

Finally, let us suppose that the «;’s are chosen in such a way that the conditions of
Theorem 6.3.1 are not satisfied. Then the two-cocycle w(,,) on Lg with coefficients
in &Qg”foc defined in the proof of Theorem 6.3.1, restricted to Lm, still gives rise
to a two-cocycle of Lm with coefficients in C. However, this two-cocycle is no
longer equivalent to the restriction to Lm of any two-cocycle o on Lg (those can
be represented by the cocycles o, corresponding to invariant inner products v on
g). Using the same argument as in the proof of Lemma 5.6.7, we obtain that the

two-cocycle ;) on Lg with coefficients in &dg’foc cannot be equivalent to a two-

g!p
loc

cocycle on Lg with coefficients in C C &Q(g)”’foc. Therefore the map w,): Lg — $

cannot be lifted to a Lie algebra homomorphism g, — }lg(;f (for any v) in this case.

In other words, the conditions of Theorem 6.3.1 are the necessary and sufficient
conditions for the existence of such a homomorphism.

6.3.3. General parabolic subalgebras. So far we have worked under the assump-
tion that the parabolic subalgebra p contains b_. It is also possible to construct
Wakimoto modules associated to other parabolic subalgebras. Let us explain how
to do this in the case when p = b.

Let N be any module over the vertex algebra M ® ng ~X¢_ There is an involution
of g sending ¢; to f; and h; to —h;. Under this involution b_ goes to by. This
involution induces an involution on g,. Then Theorem 6.2.1 implies that the
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following formulas define a g, -structure on N (with 1 acting as the identity):

fi@) > ag, () + ) Phlag(2))ap(2):

BeAy
hi) > Y Blhiy:ag(2)ap(z):—bi(2),
BeAy
eiz) > Y Qh(ay(2)ap(2):+ (cit(c —ke)ei, /i) dzaz, (2)+bi(2)ay, (2),
BeAy

where the polynomials P, Q;} were introduced in formulas (5.2-12)—(5.2-14).

For the resulting g, -module to be a module with highest weight, we choose N
as follows. Let M é be the Fock representation of the Weyl algebra s{¢ generated
by a vector |0)’ such that

agnl0) =0, n>0; ay 10 =0, n>0.

We take as N the module M ® JTK_KC “,» where 7" _KC <, is the my ““-module

defined in Section 6.2.1. We denote thlS module by WJr This is the generalized
Wakimoto module corresponding to the parabolic subalgebra b4. We will use the
same notation |0)’ for the vector

0 ®—2p—4) € My®n*,, = W;,FK. (6.3-8)

The following result, which identifies a particular Wakimoto module with a
Verma module, will be used in Section 8.1.1.

Consider the Lie algebra ny = (g ® tC[[¢]]) ® (n+ ® 1). For A € h*, let C;,
be the one-dimensional representation of ny @ (h ® 1) & C1, on which ny =
(g®tC[[?]]) & (n+ ® 1) acts by 0, h ® 1 acts according to A, and 1 acts as the
identity. Define the Verma module M), , of level « and highest weight A as the
corresponding induced g, module:

g
M, = IndX¥ . .3-
A ke ndﬁ+@(b®1)@1 Ca (=)
The image in M, , of the vector 1 ® 1 of this tensor product is the highest weight
vector of M, .. We denote it by v; .

Proposition 6.3.3. The Wakimoto module W0+/<(- is isomorphic to the Verma module
Mo .- '

Proof. The vector |0)" € W0+KC given by formula (6.3-8) satisfies the same
properties as the highest weight vector vy, € My . : it is annihilated by n, the Lie
algebra h ® 1 acts via the functional A, and 1 acts as the identity. Therefore there is
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a non-zero homomorphism Mg . — WOTKC sending the highest weight vector of
Mo, t0 10)" € Wt .

We start by showing that the characters of the modules M ., and WOTKC are
equal. This will reduce the problem to showing that the above homomorphism is
surjective.

Let us recall the notion of character of a g,-module. Suppose that we have a g, -
module M equipped with an action of the grading operator Ly = —td,, compatible
with its action on @,..2

Suppose in addition that L and h ® 1 C g, act diagonally on M with finite-
dimensional common eigenspaces. Then we define the character of M as the formal
series

chM= Y dimMQ®) et (6.3-10)
/)'\‘\G(hEBCLQ)*

where M (3:) is the generalized eigenspace of Ly and h ® 1 corresponding to
A:(h®CLy)* — C.

The direct sum (h ® 1) @ CLy & C1 is in fact the Cartan subalgebra of the
extended Kac—Moody algebra’g\; = CL¢ x g, (see [Kac 1990]). Elements of the
dual space to this Cartan subalgebra are called weights. We will consider the
weights occurring in modules on which the central element 1 acts as the identity.
Therefore without loss of generality we may view these weights as elements of the
dual space toF: (h® 1) ® CLy, and hence as pairs (A, @), where A € h* and ¢ is
the value of —Ly = td;. We will use the standard notation 6 = (0, 1).

The set of positive roots of g is naturally a subset of B*:

Ar={a+nSlacAr,n>=0U{—a+ns|aeAy,n>0U{ns|n> 0}

The roots of the first two types are real roots; they have multiplicity 1. The roots of
the last type are imaginary; they have multiplicity £.

We have a natural partial order on the setFk of weights: a> uif A r=>; B\ i
where the B\i’s are positive roots.

Let M, . be the Verma module over g, defined above. There is a unique way to
extend the action of g, to ’g\; by setting L - vy . = 0 and using the commutation
relations [Lg, An] = —n A, between Lo and g, to define the action of Lo on the
rest of M) . The resulting module is the Verma module over ﬁ:cc with highest

weight = (2, 0), which we will denote by M~ .

K

ZNote that if k # k¢, then any smooth /g\,c—module carries an action of the Virasoro algebra
obtained via the Segal-Sugawara construction, and so in particular an L action. However, general
0k, -modules do not necessarily carry an L action.



6.3. SEMI-INFINITE PARABOLIC INDUCTION 191

By the Poincaré-Birkhoff—Witt theorem, as a vector space M/): is isomorphic to
K

Um_), wheren_ = (g®¢'C[t~']) ® (n_ ® 1). Therefore we obtain the following

formula for the character of M/): :
K

chMe =er ] (1—e@)—md 6.3-11)

Aok 1
&eA+

where Z+ is the set of positive roots of g,.

On the other hand, we have an action of Der 0, and in particular of L, on WOJ’FKC
coming from the quasi-conformal vertex algebra structure on My ® o described in
Section 6.2.4. It follows from the formulas obtained in Section 6.2.5 that we have
the following commutation relations:

[LO, aa,n] = —Ndqg,n, [LO, a;,n] = —na;,w [LOa bi,n] = _nbi,n-

These formulas, together with the requirement that L|0)’ = 0, uniquely determine
the action of Ly on W0+;<C' Next, we have an action of the Cartan subalgebra

h®1Cg,, on W0+/<c such that
[h’ aOl,n] = ‘X(h)aot,n, [hv a:;,n] = a(h)a:;,rp [ha bz,n] = O

for h e h. Both Ly and h ® 1 act by 0 on |0) € WOTKC' Since WOJ,“KC has a basis of
monomials in dg,,, 0 € Ay, n <0; a;’n,cx €Ay, n=<0;and b;p,,i=1,...,£,n<0,
we find that the character of WOTKc is equal to the character of M ,. given by formula
(6.3-11).

The homomorphism Mg . — W0+KC intertwines the action of ’g\:cc =CLyx
’g}c on both modules. Therefore our proposition will follow if we show that
the homomorphism Ml ., — WOJ’FKC is surjective, or, equivalently, that WOJ’FKC is
generated by the vector |0)’ given by formula (6.3-8).

Suppose that WOTKC is not generated by |0)’. Then the space of coinvariants of

—+ . .
Wo, ke with respect to the Lie algebra

=me)e@ercr)

has dimension greater than 1, because it must include some vectors in addition to
the one-dimensional subspace spanned by the image of the highest weight vector.
This means that there exists a homogeneous linear functional on WOTKC’ whose
weight is less than the highest weight (0, 0) and which is n_-invariant.

Then it is in particular invariant under the Lie subalgebra

L b_=n_Q@Ct epa: iCrt']
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Therefore this functional necessarily factors through the space of coinvariants of
+
Wore, by L-b_.
However, it follows from the construction of WO+KC that L_b_ acts freely on
W+

OsKL' ’
subspace

and the space of coinvariants with respect to this action is isomorphic to the

C[a;,n]a€A+,n<0 C WOTKc'
Indeed, it follows from the explicit formulas (6.1-2) and (6.2-2) for the action of
eq(z) and h;(z) (which become f,(z) and —h;(z) after we apply our involution)
that the lexicographically ordered monomials

I Piata T1 Sawms [] @, 10/

1,<0 mp=<0 ne<0

form a basis of WOJ’FKC.

Hence we obtain that any L_b_-invariant functional on WOTKC is completely
determined by its restriction to the subspace C[a;‘l,n]ae A ,n<0- Thus, a non-zero
L_b_-invariant functional on WOTKC of weight strictly less than the highest weight
(0, 0) necessarily takes a non-zero value on a homogeneous subspace of

C[a;,n]aEA+,n<0

of non-zero weight. But the weights of these subspaces are of the form

=Y (mjs—Bj)). nj>0. BieAy. (6.3-12)
j

Since the weight of our subspace is supposed to be less than the highest weight by
our assumption, the number of summands in this formula has to be non-zero.
This implies that W0+KC must have an irreducible subquotient of highest weight

of this form. Since the characters of WOTKC and My .. coincide, and the characters
of irreducible highest weight representations are linearly independent (see [Kac and
Kazhdan 1979]), we find that My ... also has an irreducible subquotient of highest
weight of the form (6.3-12).

Now recall the Kac—Kazhdan theorem [Kac and Kazhdan 1979] describing the
set of highest weights of irreducible subquotients of Verma modules. In the case
at hand the statement is as follows. A weight &t = (i, n) appears as the highest

~

weight of an irreducible subquotient M/): , where A = (A, 0), if and only if n <0
Ke

and either u = A or there exists a finite sequence of weights (g, ..., tm € h* such
that uo = p, km = 0, i1 = i = m;B; for some positive roots B; and positive
integers m; which satisfy

2(wi + p, Bi) =mi(Bi, Bi) (6.3-13)
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(here (-, -) is the inner product on h* induced by an arbitrary non-degenerate invariant
inner product on g).

Now observe that the equations (6.3-13) coincide with the equations appearing
in the analysis of irreducible subquotients of the Verma modules over g of highest
weights in the orbit of A under the p-shifted action of the Weyl group. In other
words, a weight [z = (i, n) appears in the decomposition of My . if and only n <0
and = w(p) — p for some element w of the Weyl group of g. But for any w, the
weight w(p) — p equals the sum of negative simple roots of g. Hence the weight of
any irreducible subquotient of Ml ., has the form —né — Zi mio;,n=>0,m; > 0.
Such a weight cannot be of the form (6.3-12).

Therefore WOTKC is generated by the highest weight vector. Therefore the homo-

morphism Mg ;. — W0+/<c is surjective. Since the characters of the two modules

. . + . . .
coincide, we find that Wo, i 18 isomorphic to Mg ... O

In Proposition 9.5.1 we will generalize this result to the case of Verma modules
of other highest weights.
In Section 8.1.1 we will need one more result on the structure of W0+x(,' Consider

the Lie algebrafE?Jr =br®1)® (g tC[[t]]).
Lemma 6.3.4. The space ofF[;Jr-invariants of W0+/<C is equal to o C W0+/<(v'

Proof. It follows from the formulas for the action of g, on W0+;<

beginning of this section that all vectors in ¢ are annihilated by F+. Let us show
that there are no other b -invariant vectors in W0+KC.

. given at the

AE+-invariant vector is in particular annihilated by the Lie subalgebra L yn_ =
n— ®tCJ[[t]]. In formula (6.1-3) we defined the operators eolf’n, aeAy,ne”. These
operators generate the right action of the Lie algebra Ln on Mg, which commutes
with the (left) action of Lny (which is part of the free field realization of ﬁ,cc).
These operators now act on WOTKC’
exchanging ny and n_, we will now denote them by fofn. They generate an action
of the Lie algebra Ln_((¢)) which commutes with the action of Ln_ which is part
of the action of g, on WO‘!'KC (see the formula at the beginning of this section).

It is easy to see from the explicit formulas for these operators that the lexico-

graphically ordered monomials of the form

T biwte TT /R, TT @m0

1,<0 mp=<0 ne<0

but because we have applied the involution

form a basis in W0+;< . Thus, we have a tensor product decomposition
NG

W+

0,kc

— Wi ®W,o*

05KC ’
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where WOJ’FK’: (resp., W(J;’ «.) is the span of monomials in ag, ,, only (resp., in falfm
and b; ; only). Moreover, because the action of L n_ commutes with f(fm and
b; 1, we find that L yn_ acts only along the second factor of this tensor product
decomposition.

Next, we prove, in the same way as in Lemma 5.6.4 that, as an L n_-module,
WOJ’FK’:‘ is isomorphic to the restricted dual of the free module with one generator.
Therefore the space of L n_-invariants in Wotc’j is one-dimensional, spanned by
the highest weight vector. We conclude that the space of L n_-invariants of WOJ’FKC

: —+
is equal to the subspace W . .
Now suppose that we have a b -invariant vector in W0+KC. Then it necessarily

belongs to W(J,r’ «.- But it is also annihilated by other elements of E+, in particular,
by h® 1 C b. Since

h® l,a;,n] = oc(h)a;,n, hep,

we find that a vector in W;r’ «. 1s annihilated by h ® 1 if only if it belongs to ¢ (in
which case it is annihilated by the entire Lie subalgebra by ). Hence the space of
b_-invariants of W0+KC is equal to 7. O

6.4. Appendix: Proof of the Kac—-Kazhdan conjecture

As an application of the Wakimoto modules, we give a proof of the Kac—Kazhdan
conjecture from [Kac and Kazhdan 1979], following [Frenkel 1991; 2005b].

We will use the extended affine Kac—Moody algebra, ﬁ; = CLgxg, and the
weights of the extended Cartan subalgebraF: CLy® (h® 1), as described in the

proof of Proposition 6.3.3. It is known that the Verma module l\/ﬂ/): over g, has a
K

unique irreducible quotient, which we denote by L~ .
K

Let us recall that in [Kac and Kazhdan 1979] a certain subset H "m € ?)Ak is
defined for any pair (B, m), where B is a positive root of g, and m is a positive
integer. If B is a real root, then H g . 1s @ hyperplane inffa¢|< and if B is an imaginary

root, then chm :B* and H g m = @ fork # K. It is shown in [Kac and Kazhdan

1979] that L/;: is a subquotient of M/’I . 1f and only if the following condition
K ’
is satisfied: there exists a finite sequence of weights [iy, ..., [l,, such that i1, =

X, W, =, ;1 = [L; —m;p; for some positive roots B; and positive integers m1;,
and [1; € Hg . foralli=1,....n.

Denote by Krf_ the set of positive real roots of g, (see the proof of Proposi-
tion 6.3.3). Let us call a weight A a generic weight of critical level if A does
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not belong to any of the hyperplanes H m B E A . It is easy to see from the

above condition that A is a generic welght of critical level if and only if the only
irreducible subquotients of M~  have highest weights n— nd, where n is a non-

Ak
negative integer (i.e., their h* components are equal to the h* component of X).
The following assertion is the Kac—Kazhdan conjecture for the untwisted affine
Kac—Moody algebras.

Theorem 6.4.1. For generic weight/): of critical level

x —ay—1
chL;:KC e H(l—e D I

Proof. Without loss of generality, we may assume that A= (2,0).

Introduce the gradation operator L on the Wakimoto module W) () by using the
vertex algebra gradation on Mj. It is clear from the formulas defining the g, -action
on W, () given in Theorem 6.1.6 that this action is compatible with the gradation if
and only if x(z) = A/t, where A € h*. In that case

ch Wiy =eb [T a—ey,

T

acA

where A = (A, 0). Thus, in order to prove the theorem we need to show that if Xis
a generic weight of critical level, then W)/, is irreducible. Suppose that this is not
so. Then either Wy /, contains a singular vector, i.e., a vector annihilated by the Lie
subalgebra ny = (g ® tC[[]]) ® (n+ ® 1), other than the multiples of the highest
weight vector, or Wy /; is not generated by its highest weight vector.

Suppose that Wy /; contains a singular vector other than a multiple of the highest
weight vector. Such a vector must then be annihilated by the Lie subalgebra
Liny =ny[[t]]. We have introduced in Remark 6.1.1 the right action of ny ((z))
on Mg, which commutes with the left action. It is clear from formula (6.1-3) that
the monomials

e ne TT aymy10) (6.4-1)
na<0 mp=<0
form a basis of M. We show in the same way as in the proof of Lemma 6.3.4 that
the space of Ln-invariants of Wy . is equal to the subspace Wo,xc of Wy k.
spanned by all monomials (6.4-1) not containing ag, ,,,’s.

In particular, we find that the weight of any singular vector of Wy, which is
not equal to the highest weight vector has the form (4,0) —_;(n;8 — B;), where
n;j > 0 and each B; is a positive root of g. But then W) /; contains an irreducible
subquotient of such a weight.
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Now observe that

ch M()»,O),Kc = 1_[(1 _qn)—é -ch Wk/tv

n>0

where ¢ = e™% (see the proof of Proposition 6.3.3). If an irreducible module
Lﬁ,xc appears as a subquotient of W) /,, then it appears in the decomposition of
ch W, /; into the sum of characters of irreducible representations and hence in the
decomposition of chMy, ¢) ... Since the characters of irreducible representations
are linearly independent (see [Kac and Kazhdan 1979]), this implies that LA,KC is
an irreducible subquotient of Ml ) «.. But this contradicts our assumption that
(A.0) is a generic weight of critical level. Therefore we conclude that W) ;; does
not contain any singular vectors other than the multiples of the highest weight
vector.

Next, suppose that W) /, is not generated by its highest weight vector. But then
there exists a homogeneous linear functional on W)y /,, whose weight is less than
the highest weight and which is invariant under n_ = (g ® t'C[t ') @ (n— ® 1),
and in particular, under its Lie subalgebra L_n4 =n, ® ¢~ !C[t~!]. Therefore this
functional factors through the space of coinvariants of W) /; by L_ny. But L_ny
acts freely on W), /,, and the space of coinvariants is isomorphic to the subspace
C[a;,n]ae A4 ,n<o0 of Wy ;. Hence we obtain that the weight of this functional has
the form (A, 0) — Zj (njd + Bj), where nj > 0 and each B; is a positive root of g.
In the same way as above, it follows that this contradicts our assumption that A is a
generic weight. Therefore W) /; is generated by its highest weight vector. We also
know that it does not contain any singular vectors other than the highest weight
vector. Hence W)/, is irreducible. This completes the proof. O



CHAPTER 7

Intertwining operators

We are now ready to prove Theorem 4.3.2. The proof is presented in this chapter
and the next, following [Frenkel 2005b]. The theorem was originally proved in
[Feigin and Frenkel 1992; Frenkel 1991] (we note that a closely related statement,
Theorem 8.3.1, was conjectured by V. Drinfeld).

At the beginning of this chapter we outline the overall strategy of the proof (see
Section 7.1) and then make the first two steps in the proof. We then develop the
theory of intertwining operators between Wakimoto modules, which is an important
step of the proof of Theorem 4.3.2. First, we do it in Section 7.2 in the case of ;[2.
We construct explicitly intertwining operators, which we call the screening operators
of the first and second kind. In Section 7.3 we use these operators and the functor of
parabolic induction to construct intertwining operators between Wakimoto modules
over an arbitrary affine Kac—-Moody algebra.

7.1. Strategy of the proof

Our strategy in proving Theorem 4.3.2 will be as follows. In Theorem 6.1.6 we
constructed a free field realization homomorphism of vertex algebras

W, Vi, () > Mg ® mo. (7.1-1)
Step 1. We will show that the homomorphism (7.1-1) is injective.

Step 2. We will show that the image of 3(g) C Vi, (g) under wy, is contained in
mo C My ® my.

Thus, we need to describe the image of 3(g) in 7g.

Step 3. We will construct the screening operators S;,i = 1,...,¢, from Wp,, =
My ® 7o to some other modules, which commute with the action of g, .

197
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Step 4. We will show that the image of V., (g) under wy, is contained in

4
ﬂ Ker §i.

=

This implies that the image of 3(g) is contained in

14
ﬂ Ker V;[1],

i=1
where V;[1] is the restriction of S; to 7.

Step 5. By using the associated graded of our modules and the isomorphism
W0+KC ~ My x, from Proposition 6.3.3, we will find the character of 3(g). We will

show that it is equal to the character of ﬂf=1 Ker V;[1]. Therefore we will obtain
that

L
3@ = [ Ker V,[1].

i=1

Step 6. By using Miura opers, we will show that there is a natural isomorphism

l
FunOpLg(D) =~ ﬂ Ker V;[1].

i=1
Therefore we obtain that
3(9) = FunOpc (D).

This will give us the proof of Theorem 6.1.6 because we will show that the above
identifications preserve the natural actions of the group Aut0. We will also show
that this isomorphism satisfies various other compatibilities.

The proof of Theorem 6.1.6 presented in this book follows closely the paper
[Frenkel 2005b]. This proof is different from the original proof from [Feigin and
Frenkel 1992; Frenkel 1991] in two respects. First of all, we use the screening
operators of the second kind rather than the first kind; their k — x. limits are easier
to study. Second, we use the isomorphism between the Verma module of critical
level with highest weight 0 and a certain Wakimoto module and the computation of
the associated graded of the spaces of singular vectors to estimate the character of
the center.

We now perform Steps 1 and 2 of the above plan. Then we will take up Steps 3
and 4 in the rest of this chapter.
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7.1.1. Finite-dimensional case. We start with the statement of Step 1. In fact, we
will prove a more general result that applies to an arbitrary «, and not only to k..
Before presenting the proof of this statement, it is instructive to consider its
analogue in the finite-dimensional case.
Recall that in Section 5.2 we constructed the homomorphism (5.2-10),

5:U(g) — Funb* ®D(N+). (7.1-2)

We wish to prove that this homomorphism is injective.
Consider the Poincaré—Birkhoff—Witt filtration on U(g), and the filtration on
Fun h* ® @(N4) defined as follows: its nth term is the direct sum
C

n
P Funbh*)<i ® B(N4)<(u—iy-
i=0
Here (Fun bh*)<; denotes the space of polynomials of degrees less than or equal
to 7, and D(N+)<(,—;) is the space of differential operators of order less than or
equalton —i.

It is clear from the formulas presented in Section 5.2 that the homomorphism p’
preserves these filtrations. Consider the corresponding homomorphism of the asso-
ciated graded algebras. Recall that gr U(g) = Fung* and gr@(N4) = Fun T* N
Obviously, gr Fun h* = Fun h*. Therefore we obtain a homomorphism of commu-
tative algebras

Fun g* —>Funf]*(§FunT*N+. (7.1-3)

It corresponds to a morphism of affine algebraic varieties
h* x T*Ny — g*.
Observe that the cotangent bundle to Ny is identified with the trivial vector

bundle over N4 with the fiber n... Since b = b @ n, we find that h* & n’ = b?.
Hence the above morphism is equivalent to a morphism

bl x Ny — g*.
By using a non-degenerate invariant inner product ko on g, we obtain a morphism
pb_xNy—g. (7.1-4)

The latter morphism is easy to describe explicitly. It follows from the definitions
that it sends
(x,g)€eb_x Ny gxg 'eg.
Therefore the image of p in g consists of all elements of g which belong to
a Borel subalgebra b such that the corresponding point of Fl = G/ B_ is in the
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open Ny-orbit U = N4 -[1] (we say that such b is in generic relative position
with b_). Therefore the image of p is open and dense in g. In other words, p
is dominant. Moreover, a generic element in the image is contained in a unique
such Borel subalgebra b, so p is generically one-to-one. Therefore we find that the
homomorphism (7.1-3) is injective, which implies that the homomorphism p of
(7.1-2) is also injective.

Note that the morphism p may be recast in the context of the Grothendieck
alteration. Let g be the variety of pairs (b, x), where b is a Borel subalgebra in
g and x € b. There is a natural morphism g — Fl, mapping (b, x) to b € Fl. This
map identifies ‘g with a vector bundle over the flag variety Fl, whose fiber over
b € Fl is the vector space b. There is also a morphism g — g sending (b, x) to x.
Now let AU be the big cell, i.e., the open N-orbit of Fl, and U its preimage ing.
In other words, A consists of those pairs (b, x) for which b is in generic relative
position with b_. Then a is naturally isomorphic to b x N1 and the restriction of
the morphism g — g to A is the above morphism p.

7.1.2. Injectivity. Now we are ready to consider the analogous question for the
affine Lie algebras, which corresponds to Step 1 of our plan.

Proposition 7.1.1. The homomorphism wy of Theorem 6.2.1 is injective for any k.

Proof. We apply the same argument as in the finite-dimensional case. Namely,
we introduce filtrations on Vi (g) and Wy, = My ® ng ~X¢ which are preserved by
Wy, and then show that the induced map gr w : gr Vi (g) — gr Wy, (which turns
out to be independent of «) is injective.

The Poincaré-Birkhoff-Witt filtration on U(g,) induces a filtration on Vi (g) as
explained in Section 2.2.5.

Now we define a filtration {WOSKP } on W, By definition, WOSKP is the span of
monomials in the aq ;’s, a;’n’s an(i b »’s whose combined degree ’in the aq,,’s and
b n’s is less than or equal to p (this is analogous to the filtration used above in the
finite-dimensional case). It is clear from the construction of the homomorphism
wy that it preserves these filtrations. Moreover, these are filtrations of vertex
algebras, and the associated graded spaces are commutative vertex algebras, and in
particular commutative algebras. The associated graded gr w, of wy is therefore a
homomorphism of these commutative algebras.

Now we describe the corresponding commutative algebras gr Vi (g) and gr Wy ,
and the homomorphism grw, : gr Vic(g) — gr Wy . We will identify g with g*
using a non-degenerate invariant inner product .

Let J(b—xN4+)=Jb_xJ N4 and J g be the infinite jet schemes of b_ x N4 and
g, defined as in Section 3.4.2. Then gr V) (g) = Fun Jg and gr Wy , = Fun J(b_ x
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N4). The homomorphism
grwy : Fun Jg — Fun J(b_— x N4) (7.1-5)
corresponds to a morphism of jet schemes
J(b_xNy)—> Jg.

It is clear from the construction that it is nothing but the morphism Jp corresponding,
by functoriality of J, to the morphism p given by formula (7.1-4).

But p is dominant and generically one-to one. Let ggen be the locus in the image
of p in g over which p is one-to-one. Then gge, is open and dense in g. Therefore
J ggen s open and dense in J g, and J ggen is clearly in the image of Jp. Hence we
find that Jp is dominant and generically one-to-one. Therefore the homomorphism
of rings of functions (7.1-5) is injective. This implies that wy is also injective. []

Now we specialize to the critical level. The vertex algebra V. (g) contains
the commutative subalgebra 3(g), its center. Recall that 3(g) is the space of g[[]]-
invariant vectors in Vi, (g). On the other hand, W, . = My ® 7 contains the
commutative subalgebra ¢, which is its center.

Lemma 7.1.2. The image of 3(g) C Vi.(g) in Wy, under wy, is contained in
o C WO,K /a0

Proof. We use the same argument as in the proof of Lemma 6.3.4.
Let us observe that the lexicographically ordered monomials of the form

1_[ biy 1, ]_[ ef,,,m,, l_[ dy. n.10), (7.1-6)

1,<0 mp<0 ne<0

where the eOIZ S are given by formula (6.1-3), form a basis of Wy .. Thus, we have
a tensor product decomposition

Woue = Wos, ® Mg+,

R

Ix7 . . . * .
where M 1 (resp., Wo ) is the span of monomials in g , only (resp., in e,

and b; ; only).

The image of any element of 3(g) in Wp ., is an L g-invariant vector, where,
as before, we use the notation L g = g[[t]]. In particular, it is annihilated by
Lny and by h. Since Liny commutes with eolf’n and b; p, it acts only along
the second factor M + of the above tensor product decomposition. According to

. L
Lemma 5.6.4, My + >~ Coind Lig— C as an Ln4-module. Therefore the space of
L i n-invariants in M 4 is one-dimensional, spanned by constants.

Thus, we obtain that the space of L 4 n4-invariants in Wy . is equal to W ..

However, the weight of the monomial (7.1-6) without the second factor is equal to
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the sum of positive roots corresponding to the factors eoli m- Such a monomial is
h-invariant if and only if there are no such factors present. Therefore the subspace
of (h @ Lny)-invariants of Wy . is the span of the monomials (7.1-6), which
only involve the b; ;’s. This is precisely the subspace mg C Wy ... O

We are now done with Steps 1 and 2 of the proof of Theorem 4.3.2.

7.2. The case of s,

Now we perform Steps 3 and 4 of the plan outlined in Section 7.1. This will enable
us to describe the image of 3(g) inside 7y under wy, as the intersection of kernels
of certain operators.

We start by giving a uniform construction of intertwining operators between
Wakimoto modules, the so-called screening operators (of two kinds) following
[Feigin and Frenkel 1990b; Feigin and Frenkel 1990c; Frenkel 1991; Feigin et al.
1994; Frenkel 2005b]. First, we analyze in detail the case of g = sl5.

7.2.1. Vertex operators associated to a module over a vertex algebra. We need to
recall some general results on the vertex operators associated to a module over a
vertex algebra, following [Frenkel et al. 1993], Section 5.1. Let V' be a conformal
vertex algebra V' (see the definition in Section 3.1.4) and M a V-module, i.e., a
vector space together with a linear map

Yar:V — End M[[zF]]

satisfying the axioms of Definition 5.1.1 of [Frenkel and Ben-Zvi 2004]. In particu-
lar, the Fourier coefficients of

Yyu(w,z) = Z L,]ZWZ_”_Z,

nez

where o is the conformal vector of V, define an action of the Virasoro algebra on
M . We denote Lyl by T.
Define a linear map

Yy.ar 0 M — Hom(V, M)[[zE1]]
by the formula
Yy (A, 2)B =T Yy (B, —2) A, AeM,BeV (7.2-1)

(compare with the skew-symmetry property of Proposition 2.3.2).
This is an example of intertwining operators introduced in [Frenkel et al.
1993]. By Proposition 5.1.2 of [Frenkel et al. 1993], this map satisfies the following
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property: forany A € V, B € M, C € V, there exists an element
SeMzwllz"  wh z—w)™]
such that the formal power series
Ym(A,2)Yym (B, w)C, Yym(B,w)Y(4,z)C,

Yym(Yym(B,w—2)A4,z)C, Yym(Y(4,z—w)B,w)C

are expansions of f in

M) (w),  M(w)(z). ME)E-w).  M(w)(z—-w),

respectively (compare with Corollary 3.2.3 of [Frenkel and Ben-Zvi 2004]). Abusing
notation, we will write

Yrm(A, 2)Yym(B,w) =Yy m(Y(4,z—w) B, w),

and call this formula the operator product expansion (OPE), as in the case M =V
when Yy pr = Y (see Section 2.3.3).

In the formulas below we will use the same notation Y (A4, z) for Y (A4, z) and
Y (A, z). The following commutation relations between the Fourier coefficients of
Y (A, z) and Yy as (B, w) are proved in exactly the same way as in the case M =V
(see [Frenkel and Ben-Zvi 2004], Section 3.3.6). If we write

Y(4,2)=) Awz""", Yym(B.w) = Bew ",

nez nez

then we have

[Bimy> Awy)] =) (': ) (B A) m+k—n)- (7.2-2)

n=0

In particular, we obtain that

[/ YV,M(B, Z)dZ, Y(A, U))] = YV,M (/ YV,M(Bv Z)dZ . A, w) . (7.2—3)

Here, as before, f denotes the residue of at z = 0.
Another property that we will need is the following analogue of formula (2.3-5):

Yym(TA,z) =9 Yy,m (4, 2). (7.2-4)

It is proved as follows:
Yy.m(TA,z)B = e*T Yy (B, —2)TA =

T TYy (B, —2)A— T[T, Yar (B, —2)|A = 3,(Yy,p1(A. 2) B),
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where we use the identity
[Ts YM(B, Z)] = aZYM(B7Z)s
which follows from [Frenkel and Ben-Zvi 2004], Proposition 5.1.2.

7.2.2. The screening operator. Let us apply the results of Section 7.2.1 in the case
of the vertex algebra W ;. and its module W_, ; for k # —2. As before, we denote
by |0) and | — 2) the highest weight vectors of these modules.

Recall from Section 6.2.2 that under the homomorphism wy, the generators e,
of 5[2 are mapped to a, (from now on, by abuse of notation, we will identify the
elements of 5[2 with their images under wy). The commutation relations of 5[
imply the following formulas:

[enva—l]:09 [hnva—l]:2an—1» [f;[,a—]]:_hn—] +k5n,1‘
In addition, it follows from formulas (6.2-3) that
en|=2)=an|=2)=0, n>=0;  hy|—=2)= fu| -2)=0, n>0,

ho| —2) = —2| —2).

Therefore
en-a—1|—2)=hy-a_1|—2)=0, n=>0,
and
fn-a—1|—2)=0, n>1.
We also find that
Si-a]=2) = (k+2)|-2),
and

Jora—q|=2)=a_y fol —=2) —ho| —2)
——b_y|=2) = (k+2)T|-2), (7.2-5)

where T is the translation operator. The last equality follows from the formula for
the conformal vector in Wy x given in Proposition 6.2.2, which implies that the
action of 7" on g C Wy i is given by

1
=——— bnb_yi.
2(k +2) ~
We wish to write down an explicit formula for the operator

def
Sk(2) S Yy o s (a—i|—2)) 0 Wor — Wop i



7.2. THE CASE OF sl 205

and use the above properties to show that its residue is an intertwining operator,

i.e., it commutes with the action of sl, ;. Since the vertex subalgebras My, and

JT(I)C 2 of Wo,x commute with each other, we find that

Si(z) = YM5[2 (a—1]0), Z)Yn(/;+2’ni-2|-2(| —2),z) = a(Z)Yﬂ(/)<+2’ﬂ/_<-2|-2(| —2),z2).
It remains to determine
2(2) Ly 2, k+2(| —2),z2): n(l)‘+2 —>nk+2.

The identity (7.2-2) specialized to the case 4 = h_1|0) and B = | —2) implies
the following commutation relations:

[bn, V_2(2)] = =22"V_5(2). (7.2-6)
In addition, we obtain from formulas (7.2-4) and (7.2-5) that
(k+2)0,V_5(z) = —:b(2)V_5(2):. (7.2-7)

It is easy to see that formulas (7.2-6) and (7.2-7) determine V_,(z) uniquely (this
is explained in detail in [Frenkel and Ben-Zvi 2004], Section 5.2.6). As the result,
we obtain the following explicit formula:

1 bn —n 1 bn —n
V_,(z)= Tzexp(k+2zo z )exp(k+220 —z ) (7.2-8)

Here we denote by 7_; the translation operator n(])‘ 2, gk ;2 sending the highest

weight vector |0) to the highest weight vector | — 2) and commuting with all
bp,n #£ 0.

Now, using formula (7.2-2) we obtain that the operator Sy (z) has the following
OPEs:

e(z) Sk (w) =reg., h(z)Sk (w) = reg.,

f@wﬂwy:@tiﬂﬁgw) (k +2)u V-2 (w)
z—w) zZ—w

w+mav2()
—w

Since the residue of a total derivative is equal to 0, this implies the following:

Proposition 7.2.1. The residue Sj = / Si(w)dw is an intertwining operator
between the ;[Tmodules Wok and W_, .

We call S}, the screening operator of the first kind for ;[2.
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Proposition 7.2.2. For k ¢ =2 + Q> the sequence

S
0— Vi(sly) = Wox — Woa g =0
is exact.

Proof. By Proposition 7.1.1, Vi (sl;) is naturally an az—submodule of Wy k
for any value of k. The module V (sl,) is generated from the vacuum vector |0),
whose image in W j is the highest weight vector. We have

Sk = Z dp V—z,—n,

nez

where V_; _, is the coefficient in front of z” in V_,(z). It is clear from formula
(7.2-8) that V_; ,,,|0) = 0 for all m > 0. We also have a,|0) = 0 for all n > 0.
Therefore |0) belongs to the kernel of Sy. But since S commutes with the action
of ;[2, this implies that the entire submodule Vi (s[,) lies in the kernel of Sy.

In order to prove that V% (sl;) coincides with the kernel of Sy, we compare their
characters (see the proof of Proposition 6.3.3 for the definition of the characters).
We will use the notation ¢ = ed

Since Vi (sl,) is isomorphic to the universal enveloping algebra of the Lie algebra
spanned by e, i, and f;, with n < 0, we find that

Ju=e“.

chVi(@) = [J—¢H" A —ugnH A —u""g"". (7.2-9)

n>0

Similarly, we obtain that

ch Wy =2 [[(1=¢") A —ug™) ' (1 —u"g" )7L

n>0

Thus, ch W), x = ch M, x, where M), x is the Verma module over ;[2 with highest
weight (A, k). Therefore if M), j is irreducible, then so is W}, . The set of values
(A, k) for which M, x is irreducible is described in [Kac and Kazhdan 1979]. It
follows from this description that if Kk & —2 + Qx, then M_; ., and hence W_, ,
is irreducible. It is easy to check that Sy (a;|0)) = | —2), so that Sy is a non-zero
homomorphism. Hence it is surjective for such values of k. Therefore the character
of its kernel for such k is equal to ch Wy  —ch W_, x =ch Vj (sl;). This completes
the proof. O

Next, we will describe the second screening operator for s:\[z. For this we need
to recall the Friedan—Martinec—Shenker bosonization.
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7.2.3. Friedan—Martinec—Shenker bosonization. Consider the Heisenberg Lie al-
gebra with the generators py, qn, n € Z, and the central element 1 with the commu-
tation relations

[pn, pm] = n(sn,—ml, [CIna Qm] = _n(gn,—ml, [Pn» Qm] = 0.

We set
pP@ =) _paz ™, q@)=) gquz".
nez nez

For A € C,u € C, let Ty ,, be the Fock representation of this Lie algebra
generated by a highest weight vector |A, i) such that

Puld, ) = Adnold, ), qnlh, ) = uépolr, ), n=0; A, pu) =4, pn).

Consider the vertex operators Vy ,(z) : I/ v — I/ u4 s given by the
formula

VX,,LL(Z) =

I A A
TK’ILZ}L}\ — L exp (_ Z DPn + Hqn Z—n) exp (_ Z DPn + Mdn Z_n) ’
n n

n<o0 n>0

where T} , is the translation operator I1g o — IT , sending the highest weight
vector to the highest weight vector and commuting with all p,, ¢,,n # 0.

Abusing notation, we will write these operators as etV where u(z) and
v(z) stand for the anti-derivatives of p(z) and ¢(z), respectively, i.e., p(z) =
dzu(z),4(z) = 3zv(2).

For y € C, set

I, = @ Hntynty.
nez

Using the vertex operators, one defines a vertex algebra structure on the direct sum
[Ty (with the vacuum vector |0, 0)) as in [Frenkel and Ben-Zvi 2004], Section 5.2.6.

Moreover, IT,, is a module over the vertex algebra IT, for any y € C.

The following realization of the vertex algebra M (also known as the “Sy-
system”) in terms of the vertex algebra I1j is due to Friedan, Martinec, and Shenker

[1986]. (The isomorphism between the image of M in ITj and the kernel of / e'd:z
stated in the theorem was established in [Feigin and Frenkel 1991].)

Theorem 7.2.3. There is a (unique) embedding of vertex algebras M — Il under
which the fields a(z) and a*(z) are mapped to the fields

a(z) = "1, T2 = 0e7e ? = —p(z)e V.
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Further, the image of M in 11 is equal to the kernel of the operator / etd:z.

Equivalently, ITy may be described as the localization of M with respect to a_1,
i.e.,

Mo~ M[(a—1)~"] = Clanln<—1 ® Clajln<o ® Cl(a—1)*']. (7.2-10)

The vertex algebra structure on I is obtained by a natural extension of the vertex
algebra structure on M.

Under the embedding M < T1 the Virasoro field 7 (z) = :0,a*(z)a(z): of M
described in Section 6.2.3 is mapped to the following field in ITj:

1 1 | 1
Erp(Z)zr —50:p(2) = E:q(Z)Zt +5024(2).

Thus, the map M < I1y becomes a homomorphism of conformal vertex algebras
with respect to the conformal structures corresponding to these fields.

The reason why the FMS bosonization is useful to us is that it allows us to make
sense of the field a(z)¥, where y is an arbitrary complex number. Namely, we
replace a(z)? with the field

Az) =’ @tV . ) - Ik,

which is well-defined.

Now we take the tensor product 1Ty ® JT(I; *2 where we again assume that k # —2.
This is a vertex algebra which contains M ® JI(I; *2_and hence Vi (sl,), as vertex

subalgebras. In particular, for any y, A € C, the tensor product IT, ® n)lf T2isa

module over V (sl,) and hence over 5:\[2. We denote it by /V\VJ,,, k- In addition, we
introduce the bosonic vertex operator

by _ by _
Vage+2)(2) = Tagkt2) €Xp (- > 7”2 ") exp (— > 7”2 ") . (1.2-11)

n<0 n>0
Let us set
Sk(@ =@ D Va4 (). (7.2-12)
A straightforward computation similar to the one performed in Section 7.2.2 yields:

Proposition 7.2.4. The residue
Sk = / Sk()dz: Woox = W_k42)20+2)k

is an intertwining operator between the sly-modules Wy o i and W_ i 12) 2 (k+2) k-
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We call §k, or its restriction to Wy 5 C ’I/I\//O’O,k, the screening operator of the
second kind for sl,. This operator was first introduced by V. Dotsenko [1990].

Pr0p0s1t10n 7.2.5. For generic k the s [2 submodule Vi (sly) C Wy i is equal to the
kernel OfSk Wo.x — w_ (k+2),2(k+2),k-

Proof. We will show that for generic k the kernel of

Sk Wok = W_(k+2),2(k+2).k

coincides with the kernel of the screening operator of the first kind, Sy : Wy x —
W_3 . This, together with Proposition 7.2.2, will imply the statement of the
proposition.

Note that the operator Sy has an obvious extension to an operator Wo 0.k =
WO _2.k defined by the same formula. The kernel of S k (resp Sk) in Wy i is
equal to the intersection of Wy ;. C WO o,k and the kernel of S , (resp., S) acting
from WO 0.k to W_ (k+2),2(k+2).k (resp WO —2.,k)- Therefore it is sufficient to
show that the kernels of S and Sj on Wo,o,k are equal for generic k.

Now let ¢(z) be the anti-derivative of b(z), i.e., b(z) = d;¢(z). By abusing
notation we will write V_,(z) = e~ ®k+2D7'¢ ang Vatk42)(2) = e?. Then the
screening currents S (z) and S «(2) become

Si(z) = €u+v—(k+2)—l¢(z)’ §k(2) — o k+Du—(k+2)v+¢

Consider a more general situation: let h be an abelian Lie algebra with a non-
degenerate inner product k. Using this inner product, we identify b with h*. Let /h\,c
be the Heisenberg Lie algebra and 775, A € h* = b be its Fock representations, defined
as in Section 6.2.1. Then for any x € h* there is a vertex operator V, (z) : 75 — 7y
given by the formula

VE(z) = Ty exp (- 3 %2_”) exp (— 3 %2_”) , (7.2-13)

n<0 n>0

where the x, = x ® t" are the elements of the Heisenberg Lie algebra H,C corre-
sponding to x € h*, which we identify with b using the inner product «.

Suppose that x (), x)#0, and denote by x the element of § equal to —2x /k (x, x).
We claim that if y is generic (i.e., away from countably many hypersurfaces in §),

then the kernels of V)'(‘ (z)dz and / V; (z)dz in 7§ coincide. Indeed, we have a

. -~ . . . X
decomposition of h, into a direct sum of the Heisenberg Lie subalgebra by, generated

~L
by x».n € Z, and the Heisenberg Lie subalgebra b, which is the centralizer of
Xn.N € Z, in b, (this is a Heisenberg Lie subalgebra of b, corresponding to the
orthogonal complement of x in fj; note that by our assumption on Y, this orthogonal
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complement does not contain x). The Fock representation 775 decomposes into a
tensor product of Fock representations of these two Lie subalgebras. The operators

~L
/ Vi (z)dz and [ V; (z)dz commute with b, . Therefore the kernel of each of
these operators in 7z is equal to the tensor product of the Fock representation of

~L ~
b, and the kernel of this operator on the Fock representation of h,):.
In other words, the kernel is determined by the corresponding kernel on the Fock

representation of the Heisenberg Lie algebra E,f The latter kernels for V; (z)d:z
and / V)l(‘ (z)dz coincide for generic values of «(x, x), as shown in [Frenkel and

Ben-Zvi 2004], Section 15.4.15. Hence the kernels of / Vy (2)dz and / V; (z)dz

also coincide generically.

Now we apply this result in our situation, which corresponds to the three-
dimensional Lie algebra b with a basis 7, v, ¢ and the following non-zero inner
products of the basis elements:

(@, 1) = —«(U,7) = 1, k(p,P) =2(k +2).

Our screening currents Sy (z) and §k (z) are equal to V;/(z) and V)l(‘ (z), where

x=u+v—(k+2)"'9, Xx=—(k+2)x=—k+2)u—(k+2)7v+¢.

Therefore for generic k the kernels of the screening operators Sy and §k coincide.
O

7.3. Screening operators for an arbitrary g

In this section we construct screening operators between Wakimoto modules over
g, for an arbitrary simple Lie algebra g and use them to characterize Vi (g) inside
Wo k-

s

7.3.1. Parabolic induction. Denote by 5[50 the Lie subalgebra of g, isomorphic

to sl,, which is generated by ¢;, /1;, and f;. Let p@ be the parabolic subalgebra of
g spanned by b_ and e;, and m® its Levi subalgebra. Thus, m‘) is equal to the
direct sum of 5[? and the orthogonal complement hf‘ of h; in b.

We apply to p@ the results on semi-infinite parabolic induction of Section 6.3.

According to Corollary 6.3.2, we obtain a functor from the category of smooth repre-

~ ~1
sentations of s, x @b; ., with k and kg satisfying the conditions of Theorem 6.3.1,

to the category of smooth @, 4, -modules. The condition on k and « is that the

inner products on 5[9 corresponding to (k 4 2) and « are both restrictions of an
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invariant inner product (k — ) on g. In other words, (x —k¢)(hi, h;i) = 2(k +2)
and ko = |y 1. By abuse of notation we will write « for ko. If & and « satisfy this

—~ ~L
condition, then for any smooth sl-module R of level k& and any smooth b, -module
L the tensor product M a.p@ ® R ® L is a smooth §K+KC -module.

Note that the above condition means that

(k —ke)(hi, hj) = Baji, (7.3-1)

where aj; is the (ji)th entry of the Cartan matrix of g.

In particular, if we choose R to be the Wakimoto module W) . over sl,, and L
to be the Fock representation Jr;fo, the corresponding g, -module will be isomorphic
to the Wakimoto module W, 3.).c+«.» Where (A, Ag) is the weight of g built from
A and A¢. Under this isomorphism the generators ag; »,n € Z, will have a special
meaning: they correspond to the right action of the elements e;, of g, which
was defined in Section 6.1.1. In other words, making the above identification of
modules forces us to choose a system of coordinates {yy }gea, On N4 such that
oR(ep) = 0/0yq; (in the notation of Section 5.2.5), and so wRei(2)) = g, (z) (in
the notation of Section 6.1.1). From now on we will denote w®(¢;(z)) by eiR (2).
For a general coordinate system on N4 we have

ef(2) =ag, () + Y P (ak(2)ap(2) (7.3-2)
BeAy

(see formula (6.1-1)).

Now any intertwining operator between Wakimoto modules W) | ;. and W),
over ;[2 gives rise to an intertwining operator between the Wakimoto modules
Wi o) etice a0d Wi, a0),c4k, OVET §K+Kc for any weight ¢ of hf‘. We will
use this fact and the 5:\[2 screening operators introduced in the previous section to
construct intertwining operators between Wakimoto modules over g,,.

7.3.2. Screening operators of the first kind. Let k be a non-zero invariant inner
product on g. We will use the same notation for the restriction of « to ). Now
to any x € b we associate a vertex operator Vy’(z) : 7§ — my given by formula
(7.2-13). For k # k., we set

def _
Sine(2) S eR () VELKe(2) : Woue > Wegy e

where eiR (z) is given by formula (6.1-1). Note that

Siwc(2) = Yy o Wes, . (1| — i), 2) (7.3-3)

in the notation of Section 7.2.1.



212 7. INTERTWINING OPERATORS
According to Proposition 7.2.1 and the above discussion, the operator

Sie = / Sin(2)dz : W e = W_g; i (7.3-4)

is induced by the screening operator of the first kind Sy for the ith ;[2 subalgebra,
where k is determined from the formula (k — «¢)(h;, hi) = 2(k + 2). Hence
Proposition 7.2.1 implies:

Proposition 7.3.1. The operator S;  is an intertwining operator between the g,.-
modules Wy . and W_q, , foreachi =1, ... L.

We call S, the ith screening operator of the first kind for g,.

Recall that by Proposition 7.1.1 Vi (g) is naturally a g,-submodule and a vertex
subalgebra of W, . On the other hand, the intersection of the kernels of Sj ,,i =
1,...,¢,is ag,-submodule of Wo,«, by Proposition 7.3.1, and a vertex subalgebra of
Wo k., due to formula (7.3-3) and the commutation relations (7.2-3). The following
proposition is proved in [Feigin and Frenkel 1999] (we will not use it here).

Proposition 7.3.2. For generic k, Vi (g) is equal to the intersection of the kernels
of the screening operators S; i =1,..., 4.

Furthermore, in [Feigin and Frenkel 1999], Section 3, a complex C.(g) of
,-modules is constructed for generic k. Its ith degree term is the direct sum of
the Wakimoto modules Wy, (,)—p,«» Where w runs over all elements of the Weyl
group of g of length 7. Its zeroth cohomology is isomorphic to Vi (g), and all other
cohomologies vanish. For g = sl, the complex C?(s(,) has length 1 and coincides
with the one appearing in Proposition 7.2.2. In general, the degree 0 term C,? (9)
of the complex is Wy, the degree 1 term C/(g) is @f=1 W_q; . The zeroth
differential is the sum of the screening operators S «.

In [Feigin and Frenkel 1999] it is also explained how to construct other in-
tertwining operators as compositions of the screening operators S, using the
Bernstein—Gelfand—Gelfand resolution of the trivial representation of the quantum
group U, (g). Roughly speaking, the screening operators S; . satisfy the g-Serre
relations, i.e., the defining relations of the quantized enveloping algebra Uy, (n ) with
appropriate parameter ¢. Then for generic x we attach to a singular vector of weight
w in the Verma module M) over U,(g) an intertwining operator W , — Wy, .
This operator is equal to the integral of a product of the screening currents S; ,(2)
over a certain cycle on the configuration space with coefficients in a local system
that is naturally attached to the above singular vector.

The simplest operators correspond to the singular vectors f;vg of weight —e; in
the Verma module M, over Uy (g). The corresponding intertwining operators are
nothing but our screening operators (7.3-4).
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7.3.3. Screening operators of the second kind. In order to define the screening
operators of the second kind, we need to make sense of the series (el.R (z))Y for
complex values of y. So we choose a system of coordinates on Ny in such a
way that el.R (z) = aq, (z) (note that this cannot be achieved for alli =1,...,¢
simultaneously). This is automatically so if we define the Wakimoto modules over
g via the semi-infinite parabolic induction from Wakimoto modules over the ith
subalgebra ?[2 (see Section 7.3.1).

Having chosen such a coordinate system, we define the series ag, (z)” using the
Friedan—Martinec—Shenker bosonization of the Weyl algebra generated by

%
Aaj,ns Ag; po necz,

as explained in Section 7.2.3. Namely, we have a vertex algebra

(t)

= Claw; ,nln<— 1 ® Cla, Ay, ]n<0®C[ao, —1

1>

containing
Mg(i) = Claa, nln=—1® C[a:;i,n]nSO

and a H(()i)—module Hg,i) defined as in Section 7.2.3. We then set

(@

Woie=Wie ® n(y").

Méi)
This is a g,-module, which contains Wy , if y = 0. Note that /WJ(()?O’KC is the
‘g-module obtained by the semi-infinite parabolic induction from the sAlz—module
Wo,0,—2-
Now let 8 = %(K —k¢)(hi, h;) and define the field

$i@ E R Va0 Woe > Whpgre  (135)

Here &; = h; € b denotes the ith coroot of g. Then the operator
§lc,i = / glc,i (2)d:z

is induced by the screening operator of the second kind gk for the ith ;[2 subalgebra,
where k is determined from the formula (k — «¢)(h;, h;) = 2(k + 2). Hence
Proposition 7.2.1 implies (a similar result was also obtained in [Petersen et al.
1997]):

Proposition 7 3.3. The operator S,; is an intertwining operator between the §,-

modules WO 0.k and Wg;; Bét; it
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Note that 5,-’,{ is the residue of YV,M((ef_l)_ﬂWi), z), where V = ﬁ/{(()l,)o’,c and
M = ﬁ/“(_’fg s (see Section 7.2.1). Therefore, according to the commutation
relations (7.2-3), the intersection of kernels of S; ,,i =1, ..., £, is naturally a vertex

subalgebra of ﬁ;g)o « or Wo . Combining Proposition 7.3.2 and Proposition 7.2.5,
we obtain:

Proposition 7.3.4. For generic k, Vi (g) is isomorphic, as a §,-module and as a
vertex algebra, to the intersection of the kernels of the screening operators
Sive: Wo,e > WY i =1.....4
i Woux = W _g Bk r=1,...,¢
We remark that one can use the screening operators S, i« to construct more general
intertwining operators following the procedure of [Feigin and Frenkel 1999].

7.3.4. Screening operators of second kind at the critical level. We would like to
use the screening operators §,~,K to characterize the image of the homomorphism
Vi () = Wy, (implementing Step 3 of our plan from Section 7.1). First, we
need to define their limits as k — k..

We start with the case when g = sl,. In order to define the limit of §k ask ——2
we make W, and ﬁ;—(k+2),2(k+2),k into free modules over C[f], where S is a
formal variable representing k + 2, and then consider the quotient of these modules
by the ideal generated by S.

More precisely, let mo[B] (resp., w,[B]) be the free C[B]-module spanned by
the monomials in by,,n < 0, applied to a vector |0) (resp., |28)). We define the
structure of vertex algebra over C[f] on mo[f] as in Section 6.2.1. Then m,g[B] is a
module over 7o[B]. The dependence on B comes from the commutation relations

[bn» bm] = 2,8”511,—m

and the fact that by acts on 5[] by multiplication by 2. Taking the quotient of
mo[B] (resp., mp[B]) by the ideal generated by (8 —k), k € C, we obtain the vertex
algebra n(’)‘ (resp., the module né‘k over n(])‘ ) ’ir/ltroduced in Section 6.2.2.

We define free C[f]-modules Wy[B] and W o[f] as the tensor products

M Q®cmo[f] and Ty ®c mo[Bl,

respectively. These are vertex algebras over C[f], and their quotients by the ideals

generated by (B —k), k € C, are the vertex algebras W; x and WO,O,ka respectively.
Next, let IT_g,, g, be the free C[8]-module spanned by the lexicographically

ordered monomials in py, ¢,,n < 0, applied to a vector | — 8 +n, —f + n). Set

N =0 grn_pin

nez
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and
W _p2p =Tl_p Qcip m2plBl.

Each Fourier coefficient of the formal power series

Vap(2) : molBl — maplBl®c CBL,  @(z) P : o ®c C[B] — Mg,

given by the formulas above, is a well-defined linear operator commuting with
the action of C[8]. Hence the Fourier coefficients of their product are also well-
defined linear operators from Wo[ﬂ] to W_ﬂ,zﬂ. The corresponding operators
on the quotients by the ideals generated by (8 — k), k € C, coincide with the
operators introduced above. We need to compute explicitly the leading term in the
B-expansion of the residue | az)"Pv, g(z)dz and its restriction to Wo[B]. We will
use this leading term as the screening operator at the critical level.

Consider first the expansion of V,4(z) in powers of . Let us write V,4(z) =
Y nez V2pln]z™". Introduce the operators Vn],n <0, via the formal power series

ZV[n]Z_” =exp (Z b_?mZm) ) (7.3-6)

n=0 m>0
Using formula (7.2-11), we obtain the following expansion of V;g[n]:
Vinl+B(...). n=0,
Vagln] =4 — 2
BVin]+p=(..), n>0,
where

Vinl=-2>"7| 5 b n>0. (7.3-7)

m=0

Next, we consider the expansion of d(z)™# = e P+ in powers of B. Let
us write @(z) "8 = =) ne7 a(z)[ 1 . We will identify IT_g with T1y ®c C[B], as
C[B]-modules. Then we find that

1+8(.), n=0,

~ B _
Il e AR

The above formulas imply the following expansion of the screening operator
S B_zi

/E(z)—ﬂvzﬂ(z)dz =B (V[l] +y %7[—11 + 1(pn + qn)) +B%(..).

n>0
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Therefore we define the limit of the screening operator §3_2 at f =0 (corresponding
to k = —2) as the operator

SEVI+ Z V=n+11(pn + qn). (7.3-8)
n>0
acting from Wy _, = My, ® mp to W0,07_2 = Iy ® my. By construction, S is
equal to the leading term in the B-expansion of the screening operator §ﬁ_2. Hence
S commutes with the az-action on Wy _» and Wo,o,—z-
It is possible to express the operators

Pn+4n

= —(up + vp), n>0,

in terms of the Heisenberg algebra generated by a,,, a,,m € Z. Namely, from
the definition a(z) = %™V it follows that u(z) + v(z) = log@(z), so that the field
u(z) 4+ v(z) commutes with a(w), and we have the following OPE with a* (w):

(u(z) +v(z2))a*(w) = a(w) ' 4 reg.
Therefore, writing a(z)~! =), eZZ{(Z)[_H] z~", we obtain the following commuta-
tion relations:

[p - :q”,a;;} =—a@) gy >0 (7.3-9)

Using the realization (7.2-10) of I1, the series @(z)~! is expressed as follows:

=l

) =(a)T 1+ @) DY anz ] (7.3-10)
n#—1

where the right hand side is expanded as a formal power series in positive powers
of (a_;)~'. Tt is easy to see that each Fourier coefficient of this power series is
well-defined as a linear operator on ITj.

The above formulas completely determine the action of (p + ¢»)/n,n >0, and
hence of S, on any vector in Wo,—2 =M ® o C Wo 0,—2. Namely, we use the
commutation relations (7.3-9) to move (py +¢q»)/n through the ay,’s. As the result,
we obtain Fourier coefficients of %(z)~!, which are given by formula (7.3-10).
Applying each of them to any vector in Wy _,, we always obtain a finite sum.

This completes the construction of the limit S of the screening operator gk as
k — —2 in the case of sl,. Now we consider the case of an arbitrary g.

The limit of §,~,K as k — k. is by definition the operator

Si WOKC_>W00:<C
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obtained from S via the functor of semi-infinite parabolic induction. Therefore it is
given by the formula

— — 1 —
Si=Villl+ ) ~Vil=n+1(pin+qin). (7.3-11)

n>0

Here Vi[n] : myp — 1o are the linear operators given by the formulas

> VilnlzT" =exp (Z ])i’T_mzm) : (7.3-12)

n=0 m=>0

Villl==)_ VilmDy,,,_,. (7.3-13)
m=0

where Dy, - denotes the derivative in the direction of b; ,,; given by the formula
Dbi’m .bj,n =aj,~5n,m, (7'3_14)

and (ag;) is the Cartan matrix of g (it is normalized so that we have Dy, . - bin =
285,m. as in the case of sl,). This follows from the commutation relations (6.2-1)
between the b; ,’s and formula (7.3-1).

The operators (pin + qi,n)/n acting on H(()i) are defined in the same way as
above. )

Thus, we obtain well-defined linear operators S; : W ., — ,WJ(()Z’)O’KC. By con-
struction, they commute with the action of g, on both modules. It is clear that the
operators S;,i = 1, ..., annihilate the highest weight vector of W,k - Therefore
they annihilate all vectors obtained from the highest weight vector under the action
of gy, i.e., all vectors in Vi, (g) C Wy .. Thus we obtain

Proposition 7.3.5. The image of the vacuum module V.. (g) under wy,. is contained
in the intersection of the kernels of the operators S : Wo k. — ﬁ//(()l’)o,xc, i=1,....L

It follows from Proposition 7.3.5, Proposition 7.1.1 and Lemma 7.1.2 that the
image of 3(g) under the homomorphism wy., : Vi (g) < W, is contained in the
intersection of the kernels of the operators §,~, i=1,..., 4 restricted to mg C W ..
But according to formula (7.3-11), the restriction of S; to 7o is nothing but the
operator V;[1] : mg — mo given by formula (7.3-13). Therefore we obtain the
following:

Proposition 7.3.6. The center 3(g) of Vi, (g) is contained in the intersection of the
kernels of the operators Vi[1],i = 1,...,¢, in my.

This completes Step 4 of the plan outlined in Section 7.1. In the next chapter
we will use this result to describe the center 3(g) and identify it with the algebra of
functions on the space of opers.
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7.3.5. Other Fourier components of the screening curents. In Section 9.6 below
we will need other Fourier components of the screening currents of the second kind
constructed above (analogous results may be obtained for the screening currents of
the first kind along the same lines).

We start with the case of g = sl,. Consider the screening current

Sk(2) =@ DV, 40 (2),

introduced in formula (7.2-12). In Proposition 7.2.4 we considered its residue as a

linear operator W o x — W _(k+2),2(k+2),k- In particular V5 42)(2) was defined

in formula (7.2-11) as a current acting from nék+2) é‘&;iz).
k+2 =

We may also consider an action of this current on other Fock modules 7
C, over the Heisenberg algebra. However, in that case we also need to multiply
the current given by formula (7.2-11) by the factor z20 = z*. Only then will the
relations between this current and b(z) obtained above be valid. (If A = 0, then

A =1, and that is why we did not include it in formula (7.2-11)).) From now on
we will denote by V5 (x42)(2) the current (7.2-11) multiplied by zb0 = z* This
is a formal linear combination of z%, where « € A 4+ Z. Therefore for non-integer
values of A we cannot take its residue. But if A € Z, then we obtain a well-defined
linear operator

to

SA) def [ & = =
Si = / Sk(@)dz: Wik = W_(k+2)a+2(k+2) k> (7.3-15)

which again commutes with the action of ;[2.
Next, we consider the limit of this operator when k = 8 —2 and f8 —> 0. Suppose
that A € Z. Then, in the same way as in Section 7.3.4, we find that Sﬂ 5= ,BS(A)

where

S® V4] +Z [+ 1P+ Gnt), (7.3-16)

n>0

acting from W) _, = M, ® , to ﬁ//o,x,—z = Iy ® ;.. The operators V[n] acting
on ), are defined by formulas (7.3-6) and (7.3-7), and the operators p, + g, acting
from Mg, to Il are defined by formulas (7.3-9) and (7.3-10).

Since E(A) is obtained as a limit of an intertwining operator, we obtain that S
is also an intertwining operator (i.e., it commutes with the action of ;[2).

Now we construct intertwining operators for an arbitrary g by applying the semi-
infinite parabolic induction to the operators (7.3-15) and (7.3-16), as in Section 7.3.4.
First, for any weight A € h* such that A; = (A, ®;) € Z we obtain the intertwining

ey
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operator

S0 _ [T (
S Zfo,i(Z)dZ: Wi = Wl tpi

where §,<,,'(z) is the current given by formula (7.3-5) multiplied by the factor z,
Next, we consider the k — k. limit of this operator for A; € Z. As before, this
corresponds to the limit 8 — 0, where 8 = %(K —k¢)(hi, hi). The limiting operator

is given by the formula

A
5 = Vil +1]+Z [+ Ui + Gimin)s (1317)

n>0

where V;[n], n < 0, are given by formula (7.3-12), and
Vibi+1== Y Vilm—1]Dy,, .. (7.3-18)

m=<A;
where, as before, Dy, , is the derivation on 7y ~ C[b; n]i=1,....¢;n<0 such that

Dy,

r.m

'bj,n = aji(sn,m~

The operator Elgli) acts from Wy ,. to WO,K,KC- In particular, we find that the
restriction of S; to m; C W} k. 18 equal to Vi[Ai + 1], given by formula (7.3-18).

We will use this result in the proof of Proposition 9.6.7 below, which generalizes
Proposition 7.3.6 to arbitrary dominant integral weights.



CHAPTER 8

Identification of the center with
functions on opers

In this chapter we use the above description of the center of the vertex algebra
Vk.(g) in terms of the kernels of the screening operators in order to complete the
plan outlined in Section 7.1. We follow the argument of [Frenkel 2005b]. We first
show that this ceter is canonically isomorphic to the so-called classical “W'-algebra
associated to the Langlands dual Lie algebra L'g. Next, we prove that the classical
“W-algebra is in turn isomorphic to the algebra of functions on the space of L G-
opers on the formal disc D. The algebra Fun Opr (D) of functions on the space of
L G-opers on D carries a vertex Poisson structure. We show that our isomorphism
between the center of V.. (g) (with its canonical vertex Poisson structure coming
from the deformation of the level) and Fun Opr (D) preserves vertex Poisson
structures. Using this isomorphism, we show that the center of the completed
enveloping algebra of g at the critical level is isomorphic, as a Poisson algebra, to
the algebra Fun OpL g (D™) of functions on the space of opers on the punctured
disc D*. The latter isomorphism was conjectured by V. Drinfeld.

Here is a more detailed description of the material of this chapter.

In Section 8.1 we identify the center of the vertex algebra V. (g) with the
intersection of the kernels of certain operators, which we identify in turn with the
classical W-algebra associated to the Langlands dual Lie algebra L'g. We also show
that the corresponding vertex Poisson algebra structures coincide. In Section 8.2.1
we define the Miura opers and explain their relationship to the connections on a
certain H-bundle. We then show in Section 8.2 that this classical W -algebra (resp.,
the commutative vertex algebra 7rq) is nothing but the algebra of functions on the
space of £ G-opers on the disc (resp., Miura £ G-opers on the disc). Furthermore,
the embedding of the classical ‘W'-algebra into (y coincides with the Miura map
between the two algebras of functions. Finally, in Section 8.3 we consider the center

221
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of the completed universal enveloping algebra of g at the critical level. We identify
it with the algebra of functions on the space of £ G-opers on the punctured disc.
We then prove that this identification satisfies various compatibilities. In particular,
we show that an affine analogue of the Harish-Chandra homomorphism obtained
by evaluating central elements on the Wakimoto modules is nothing but the Miura
transformation from Miura £ G-opers to L G-opers on the punctured disc.

8.1. Description of the center of the vertex algebra

In this section we use Proposition 7.3.6 to describe the center 3(g) of Vi, (g) as
defined in Section 3.3.2.

According to Proposition 7.3.6, 3(g) is identified with a subspace in the intersec-
tion of the kernels of the operators Vi[l], i=1,...,4, in my. We now show that
3(9) is actually equal to this intersection. This is Step 5 of the plan described in
Section 7.1.

8.1.1. Computation of the character of 3(g). As explained in Section 3.3.3, the
8¢.-module Vi (g) has a natural filtration induced by the Poincaré-Birkhoff—Witt
filtration on the universal enveloping algebra U(g,.), and the associated graded
space gr Vi (g) is isomorphic to

Sym g((1))/gl[¢]] = Fun g*[[7]].
where we use the following (coordinate-dependent) pairing
(A® f(1). B®g(t)) = (4, B)Res;=o f(1)g(1)dt (8.1-1)

for A € g* and B € g.

Recall that 3(g) is equal to the space of g[[¢]]-invariants in Vi (g). The symbol
of a g[[¢]]-invariant vector in Vi (g) is a g[[¢]]-invariant vector in gr V. (g), i.e., an
element of the space of g[[¢]]-invariants in Fun g*[[¢]]. Hence we obtain an injective
map

gr3(@ < (Fun g*[])°1) = Tov g*[r] (8.1-2)
(see Lemma 3.3.1).

According to Theorem 3.4.2, the algebra Inv g*[[¢]] is the free polynomial algebra
in the generators Fi,m i =1,...,4;n <0 (see Section 3.3.4 for the definition of
the polynomials ?,‘,n).

We have an action of the operator Ly = —td; on Fun g*[[¢]]. It defines a Z-
gradation on Fun g*[[¢]] such that deg 7Z = —n. Then deg P;, = d; —n, and
according to formula (4.3-3), the character of Inv g*[[¢]] is equal to

l
chivg* [l =] [[ a-¢"H" (8.1-3)

i=1n;>d;+1
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We now show that the map (8.1-2) is an isomorphism using Proposition 6.3.3.

Consider the Lie subalgebra F+ =(b+®1)® (g RtCl[[t]]) of g[[t]]. The natural
surjective homomorphism My . — Vi (g) gives rise to a map of the corresponding
subspaces of F+ -invariants

¢ Mo,)2+ = Vi, ()8

Both My «, and Vi (g) have natural filtrations (induced by the PBW filtration on
Uy, (@)) which are preserved by the homomorphism between them. Therefore we
have the corresponding map of associated graded

e = (gr Mo )2+ = (er Vi (8)) 0+

Since V.. (g) is a direct sum of finite-dimensional representations of the constant
subalgebra g ® 1 of g[[¢]], we find that any b -invariant in Vi (g) of gr V. (g) is
automatically a g[[¢]]-invariant. Therefore we obtain that

Ve ()0 = Vi, (g1,

(g Ve @)%+ = (g1 Vie, @)1 = C[P; mli—1.... ¢:m<o-

We need to describe (gr MO’KC)E’JF. First, observe that

grMo . = Sym g((#))/b+ = Fun g*[[#]](-1).
where
* _ * -1 * Nk
g [l = ()" @) @ g™[[t]] = (a(0)/b+)",
and we use the pairing (8.1-1) between g((7)) and g*((¢)). In terms of this identifica-
tion, the map ¢.; becomes a ring homomorphism

Fun g*[[1]](~1) — Fun g*[[t]]

induced by the natural embedding g*[[¢]] — g*[[¢]](-1)-
Suppose that our basis {J?} of g is chosen in such a way that it is the union of
two subsets, which constitute bases in b4 and in n—_. Let J Z be the polynomial

function on ﬁg__l) defined by the formula
Ta(A(t)) = Res;—o(A(t), J*)i"d1. (8.1-4)

Then, as an algebra, Fun g*[[t]](—) is generated by these linear functionals 71
where n < 0,orn =0and J* en_.
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Next, we construct E.,.—invariant functions on g*[[]](—1) in the same way as in
Section 3.3.4, by substituting the generating functions

Ty =) Ty
n

(with the summation over n < 0 or n < 0 depending on whether J¢ € b or n_) into
the invariant polynomials P;,i = 1,...,£ on g. But since now J “ (z) has non-zero
z~1 coefficients if J¢ € n_, the resulting series

Pi(T @) =) Pimz ™!
mezZ
will have non-zero coefficients ?i,m for all m < d;. Thus, we obtain a natural
homomorphism

ClLPim i1,z <d; — Fung* [l -1+
Lemma 8.1.1. This homomorphism is an isomorphism.

Proof. Let

g* [Ny = ()" ® D) & (" @ tC[[¢]]) = tg™[[t]]—1).-

Clearly, the spaces of F+ -invariant functions on g*[[¢]](—1) and g*([¢]]o) are isomor-
phic (albeit the Z-gradings are different), so we will consider the latter space.
reg

Denote by g*[[t]](o) the intersection of g*[[¢]](o) and

I Bieg = Oreg X (8% @ C[[t]]).

Thus, g*[[]lg, = ((n-)*" ¢ & 1) & (g* ® tC[[1]]), where (n-)*"*t = (n_)* N gy,
is an open dense subset of (n—)*, so that ’ﬁr_ig is open and dense in T

Recall the morphism Jp : J g;“eg — J P introduced in the proof of Theorem 3.4.2.
It was shown there that the group J G = G|[[]] acts transitively along the fibers of Jp.
Let §+ be the subgroup of G[[t]] corresponding to the Lie algebra b+ C g[[t]]- Note
that for any x € g*[[¢]]""5 (0)’ the group B+ is equal to the subgroup of all elements g

of G[[t]] such that g-x € g [[t]](o) Therefore B+ acts transitively along the fibers

of the restriction of the morphism Jp to g*[[¢]] 0)"
This implies, in the same way as in the proof of Theorem 3.4.2, that the ring
of B+ invariant (equivalently, b+ invariant) polynomials on g [[t]](o) is the ring

reg

of functions on the image of g [[l]](o) in J% under the map Jp. But it follows

from the construction that the image of g*[[l]]r(%% in JP is the subspace determined

by the equations P;,, = 0,i = 1,...,£;m = —1. Hence the ring of b+—1nvar1ant
polynomials on g*[[t]]r(%g) is equal to C[P;m;li=1,.. e;m;<—1- Since g*[[l]]r(%g) is
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dense in g*[[¢]](p), We obtain that this is also the ring of invariant polynomials on
ny.

When we pass from g*[[t]](o) to g*[[!]l(—1), We need to take into account the
shifting of the indices ?i,m e ?i,mi +d; +1 of invariant polynomials corresponding
to the shift 7Z — 7Z +1- Then we obtain the statement of the lemma. O

Corollary 8.1.2. The map ¢ is surjective.
Proof. The map ¢, corresponds to taking the quotient of the free polynomial
algebra on Piy,.i =1,...,4;m; < d;, by the ideal generated by P; ;i =
LU0 <m; <dj. |
It follows from the construction that deg P; im = m— d;. Hence we obtain the

following formula for the character of (gr l\/l](),,cc)[”r = (Fun n( 1))[’Jr

ch (grMo)?*+ = [T (1 —¢™ "

m=>0
Now recall that by Theorem 6.3.3 the Verma module Mo, is isomorphic to the
Wakimoto module W+ Hence (M, )bJr = (W+ )[’4r In addition, according

to Lemma 6.3.4 we have (WOJFKC)bJr = 1y, and so its character is also equal to
1—[ (1- qm)_e. Therefore we find that the natural embedding

m>0

ind ~

b
gr(My £ ) = (Mo )+

is an isomorphism.
Consider the commutative diagram

b
gMyt) —— ar(Vi (99D

(gr MO,KC)E/J'_ —— (gr Vi, (g))olledl,

It follows from the above discussion that the left vertical arrow is an isomorphism.
Moreover, by Corollary 8.1.2 the lower horizontal arrow is surjective. Therefore the
right vertical arrow is surjective. But it is also injective, according to Lemma 3.3.1.
Therefore we obtain an isomorphism

gr( V’Cc (g)g[[t]]) ~ (gr VICC (g))g[[t]] )

In particular, this implies that the character of gr3(g) = gr(V, (9))9e]] is equal to
that of (gr Vi, (g)%11l) given by formula (4.3-3). Since ch3(g) = ch(gr3(@)), we
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find that

L
chs@=]] [ a—-«"7" (8.1-5)

i=ln;>d;+1

Thus, we obtain the following (see Section 4.3.1):

Theorem 8.1.3. The center 3(g) is “as large as possible,” i.e.,

gr3(@) = Inv g*[[7]].

Thus, there exist central elements S; € 3(g) C Vi, (g) whose symbols are equal to
?i,—l eInvg*[[¢]].i =1,...,4 and such that

5@\) = @[Si,(n)]i=1 ..... E;n<0|0>’
where the S; ()’s are the Fourier coefficients of the vertex operator Y (Sj, z).

This is a non-trivial result which tells us a lot about the structure of the center.
But we are not satisfied with it, because, as explained in Section 3.5.2, we would
like to understand the geometric meaning of the center and in particular we want to
know how the group Aut O acts on 3(g). This is expressed in Theorem 4.3.2, which
identifies 3(g) with the algebra of functions on Opr g (D) (note that Theorem 4.3.2
implies Theorem 8.1.3, see formula (4.3-2)). To prove this, we need to work a little
harder and complete Steps 5 and 6 of our plan presented in Section 7.1.

8.1.2. The center and the classical W-algebra. According to Proposition 7.3.6,
3(g) is contained in the intersection of the kernels of the operators V;[1],i =1,. .., £,
on y. Now we compute the character of this intersection and compare it with the
character formula (8.1-5) for 3(g) to show that 3(g) is equal to the intersection of
the kernels of the operators V;[1].

First, we identify this intersection with a classical limit of a one-parameter family
of vertex algebras, called the W-algebras. The “W'-algebra W, (g) associated to a
simple Lie algebra g and an invariant inner product v on g was defined in [Feigin and
Frenkel 1992] (see also [Frenkel and Ben-Zvi 2004], Chapter 15) via the quantum
Drinfeld—Sokolov reduction. For generic values of v the vertex algebra W', (g) is
equal to the intersection of the kernels of certain screening operators in a Heisenberg
vertex algebra. Let us recall the definition of these operators.!

Consider another copy of the Heisenberg Lie algebra /h\v introduced in Sec-
tion 6.2.1. To avoid confusion, we will denote the generators of this Heisenberg
Lie algebra by

b; 1, i=1,....¢;nel.

n fact, we may use this property to define W, (g) for all v, see [Feigin and Frenkel 1996].
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We have the vertex operator
V2%, (2)imy — 7l

defined by formula (7.2-13), and let V2, [1] = / V2, (2)dz be its residue. We call
it a W'-algebra screening operator (to distinguish it from the Kac—-Moody algebra

screening operators defined above). Since

V—vai (2)= Yn(‘;,niai (| —ai), 2)

(in the notation of Section 7.2.1), we obtain that the intersection of the kernels of
V2, [1],i =1,..., 4, in j is a vertex subalgebra of ;. By Theorem 15.4.12 of
[Frenkel and Ben-Zvi 2004], for generic values of v the “W-algebra W', (g) is equal
to the intersection of the kernels of the operators V2, [1],i =1,..., ¢, in 7y

We are interested in the limit of W', (g) when v — co. To define this limit, we
fix an invariant inner product vy on g and denote by € the ratio between vy and v.
We have the following formula for the ith simple root «; € h* as an element of b
using the identification between h* and b induced by v = vg/e:

2
=—e—h;.
olhih)

29]

Let
b, —e 2
= g i)
where the b; ,’s are the generators of /b\v. Consider the Cle]-lattice in 7§ ®¢ Cle]
spanned by all monomials in b; ,,i = 1,...,¢;n < 0. We denote by 7 the
specialization of this lattice at € = 0; it is a commutative vertex algebra.
In the limit € — 0, we obtain the following expansion of the operator V2, [1]:

/

bi n. (8.1-6)

2
VY N=e—V;[1]+...
~eill] evo(hi,hi)Vl[ Jieooar

where the dots denote terms of higher order in €, and the operator V;[1] acting on
n(\)/ is given by the formula

Vill]= ) Vi[m] Dy . (8.1-7)
m=0
where
Db},m 'b},n =aijbn,m, (8.1-8)

(aij) is the Cartan matrix of g, and

b’
ZV,-[n]z_” = exp (— Z %zm) .

n=0 m>0
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The intersection of the kernels of the operators V;[1],i =1,...,£, is a commu-
tative vertex subalgebra of n(}’ , which we denote by W(g) and call the classical
‘W-algebra associated to g.

Note that the structure of commutative vertex algebra on 71(\)/ is independent of
the choice of vg. The operators V;[1] get rescaled if we change vy and so their
kernels are independent of vy. Therefore W(g) is a commutative vertex subalgebra
of n(;/ that is independent of v.>

8.1.3. The appearance of the Langlands dual Lie algebra. Comparing formulas
(7.3-13) and (8.1-7), we find that after the substitution b; ,, > —b;.’n, the operators
Vi[1] become the operators V;[1], except that the matrix coefficient a;; in formula
(7.3-14) gets replaced by «;; in formula (8.1-8). This is not a typo! There is a
serious reason for that: while the operator V;[1] was obtained as the limit of a vertex
operator corresponding to the ith coroot of g, the operator V;[1] was obtained as
the limit of a vertex operator corresponding to minus the i th root of g.

Under the exchange of roots and coroots, the Cartan matrix gets transposed.
The transposed Cartan matrix of a simple Lie algebra g is the Cartan matrix of
another simple Lie algebra; namely, the Langlands dual Lie algebra of g, which
is denoted by Lg. Because of this transposition, we may identify canonically the
Cartan subalgebra L' of L'g with the dual space h* to the Cartan subalgebra h of g,
so that the simple roots of g (which are vectors in h*) become the simple coroots
of L @ (which are vectors in Lb).

Let us identify 7o corresponding to g with n(\)’ corresponding to g by sending
bin— —b;.’n. Then the operator V;[1] attached to g becomes the operator V;[1]
attached to Lg. Therefore the intersection of the kernels of the operators V;[1],i =
1,..., 4, on my, attached to a simple Lie algebra g, is isomorphic to the intersection
of the kernels of the operators V;[1].i =1,...,¢, on 7, attached to Lg.

Using Proposition 7.3.6, we now find that 3(g) is embedded into the intersection
of the kernels of the operators V;[1],i = 1,...,£, on 718/, i.e., into the classical
IW-algebra W(Lg). Furthermore, we have the following result, whose proof will be
postponed till Section 8.2.4 below.

Lemma 8.1.4. The character of W(Lg) is equal to the character of (g) given by
formula (8.1-5).

Therefore we obtain the following result.
Theorem 8.1.5. The center 3(g) is isomorphic, as a commutative vertex algebra,

to the intersection of the kernels of the operators Vi[1],i = 1,...,£, on my, and
hence to the classical W-algebra W (L g).

2However, as we will see below, both n(\)/ and W(g) also carry vertex Poisson algebra structures,
and those structures do depend on vg.
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This completes Step 5 of the plan presented in Section 7.1.

8.1.4. The vertex Poisson algebra structures. In addition to the structures of com-
mutative vertex algebras, both 3(g) and W(Lg) also carry the structures of vertex
Poisson algebra, and we wish to show that the isomorphism of Theorem 8.1.5 is
compatible with these structures.

We will not give a precise definition of vertex Poisson algebras here, referring
the reader to [Frenkel and Ben-Zvi 2004], Section 16.2. We recall that a vertex
Poisson algebra P is in particular a vertex Lie algebra, and so we attach to it an
ordinary Lie algebra

Lie(P) = PRC()/Im(T @1 +1®d,)

(see [Frenkel and Ben-Zvi 2004], Section 16.1.7).

According to Proposition 16.2.7 of [Frenkel and Ben-Zvi 2004], if V¢ is a one-
parameter family of vertex algebras, then the center %(V;) of Vj acquires a natural
vertex Poisson algebra structure. Namely, at € = 0 the polar part of the operation
Y, restricted to %#(Vy), vanishes, so we define the operation Y_ on %(V}) as the
e-linear term of the polar part of Y.

Let us fix a non-zero inner product kg on g, and let € be the ratio between the
inner products x — k. and k. Consider the vertex algebras V,(g) as a one-parameter
family using € as a parameter. Then we obtain a vertex Poisson structure on 3(g),
the center of Vi, (g) (corresponding to € = 0). We will denote 3(g), equipped with
this vertex Poisson structure, by 3(g)-

Next, consider the Heisenberg vertex algebra 7, "¢ introduced in Section 6.2.1.
From now on, to avoid confusion, we will write ng ¢ (g) to indicate that it is
associated to the Cartan subalgebra h of g. Let € be defined by the formula
K — k¢ = €kg as above. We define the commutative vertex algebra my(g) as an
€ — 0 limit of ng ~¥¢(g) in the following way. Recall that JTg ~X¢(g) is the Fock
representation of the Heisenberg Lie algebra with generators b; ,,i =1, ..., {;neZ.
The commutation relations between them are as follows:

K—K¢

[bin. bjm] = €nico(hi, hj)op,—m. (8.1-9)

Consider the C[e]-lattice in th ~*¢ ®¢ Cle] spanned by all monomials in b; ,i =
1,...,¢;n <0. Now mo(g) is by definition the specialization of this lattice at € = 0.

This is a commutative vertex algebra, but since it is defined as the limit of a
one-parameter family of vertex algebras, it acquires a vertex Poisson structure. This
vertex Poisson structure is uniquely determined by the Poisson brackets

{binbjm}y = nio(hi, hj)on—m
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in Lie(¢(g)), which immediately follow from formula (8.1-9). In particular, this
vertex Poisson structure depends on k¢, and so we will write 7 (g), to indicate
this dependence.

Recall that the homomorphism wy, : Vi (g) = Wy . = My ® mo(g) may be
deformed to a homomorphism wy : Vi (g) — Wy o = Mz® JT(’)C ¥ (g). Therefore the
e-linear term of the polar part of the operation Y of Vj(g), restricted to 3(g), which
is used in the definition of the vertex Poisson structure on 3(g), may be computed
by restricting to 3(g) C mo(g) the e-linear term of the polar part of the operation Y
of ng ~*¢(g) C Wy .. But the latter gives mo(g) the structure of a vertex Poisson

algebra, which we denote by m((g),,. Therefore we obtain the following:

Lemma 8.1.6. The embedding 3(§)c, <> 70(9)«, is a homomorphism of vertex
Poisson algebras. The corresponding map of local Lie algebras Lie(3(8)«,) <>
Lie(mo(g)«,) is a Lie algebra homomorphism.

On the other hand, consider the commutative vertex algebra JT(\)/ (g) and its
subalgebra W(g) defined in Section 8.1.2. The vertex algebra 7' (g) was defined
as the limit of a one-parameter family of vertex algebras, namely, 7 (g), where
v =1g/€, as € — 0. Therefore 77 (g) also carries a vertex Poisson algebra structure.
We will denote the resulting vertex Poisson algebra by 7,/ (g)y,. Its subalgebra
W(g) is obtained as the limit of a one-parameter family of vertex subalgebras
of 7y (g); namely, of W', (g). Therefore W(g) is a vertex Poisson subalgebra of
7y (@)v,» Which we will denote by W(g)y,.

Thus, we see that the objects appearing in the isomorphism of Theorem 8.1.5
carry natural vertex Poisson algebra structures. We claim that this isomorphism is
in fact compatible with these structures.

Let us explain this more precisely. Note that the restriction of a non-zero invariant
inner product k¢ on g to b defines a non-zero inner product on h*, which is the
restriction of an invariant inner product «; on Lg. To avoid confusion, let us denote
by 79(g)k, and 7y (Lg) Ky the classical limits of the Heisenberg vertex algebras
defined above, with their vertex Poisson structures corresponding to «y and K(\)/ ,
respectively. We have an isomorphism of vertex Poisson algebras

1 10(@)ey — 70 (¢

/
bj,n = _bi,n’

g)x(\)/ >

where b’ is given by formula (8.1-6). The restriction of the isomorphism 7 to the

subspace ()| <; <4 Ker Vi[l] of 7o (9)k, gives us an isomorphism of vertex Poisson
algebras

m Ker V;[1] ~ m Ker V;'[1],

1<i<t 1<i<t
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where by VY[1] we denote the operator (8.1-7) attached to Lg. Recall that we have
the following isomorphisms of vertex Poisson algebras:

3(’9\)K0: ﬂ KCI'VZ'[I],
1<i<t
W(Eg)ey ~ () KerVY[1]

1<i<{
Therefore we obtain the following stronger version of Theorem 8.1.5:
Theorem 8.1.7. There is a commutative diagram of vertex Poisson algebras

wo(@)eg — 75 (“0)ey

T T (8.1-10)

3@ —— WEa)ey

8.1.5. AutO-module structures. Both 3(g),, and w(L G)K(}/ carry actions of the
group Aut O, and we claim that the isomorphism of Theorem 8.1.7 intertwines these
actions. To see tist, we describe the two actions as coming from the vertex Poisson
algebra structures.

In both cases the action of the group AutO is obtained by exponentiation of
the action of the Lie algebra Dero O C Der 0. In the case of the center 3(g)y,, the
action of Der O is the restriction of the natural action on Vj..(g) which comes from
its action on @, (preserving its Lie subalgebra g[[¢]]) by infinitesimal changes of
variables. But away from the critical level, i.e., when k # ., the action of Der O is
obtained through the action of the Virasoro algebra which comes from the conformal
vector S, given by formula (6.2-5), which we rewrite as follows:

Se=—2 g,

K_Kc

where S is given by formula (3.1-1) and k is the inner product used in that formula.
Thus, the Fourier coefficients L,,n > —1, of the vertex operator

nez

generate the Der O-action on V,.(g) when « # k..

. _ K
In the limit k¥ — k., we have S, = €~1 .S, where as before € = . Therefore

Ko
the action of Der O is obtained through the vertex Poisson operation Y_ on 3(g),.
defined as the limit of ¢! times the polar part of ¥ when € — 0 (see [Frenkel and

Ben-Zvi 2004], Section 16.2), applied to Sy € 3(g)«,-
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In other words, the Der O-action is generated by the Fourier coefficients L;,n >
—1, of the series
Y (S1.2)= ) Lpz "2
n=—1
Thus, we see that the natural Der O-action (and hence Aut O-action) on 3(g)x, i8
encoded in the vector Sy € 3(g)«, through the vertex Poisson algebra structure on
3(8)«,- Note that this action endows 3(g),, With a quasi-conformal structure (see
Section 6.2.4).

Likewise, there is a Der O-action on W(£g) Ky coming from its vertex Poisson
algebra structure. The vector generating this action is also equal to the limit of a
conformal vector in the W-algebra W, (Lg) (which is a conformal vertex algebra)
as v — oo. This conformal vector is unique because as we see from the character
formula for W, (Lg) given in the right hand side of (8.1-5) the homogeneous
component of W, (Lg) of degree two (where all conformal vectors live) is one-
dimensional.> The limit of this vector as v — 0o gives rise to a vector in W (£ g) k>
which we denote by t, such that the Fourier coefficients of Y_(t, z) generate a Der O-
action on W(Lg) Ky (in the next section we will explain the geometric meaning of
this action). Since such a vector is unique, it must be the image of Sy € 3(§)«,
under the isomorphism 3(@), ~ W(Lg) kY-

Therefore we conclude that the Der O-actions (and hence the corresponding
Aut O-actions) on both 3(g)«, and W(Lyg) Ky are encoded, via the respective vertex
Poisson structures, by certain vectors, which are in fact equal to the classical limits
of conformal vectors. Under the isomorphism of Theorem 8.1.7 these vectors are
mapped to each other. Thus, we obtain the following:

Proposition 8.1.8. The commutative diagram (8.1-10) is compatible with the ac-
tions of Der O and AutO.

We have already calculated in formula (6.2-5) the image of S, in W , when
K # k. By passing to the limit kK — x we find that the image of S; = €S, belongs
to o (), C Wo,« and is equal to

L
1 .

i=1

where {b;} and {b’} are dual bases with respect to the inner product ko used in
the definition of Sy, restricted to 0, and p is the element of ) corresponding to
p € b* under the isomorphism h* ~ h induced by k. Under the isomorphism of
Theorem 8.1.7, this vector becomes the vector Sy € 3(9)«, C 70(g)«,, Which is
responsible for the Der O action on it.

3This determines this vector up to a scalar, which is fixed by the commutation relations.
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The action of the corresponding operators L, € DerO,n > —1, on my(g)s, is
given by derivations of the algebra structure which are uniquely determined by

formulas (6.2-13). Therefore the action of the L,’s on n(\)/ (L g)’CS/ is as follows
(recall that b; , — —b/, under our isomorphism 7o (g)x, >~ 7, (L Q)KOV)3
Il b;m = —mb;,n+m, —1<n<-—m,
L, -b;-,_n =—-nn+1), n>0, (8.1-11)
Ly-b;,, =0, n>—m.
These formulas determine the Der O-action on Jr(\)’ (Lg) Ky - By construction,

W(Lg)/cov C 77(\)/(Lg)/<6/

is preserved by this action.

Note in particular that the above actions of Der O on mo(g)«, and JT(\)/ (L

Q)KOV
(and hence on 3(g)«, and W(Lg) Kg) are independent of the inner product «y.

8.2. Identification with the algebra of functions on opers

We have now identified the center 3(g)., with the classical W-algebra W(Lg) Ky in
a way compatible with the vertex Poisson algebra structures and the (Der O, Aut 0)-
actions. The last remaining step in our proof of Theorem 4.3.2 (Step 6 of our plan
from Section 7.1) is the identification of W(Lg) Ky with the algebra Opr (D) of

functions on the space of £ G-opers on the disc. This is done in this section.

We start by introducing Miura opers and a natural map from generic Miura opers
to opers called the Miura transformation. We then show that the algebras of functions
on G-opers and generic Miura G-opers on the disc D are isomorphic to W(g)y,
and JT(\)/ (9) vy, respectively. Furthermore, the homomorphism W(g),, — JTS/ (9)vo
corresponding to the Miura transformation is precisely the embedding constructed
in Section 8.1.2. This will enable us to identify the center 3(g) with the algebra of
functions on £ G-opers on D.

8.2.1. Miura opers. Let G be a simple Lie group of adjoint type.

A Miura G-oper on X, which is a smooth curve, or D, or D*, is by definition a
quadruple (%, V, F g, F7), where (¥, V, Fp) is a G-oper on X and F is another
B-reduction of & which is preserved by V.

Consider the space MOpg; (D) of Miura G-opers on the disc D. A B-reduction of
Z which is preserved by the connection V is uniquely determined by a B-reduction
of the fiber ¥y of & at the origin 0 € D (recall that the underlying G-bundles
of all G-opers are isomorphic to each other). The set of such reductions is the
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Fo-twist (G/ B)g, of the flag manifold G/B. Let %,y be the universal G-bundle
on Opg (D) whose fiber at the oper (¥, V, Fp) is %,. Then we obtain that

MOpG (D) = (G/ B)5,, = Funi G/ B.

A Miura G-oper is called generic if the B-reductions % g and F’ are in generic
relative position. We denote the space of generic Miura opers on D by

MOpg (D)gen-
We have a natural forgetful morphism MOpg (D)gen — Opg (D). The group

NGJ‘BQO = %B,O é N»

where Fp o is the fiber of Fp at 0, acts on (G/B)g,, and the subset of generic
reductions is the open Ny ,-orbit of (G/ B)g,. This orbit is in fact an Ny, ,-torsor.
Therefore we obtain that the space of generic Miura opers with a fixed underlying
G-oper (¥, V, Fp) is a principal Nz, ,-bundle.

This may be rephrased as follows. Let % g iy be the B-reduction of the universal
G-bundle F,;y, whose fiber at the oper (%, V, %p) is Fp o. Then

MOPG(D)gCn = gB,univ éou, (82-1)

where AU ~ N is the open B-orbitin G/B.

Now we identify MOp (D)gen With the space of H-connections. Consider the
H-bundles gy = %p/N and @’H = O"B /N corresponding to a generic Miura oper
(#,V,Fp, Fg) on X. If P is an H-bundle, then applying to it the automorphism
wq of H, corresponding to the longest element of the Weyl group of G, we obtain
anew H-bundle, which we denote by wg (%).

Lemma 8.2.1. For a generic Miura oper (¥,V,Fp,Fg) the H-bundle F is
isomorphic to wi (F ).

Proof. Consider the vector bundles g = %é g, bg, =%Fp E b and b% = 9?33 >§ b.
We have the inclusions bz, b@/B C gg which are in generic position. Therefore the
intersection bg ; N b% is isomorphic to bg, /[bg ., bg ], which is the trivial vector
bundle with fiber h. It naturally acts on the bundle gs and under this action gg
decomposes into a direct sum of b and the line subbundles g o, @ € A. Furthermore,

by = Duea, 9F.a b5, = Byen, 9F,wo@)- Since the action of B on n/[n, 1]
factors through H = B/ N, we find that
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Therefore we obtain that

Since G is of adjoint type by our assumption, the above associated line bundles
completely determine % and %/, and the above isomorphisms imply that 7, ~
w (’)k (Fg). O

Since the B-bundle @’B is preserved by the oper connection V, we obtain a
connection V on #’, and hence on F . But according to Lemma 4.2.1, we have
Fpu ~ QP. Therefore we obtain a morphism S from the space MOpg (D)gen of
generic Miura opers on D to the space Conn(Qﬁ) p of connections on the H-bundle
QP on D.

Explicitly, connections on the H-bundle Qh may be described by the operators

V=0 +u@), u@) el

where 7 is a coordinate on the disc D, which we use to trivialize Q. Let s be a new
coordinate such that # = ¢(s). Then the same connection will appear as ds +u(s),

where
14

W(s) = ¢ u(p(s)) - p% (8.2-2)

This formula describes the action of the group AutO (and the Lie algebra Der 0)
on Conn(2°) p.

Proposition 8.2.2. The map B : MOpg (D)gen — Conn(QP) p is an isomorphism.

Proof. We define a map t in the opposite direction. Suppose we are given a
connection V on the H-bundle 2? on D. We associate to it a generic Miura oper
as follows. Let us choose a splitting H — B of the homomorphism B — H and
set F = QP ;(I G,Fp = QP ;(1 B, where we consider the adjoint action of H on

G and on B obtained through the above splitting. The choice of the splitting also
gives us the opposite Borel subgroup B_, which is the unique Borel subgroup in
generic position with B containing H. Then we set 9?39 = QP 1>L<I B_wyB.

Observe that the space of connections on % is isomorphic to the direct product
Conn(Q”)p x @ 0@+
aeA
Its subspace corresponding to negative simple roots is isomorphic to the space
(@f=1 g_ai> ® 0. Having chosen a basis element f; of g_q; foreachi =1,...,¢,

we now construct an element p_; = Zf=1 fi of this space. Now we set V =
V + p—_1. By construction, V has the correct relative position with the B-reduction
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% p and preserves the B-reduction 9?39. Therefore the quadruple (%, V, Fp, 933) is
a generic Miura oper on D. We set t(V) = (%, V, Fp, F5).

This map is independent of the choice of splitting / — B and of the generators
fi,i =1,..., L. Indeed, changing the splitting H — B amounts to a conjugation
of the old splitting by an element of N. This is equivalent to applying to V the
gauge transformation by this element. Therefore it will not change the underlying
Miura oper structure. Likewise, rescaling of the generators f; may be achieved by
a gauge transformation by a constant element of H, and this again does not change
the Miura oper structure. It is clear from the construction that 8 and t are mutually
inverse isomorphisms. O

Under the isomorphism of Proposition 8.2.2, the natural forgetful morphism
MOpg (D)gen — Opg (D)

becomes a map
u : Conn(2°)p — Opg (D). (8.2-3)

We call this map the Miura transformation.

The Miura transformation (8.2-3) gives rise to a homomorphism of the corre-
sponding rings of functions & : Fun Opg (D) — Fun Conn(2?) p. Each space has
an action of Der O and 71 is a Der O-equivariant homomorphism between these rings.
We will now identify Fun Conn(QP) p with 7y (g) and the image of 1t with the
intersection of kernels of the W'-algebra screening operators. This will give us an
identification of Fun Opg (D) with W(g).

8.2.2. Explicit realization of the Miura transformation. As explained in Sec-
tion 4.2.4, if we choose a coordinate ¢ on the disc, we can represent each oper
connection in the canonical form

¢
0 +pr+ Yy vi)-c,  vi()eC[])]

i=1
(see Section 4.2.4), where
vi(t) = Z vi,nl_n_l.
n<o0
Thus,
Fun Opg (D) = C[”i,n,~]i=1,...,€;n,~<0-

If we choose a Cartan subalgebra §j in b, then, according to Proposition 8.2.2, we

can represent each generic Miura oper by a connection operator of the following

type:
dr +p—1+u@).  u()ebl] (8.2-4)
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Set u;(t) =a;(u(t)),i =1,...,¢, and
. _ . 4—h—1
u;(t) = Uint .

n<0

Then
Fun MOpg (D)gen = Fun Conn(Qp)D = G:[“i,n]i=1,...,Z;n<0-

Hence the Miura transformation gives rise to a homomorphism
e G:[Ui,n,-]i=1,...,@;n,-<0 g q:[”i,n]i=1,...,Z;n<0- (8.2-5)

Example. We compute the Miura transformation p in the case when g = sl,. In
this case an oper has the form
0 v(r)
0
t+ (1 0 ) )

and a generic Miura oper has the form

1
at zu(t) 0 )
+( t —Lu

To compute p, we need to find an element of N [[¢]] such that the corresponding
gauge transformation brings the Miura oper into the oper form. We find that

1 —Lu@) Lu@y o 1 Lu@))
(0 g )(a’+(21 —%u(z))) (0 g )‘

0 Lu®)?+10,u@)
4 2
9 (1 0 '

Therefore we obtain that

1 1
pu(t) = v(r) = Z”(Z)2 +50:u(0),

which may also be written in the form

3 —v(t) = (a, + %u(z)) (at — %u(t)) .

It is this transformation that was originally introduced by R. Miura as the map
intertwining the flows of the KdV hierarchy and the mKdV hierarchy.

In the case when g = sl, opers are projective connections and Miura opers are
affine connections (see, e.g., [Frenkel and Ben-Zvi 2004], Chapter 9). The Miura
transformation is nothing but the natural map from affine connections to projective
connections.
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By construction, the Miura transformation (8.2-3) and hence the homomorphism
(8.2-5) are Der O-equivariant. The action of Der O on Fun Opg (D) is obtained from
formulas (4.2-5), and the action on the algebra Fun Conn(Q‘v’) p 1s obtained from
formula (8.2-2). It translates into the following explicit formulas for the action of

the generators L, = —t"*t19, n > —1, on the Uim's:
Ly-tjm=—muipim, —1<n<-m,
Ly -uj—p=—-nmn+1), n>0, (8.2-6)
Ly-uim=0, n>-—m.

8.2.3. Screening operators. Recall the realization (8.2-1) of MOpg (D)gen as an
% B.univ-twist of the B-torsor U C G/B. As explained in Section 4.2.4, the B-
torsors % p o may be identified for all opers (%, Fp, V). Therefore we obtain that
the group Ng, , acts transitively on the fibers of the map MOpg (D) gen — Opg (D).
According to Proposition 8.2.2, we have an isomorphism

MOp (D) gen =~ Conn(°) p.

Therefore Nz, , acts transitively along the fibers of the Miura transformation .
Therefore we obtain that the image of the homomorphism 72 is equal to the space
of Ng ,-invariants of Fun Conn(2P) p, and hence to the space of ng .o invariants
of Fun Conn(QP) p.

Let us fix a Cartan subalgebra b in b and a trivialization of Fp ¢. Using this
trivialization, we identify the twist ng , with n. Now we choose the generators
ei, i =1,...,¢, of n with respect to the action of § on n in such a way that together
with the previously chosen f; they satisfy the standard relations of g. The Ngp -
action on Conn(Q’S) p then gives rise to an infinitesimal action of ¢; on Conn(Qﬁ) D
We will now compute the corresponding derivation on Fun Conn(Qﬁ) D-

The action of e; is given by the infinitesimal gauge transformation

Su(t) = [x;(t)-e;, 0 + p—1 +u(?)], (8.2-7)

where x; (¢) € C[[¢]] is such that x;(0) = 1, and the right hand side of formula (8.2-7)
belongs to h[[z]]. Tt turns out that these conditions determine x;(¢) uniquely. Indeed,
the right hand side of (8.2-7) reads

xi (1) -0 —ui(0)x; (1) - i — 9rxi (1) - €.
Therefore it belongs to h[[¢]] if and only if

0rxi (1) = —u;(t)x;(1). (8.2-8)
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If we write

xi@) =) xint ™",
n=0

and substitute it into formula (8.2-8), we obtain that the coefficients x; , satisfy the
following recurrence relation:

nXip = Z Ui feXims n<0.
k+m=n;k<0;m=0

We find from this formula that

— Uj,—m
T — — ——m]. 8.2-9
i = X ) 529

n=<0 m>0

Now we obtain that
Suj(t) = o (du(t)) = a;jxi(1),

where (a;j) is the Cartan matrix of g. In other words, the operator e; acts on the
algebra Fun Conn(2°) p = C[u; ] by the derivation

Z aijj Z Xing —— 3u,,—n n (8.2-10)

n=0

where x; , are given by formula (8.2-9).

Now, the image of Fun Opg (D) under the Miura map 1 is the algebra of n-
invariant functions on Conn(Qﬁ) p- These are precisely the functions that are
annihilated by the generators e;,i = 1,...,£, of n, which are given by formula
(8.2-10). Therefore we obtain the following characterization of Fun Opg (D) as a
subalgebra of Fun Conn($2°) p.

Proposition 8.2.3. The image of Fun Opg (D) in Fun Conn(£2 f’) D under the Miura
map 1 is equal to the intersection of the kernels of the operators given by formula
(8.2-10) fori =1,... L.

8.2.4. Back to the W-algebras. Comparing formula (8.2-10) with formula (8.1-7)
we find that if we replace b;.’n by u; , in formula (8.1-7) for the W-algebra screening
operator V;[1], then we obtain formula (8.2-10). Therefore the intersection of the
kernels of the operators (8.2-10) is equal to the intersection of the kernels of the
operators V;[1],i = 1,...,{. But the latter is the classical W-algebra W(g),,,.
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Hence we obtain the following commutative diagram:

75 (@) vo —~ > FunConn(22%)p

T T (8.2-11)

W(g)y, —— FunOpg(D)

where the top arrow is an isomorphism of algebras given on generators by the
assignment b;',n > Ui .

We can also compute the character of W(g) ~ Fun Opg (D) and prove Lemma
8.1.4. It follows from Proposition 8.2.2 that the action of N on Conn(Q’S) p is free.
Therefore we obtain that

Fun Conn(Q’s)D ~ Fun Opg (D) @ Fun N,

as vector spaces. The action of the generators ¢; of the Lie algebra n is given
by the operators V;[1], each having degree —1 with respect to the Z-grading
introduced above. Therefore a root generator e, € n, @ € A4, acts as an operator
of degree —(«, p). This means that the action of n preserves the Z-grading on
Fun Conn(Q‘s) p if we equip n with the negative of the principal gradation, for
which deg ey = («, p). With respect to this grading the character of Fun N is equal
to

L d;
[Ta-¢*H"=T][[a-a"
aeA i=1n;=1
On the other hand, the character of Fun Conn(Qb) p is equal to
[Ja-¢H7"
n>0

Therefore the character of Fun Opg (D) is equal to

t  d;
[Ja-¢H ] [Ta-¢">""

n>0 i=1n;=1

Thus, we obtain that the character of Fun Opg (D) >~ W(g),, is given by the right
hand side of formula (8.1-5). This proves Lemma 8.1.4.

We also obtain from the above isomorphism a vertex Poisson algebra structure
on Fun Opg (D) (the latter structure may alternatively be defined by means of the
Drinfeld—Sokolov reduction, as we show below). As before, these structures depend
on the choice of inner product vy, which we will sometimes use as a subscript to
indicate which Poisson structure we consider.
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The above diagram gives us a geometric interpretation of the “W'-algebra screen-
ing operators V;[1]: they correspond to the action of the generators ¢; of n on
Fun Conn(QP) p.

Comparing formulas (8.2-6) and (8.1-11), we find that the top isomorphism
in (8.2-11) is Der O-equivariant. Since the subspaces W(g),, and Fun Opg (D)
are stable under the Der O-action, we find that the bottom isomorphism is also
Der O-equivariant.*

Furthermore, the action of Der O on all of the above algebras is independent of
the inner product vy. Thus we obtain the following:

Theorem 8.2.4. The diagram (8.2-11) is compatible with the action of Der O.

8.2.5. Completion of the proof. Now let us replace g by its Langlands dual Lie
algebra L'g. Then we obtain the following commutative diagram

7Y (L), ——— FunConn(Q2°) p .,

T T (8.2-12)

W(Lg),,o —~ . Fun Oprg(D)y,

of Poisson vertex algebras, which is compatible with the action of Der O and AutO.
This completes the sixth, and last, step of our plan from Section 7.1. We have
now assembled all the pieces needed to describe the center 3(g) of Vi, (g).
Combining the commutative diagrams (8.2-12) and (8.1-10) and taking into
account Theorem 8.2.4, Theorem 8.1.7 and Proposition 8.1.8 we come to the
following result (here by G we understand the group of inner automorphisms of
Ly).

Theorem 8.2.5. There is an isomorphism 3(g)«, ~ Fun OpLG(D)K(\)/ which pre-
serves the vertex Poisson structures and the Der O-module structures on both sides.
Moreover, it fits into a commutative diagram of vertex Poisson algebras equipped
with Der O-action:

770(9) ko = FunConn(Qp)D,Ka/

T T (8.2-13)

3@y —> FunOprg(D),y
where the upper arrow is given on the generators by the assignment b; y — —u; 5.

4We remark that the screening operators, understood as derivations of n(\)/ (g) or Fun Conn(Qﬁ) D>
do not commute with the action of Der O. However, we can make them commute with Der O if we
consider them as operators acting from rr(\)’ (g) to another module, isomorphic to n(\)/ (g) as a vector
space, but with a modified action of Der 0. Since we will not use this fact here, we refer a curious
reader to [Feigin and Frenkel 1996] for more details.
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In particular, we have now proved Theorem 4.3.2.

Note that Theorem 8.2.5 is consistent with the description of 7y (g) given previ-
ously in Section 6.2.5. According to this description, the b;(¢)’s transform under the
action of Der O as components of a connection on the  H-bundle 2 on the disc
D = Spec CJ[[t]]. Therefore 7o(g) is identified, in a Der O-equivariant way, with the
algebra Fun Conn($2°) p of functions on the space of connections on 7°. Thus,
the top isomorphism in the diagram (8.2-13) may be expressed as an isomorphism

Fun Conn(2™°) p >~ Fun Conn(Q2°) p. (8.2-14)

Under this isomorphism a connection d; + u(z) on Q7 is mapped to the dual
connection d; — u(¢) on the dual £ H-bundle Q7. This precisely corresponds
to the map b; , — —u; , on the generators of the two algebras, which appears in
Theorem 8.2.5.

Given any disc Dy, we may consider the twists of our algebras by the AutO-
torsor Huty, defined as in Section 6.2.6. We will mark them by the subscript x.
Then we obtain that

W(g)vy,x = Fun Op(Dx )y,
3(@)ko,x = Fun OPLG(Dx)KOV-
8.2.6. The associated graded algebras. In this section we describe the isomor-
phism 3(g) =~ FunOpL (D) of Theorem 8.2.5 at the level of associated graded
spaces. We start by describing the filtrations on 3(g) and Fun Op. (D).

The filtration on 3(g) is induced by the Poincaré—Birkhoff-Witt filtration on
the universal enveloping algebra U(g,, ), see Section 3.3.3. By Theorem 8.1.5,

r3(@) = (gr Vi, ()91 But
gr Vi (g) = Sym g((2))/gl[¢]] = Fun g*[[1]]dt,

independently of the choice of coordinate 7 and inner product on g. In Proposi-
tion 3.4.2 we gave a description of (gr Vi, ()9, The coordinate-independent
version of this description is as follows. Let Cy = Spec (Fun g*)% and

C,o0= x Cg,
0,Q CXX g

where Q = C[[t]]dt is the topological module of differentials on D = Spec C[[¢]].
By Proposition 3.4.2 we have a canonical and coordinate-independent isomorphism

gr3(g) ~FunCyq. (8.2-15)
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Note that a choice of homogeneous generators P;,i = 1,..., £, of (Fung*)?
gives us an identification

&
Cg,Q ~ @ Q@(di-i-l)’
i=1
but we prefer not to use it as there is no natural choice for such generators.
Next we consider the map

a:3(@) — mo(g)

which is equal to the restriction of the embedding Vi (g) — Wo . to 3(g). In
the proof of Proposition 7.1.1 we described a filtration on W} ;. compatible with
the PBW filtration on V. (g). This implies that the map 3(g) — mo(g) is also
compatible with filtrations. According to the results of Section 6.2.5, we have a
canonical identification

79(g) = Fun Conn(Q2™°) p.

The space Conn(27°) p of connections on the  H-bundle Q7° is an affine space
over the vector space L'h ® Q = h* ® Q. Therefore we find that

grmo(g) =Funbh* ®@ Q. (8.2-16)

We have the Harish-Chandra isomorphism (Fun g*) ~ (Fun §*)?, where W is
the Weyl group of g, and hence an embedding (Fun g*)® — Fun h*. This embedding
gives rise to an embedding

FunCg o — Funh™ ® Q.
It follows from the proof of Proposition 7.1.1 that this is precisely the map
gra:grj(g) — grmo(g)

under the identifications (8.2-15) and (8.2-16). Thus, we have now described the
associated graded of the left vertical map in the commutative diagram (8.2-13).

Next, we describe the associated graded of the right vertical map in the commu-
tative diagram (8.2-13). Let

Cg/ = g/G = Spec(Fun g)°

and
A2 \Y
Cg’g2 = QCXXCE .

Following [Beilinson and Drinfeld 1997], Section 3.1.14, we identify Opg (D) with
an affine space modeled on CgVQ. In other words, we have a natural filtration on
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Fun Opg (D) such that
grOpg (D) = Fun C;Q. (8.2-17)
Constructing such a filtration is the same as constructing a flat C[/]-algebra such
that its specialization at 4 = 1 is Fun Opg (D), and the specialization at 7 = 0 is
Fun CQZQ‘ Consider the algebra of functions on the space Opg ;(X) of h-opers
on D. The definition of an /-oper is the same as that of an oper, except that we
consider instead of a connection of the form (4.2-1) an s-connection

14
hde + Y 9i(0) fi + V().

i=1
One shows that this algebra is flat over C[/] by proving that each /A-oper has a
canonical form

hde + p—1+v(1), V(1) € Ve (1)),

in exactly the same way as in the proof of Lemma 4.2.2.
It is clear that Opg (D) = Opg(D). In order to see that Opg (D) = C;Q,
observe that it follows from the definition that Opg (D) = T'(D, €2 C>§< Vean), Where

the action of C* on V¢, is given by a > a Ad,(g)- But it follows from [Kostant
1963] that we have a canonical isomorphism of C*-spaces V¢a, 2>~ g/ G. This implies
that Opg (D) = C;Q and hence (8.2-17).

Now consider the space of connections Conn(£2”) p on the L H-bundle Q7. It
is an affine space over the vector space Lh ® Q. Therefore

grFun Conn(Q°)p = Funth @ Q. (8.2-18)

We have the Harish-Chandra isomorphism (Fun g)® ~ (Fun h)", where W is
the Weyl group of g, and hence an embedding (Fun g)® — Fun . This embedding
gives rise to an embedding

FunCEZQ — Funh ® 2.

The explicit construction of the Miura transformation Conn(2°) p — OpL (D)
given in the proof of Proposition 8.2.2 implies that the map

Fun Op_L g (D) — Fun Conn(22°) p

preserves filtrations. Furthermore, with respect to the identifications (8.2-17) and
(8.2-18), its associated graded map is nothing but the homomorphism

FunCZgQ —>FunLh®Q.

This describes the associated graded of the right vertical map in the commutative
diagram (8.2-13).
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Next, the associated graded of the upper horizontal isomorphism is given by the
natural composition

gro(g) ~ Fun h* ® @ = Fun £ ® Q@ ~ gr Fun Conn(Q2°) p.

multiplied by the operator (—1)%¢ which takes the value (—1)” on elements of
degree n (this is due to the map b; , — —u; , in Theorem 8.2.5).
Note that we have canonical isomorphisms

(Fun g*)¢ = (Fun p*)" = (FunL5)" = (Fun Lg)" €,
which give rise to a canonical identification
Fun Cy o = Fun C,YgﬁQ

Now, all maps in the diagram (8.2-13) preserve the filtrations. The commutativity of
the diagram implies that the associated graded of the lower horizontal isomorphism

3(g) ~ FunOpL (D) (8.2-19)
is equal to the composition
gr3(g) ~ Fun Cy o = Fun C,ngg ~ grFun Opr (D)

multiplied by the operator (—1)%%¢ which takes the value (—1)" on elements of
degree n. Thus, we obtain the following:

Theorem 8.2.6. The isomorphism (8.2-19) preserves filtrations. The corresponding
associated graded algebras are both isomorphic to Fun Cy . The corresponding
isomorphism of the associated graded algebras is equal to (—1)%€E.

8.3. The center of the completed universal enveloping algebra

Recall the completion Uk (g) of the universal enveloping algebra of g, defined
in Section 2.1.2. Let Z(g) be its center. In Theorem 4.3.6 we have derived from
Theorem 4.3.2 (which we have now proved, see Theorem 8.2.5) the following
Aut O-equivariant isomorphism:

Z(g) ~ FunOpLg (D). (8.3-1)
In this section we discuss various properties of this isomorphism.

8.3.1. Isomorphism between Z(g) and Fun OpL g (D). Recall the Aut O-equiva-
riant isomorphism of vertex Poisson algebras

3(@)io > Fun OpL (D) cy (8.3-2)
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established in Theorem 8.2.5. For a vertex Poisson algebra P, the Lie algebra
structure on U(P) = Lie(P) gives rise to a Poisson algebra structure on the com-
mutative algebra U (P). In particular, U (3(@)ky) = Z(9) (see Proposition 4.3.4) is
a Poisson algebra.

The corresponding Poisson structure on Z(g),, may be described as follows.
Consider U « (9) as the one-parameter family A, of associative algebras depending
on the parameter € = (k —k¢)/ko. Then Z(g) is the center of Ay. Given x, y € Z(g),
let X, 7 be their liftings to A.. Then the Poisson bracket {x, y} is defined as the ¢-
linear term in the commutator [X, ] considered as a function of € (it is independent
of the choice of the liftings).> We denote the center Z(g) equipped with this Poisson
structure by Z(g) -

Likewise, the vertex Poisson algebra Fun Opr g (D) Ky gives rise to a topological
Poisson algebra U (Fun OpLG(D)KOV). According to Lemma 4.3.5, the latter is
isomorphic to Fun Opz (D*) in an Aut O-equivariant way. Therefore the isomor-
phism (8.3-2) gives rise to an isomorphism of topological Poisson algebras

Z(@)o = Fun Opr (D),

Here we use the subscript K(\)/ to indicate the dependence of the Poisson structure on
the inner product k., on L g. We will give another definition of this Poisson structure
in the next section. Thus, we obtain the following result, which was originally
conjectured by V. Drinfeld.

Theorem 8.3.1. The center Z(g)x, is isomorphic, as a Poisson algebra, to the
Poisson algebra Fun Opr g (D™) Ky - Moreover, this isomorphism is Aut O-equivar-
iant.

8.3.2. The Poisson structure on FunOpg (D*),,. We have obtained above a
Poisson structure on the algebra Fun Opg (D) from the vertex Poisson structure
on Fun Opg (D), which was in turn obtained by realizing Fun Opg (D) as a vertex
Poisson subalgebra of 7V (g)y, (namely, as the classical W-algebra W(g),,). Now
we explain how to obtain this Poisson structure by using the Hamiltonian reduction
called the Drinfeld—Sokolov reduction [Drinfel’d and Sokolov 1985].

We start with the Poisson manifold Conng of connections on the trivial G-bundle
on DX, i.e., operators of the form V = d; + A(t), where A(t) € g((¢)). The Poisson
structure on this manifold comes from its identification with a hyperplane in the
dual space to the affine Kac-Moody algebra g@,,,, where vy is a non-zero invariant
inner product on g. Indeed, the topological dual space to ijo may be identified
with the space of all A-connections on the trivial bundle on D*, see [Frenkel and

3The fact that this is indeed a Poisson structure was first observed by V. Drinfeld following the
work [1988] of T. Hayashi.
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Ben-Zvi 2004], Section 16.4. Namely, we split g, = g(()) & C1 as a vector space.
Then a A-connection d, + A(t) gives rise to a linear functional on g,,, which takes
the value

Ab +Resvo(A(t), B(t))dt

on (B(t) +b1) € g(t)) ® C1 =T,,,. Note that under this identification the action of
Aut O by changes of coordinates and the coadjoint (resp., gauge) action of G((¢)) on
the space of A-connections (resp., the dual space to ﬁvO) agree. The space Conng
is now identified with the hyperplane in g, , Which consists of those functionals
which take the value 1 on the central element 1.

The dual space ’g\:o carries a canonical Poisson structure called the Kirillov—
Kostant structure (see, e.g., [Frenkel and Ben-Zvi 2004], Section 16.4.1 for more
details). Because 1 is a central element, this Poisson structure restricts to the
hyperplane which we have identified with Conng. Therefore we obtain a Poisson
structure on Conng.

The group N((?)) acts on Conng by gauge transformations. This action corre-
sponds to the coadjoint action of N ((¢)) on /g\:o and is Hamiltonian, the moment map
being the surjection 7 : Conng — n((t))* dual to the embedding n((z)) —g,,,. We
pick a one-point coadjoint N ((¢))-orbit in n((z))* represented by the linear functional
Y which is equal to the composition n((¢)) — n/[n, n](?)) = EBfZl C(t)) - e; and
the functional

L
(xi(t))f=; = > Res;—q x;(1)dt.
i=1
One shows in the same way as in the proof of Lemma 4.2.2 that the action of
N((t)) on m~' () is free. Moreover, the quotient m~1(y)/N((¢)), which is the
Poisson reduced manifold, is canonically identified with the space of G-opers on
D*. Therefore we obtain a Poisson structure on the topological algebra of functions
Fun Opg (D™).
Thus, we now have two Poisson structures on Fun Opg (D™) associated to a
non-zero invariant inner product vy on g.

Lemma 8.3.2. The two Poisson structures coincide.

Proof. In [Frenkel and Ben-Zvi 2004], Sections 15.4 and 16.8, we defined a
complex C3, (g) and showed that its zeroth cohomology is canonically isomorphic
to W(g)y,, equipped with the vertex Poisson algebra structure introduced in Sec-
tion 8.1.4 (and all other cohomologies vanish). This complex is a vertex Poisson
algebra version of the BRST complex computing the result of the Drinfeld—Sokolov
reduction described above. In particular, we identify Fun Opg (D), equipped with
the Poisson structure obtained via the Drinfeld—Sokolov reduction, with

U (W(8)v,)
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with the Poisson structure corresponding to the above vertex Poisson structure on
W(g) N O

8.3.3. The Miura transformation as the Harish-Chandra homomorphism. The
Harish-Chandra homomorphism, which we have already discussed in Section 5.1,
is a homomorphism from the center Z(g) of U(g), where g is a simple Lie algebra,
to the algebra Fun h* of polynomials on h*. It identifies Z(g) with the algebra
(Fun h*)" of W -invariant polynomials on h*. To construct this homomorphism,
one needs to assign a central character to each A € h*. This central character is just
the character with which the center acts on the Verma module M) _,.

In the affine case, we construct a similar homomorphism from the center Z(g) of
U «. (@) to the topological algebra Fun Conn(27”) p= of functions on the space of
connections on the £ H-bundle 27 on D*. According to Corollary 6.1.5, points of
Conn(2™) p= parameterize Wakimoto modules of critical level. Thus, foreach V e
Conn(27°) px we have the Wakimoto module W7 of critical level. The following
theorem describes the affine analogue of the Harish-Chandra homomorphism.

Note that Fun Conn(27°) px is the completion of the polynomial algebra in
bin,i =1,...,4;n € Z, with respect to the topology in which the base of open
neighborhoods of 0 is formed by the ideals generated by b; ,,n < N. In the same
way as in the proof of Lemma 4.3.5 we show that it is isomorphic to

U (Fun Conn(2 ™) p).

We also define the topological algebra Fun Conn(2°) px as U (Fun Conn(2P) p).
It is the completion of the polynomial algebra in u;,,i =1,...,4;n € Z, with
respect to the topology in which the base of open neighborhoods of 0 is formed
by the ideals generated by u; ,,n < N. The isomorphism (8.2-14) gives rise to an
isomorphism of the topological algebras

Fun Conn(£2™") px — Fun Conn(R2°) px,

under which b; , = —u; 5.
The natural forgetful morphism MOpr G (D)gen — Opr (D) and an identifi-
cation
MOp_L G(D™)gen =~ Conn(22°) px

constructed in the same way as in Proposition 8.2.2 give rise to a map
w : Conn(Q2P) px — Opr g (D). (8.3-3)

This is the Miura transformation on the punctured disc D, which is analogous to
the Miura transformation (8.2-3) on the disc D.

We recall the general construction of semi-infinite parabolic induction described
in Corollary 6.3.2. We apply it in the case of the Borel subalgebra b C g. Let M be a
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module over the vertex algebra M, or, equivalently, a module over the Weyl algebra
A9. Let R be amodule over the commutative vertex algebra 7y = Fun Conn(27°) p,
or, equivalently, a smooth module over the commutative algebra Fun Conn(27°) px.
Then the homomorphism

Wy, : Vi, (9) = My ® 7o

of Theorem 6.1.6 gives rise to the structure of a V. (g)-module, or, equivalently, a
smooth g, —module on the tensor product My ® R.
Now we obtain from Theorem 8.2.5 the following result.

Theorem 8.3.3. The action of Z(g) on the g, ,-module M ® R does not depend on
M and factors through a homomorphism

Z(g) — Fun Conn(Q2™") px

and the action of Fun Conn(27°)px on R. The corresponding morphism
Conn(27°) px — Spec Z(g)

fits into a commutative diagram

Conn(27°) px = Conn(2°) px

l l (8.3-4)
Spec Z(§) ——> Oprg(D)

where the right vertical arrow is the Miura transformation (8.3-3) on D*.

In particular, if R = Cs; is the one-dimensional module corresponding to a point
V e Conn(2™P) px, then the center Z(g) acts on the corresponding Wakimoto
module Wiz = My ® Cs via a central character corresponding to the Miura
transformation of V.

Proof. The action of U(V,(g)), and hence of U «c (§), on Wy is obtained through
the homomorphism of vertex algebras Vi (g) — My ® mo(g). In particular, the
action of Z(g) on W5 is obtained through the homomorphism of commutative vertex
algebras 3(g) — mo(g). But 7o (g) = Fun Conn(27°) p, according to Section 6.2.5.
Therefore the statement of the theorem follows from Theorem 8.2.5 by applying
the functor of enveloping algebras V — U (V) introduced in Section 3.2.3. O

Thus, we see that the affine analogue of the Harish-Chandra homomorphism
is the right vertical arrow of the diagram (8.3-4), which is nothing but the Miura
transformation for the Langlands dual group! In particular, its image (which in the
finite-dimensional case consists of W -invariant polynomials on h*) is described as
the intersection of the kernels of the W -algebra screening operators.



CHAPTER 9

Structure of g-modules of critical level

In the previous chapters we have described the center 3(g) of the vertex algebra
Vi (g) at the critical level. As we have shown in Section 3.3.2, 3(g) is isomorphic
to the algebra of endomorphisms of the g,..-module V., (g), which commute with
the action of g,.. We have identified this algebra with the algebra of functions on
the space Opr (D) of L G-opers on the disc D.

In this chapter we obtain similar results about the algebras of endomorphisms
of the Verma modules and the Weyl modules of critical level. We show that both
are quotients of the center Z(g) of the completed enveloping algebra U o)
which is isomorphic to the algebra of functions on the space Opr g (D) of Lg-
opers on the punctured disc D*. In the case of Verma modules, the algebra of
endomorphisms is identified with the algebra of functions on the space of opers
with regular singularities and fixed residue, and in the case of Weyl modules it
is the algebra of functions of opers with regular singularities, fixed residue and
trivial monodromy. Thus, the geometry of opers is reflected in the representation
theory of affine algebras of critical level. Understanding this connection between
representation theory and geometry is important for the development of the local
Langlands correspondence that we will discuss in the next chapter.

We begin this chapter by introducing the relevant subspaces of Opg(D>):
opers with regular singularities (in Section 9.1) and nilpotent opers (in Section 9.2),
and explain the interrelations between them. We then consider in Section 9.3 the
restriction of the Miura transformation defined in Section 8.2.1 to opers with regular
singularities and nilpotent opers. We relate the fibers of the Miura transformation
over the nilpotent opers to the Springer fibers. This will allow us to obtain families
of Wakimoto modules parameterized by the Springer fibers. Next, we discuss in
Section 9.4 some categories of representations of g, that “live” over the spaces of
opers with regular singularities. Finally, in Sections 9.5 and 9.6 we describe the

251
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algebras of endomorphisms of the Verma modules and the Weyl modules of critical
level.

The results of Section 9.1 are due to A. Beilinson and V. Drinfeld [1997], and
most of the results of the remaining sections of this chapter were obtained by D.
Gaitsgory and myself in [2006¢; 2007c].

9.1. Opers with regular singularity

In this section we introduce, following Beilinson and Drinfeld [1997], the space of
opers on the disc with regular singularities at the origin.

9.1.1. Definition. Recall that the space Opg (D) (resp., Opg(D™)) of G-opers on
D (resp., D) is the quotient of the space of operators of the form (4.2-1) where
¥;(t) and v(¢) take values in C[[¢]] (resp., in C((z))) by the action of B[[¢]] (resp.,
B(1)).

A G-oper on D with regular singularity is by definition (see [Beilinson and
Drinfeld 1997], Section 3.8.8) a B[[¢]]-conjugacy class of operators of the form

12
V=0 +1" D v fi +v0) |, 9.1-1)
i=1
where v;(¢) € C[[t]], ¥i(0) # 0, and v(¢) € b[[z]].
Equivalently, it is an N [[¢]]-equivalence class of operators

V=0;+ ; (p—1+v(@)), v(t) € b[[t]]. (9.1-2)

Denote by Oplé;S (D) the space of opers on D with regular singularity.
More generally, we consider, following [Beilinson and Drinfeld 1997], Section
3.8.8, the space Opgd" (D) of opers with singularity of order less than or equal to

k > 0 as the space of N[[t]]-equivalence classes of operators
1
V=0t (1+v@), V&) €bl]

9.1.2. Residue. Following [Beilinson and Drinfeld 1997], we associate to an oper
with regular singularity its residue. For an operator (9.1-2) the residue is by
definition equal to p_; + v(0). Clearly, under gauge transformations by an element
x(t) of N[[t]] the residue gets conjugated by x(0) € N. Therefore its projection
onto

9/ G = Spec(Fun g)¢ = Spec(Funh)”” =/ W

is well-defined. Thus, we obtain a morphism

res : OpléS (D) —bH/W.
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Given @ € h/ W, we denote by OpléS (D) the space of opers with regular singu-
larity and residue @ .

9.1.3. Canonical representatives. Suppose that we are given an oper with regular
singularity represented by a BJ[¢]]-conjugacy class of a connection V of the form
(9.1-1). Recall that the set £ = {dy, ..., dy} is the set of exponents of g counted
with multiplicity and the subspace V" = @, g V" of g with a basis py,..., pg
introduced in Section 4.2.4.

In the same way as in the proof of Lemma 4.2.2 we use the gauge action of B{t]]
to bring V to the form

0+t por+ Y _vipi |, v e (9.1-3)
jeE

The residue of this operator is equal to

p-1+ ) v (0)p). (9.1-4)
JjEE
Denote by gcan the affine subspace of g consisting of all elements of the form
p—1+. jek Vjpj- Recall from [Kostant 1963] that the adjoint orbit of any regular
elements in the Lie algebra g contains a unique element which belongs to gc., and
the corresponding morphism gean — h/ W is an isomorphism. Thus, we obtain that
when we bring an oper with regular singularity to the canonical form (9.1-3), its
residue is realized as an element of gcay.
Consider the natural morphism OpléS (D) — Opg (D™) taking the B[[t]]-equiva-
lence class of operators of the form (9.1-1) to its B((¢))-equivalence class.

Proposition 9.1.1 ([Drinfel’d and Sokolov 1985], Prop. 3.8.9). The map
Op¢’ (D) — Opg(D”)

is injective. Its image consists of those G-opers on D* whose canonical representa-
tives have the form

+pr+ Y 77 i@pi. @ e[ (9.1-5)
jeE

Moreover, the residue of this oper is equal to

1
p-1+ (01(0) + Z) p1+ Z ¢j(0)pj. (9.1-6)

JEE,j>1



254 9. STRUCTURE OF/g\—MODULES OF CRITICAL LEVEL

Proof. First, we bring an oper with regular singularity to the form (9.1-3). Next,
we apply the gauge transformation by p(z)~! and obtain the following

O+ py+p "+ T i0p;. v e[
jeE

Finally, applying the gauge transformation by exp(— p1/2t) we obtain the operator

st pa 2 (w0-3)m+ X yon. ool
JeEE,j>1

(9.1-7)
Thus, we obtain an isomorphism between the space of opers with regular singu-
larity and the space of opers on D of the form (9.1-5), and, in particular, we find
that the map OpléS (D) — Opg(D*) is injective. Moreover, comparing formula
(9.1-7) with formula (9.1-5), we find that ¢1(¢) = v{(¢) — % and ¢ (t) = v (¢) for
j > 1. By (9.1-4), the residue of the oper given by formula (9.1-5) is equal to
(9.1-6). |

As a corollary, we obtain that for any point @ in h/ W =~ gcan the opers with
regular singularity and residue zr form an affine subspace of Op}({;S (D).
Using the isomorphism (4.2-9), we can phrase Proposition 9.1.1 in a coordinate-

independent way. Denote by Proj>_, the space of projective connections on D*
®dj+1)

2—(de +1)
(d;j + 1)-differentials on D having pole of order at most (d; + 1) at the origin.

having pole of order at most two at the origin and by w the space of

Corollary 9.1.2. There is an isomorphism between OpléS (D) and the space

. ®(dj+1)
Projz—2 < (P D> (d;+1)°

j>1

Under this isomorphism, OpléS (D)4 corresponds to the affine subspace consisting
of the L-tuples (11, . .., ng) satisfying the following condition. Denote by n; _q,
the t~4i—1 -coefficient of the expansion of n; in powers of t (it is independent of the
choice of t). Then the conjugacy class ing/G = b/ W of

1
P-1+ (771,—2 + 4_1) P+ Z Nj,—j—1Dj
j>1
is equal to w.

Suppose that we are given a regular oper

dr + p—1+ (), v(t) € b[[¢]].
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Using the gauge transformation with p(¢) € B((t)), we bring it to the form

ot (por = b1 HOGOFO™).

If v(¢) is regular, then so is p(¢)v(z) 5(¢)~!. Therefore this oper has the form (9.1-2),
and its residue is equal to w(—p), where @ is the projection h — h/ W. Since
the map Op S(D) — Opg (D) is injective (by Proposition 9.1.1), we find that the
(affine) space Opr (D) is naturally realized as a subspace of the space of opers
with regular singularity and residue @ (—p).

9.2. Nilpotent opers

Now we introduce another realization of opers with regular singularity whose
residue has the form o (— —— ,o) where A is the dominant integral weight, i.e., such
that (a,,k) € 74, and w(—k p) is the projection of (— A — p) € honto h/W.
This realization will be convenient for us because it reveals a “secondary” residue
invariant of an oper, which is an element of n/B (as opposed to the “primary”
residue, defined above, which is an element of h/ W).

To illustrate the difference between the two realizations, consider the case of
g = sly. As before, we identify b with C by sending p + 1. An sl-oper with
residue —1 — X, where A € 7+, is the N|[[t]]-gauge equivalence class of an operator

of the form
1+k
o +< ta) b )

1 144
n + —a(?)

where a(t), b(t) € C[[t]]. This operator may be brought to the canonical form by
applying gauge transformations as in the proof of Proposition 9.1.1. Namely, we
apply the gauge transformation with

1 -\ (1712 0 1%—:01(0
0 1 0 /2)\o 1

to obtain the operator in the canonical form
5,4 [0 % (1H ta(t)) 5+ L@ +a() +d ()
1 0

On the other hand, if we apply the gauge transformation with the matrix

Grho = (T 0
P - 0 t(1+)1)/2 ’
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then we obtain the following operator:

b(®)
9 + (a(f) rﬁ) .
™ —a(r)

Let b(t) = ) _,>¢ but". Then, applying the gauge transformation with

-1 by
1 Zn 0 )H_n X+n ’
0 1

we obtain an operator of the form

where @(1), b(1) € C[[t]].
This is an example of a nilpotent oper. Its residue, as a connection (not to be
confused with the residue as an oper!), is the nilpotent matrix

0 by
00)

which is well-defined up to B-conjugation. From this we find that the monodromy
of this oper is conjugate to the matrix

1 27ibo
o 1 )

Thus, in addition to the canonical form, we obtain another realization of opers
with integral residue. The advantage of this realization is that we have a natural
residue map and so we can see more clearly what the monodromic properties of
these opers are.

In this section we explain how to generalize this construction to other simple
Lie algebras, following [Frenkel and Gaitsgory 2006c].

9.2.1. Definition. Let e b be a dominant integral coweight. Consider the space
of operators of the form

L
5 v
V=04 My f +v() + - (9.2-1)
i=1
where ¥; (1) € C[[t]], ¥i (0) # 0, v(¢) € b[[¢]] and v € n. The group B([¢]] acts on this
space by gauge transformations. Since B[[t]] is a subgroup of the group B((z)) which
acts freely on the space of all operators of them form (4.2-1) (see Section 4.2.4), it
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P

follows that this action of B[[¢]] is free. We define the space Oplz;il of nilpotent

G-opers of coweight A as the quotient of the space of all operators of the form
(9.2-1) by B[t]].
We have a map
B; - Opi™ — Opg(D%)

taking the B][[z]]-equivalence class of operator V of the form (9.2-1) to its B((z))-
equivalence class. This map factors through a map

l y

where w(—)vx — p) is the projection of (—X —p) € honto h/ W, which is constructed
as follows.
Given an operator V of the form (9.2-1), consider the operator

{
A +POVE+pO =0+ D v fi +w(o) |

i=1
w(t) € + D) OB+ )7, wO0)=—A—p. (9.2-2)

Moreover, under this conjugation the B[t]]-equivalence class of V maps to the
equivalence class of (k + p) (t)V(A + p)(t)~! with respect to the subgroup

(h + p) (@) BIAI(L + p) ()~ € Bl[t]].

Now, the desired map 5 assigns to the B[[t]]-equivalence class of V the B[[¢]]-

equivalence class of ()V» + ) (Z)V()v\ + p)(¢)~!. By construction, the latter is an oper
with regular singularity and residue @ (—A — p).

9.2.2. Nilpotent opers and opers with regular singularity. Clearly, the map 5 is
the composition of 8}: and the inclusion

Proposition 9.2.1. The map § j is an isomorphism for any dominant integral co-

weight X.

Proof. We will show that for any C-algebra R the morphism 8X gives rise to a
bijection at the level of R-points. This would imply that d5 is an isomorphism not
only set-theoretically, but as a morphism of schemes.

Thus, we need to show that any operator of the form (9.1-1) with residue w(—): —
p) may be brought to the form (9.2-2) over any R, and moreover, that if any two
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operators of the form (9.2-2) are conjugate under the gauge action of g € B(R[[t]]),
then g € (A + p)() B(R[[D (K + p) ().

We will use the notation
A=At p=) fid.
i

By our assumption on /i, we have /t; > 1 for all 7.
Note that

(A + ) @) BRI+ p) (@)~ = HR[ZD - O + 5)ONR[D R+ p) (@)~

There is a unique element of H(R[[¢]]) that makes each function v;(¢) in (9.1-1)
equal to 1. Hence we need to show that any operator V of the form (9.1-2) with
residue @ (—A — p) may be brought to the form

V=08 +1" (p-1 +v(0), v() € O[O, v(0)=—f, (9.2-3)

under the action of N (R([[¢]]), and, moreover, that if any two operators of this form
are conjugate under the gauge action of g € N (R][¢]]), then ge ft(£)N(R[[¢]])t(¢) .
In order to simplify notation, we will suppress R and write N [[¢]] for N (R[[¢]]), etc.
Consider first the case when A = 0, i.e., when ft; =1 for all . We will bring an
operator (9.1-2) to the form (9.2-3) by induction. We have a decomposition

h
FOBIANAO ™ = bl & @D ¢/ w11

j=1

where n=p >0 1) is the decomposition of n with respect to the principal gradation
and /1 is the Coxeter number (see Section 4.2.4). We will assume that sz > 1, for
otherwise g = s[, and the operator is already in the desired form.

Recall that, by our assumption, the residue of V is equal to @ (—p). Hence we
can use the gauge action of the constant subgroup N C N[[¢]] to bring V to the
form

1
dr + " (p—1 =) +V(@), (9.2-4)

where v(¢) € b[[¢]]. Let is decompose v(¢) = Z;’:O v; (¢) with respect to the principal
gradation and apply the gauge transformation by

g =exp (—

The constant coefficient of the principal degree / term in the new operator reads

rv0) € N

1 1
Vi (0) + -1V (0), =l + 7 — v (0) =0



9.2. NILPOTENT OPERS 259

v

(the second term comes from —g£ g !

and the last term from gd,(g~!)). Thus,

we find that in the new operator V., 5 (?) € tup[[t]].

If h = 2, then we are done. Otherwise, we apply the gauge transformation by
exp(—ﬁtvh_l (0)). (Here and below we denote by v;(¢) the components of the
operator obtained after the latest gauge transformation.) We obtain in the same way
that the new operator will have v;(¢) € tn;[[¢t]] for i = h— 1, h. Continuing this way,
we obtain an operator of the form (9.2-4) in which v (z) € ny[[¢]] and v; (¢) € tn;[[¢]]
for j =2,...,h. (Itis easy to see that each of these gauge transformations preserves
the vanishing conditions that were obtained at the previous steps.)

Next, we wish to obtain an operator of the form (9.2-4), where

vi(t) €ng[[t]l. va(t) € tCl[t]]  and v () € 70 [[1]]

for j =3,...,h. This is done in the same way as above, by consecutively applying
the gauge transformations with

1
exp(—,—tzv}(O)), j=hh—1,....3,
j—2

where v;. (0) denotes the ¢-coefficient in the jth component of the operator obtained
at the previous step. Clearly, this procedure works over an arbitrary C-algebra R.
Proceeding like this, we bring our operator to the form

Dot (o V@), VO €FOBIABO™, VO =5 ©29)

which is (9.2-3) with [t = 5. Now let us show that if V and gVg~! are of the form
(9.2-5) and g € N|[[t]], then g necessarily belongs to the subgroup () N [[¢]]p(t) ™"
(this is equivalent to saying that the intersection of the N[[¢]]-equivalence class of
the initial operator V with the set of all operators of the form (9.2-5), where [t = p,
is a p(¢) N[[t]]p(¢) " -equivalence class).

Since the gauge action of any element of the constant subgroup N C N|[z]]
other than the identity will change the residue of the connection, we may assume
without loss of generality that g belongs to the first congruence subgroup N (V[[¢]]
of N[[t]]. Since the exponential map exp : rn[[¢]] = N [[¢]] is an isomorphism,
we may represent any element of N ()[[¢]] uniquely as the product of elements of
the form exp(cq »t"), where ¢q , € ng, in any chosen order. In particular, we may
write any element of N (V[[¢]] as the product of two elements, one of which belongs
to the subgroup p(¢) N[[t]]3(¢)~", and the other is the product of elements of the
form exp(cq,nt"), where « € Ay, 1 <n < (a, p). But we have used precisely the
gauge transformation of an element of the second type to bring our operator to the
form (9.2-5) and they were fixed uniquely by this process. Therefore applying any
of them to the operator (9.2-5) will change its form. So the subgroup of N (V[[7]]
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consisting of those transformations that preserve the form (9.2-5) is precisely the
subgroup A(t) N[[1]}fi(1)~". 5

This completes the proof in the case where A = 0, i1 = p.

We will prove the statement of the proposition for a general [t by induction.
Observe first that the same argument as above shows that any operator of the form
(9.1-1) with residue @ (ft) may be brought to the form

I+ (p—1 +v(@), V() € OB, v(0) =~z

for any /i = A + 5, where A is a dominant integral coweight. Let us show that this
operator may be further brought to the form

0+t~ (po1 +v(0), VO e OBIAE O vO) =—4,  (92:6)
where [t/ is any dominant integral coweight such that
1< {0y, ')y < {0y, f1), i=1,....¢ (9.2-7)

We already know that this is true for i’ = p. Suppose we have proved it for
some ji’. Let us prove it for the coweight ji + ;, assuming that it still satisfies
condition (9.2-7). So we have an operator of the form (9.2-6), and we wish to bring
it to the same form where i’ is replaced by ji’ + w;. Using the root decomposition
n= EBaeA+ Ny, wWe write v(z) = ZaeA+ vy (1), where vy () € ng. We have

Vo)=Y Vanul" (9.2-8)

n=(o, i)

We will proceed by induction. At the first step we consider the components v (7),
where « is a simple root (i.e., those which belong to ny). We have («, i’ + @;) =
(a, ') for all such a’s, except for @ = «;, for which we have (a, i’ + @;) =
(o, 1) + 1.
Let us write fi; = (&, ft), ft; = (&, ft’). Then condition (9.2-7) for /i’ 4 @; will
become
2< 41 < fu. (9.2-9)

Apply the gauge transformation by

1 ”
exXp ﬁt“iv i,”‘)
(Mﬁ- —p
(note that the denominator is non-zero due condition (9.2-9)). As the result, we
obtain an operator of the form (9.2-6) where v, (7) € 1 FT1C[[]]. At the same time,

we do not spoil condition (9.2-8) for any other & € A, because («, it') > (a, p)
by our assumption on fi’.
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Next, we move on to roots of height two (i.e., those which belong to n,). Let us
apply consecutively the gauge transformations by

1 -

(o, 1)
exp - — Va, ’v/)
((a,u/>—(a,u) R

for those «’s for which (o, i’ + @;) > («, ft’). Continuing this process across all
values of the principal gradation, we obtain an operator which satisfies condition
(9.2-8) for all «’s for which (o, ') = («, i’ + w;) and the condition

Voe(t) = Z Va,ntn

n>{a,n’)+1

for all «’s for which (a, it/ + ;) > (a, 1').
At the next step we obtain in a similar way an operator which satisfies a stronger
condition, namely, that in addition to the above we have

Voe(t) = Z Vot,ntn

n>{o, it/ )+2

for those a’s for which (e, it’ + @;) > («, ft’) + 1. Condinuing this way, we finally
arrive at an operator for which

V(x(t) = Z Va’nln,

n>(a, i’ +w;)

for all « € A4. In other words, it has the form (9.2-3) where /i’ is replaced by
ft' + &;. This completes the inductive step.

Therefore we obtain that any operator of the form (9.1-2) with residue @ (—[t)
may be brought to the form (9.2-3) (clearly, this construction works over any C-
algebra R). Finally, we prove in the same way as in the case when [t = p that if
any two operators of this form are conjugate under the gauge action of g € N|[[]],
then g € () N[[e]l(0)~". O

By Proposition 9.1.1 and Proposition 9.2.1, the map f; : OpnGilp’k — Opg (D)

is an injection. In particular, using Proposition 9.1.1 we obtain canonical represen-

tatives of nilpotent opers. In what follows we will not distinguish between Oprglp’)"

and its image in Opg (D™).
9.2.3. Residue. Let g be the B-bundle on the disc D underlying an oper x €

Oplz;ilp ’}”, and let Fp ¢ be its fiber at 0 € D. One can show in the same way as in

Section 4.2.4 that the B-bundles % p underlying all )V»—nilpotent opers on D are
canonically identified. Denote by ng, , the F p o-twist of n. Then for each operator
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of the form (9.2-1), v is a well-defined vector in ng, ,. Therefore we obtain a
morphism

il )\.
Res, 5 :0pg"" = ngg, X V.

For each choice of trivialization of Fp o we obtain an identification ng, , >~ n.
Changes of the trivialization lead to the adjoint action of B on n. Therefore we
have a canonical map ngp , — n/B. Its composition with Res,, ; is a morphism
Res; Opmlp’ —n/B.

It maps an operator of the form (9.2-1) to the projection of v onto n/B. We call it
the residue morphism. Note that any nilpotent G-oper, viewed as a connection on
D*, has a monodromy operator, which is a conjugacy class in G. The following
statement is clear.

Lemma 9.2.2. Any nilpotent G-oper y of coweight A has unipotent monodromy.
Its monodromy is trivial if and only if Res; (x) = 0.

Let OpG be the preimage of 0 € n/ B in Opmlp’
this is the space of B[[t]]-equivalence classes of operators of the form

under the map Res; . Equivalently,

L
V=04 t“Myi) fi +v(), (9.2-10)
i=1

where v;(¢) € C[[t]], ¥i(0) # 0, v(¢) € b[[¢]]. This space was originally introduced

by V. Drinfeld (unpublished). 5
The above lemma and Proposition 9.2.1 imply that Op)é is the submanifold in
(D)w (=i—p) corresponding to those opers with regular singularity that have

tr1V1a1 monodromy.

p,0

Consider the case when A = 0 in more detail. We will denote Oplg;il simply

by OpnGilp and call its points nilpotent G-opers. These are the B|[[t]]-equivalence
classes of operators of the form

L
I+ Y Vi(O i+ v + -, (9.2-11)

i=1

where v (¢) € C[[¢]], ¥i(0) # 0, v(¢) € b[[¢]] and v € n, or, equivalently, the N[[¢]]-
equivalence classes of operators of the form

v
9+ p1+ V() + . (9.2-12)
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where v(¢) € b[[¢]] and v € n. The residue morphism, which we denote in this case
simply by Res, maps such an operator to the image of v in n/ B. Note that the fiber
over 0 € n/B is just the locus OpG Opg (D) of regular opers on the disc D.
Proposmon 9.1.1 identifies OpG with the preimage of @ (—p) under the map
res : (D) — h/ W defined in Section 9.1.1. Using Proposition 9.2.1 and

Proposmon 9.1.1, we obtain the following description of Opmlp.

Corollary 9.2.3. There is an isomorphism

i . ®(dj+1
Opp” = Projs—1 x P o ’ ), (9.2-13)
j=2

9.2.4. More general forms for opers with regular singularity. The argument we
used in the proof of Proposition 9.2.1 allows us to construct more general represen-
tatives for opers with regular singularities.

Consider the space OpR® (D)5 (—jz)» Where [i is an arbitrary element of ). An
element of OpR® (D) g5 () 1s the same as an N ([[#]]-equivalence class of operators
of the form

1 .
0r + ?(p_l — ) +v(t), v(t) € b[[t]]. (9.2-14)
Let A’ be a dominant integral coweight such that
(@) < (@), if (@ ji) €Zsg,a €Ay, (9.2-15)

where 7 is the set of positive integers.

Set it/ = X+ p. Let Op(D)Z "be the space of gauge equivalence classes of the
operators of the form (9.2-6) by the gauge action of the group /i’ (¢) N[[¢]]it/ ()~ !.
Then we have a natural map

8% :0p(D)f; — Op™*(D) (i)

taking these equivalence classes to the N [[¢]]-equivalence classes. Applying verba-
tim the argument used in the proof of Proposition 9.2.1, we obtain the following
result.

Proposmon 9.2.4. If } satisfies condition (9.2-15), and [’ = )/ + j, then the map

alf is an isomorphism.

In particular, suppose that («, 1) €7~ for all @ € Ay. Note that any point in
h/ W may be represented as w (—t) where [t satisfies this condition. Then the
statement of Proposition 9.2.4 is valid for any dominant integral weight 1. Let us
set A/ = np,n € Z4. Then we have i’ = (n+ 1) and [/ (1) N[[]])fv' ()" is the
(n + 1)st congruence subgroup of N{[¢]]. Taking the 11m1t n — 00, we obtain the
following:
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Corollary 9.2.5. Suppose that [i satisfies the property that (o, (1) € Z~q for all
a € A. Then any oper with regular singularity and residue @ (—[L) may be written
uniquely in the form

1
0+ (p1—m)+v(@),  v() €plll,

or, equivalently, in the form

v

.
8;+p_1—'u &

Tv(), V() e b (9.2-16)

Thus, there is a bijection between OpRS (D) g5 (—jn) and the space of operators of the
form (9.2-16).

9.2.5. A characterization of nilpotent opers using the Deligne extension. Recall
that given a G-bundle % with a connection V on the punctured disc D™ which has
unipotent monodromy, there is a canonical extension of %, defined by P. Deligne
[1970], to a G-bundle F on the disc D such that the connection has regular
singularity and its residue is nilpotent. Consider a G-oper (%, %g, V) on D*.
Suppose that it has unipotent monodromy. Any G-bundle on D* with a connection
whose monodromy is unipotent has a canonical extension to a bundle on D with
a connection with regular singularity and nilpotent residue, called the Deligne
extension. Thus, our bundle % on D> has the Deligne extension to D, which we
denote by F

Since the flag variety is proper, the B-reduction ¥ g of & on D* extends to a
B-reduction of % on D, which we denote by Fp. We refer to (%, F g, V) as the
Deligne extension of the oper (¥, ¥ p, V) to D. By construction, the connection V
has regular singularity and its residue is an element of

al

=B X g,

g3
¥B.0 Fp

where @B,O is the fiber of % at the origin.

Recall the H-torsor O which is an open dense subset in n'/b C g/b. Suppose
we are given a function / on D with values in n'/b which takes values in O over
D*. Given an integral coweight k we will say that f vanishes to order X at the
origin if the corresponding map D* — O may be obtained as the restriction of
the cocharacter i : C* — O under an embedding D* — C* and an identification
O ~ H. Note that this definition still makes sense if instead of a function with
values in n'/b we take a section of a twist of n-/b by an H-bundle on D.

We will say that (¥, Fp, V) satisfies the A- -oper condition at the origin if the
one-form V/%p on D taking values in (nt /b)g, (and in Og, C (g/b)g, over
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D*) vanishes to order X at the origin. The following statement follows directly
from the definitions.

Proposition 9.2.6. Let X be an integral dominant coweight. A G-oper on D> is a
nilpotent G-oper of coweight A if and only if it has unipotent monodromy and its
Deligne extension satisfies the A-oper condition at the origin.

9.3. Miura opers with regular singularities

In Section 8.2.1 we introduced the spaces of Miura opers and Cartan connections and
the Miura transformation to the space of opers. In this section we consider Miura
opers and Cartan connections with regular singularities and the restriction of the
Miura transformation to the space of Cartan connections with regular singularities.
We show that the fiber of the Miura transformation over a nilpotent oper x is
isomorphic to the Springer fiber of the residue of x. The results of this section were
obtained in [Frenkel and Gaitsgory 2006c].

9.3.1. Connections and opers with regular singularities. In Section 8.2.1 we
defined the space Conn(2P)p of connections on the H-bundle 2 on the disc
D = Spec C[[t]]. Now we consider the space Conn(£2?) p= of connections on this
bundle on the punctured disc D* = Spec C((¢)). Elements of Conn(§2°)p~= are
represented by operators of the form

V =0;+u(r), u(?) € h((1)). 9.3-1)

and under changes of coordinates they transform according to formula (8.2-2).
Now let Conn(Qp)%S be the space of all connections on the H-bundle 2” on D
with regular singularity, that is, of the form

V=0;+ ;u(t), u(z) € b[z]). 9.3-2)
We have a map
resy : Conn(Qb)%S — b

assigning to a connection its residue u(0) € h. For Ae b let Conn(Q‘s)}Vb be the

subspace of connections with residue x.
Recall that we have the Miura transformation (8.3-3)

1 : Conn(QP) px — Opg (D) (9.3-3)

defined as follows: given an operator V of the form (9.3-1), we define the corre-
sponding G-oper as the N ((¢))-gauge equivalence class of the operator V + p_.
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Suppose that V is an element of Conn(Qﬁ)}})S given by formula (9.3-2). Then
(V) is by definition the N (#))-equivalence class of the operator

V=208 +p_1+t u@).

Applying gauge transformation with p(¢), we identify it with the N ((z))-equivalence
class of the operator

8+ 17 (p—1 — p+u()),
which is an oper with regular singularity and residue @ (—p + u(0)).
Thus, we obtain a morphism

(RS : Conn(QP)S — OpRS(D). (9.3-4)

and a commutative diagram

Conn(QP)RS N OpR¥(D)
reshl lres (9.3-5)
b —> b/W
where the lower horizontal map is the composition of the map x> h— p and the
projection @ : h — b/ W.

It is easy to see that the preimage of any x € OpléS(D) under the Miura trans-
formation (9.3-3) belongs to Conn(Q"s)RDS C Conn(Q"s) px. In other words, the
oper corresponding to a Cartan connection with irregular singularity necessarily
has irregular singularity. Thus, RS is the restriction of p to Oplés (D). The above
commutative diagram then implies that for any Ae h we have an isomorphism!

_ 5 mwCiap
n O (D), 5 = L] Com(@?)} wl+p) (9.3-6)
weWw
In addition, Corollary 9.2.5 implies the following:
Proposition 9.3.1. If & € b is such that (o)) ¢Z4 for all @ € Ay, then the

restriction of the map RS to Conn(Qﬁ)B)‘ is an isomorphism
Sr—k RS ;
Conn(2”) " >~ Opg; (D)w(—k—ﬁ)‘

Thus, if i satisfies the conditions of the Proposition 9.3.1, then the stratum
corresponding to w = 1 in the right hand side of (9.3-6) gives us a section of the
restriction of the Miura transformation p to OpléS (D), (—X—b))‘

Here and throughout this chapter we consider the set-theoretic preimage of 1. The corresponding
scheme-theoretic preimage may be non-reduced (see examples in Section 10.4.6).
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The following construction will be useful in what follows. For an H-bundle
% on D and an integral coweight )V\, let F gy (5\.) =%y ()V\ -0), where 0 denotes
the origin in D (the closed point of D), be the H-bundle on D such that for any
character u : H — C* we have

Fr(h) X Cu = (Fg xCu)({pr. 1) -0).

Note that the restrictions of the bundles & g ()v\) and F g to D> are canonically iden-
tified. Under this identification, a connection V on F g ()V\) becomes the connection
A(#)"1Vi(t) on Fy.

Denote by Conn(Qﬁ()V»)) p the space of connections on the H-bundle 52'5()1) on
D. We have a natural embedding

Conn(Q2°(1))p C Conn(22P) px

obtained by restricting a connection to D*. The image of Conn(Qﬁ(X)) p in

Conn(Qﬁ) px coincides with the space Conn(Qﬁ)}Vb C Conn(Q‘v’) px. Indeed, given
a connection V € Conn(Qﬁ()V»)D, the connection )V\(Z)_l %) () is in Conn(Qﬁ))b.

In what follows we will use the notation Conn(Qﬁ)g for both of these spaces
keeping in mind the above two distinct realizations.

9.3.2. The case of integral dominant coweights. Let X be an integral dominant
coweight of G. A nilpotent Miura G-oper of coweight % on the disc D is by
definition a quadruple (%, V, Fp, OJ’B), where (%, V, % p) is a nilpotent G-oper of
coweight % on D and 9’3 is another B-reduction of F stable under V5, = V. Let

MOp)é be the variety of nilpotent Miura G-opers of coweight x.

The restriction of a nilpotent Miura G-oper of coweight A from D to D% is a
Miura oper on D*, as defined in Section 8.2.1. Let MOpg (D) be the set of Miura

opers on D*. We have a natural forgetful map MOp)é — OpnGilp ** which fits into

the following Cartesian diagram:

MOpl, ——> MOpg (D)

| !

Opg™* ——  Opg (D)

The proof of the next lemma is due to V. Drinfeld (see [2006¢c], Lemma 3.2.1).
Recall from Section 8.2.1 that a Miura oper (%, V, g, ¥') is called generic if the
B-reductions #p and ¥/, are in generic relative position.

Lemma 9.3.2. Any Miura oper on the punctured disc D™ is generic.
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Proof. Let us choose a coordinate ¢ on the disc D and trivialize the B-bundle
Fp. Then we identify the sections of F over D* with G((¢)), the reduction %/,
with a right coset g - B(¢)) C G((¢)) and the connection V with the operator

14
0+ AWM. AW =) i) fi + V(). (9.3-7)
i=1
where v;(t) € C(¢))* and v(¢) € b[[¢]].
We have the Bruhat decomposition G(¢)) = | |, e B(¢)wB((t)). Therefore
we may write g = gywg, for some w € W and g1, g> € B((t)). Hence the space
of sections over D* of the Borel subalgebra bg/B C gy, = 095 is equal to

b =gb()g~" =gr1(wb(@)w Hg; .

The statement of the lemma is equivalent to the statement that the element w
appearing in this formula is the longest element wg of the Weyl group W.

To see that, consider the Cartan subalgebra b’ = glh((t))gl_l. Then, since
g1 € B((t)), we have ' C b’ N b((¢)). We have the following Cartan decomposition
of the Lie algebra g((7)) with respect to b':

s =veoPd,. g, =208

a€EA

where g, is the root subspace of g corresponding to o € A. Let us decompose A(¢)
appearing in formula (9.3-7) with respect to this decomposition:

A =Ao+ ) Aa.

acA

Then because of the oper condition we have A_y; # 0. On the other hand, since
F'y is preserved by V, we have A(z) € b’. This means that the roots —a; are
positive roots with respect to b’. Therefore all negative roots with respect to b((¢))
are positive roots with respect to b’. This is possible if and only if b’ = g{b_ gl_1 ,
where b_ = wobwal and g; € B((?)). |

In the same way as in Lemma 8.2.2 we show that there is a bijection between
the set of generic Miura opers on D> and the set Conn(2”) px of connections on
the H-bundle 2° on D*. Then Lemma 9.3.2 implies:

Lemma 9.3.3. There is a bijection
MOpg (D) ~ Conn(Q°) p~.

Thus, any nilpotent Miura oper becomes generic, when restricted to the punctured
disc, and hence defines a connection on *. Our goal now is to understand the
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relationship between the residue of this connection and the relative position between
the B-reductions g and ¥ at 0 € D.

Let N' C g be the cone of nilpotent elements in g and N the Springer variety of
pairs (x, b’), where x € N and b’ is a Borel subalgebra of g that contains x. Let
be the restriction of N to n C . Thus,

N={(x,b)|xen xeb}.

Recall that in Section 9.2.3 we defined the residue Resy (x) of a nilpotent oper x
of coweight x.

Lemma 9.3.4. The reduction 9;} of a nilpotent oper x of coweight A is uniquely
determined by its fiber at the origin. It must be stable under the residue of the
underlying nilpotent oper, Res; ().

To see that, recall that &' may be completely described by choosing line subbun-
dles ££” in the vector bundle V' = %é VY, where V" is an irreducible representation

of G of highest weight v, satisfying the Pliicker relations (see, e.g., [Frenkel et al.
2001], Section 2.1.2). Then the above statement is a corollary of the following:

Lemma 9.3.5. Suppose we are given a first order differential equation with regular
singularity
O+ AV =0, AW = ) Al
i>—1
on a finite-dimensional vector space V. Suppose that A_1 is a nilpotent operator
on V. Then this equation has a solution V(t) € V|[t]] with the initial condition
W(0)=veVifandonly if A_1(v) = 0.

Proof. We expand ¥(¢) = Z lIlej . Then the above equation is equivalent to
Jj=0
the system of linear equations

¥+ Y Ai(¥) =0. (9.3-8)
i+j=n—1

The first of these equations reads A_q(Wq) = 0, so this is indeed a necessary condi-
tion. If this condition is satisfied, then the W,,’s with n > 0 may be found recursively,
because the nilpotency of A_; implies that the operator (nId+A4_;),n > 0, is
invertible. O

This implies that we have a natural isomorphism

MOp}; ~ OpliP+ /B, (9.3-9)
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where the map Opm]p ™ — n/B is the residue map Res;. Thus, the fiber of MOpG
over x € OpG s the (reduced) Springer fiber of Res; (x):
SPRes;\(x) ={b' €G/B| Res; (x) € b'}. (9.3-10)

Given w € W, we will say that a Borel subgroup B’ (or the corresponding Lie
algebra b’) is in relative position w with B (resp., b) if the point of the flag variety
G/ B corresponding to B’ (resp., b’) lies in the B-orbit Bw™!wq B. Denote by Nw
the subvariety of N which consists of those pairs (x, b") for which b’ is in relative
position w with our fixed Borel subalgebra b. Let 0y, be the restriction of Fw ton,
respectively. The group B naturally acts on N preserving Ty,.

Let MOp)C";’w be the subvariety of MOp)(‘; consisting of those Miura opers for
which the fiber of %/, at the origin is in relative position w with B. Then we have
an identification 5

MOph® = op“”P’ X Tw/B. (9.3-11)
n/ B

9.3.3. Connections and Miura opers. According to Proposition 9.2.1, for any
integral dominant coweight A we have an isomorphism

il ,A
Opg (D) _ oGty = OP Tt

Hence the restriction of the morphism uRS (see formula (9.3-4)) to the subspace
Conn(Qﬁ)BwO”J“oHp - Conn(Qﬁ)RDS gives us a morphism
A+ +p ilp, A
TSN S Conn(SZ”) wh+p+e Opg "
Now, it follows from the explicit construction of the Miura transformation i (see

Section 9.3.1) that for any nilpotent oper x of coweight X, which is in the image of

the map p1_ Gt p)+p the Borel reduction

Fy = Qﬁ;}woB

is stable under V. Therefore the map
map

—w(otp)+p MaY be canonically lifted to a

B wispsp: Com(@P)p wd+D+5 _, Mopk | (9.3-12)

This map fits into the Cartesian diagram

Conn(Q‘v’)l_)w()‘ﬂ;H'é — > Conn(2°) px

M—w(i-ﬁ-ﬁ)%—ﬁl l

MOp, . MOpg(D)
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where the right vertical map is the bijection established in Lemma 9.3.3. The
following result is proved in [Frenkel and Gaitsgory 2006¢], Cor. 3.6.5 (for A = 0).

Theorem 9.3.6. The map 1@

—w()v»+5)+/3 s an lsomorphlsm

Conn(Qﬁ)Bw(AJrﬁHﬁ = MOp)é’w C MOp)é .

Proof. Suppose that we are given a point of MOp)é, i.e., a nilpotent oper of
coweight S equipped with a Borel reduction &', that is stable under V. Since our
nilpotent Miura oper is generic on D*, by Lemma 9.3.2, it follows from Lemma 8.2.1
that the H-bundle F'5 /N is isonzorphic over D* to wg(Fp/N)=w (Qﬁ). Thus,
we obtain a connection on wg (£2°) and hence a connection on QP over DX. Denote
the latter by V. It is clear that V has regular singularity, and so

= 1
Vzat—;(/\l-i-f()), ,leGh

Clearly, the Miura oper (%, V, g, #’5) on D* obtained from V by applying the
bijection of Lemma 9.3.3, is the Miura oper that we have started with. Therefore
the corresponding oper has the form

1 U
8t+;(p—1—p—u+t(m)).

Hence its residue in h/ W is equal to w(—@ — p). But by our assumption the
residue of this oper is equal to zzr( - p). Therefore we obtain that there exists
y € W such that —p— 1 = y(—k p), e, L= y(k—i—p) p. )
Thus, we obtain that the restriction of the bijection of Lemma 9.3.3 to MOp)(“; is
a bijection )
MOp)(“; a7 |_| Conn(Q‘v’)ByO“'i_ﬁHﬁ.
yew

We need to show that under this bijection MOpG corresponds precisely to

Conn(Qb)l_)w()“erHﬁ.

Recall that we have an isomorphism of the H-bundles F g |px ~ wg(Fy )| px
over DX, where ¥ = Fp/N, ¥}, = Fp/N. Let us observe that if we have
two H-bundles g and ¥/, over D, then any isomorphism Fgr|px ~ F;|px
extends to an isomorphism ¥ g ~ F7, (i) over D, for some integral coweight [L.
By considering the transformation properties of a nilpotent oper of coweight X
under changes of variables in the same way as as in the proof of Lemma 4.2.1, we
find that

Fy =Fp/N ~ QP (—1).
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The assertion of the theorem will follow if we show that our isomorphism
FH|p= ~ wy(Fy)|px extends to an isomorphism

Fr ~ wi(Fu (A +5) —wh + ) (9.3-13)
over D, because then
Fry = wi @G —wl + p),
and so the induced connection on Q° on D* is in the image of

Conn(Q7(p— w(k + /) p =~ Conn(@7) 4 +7,

as desired.

Let us trivialize the fiber of % at the origin in such a way that Fp gets identified
with B C G. Without loss of generality, we may assume that under this trivialization
9«'7}3’0 becomes w™'wy B. We need to show the following. For a dominant integral
weight v let V'V be the finite-dimensional representation of g of highest weight v.
For w € W we pick a non-zero vector vy, € V' in the one-dimensional subspace
of V¥ of weight w(v). By our assumption, &'y is preserved by V. Therefore by
Lemma 9.3.4, the residue of V stabilizes the vector v,,—1,, . Consider the associated
vector bundle V! = % X V'V with the connection induced by V. It follows from

Lemma 9.3.5 that there is a unique single-valued horizontal section of this flat
bundle whose value at 7 = 0 is equal to v,)—1,, . We express W(7) as the sum
of components of different weights. Let ¢y, (¢)vy,,, Where ¢y, (¢) € C[[¢]], be the
component of W(¢) of the lowest weight wo(v). By Lemma 9.3.2, %/, and Fp are
in generic position over D*. This implies that ¢, (1) # 0. Let ny, be the order of
vanishing of ¢, (¢) at t = 0.

We need to show that for each dominant integral weight v we have

nw = (wo(v), w(k + p) — (A + p)), (9.3-14)

because this is equivalent to formula (9.3-13).
To compute the order of vanishing of ¢y, (¢), recall that the connection underlying
a nilpotent oper of coweight A has the form

L
V=04 t%h £ 4y + 2, 9.3-15)
i; St v +-
where v(7) € b[[¢]], v € n. The sought-after horizontal section of V) may be obtained
by solving the equation VW(z) = 0 with values in V"[[¢]]. We solve this equation
recursively, as in the proof of Lemma 9.3.5. Then we have to solve equations (9.3-8),
in which on the right hand side we have a linear combination of operators in b, which
preserve or increase the principal gradation, and the operators f;,i =1, ..., £, which
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lower it by 1. It is therefore clear that the leading term of the component ¢y, (f) Uy,
of W(t) proportional to vy, is obtained by applying the operators f;,i =1,...,¢,
10 vyy—1,. Hence it is the same as for the connection

e v
V=04 tMy) f.

i=1

When we solve the recurrence relations (9.3-8) for this connection, each application
of f; leads to the increase the ¢-degree of W(z) by (w;, )v\) +1= (a,-,)vu + p). This
is the “()v\ + p)-degree” of a;. Therefore to “reach” vy, from v,,-1,, (the initial
condition for W (7)) we need to increase the z-degree by the difference between the
(i + p)-degrees of the vectors v,,—1,,, and vy, i.e., by

(W™ wo(v), & + p) — (wo(V), A + p) = (wo(w), w(k + p) — (A + p)),

which is 11y, given by formula (9.3-14). Hence we find that ¢, (¢) = ¢yt"w for some
cw € C. If ¢y were equal to 0, then the entire vy,,-component of the solution W(¢)
would be equal to 0. But this would mean that the corresponding Borel reductions
9?33 and Fp are not in generic position over D*. This contradicts Lemma 9.3.2.
Hence ¢y, # 0, and so for any oper (9.3-15) the leading ¢-degree of ¢y, (¢) is indeed
equal to ny,. This completes the proof. O

Combining the isomorphisms (9.3-12) and (9.3-11), we obtain an isomorphism
Conn(Q?)5 -+ ~ gprie 7B’Hw /B. (9.3-16)
n
Thus, we have a bijection of the sets of C-points

| | conn(?f)i P ~ oppnt X T/ B. (9.3-17)
n,
wew

While (9.3-16) is an isomorphism of varieties, (9.3-17) is not, because the left hand
side is a disjoint union of strata, which are “glued” together in the right hand side.

Recall that according to formula (9.3-6), the left hand side of (9.3-17) is precisely

the preimage of Opglp’)” C Opg (D*) under the Miura transformation 4. Thus, we

see that under the isomorphism (9.3-17) the natural projection
OpnGﬂp’)” x /B — OpnGilp o
n/B

on the first factor coincides with the restriction of the Miura transformation p (see

(9.3-3)) to Oplglp’k. This implies that the set of points in the fiber =1 () of the
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Miura transformation p over x € Oprglp’)“ is in bijection with the set of points of
the Springer fiber SpReSX(X) (see (9.3-10)).

As in the case of the isomorphism (9.3-17), this is only a bijection at the level of
C-points. The fiber ;¢! (x) is the union of strata

_ _ 5\ p—w(h+p
1 0w = 17 0 N Conn(P) AP wew,
and each of these strata is isomorphic, as a variety, to the subvariety

Spllé)esi(x) = SpResX(x) NSw,

consisting of those Borel subalgebras that are in relative position w with b; here Sy,
is the Schubert cell in G/ B corresponding to w (see the proof of Lemma 9.3.2).

We summarize this in the following statement.
Theorem 9.3.7. Forany x € OpnGﬂp’)‘, the fiber ;1= (x) of the Miura transformation
WL over X is the union of strata

1 (0w C Comn(QP)S Dy e .
The stratum = () is isomorphic to
SPRes; () = SPRes; () N Sw»

where SPRes;\ () i the Springer fiber of Res; (x). Hence the set of points of w ()
is in bijection with the set of points of SPResX 00"

For example, if Res; (x) =0, then SpResx () 18 the flag variety G/ B and SPRes- o)
A

is the Schubert cell Sy,. Thus, we find that =1 (x) is in bijection with the set of
points of G/ B in this case.

Note that Ty, is a single point (namely, b’ = b), and so ™! (X)w, = Spﬁ’é’sv(x)
consists of a single point. Therefore we have an isomorphism ’

Conn(QP)504+0) ~ gprie? (9.3-18)

This is actually a special case of the statement of Proposition 9.3.1 (see also
Corollary 9.2.5), because if A is an integral dominant coweight then the coweight
= wo(A + p) — p satisfies (o, 1) €74 forall @ € A4.

9.4. Categories of representations of g at the critical level

In the previous sections we defined certain subvarieties of the space Opg (D™) of
G-opers on the punctured disc D*. Let us now switch from G to the Langlands dual
group G (which we will assume to be of adjoint type, as before). In particular, this
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means that we switch from the space Conn(2 5) px of connections on the H-bundle
QP and its subspaces defined above to the space Conn(2”) of connections on the
L H-bundle ” and the corresponding subspaces.

According to Theorem 8.3.1, the space Opr g (D) is isomorphic to the spectrum
of the center Z(g) of the completed enveloping algebra of g of critical level. Thus,
the category of all smooth g, -modules “lives” over Opz z(D>). In this section
we identify certain subcategories of this category, which “live” over the subspaces
Op}%.(D)e C OpLg(DX).

9.4.1. Compatibility with the finite-dimensional Harish-Chandra homomorph-
ism. We start by describing a certain compatibility between the Miura transforma-
tion and the Harish-Chandra isomorphism Z(g) ~ (Fun h*)" , where Z(g) be the
center of U(g)

Consider the center Z(g) of U , (). We have a natural Z-gradation on Z(g) by
the operator Ly = —td; € DerO.

Let us denote by the subscript 0 the degree 0 part and by the subscript < 0 the
span of all elements of negative degrees in any Z-graded object.

Next, consider the Wakimoto modules W, ), where

)‘_ *
x(z)=7’), eh

(see the proof of Theorem 6.4.1). These Wakimoto modules are Z-graded, with
the degree 0 part (W, (;))o being the subspace GZ[cz"fl,()lO)]meAJr C Mg C W,0p.
The Lie algebra g preserves this subspace, and it follows immediately from our
construction of Wakimoto modules that as a g-module, (W, ))o is isomorphic to
the contragredient Verma module M f_p. The algebra

Z'=Z@o/(Z@) - Z(@<0)o

naturally acts on (W, ))o and commutes with g. Moreover, since its action nec-
essarily factors through the action of U(g), we find that it factors through Z(g).
Therefore varying A € h* we obtain a homomorphism

Z' — (Funh*)", (9.4-1)

which factors through the Harish-Chandra homomorphism Z(g) — (Fun h*)" .
On the other hand, recall from Section 9.1.1 the space

Op} (D) C OpLg(DX)

of L G-opers with regular singularity and its subspace OpESG (D*)4 of opers with
residue w € Lh/ W = b*/ W (recall that h* = Lp).
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We have a Z-gradation on Fun Opr g (D™) induced by the operator Lo = —19; €
Der O. If we write the oper connection in the canonical form of Lemma 4.2.2,

L
V=0+p1+Y vi®-pi.  vi@©=)Y v
j=1 nez

then we obtain from the transformation formulas of Section 4.2.4 that
Lo-vjn=(-n+dj)vjn.

Therefore the generators vj , are homogeneous, and those of strictly negative
degrees are vj ,, n > dj, which by Corollary 9.1.2 generate the ideal of Opfés(D) in
Fun Opg (D™). Therefore the ideal of Opl({;S (D) is generated by Fun Opz g (D) <o.
Clearly, the residue map

res : Opg (D) — h*/ W
gives rise to an isomorphism
(Fun h*)"" = (Fun Op}%, (D))o.
We also have the space
Conn(22”)%¥ < Conn(Q*) p>

of connections with regular singularity on the £ H-bundle 2 on D> defined in
Section 9.3.1. The Miura transformation restricts to a map (see (9.3-4))

pRS: Conn(Q)} — OpESG (D).

We have a Z-gradation on Fun Conn(£2°) px induced by the operator Ly = —t0; €
Der 0. If we write V € Conn(2°) px in the form V = 9; + u(¢), where

wi(t) = ;i) =Y uint ™",
n<0
then we have
Lo-ujn=—nujp.
Therefore the generators u; , are homogeneous, and those of strictly negative degrees
are v; »,n > 0. Those generate the ideal of Conn(£2” )%S in Fun Conn(2°) p<. The
residue map
resLy Oplés(D) — b*
defined in Section 9.3.1 gives rise to an isomorphism

Fun h* — (Fun Conn(R2°)%%),.
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We have a commutative diagram (9.3-5)

RS
Conn(Q°)% —“— 0p}S.(D)

TeSLy l lres
b* — bYW
It gives rise to a commutative diagram of algebra homomorphisms

Funh* —— (FunConn(Q”)RDS)O

T T (9.4-2)

(Funh*) ——  (FunOp}$. (D))o

Now, since the ideal of OpESG (D) in Fun Opr g (D™) is generated by the subal-
gebra Fun OpL ;(D*) <o we obtain that the isomorphism of Theorem 8.3.1 gives
rise to an isomorphism of algebras

Z' = (FunOpr¢(D*)/(Fun Opr.G(D*)<0))o = (Fun Opiy,(D))o.  (9.4-3)

Therefore commutative diagram (9.4-2) implies that the map (9.4-1) is an isomor-
phism.

Recall that in the isomorphism of Theorem 8.3.3 we have b; , — —u; . Therefore
we obtain the following:

Proposition 9.4.1 ([Frenkel 2005b],Prop. 12.8). There is a commutative diagram
of isomorphisms
Z(g) —— (FunOp;y(D))o

! I

(Funp*)" ——— (Fun h*)W
where the lower horizontal arrow is given by f+ f~, f~(A) = f(=A).

9.4.2. Induction functor. We define a functor from the category of g-modules to
the category of g, -modules on which 1 acts as the identity. Let M be a g-module.
Define the induced g,.-module Ind(M/) as

o~

— gK(f
Ind(M) = Indg[[t]] o1

where g[[¢]] acts on M through the evaluation homomorphism g[[¢]] — g and 1 acts
as the identity.

In particular, if M = Mj, the Verma module of highest weight A € h*, then the
induced module Ind(M)) is the Verma module over g, of critical level, denoted
by Mj, .. which we have encountered previously.

M’
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Let again Z(g) be the center of U(g). The Harish-Chandra homomorphism
Z(g) = Fun(h*)W gives rise to an isomorphism h* /W — Spec Z(g). Now each
A € b* defines a point w(A) € h* /W and hence a character of Z(g), which we
also denote by w (1). In particular, we find that Z(g) acts on the Verma module
M, _, through the central character @ (A).

Proposition 9.4.2. Let M be any g-module. Consider Ind(M) as a module over
the center Z(g) of U k. (@). Then Ind(M) is scheme theoretically supported on the
subscheme OpESG (D) COprg(D™), i.e., it is annihilated by the ideal ofOpESG (D)
in Z(g) >~ Fun OpL g (D>).

Furthermore, if Z(g) acts on M through the character @ (1), then Ind(M) is
scheme theoretically supported on the subscheme Ople‘G (D) (=1)-

Proof. Define an action of Ly = —9; in such a way that it acts by 0 on the
generating subspace M C Ind(M ), and is compatible with the action of L on
O, Then Ind(M) acquires a Z-grading, which takes only non-negative values on
Ind(M ) with the degree 0 part being the subspace M . This implies that the subal-
gebra Z(g) <o of Z(g) which is spanned by all elements of negative degrees acts by
0 on Ind(M). The operator L also defines a Z-grading on Fun Opz (D), and
the isomorphism Z(g) >~ Fun OpL g (D) is compatible with this Z-grading. Hence
Z(g)<o is mapped under this isomorphism to the subalgebra Fun Op g (D>)<o
spanned by all elements of negative degrees.

But the ideal of OpLg (D) <o in FunOpL g (D*) is precisely the ideal of the
subspace OpIzSG(DX) C OpL g (D*) of opers with regular singularities, as shown
in Section 9.4.1. This implies the first statement of the proposition.

Next, consider the action of the degree 0 subalgebra Z(g)° of Z(g) on Ind(M).
It factors through the quotient

Z'=Z@)o/(Z(@ Z(@<0)o-

It follows from Proposition 9.4.1 that Z’ is isomorphic to the center Z(g) of U(g)
and its action on M C Ind(M), factors through this isomorphism. Furthermore,
from Proposition 9.4.1 we have a commutative diagram

Z'  —— FunOp}5,(D)

! I

(Fun h*)W SN (Fun h*)W

where the left vertical arrow is the composition of the isomorphism Z’ ~ Z(g)
and the Harish-Chandra homomorphism, the right vertical arrow is induced by the
residue map of Section 9.1.1

res : OpESG (D) = h*/ W,
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and the lower horizontal arrow is given by f + f—, f~(A) = f(—A). This implies
the second statement of the proposition. O

In particular, we obtain that the Verma module M, . is scheme theoretically
supported on the subscheme Oplzsb (D) (—p—p)-

9.4.3. Wakimoto modules and categories of g-modules. Consider the Lie subal-
gebra

=0y ®1) @ (g @Clt])

of g((t)) and g,... The corresponding subgroup of G((?)) is denoted by I O TItis
the preimage of the Lie subgroup N+ C G corresponding to ny C g under the
evaluation map G|[[t]] — G. Note that /° = [I, I], where [ is the Iwahori subgroup
defined in Section 10.2.2.

For a central character @ (v) € Spec Z(g) =~ h*/ W, let O (y) be the block of
the category O of g-modules (with respect to a fixed Borel subalgebra b) whose
objects are the g-modules on which Z(g) acts through the character @ (v). Let
ﬁkc}-modg (—y be the category of Bx,-modules M such that

« the action of the Lie subalgebra ny on M is locally nilpotent;

e the action of Z(g) on M factors through Fun OpleG (D) (—v)-

On such modules the action of T+ exponentiates to an action of /°, and this
explains the notation.
Then, according to Proposition 9.4.2, the induction functor Ind gives rise to a

functor
I 0

Ind : Oz (y) —>/g\,<c—modw(_v) .

In particular, for any A € h* the Verma modules My, 4p)—pc.. w € W, are

. = 0 . .
objects of the category gKC—modZIU(_k_ ) Moreover, it is easy to see that any object

of E;\Kc—modlw0 (—A—p) has a filtration such that the associated quotients are quotients
of these Verma modules.

Now we want to show that some of the Wakimoto modules of critical level are
also objects of the category ’g\,cc—modg (—A—p)* The general construction of these
modules and the corresponding action of the center Z(g) on them are described in
Theorem 8.3.3.

Recall from Section 9.3.1 the subspace Conn(Qp)B)‘ C Conn(2P)p=. Un-
der the isomorphism Conn(2°)px ~ Conn(27°)px it becomes the subspace

Conn(Q_p)}b of connections of the form

3 + % +u(?), u(t) € Ly[[e]) (9.4-4)
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on 7P, Note that Fun Conn(Q_p))b is a smooth module over the algebra Fun
Conn(27°) px. In fact, Fun Conn(Q_p))b is naturally identified with the module
71)(3 over the commutative vertex algebra gy (see Section 6.2.1). Therefore we obtain
a g,.-module structure on

Wy, & My ® Fun Conn(Q )% (9.4-5)
We claim that W), is an object of the category ﬁxc—modg)(_x_ )

Indeed, using the explicit formulas for the action of g, given in Theorem 6.1.6
one checks that the Lie subalgebra ny acts on Wy, locally nilpotently. On the other
hand, according to Section 9.3.1, the restriction of the Miura transformation to
Conn(Q‘p)}b = Conn(Qp)l_))“ takes values in

Op} 5 (D) ey (—r—p) C OpL (D).

Therefore we obtain from Theorem 8.3.3 that the action of Z(g) on W, factors
through the quotient Fun OpESG (D) g (—r—p)- Hence W is an object of the category

’g\KC,—modg (—h—p)*

This implies that any quotient of W) is also an object of ﬁ,((,—mod_l; (—A—p)* The
algebra Fun Conn(Q_p))b acts on W, by endomorphisms which commute with
the action of Tj,cc. Given V € Conn(Q_p))I‘), let W5 be the quotient of W) by the
maximal ideal of Fun Conn(Q_ﬂ))b corresponding to the point V. This is just
the Wakimoto module M ® Cs obtained from the one-dimensional module Cg
over Fun Conn(Q2~?)px corresponding to V & Conn(Q_p))b C Conn(Q7P)px.
According to Theorem 8.3.3, the center Z(g) acts on Ws via the central character
w(V), where p is the Miura transformation.

For x € OpESG(D), let ’g\,cc—mod)l(o be the category of g,..-modules M such that

« the action of the Lie subalgebra ny on M is locally nilpotent;
* the center Z(g) acts on M via the character Z(g) — C, corresponding to x.

Suppose that the residue of y is w(—A — p) € h* /W for some A € h*. Then the
quotients My, (3 +p)—p,c. (x) of the Verma modules My, (54 p)—p,c.» w € W, by the
central character corresponding to y are objects of this category. Moreover, it is
easy to see that any object of T;I,Cc—mod)l(0 has a filtration such that the associated
quotients are quotients of My, x4 p)—p.«. (X)-

The Wakimoto module W5 is an object of ﬁ,{c—mod)l(o if and only if V € =1 ().
According to the isomorphism (9.3-6) (in which we replace G by LG and QP by
Q 7P, changing the sign of the residue of the connection), this means that

V e Conn(QP)BHA= e w. (9.4-6)
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The Cartan subalgebra h ® 1 acts diagonally on W, but its action may be expo-
nentiated to the action of the corresponding group H (and so W5 is I-equivariant)
if and only if A belongs to the set P+ of dominant integral weights.

So let us assume that A € PT. Then

X € 0P} (D) (impy = OPLE
(see Section 9.2.1). We will discuss the corresponding categories Ij,q,-mod)l(0 in
Section 10.4. They will appear as the categories associated by the local Langlands
correspondence for loop groups to tamely ramified local systems on D*. The
following fact will be very important for us in this context (see Section 10.4.5).
According to Theorem 9.3.7, the points of 1~ ()) are in bijection with the
points of the Springer fiber SpRes)i () Of Res; (x). Therefore the Wakimoto modules

Wg, where V e n~(x) give us a family of objects of the category ﬁkc-modio
parameterized by the points of SpReSX(X).

In particular, if Res; (x) = 0, and so x € Op}g ¢ then we have a family of
Wakimoto modules in /g\,ca—mod)l(o parameterized by the points of the flag variety
LG /L B, which is the Springer fiber Spo-

Thus, we see that the category ’g\,cc—mod)l(o is quite complicated if

X € OPESG(D)w(—x_p),

1 > . ~ 0
where A € P This represents one “extreme” example of the categories g,cc-mod)]( .

2 B 3 ~ 70 : .
On the opposite “extreme” is the category g, -mod; , where y is as above and Als
a generic element of h* such that

(oe,w()v\+p)—,o)§z/Z+, aeAjp,weW.

In this case the structure of this category is rather simple. Applying Proposition 9.3.1
(in which we again replace G by LG and Q” by Q7, changing the sign of the
residue of the connection), we obtain that

—1 —o\w(A+p)—p
= (x) NConn(Q™")

consists of a single point, which we denote by V,,. By (9.4-6), this implies that
there are as many points in £ ~!(x) in this case as the number of elements in the
Weyl group W, one in each of the subspaces Conn(Q_p)lu;(}”er )=p (being generic,

A is automatically regular). Therefore the category ﬁxc—modf(o has |W| inequivalent
Wakimoto modules va ,w € W, in this case.

For each w € W we have a non-zero homomorphism My, (A4 p)—p,c. = Wy - In
the special case when these modules are Z-graded (which means that x is invariant
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under the vector field Ly = —td;), we have shown in Section 6.4 that all of them
are irreducible and this homomorphism is an isomorphism. Therefore it follows
the same is true for generic x (we expect that this is true for all y with the residue
w (—A — p) with A as above). We find that in this case the category Ij,c(,-mod)l(0 has
| W | non-isomorphic irreducible objects Wy, wew. Analyzing the action of the
Cartan subalgebra h ® 1 on them, we find that there can be no non-trivial extensions
between them. Thus, any object of the category ﬁ,cc—mod)l(o is a direct sum of copies
of the irreducible Wakimoto modules va, wew.

= o .
For a general A € h* the structure of the category g,cc-mod)l( with

X € OpL % (D) ar(—i—p)

is intermediate between the two extreme cases analyzed above.

9.5. Endomorphisms of the Verma modules

In this section and the next we identify the algebras of endomorphisms of some
induced g-modules of critical level with algebras of functions on subvarieties of
OpL (D) constructed earlier in this chapter.

Consider first the case of the vacuum module Vi, (g). According to formula
(3.3-3), we have

Endg Ve (9) ~35(@).

Therefore, by Theorem 4.3.2, we have the isomorphism

End/g\ Vi.(g) ~ FunOpL g (D). (9.5-1)

Moreover, we find that the homomorphism Z(g) — Enda V. (g) is surjective
and corresponds to the homomorphism
Fun OpL (D) — FunOpL g (D).
Thus, Vi, (g) corresponds to the subvariety
OpLG(D) C OpLG(DX).

Here we generalize this result to the case of Verma modules, which turn out to
correspond to the subvarieties OpESG (D)4, and in the next section to the case of
Weyl modules, which correspond to Op)L‘ G
9.5.1. Families of Wakimoto modules. We consider first the Verma modules. Re-
call that a Verma module of level x and highest weight A € h* is defined as the

induced module (6.3-9). Since we will consider exclusively the critical level k¥ = «,,
we will drop the subscript . from the notation and write simply M} .
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Note that M = Ind(Mj}), where Ind is the induction functor introduced in
Section 9.4.2.

We wish to describe the algebra of endomorphisms of M, for all highest weights
A € b*. In order to do this, we will identify each Verma module with a particular
Wakimoto module, for which the algebra of endomorphisms is easy to compute. An
example of such an identification is given by Proposition 6.3.3. This proposition
suggests that we need to use more general Wakimoto modules than the modules
Wy = My ® ), considered above (see, e.g., Section 9.4.3). More precisely, we will
use the Wakimoto obtained by the semi-infinite parabolic induction of Section 6.3
with respect to a Borel subalgebra of g of the form wb_w™!, where b_ is the
standard Borel subalgebra that we have used before and w is an element of the
Weyl group of g.

In this section we define a family of Wakimoto modules for each element w of
the Weyl group of g. This generalizes the construction of the family W, which
corresponds to the case w = 1 (see Section 9.4.3), along the lines of the general
construction presented in Section 6.3.

Recall the Weyl algebra 549 introduced in Section 5.3.3. We define the s{9-module
M" as the module generated by the vacuum vector |0),, such that

aa,nl())w = a;’n|0>w - 0, n> 0,
de0l0)w =0, acAirnw l(A}); ayol0)y =0, acANw (AL).
According to Theorem 8.3.3, for each A € h* the tensor product
—p\A
M’ ® Fun Conn(2™")7,
is a g, -module. Denote by w the corresponding homomorphism
8¢, — End(M,’ ® Fun Conn(Q_p)}l‘)).
We define a new g,.-module, denoted by W,", as the w ™ -twist of
—p\A
M’ ® Fun Conn(2™°)p.

More precisely, we define a new action of g, by the formula x — w(Ad w ! x),
where w is the Tits lifting of w to the group G.

In particular, W)} is the module W) introduced in Section 9.4.3.

Recall that given a g,..-module on which the operator Ly = —¢d; and the Lie
subalgebra h ® 1 C g, act diagonally with finite-dimensional common eigenspaces,
we define the character of M as the formal series

chM= Y  dmMQ®) et (9.5-2)

/)CE(IJEBCLO)*
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where M (3:) is the eigenspace of Ly and h ® 1 corresponding to the weight n
(heCLy) — C.
Let us compute the character of the module W,”. The operator Lo on M, g" ®

Fun Conn(Q_p)% is the sum of the corresponding operators on Mgw and Fun
Conn(Q_p)}b. The former is defined by the commutation relations

[L07 a(x,n] = —hdq,n, [Lo,a;’n] = _na;,n’

and the condition that L¢|0),, = 0. The latter is determined from the action
of the vector field —79d; on the space Conn(Q_p))b. If we write an element of
Conn(Q‘p)}b in the form (9.4-4), and expand u; () = {(«;, u(z)) in the series

wi(t) =Y uint™" ",
n<0

we obtain an identification

.....

Then L is just the derivation of this polynomial algebra completely determined by
the formulas

Lo-ujp=—nujy.

Next, we consider the actionof h =h® 1 C ﬁxc on M, E’l" . It follows from the
original formulas given in Theorem 6.1.6 that for any /2 € h we have

[h, ag.n] = (&, h)ag n, [h.ay 1 = —(a, hay ,.
After we twist the action of ’g\,cc, and hence of ), by w we obtain new relations
[h, agn] = (w(), h)ag.n, [h.ay, ) = —(w(a), h)ay, ,. (9.5-3)

Note that for any p € h* we have (u, w=1(h)) = (w(w), h).
To compute the action of h on |0),y ® 1 € M " ® 1, observe that according to
the formula for the action of /; o given in Theorem 6.1.6 we have

hio-10)w ® 1= | (W), ki) — Y (w(B), hi)apgago | 10)w ®1
BeAy

= w®.m) = 3 (@) |0l
BeANw—1(A_)

= (W) —ww™' ()= p). hi)|0)w ® 1

= (W +p) = p. h)[0)w @ 1.
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Therefore the h-weight of the vector |0),, ® 1 is equal to w(A + p) — p.
Putting all of this together, we obtain the following formula for the character of
the module W,*:

ch WP = e?@+0=0 TT (1— %)~ mit®, (9.5-4)
OLEZ+

where A is the set of positive roots of g. Here the terms corresponding to the real
roots come from the generators aq,, and a, , of 4%, and the terms corresponding

to the imaginary roots come from the generators u; , of Fun Conn(Q_p))b. Thus
we obtain that the character of W, is equal to the character of the Verma module
Moy (r+p0)—p With the highest weight w(A + p) — p, whose character has been
computed in the course of the proof of Proposition 6.3.3.

9.5.2. Verma modules and Wakimoto modules. Observe now that any weight v
of g may be written (possibly, in different ways) in the form v = w(A + p) — p,
where A has the property that (A, &) €74 for any @ € A. Note that w is uniquely
determined if v + p is in the Weyl group orbit of a regular dominant integral weight.
The following assertion establishes an isomorphism between the Verma module
M +p)—p and a Wakimoto module of a particular type.

Proposition 9.5.1. For any weight A such that (A, &) &7+ for all @ € A4+, and any

element w of the Weyl group of g, the Verma module My, () 4 p)— is isomorphic to

g w
the Wakimoto module Ww(x to)—p'

Proof. In the case when w = wqg and A = —2p this is proved in Proposition 6.3.3
(note that WOJ’FKC = W_wzop). We will use a similar argument in general.

First, observe that the character formula implies that the vector |0),, ® 1 €
ww is a highest weight vector of highest weight w (A + p) — p. Therefore

w(A+p)—p ] )
there is a canonical homomorphism

Muit0)-p = Wap(otp)—p

taking the highest weight vector of My, 4p)—p t0 [0) ® 1 € W . Since

the characters of My, +)—p and Wu’f’(k 4p)—p ATE equal, the propolsuig(;lpzvi‘l)l follow
if we show that this homomorphism is surjective, or, equivalently, that Wu’)"(k +p)—p
is generated by its highest weight vector |0),, ® 1.

Suppose that Wu’f(k tp)—p is not generated by the highest weight vector. Then
there exists a homogeneous linear functional on Wu')“(k St p)—p? whose weight is less
than the highest weight (A,0) € h* & (CL¢)* and which is invariant under the Lie

subalgebra
=n®CI'|PbreCl].
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and in particular, under its Lie subalgebra
Lon¥ =@nyw )Nn_@Cl ' @ wniw ) Nny @r7'Clr].
Therefore this functional factors through the space of L_nY -coinvariants of

w
Ww(k+p)—p'

. . N w .
But it follows from the formulas for the action of g, on W/ Ot -p)—p that the action

of the Lie subalgebra L_nY is free, and the space of coinvariants is isomorphic to
—owo(A+p)—
Clay, yluca n<o ® Fun Conn(£2 p)D"( 2

Our functional has to take a non-zero value on a weight vector in this subspace
of weight other than the highest weight w(A + p) — p. Using formula (9.5-3), we
obtain that the weight of aj, ,, is n —w(a). Therefore the weights of vectors in this
subspace are of the form

WA +p)—p)+N5= v, (9.5-5)
J

where N < 0 and each y; is a root in w(A ). If such a functional exists, then
WJ)D(A +0)—p has an irreducible subquotient of such highest weight. Since the
characters of irreducible highest weight modules are linearly independent, and the
characters of WqLU(A +p)—p and My, 5+ p)—p are equal, we obtain that then My, (x4 p)—p
must also have an irreducible subquotient whose highest weight is of the form
(9.5-5).

Now recall the Kac—Kazhdan theorem [Kac and Kazhdan 1979] describing
the set of highest weights of irreducible subquotients of Verma modules (see
Proposition 6.3.3). A weight &t = (u,n) appears in the decomposition of M,
where U = (v, 0) if and only n < 0 and either ;& = 0 or there exists a finite sequence
of weights g, ..., um € h* such that o = @, m = v, Hit1 = wi £ m;p; for
some positive roots B; and positive integers m; which satisfy

(i + p, Bi) = mi. (9.5-6)

Let us denote the set of such weights &t = (u, n) with a fixed weight v = (v, 0)
by S(v). It follows from the above description that if (i, n) € S(v), then n <0,
W belongs the W-orbit of v with respect to the p-shifted action, and moreover for
any u € S(v), the difference ; — v is a linear combination of roots with integer
coefficients.

Suppose now that a weight A satisfies the property in the statement of the
proposition that (A, @) &Z 4 for any « € Ay. This implies that if © = y(A+ p)—p
and u —A =) ;< n;a;, where n; € Z, then we necessarily have n; > 0. Therefore
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for any weight (i, 0) € S(1) we have u = A + »_; B;, where B € A4. This
implies that if 7" = (/. n) € S(w(A + p) — p), then we have

=W +p)—p) NS+ Bj,  Bjcw(A), N <0.

Such a weight cannot be of the form (9.5-5), unless it is w(A + p) — p). Therefore

Wu’j’(k tp)—p is generated by its highest weight vector and hence W™ is

isomorphic to My, x4 p)—p-

w(A+p)—p

9.5.3. Description of the endomorphisms of Verma modules. We now use Propo-
sition 9.5.1 to describe the algebra End~ M, of endomorphisms of the Verma
module M,,. Observe that since M, is ereCely generated from its highest weight
vector, such an endomorphism is uniquely determined by the image of the highest
weight vector vector. The image of the highest weight vector can be an arbitrary
T -invariant vector which has weight v Wi/t\h respect to the Cartan subalgebra. We

denote the space of such vectors by (Mv)lvhr. Using the same argument as in the
proof of the isomorphism (3.3-3), we obtain that

Endg My ~ (M) (9.5-7)

Thus, for any A that satisfies the conditions of Proposition 9.5.1 we obtain the
following isomorphisms of vector spaces:

.
Endg  MuG+p)-p = MuGtm-p)wit)-p

o~

ny

> (Wt 0)—pwh0)—p" 9.5-8)

Lemma 9.5.2. For any A € b* the space of W -invariant vectors of weight w (A +
p)—pin Wt,:)u(k—l—p)—p is equal to its subspace |0)y, ® Fun Conn(Q_p))b.

Proof. It follows from the formulas of Theorem 6.1.6 for the action of g, on
the Wakimoto modules that all vectors in the subspace

|0) ® Fun Conn(Q_p)lw)()""p)_p
are annihilated by n4 and have weight w(A + p) — p. Let us show that there are no

other N4 -invariant vectors in W% w-+p)—p of this weight.

An n-invariant vector is in particular annihilated by the Lie subalgebra
Lin% = (wnyw ' Nn_) ®@Cle] ea(wmrw_1 Nny) Q Clz].

But it follows from the formulas of Theorem 6.1.6 that this Lie algebra acts cofreely
on M’ ® Fun Conn(Q_p))b and so the character of the space of L4 nY -invariants
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is equal to the ratio between the character of W * and the character of the

w(A+p)—p
restricted dual of the universal enveloping algebra U(LnY). This ratio is equal to

ew(k-i—p)—l’ l_[(l _ e—ntS)—e l_[ (1— e—nS—a)—l <

n>0 acw(A_)NA_,n>0
% l_[ (1 _e—l’l8+0t)—1'
acw(A)NAL,n>0

The character of the weight w(A + p) — p subspace of the space of L4nY -invariants
in M gw ® Fun Conn(Q_p))b is therefore equal to

ew(k+p)—»0 1_[(1 _ e—né)—e’
n>0

which is precisely the character of the subspace |0), ® Fun Conn(Q‘p))b. This
completes the proof. O

Recall from Theorem 8.3.3 that the action of the center Z(g) on WJ;U(A +p)—p
factors through the homomorphism

Z(g) ~ FunOpL (D) — Fun Conn(Q2™") px
induced by the Miura transformation. Therefore it factors through the homomor-
phism
Fun Opz (D) — Fun Conn(Q_p);‘).
But we know from the discussion of Section 9.3.1 that this homomorphism factors
through the homomorphism
Fun OpESG (D) gy (—1—p) — Fun Conn(Q_p)%.

Suppose that A satisfies the condition of Proposition 9.5.1. Then this map is an
isomorphism by Proposition 9.3.1.2 Combining this with the isomorphism (9.5-8)
and the statement of Lemma 9.5.2, we obtain the following result (see [Frenkel and
Gaitsgory 2006c¢], Corollary 13.3.2).

Theorem 9.5.3. The center Z(g) maps surjectively onto End~ M,,, and we have

a commutative diagram

Z(@ ——  FunOpzg(DX)

l l

Ends M, —— Fun Op}S. (D) iy(—v—p)

2Note that in order to apply the statement of Proposition 9.3.1 we need to replace G by LG and
QP by 7P, which changes the sign of the residue of the connection.
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for any weight v.
Furthermore, the Verma module M, is free over the algebra

Endakc M, ~ Fun Oplsz (D) (—v—p)-

9.6. Endomorphisms of the Weyl modules

Let V) be a finite-dimensional representation of the Lie algebra g with highest
weight A, which is a dominant integral weight of g. We extend the action of g to an
action of g ® C[[¢]] @ 1 in such a way that g ® rC[[¢]] acts trivially and 1 acts as the
identity. Let Vj_, be the induced g,-module

\/A,lc = U(ﬁx) X VA-
U(glls]lect)
This is the Weyl module of level ¥ with highest weight A.

In what follows we will only consider the Weyl modules of critical level k¥ = k,,
so we will drop the subscript k. and denote them simply by V;. In particular,
Vo = Vi.(g), the vacuum module.

We note that V; = Ind(V ), where Ind is the induction functor introduced in
Section 9.4.2. Since V), is the finite-dimensional quotient of the Verma module M)
over g, and we have Ind(M;) = M, we obtain a homomorphism

My, k. = Vi.

It is clear from the definitions that this homomorphism is surjective, and so the
Weyl module V; is realized as a quotient of the Verma module M} .

9.6.1. Statement of the result. Recall the space Op)i ¢ of L G-opers with regular
singularity, residue @ (—p — A) and trivial monodromy, introduced in Section 9.2.3.
In this section we will prove the following result, which generalizes the isomorphism
(9.5-1) corresponding to A = 0. For g = sl, it was proved in [Frenkel 1995], and
for an arbitrary g in [Frenkel and Gaitsgory 2007c] (the proof presented below
is similar to that proof). It was also independently conjectured by Beilinson and
Drinfeld (unpublished).

Theorem 9.6.1. For any dominant integral weight A the center Z(g) maps surjec-

tively onto End=~ V;, and we have the following commutative diagram
K¢

Z(@ ——> FunOprg(DX)

l l

End/g\KC Vy, —~ > Fun Op)L‘ G
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Our strategy of the proof will be as follows: we will first construct a homomor-
phism V; — W, . Thus, we obtain the following maps:

My — Vi — Wy, (9.6-1)
and the corresponding maps of the algebras of endomorphisms

End~ M, — Enda V) — End~ Wj. (9.6-2)

According to Theorem 9.5.3 and the argument used in Lemma 6.3.4, the comp-
site map is the homomorphism of the algebras of functions corresponding to the
morphism

pa - Conn(Q )}, — OpEL (D) (—a—p)»

obtained by restriction from the Miura transformation. We therefore find that
the image of this composite map is precisely Fun Op{ ¢ C Fun Conn(Q_p))l‘) =
End~ W,.

On the other hand, we show that the second map in (9.6-2) is injective and its

image is contained in Fun Op),iG. This implies that Endfg\ V, is isomorphic to

Fun Op}g G

9.6.2. Weyl modules and Wakimoto modules. Let us now proceed with the proof
and construct a homomorphism V; — W, . Recall that the Wakimoto module W),
was defined by formula (9.4-5):

W), = My ® Fun Conn(2 )% . (9.6-3)

In order to construct a map V, — W, we observe (as we did previously, in Sections
6.2.3 and 9.4.1) that the action of the constant subalgebra g C g, on the subspace

W)LO = (C[cz;';,o]a,eAJr |0) ® 1 C My ® Fun Conn(Q_p))b

coincides with the natural action of g on the contragredient Verma module M. )T
realized as Fun Ny = C[yq]aea , , Where we substitute a;’ o> Vo (see Section 5.2.4)
for the definition of this action). In addition, the Lie subalgebra g ® t ® Cl[[t]] C g,
acts by zero on the subspace W,°, and 1 acts as the identity.
Therefore the injective g-homomorphism Vj — M )i“ gives rise to a non-zero
B¢, -homomorphism
1) \/)L — W)L,

. . . . 0 ~ %
sending the generating subspace V) C V), to the image of Vy in W;" >~ M ".
Now we obtain a sequence of maps

MA —> \/)L — WA. (9.6-4)
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According to formula (9.5-7), Theorem 9.5.3, and Proposition 9.2.1, we have

n ilp,A
End/\Kc Mk = (M)‘)}j_ ~ Fun Op]}‘sg(D)w(—)»—p) =~ Fun Op?g o

Next, according to Lemma 9.5.2, we have
End~ W, = (W;)SJF = Fun Conn(Q2 )%,

Note that by formula (9.6-3), Fun Conn(Q_p))b =|0) ® Fun Conn(Q_p))b is natu-
rally a subspace of W),
Finally, note that

Ende Vy = (V3 ® V)l = (v )1+

Indeed, any endomorphism of V), is uniquely determined by the image of the
generating subspace V). This subspace therefore defines a g[[¢]]-invariant element

of (Vy ® Vk*)g[[’]] and its highest weight vector gives rise to a vector in (\/;L)?Jr.
In the same way as before, we obtain that the resulting maps are isomorphisms.
We obtain the following commutative diagram:

n n n
(MA))L+ — (\/A)k+ - (W}»))\—i_
End~ M; —— End~» V; —— End~ Wy (9.6-5)
Fun Oprflg’)“ e ? — Fun Conn(Q_p))b

This implies that we have a sequence of homomorphisms

End> M, — End> V,; — End> W,. (9.6-6)

Moreover, it follows that End/g\ V; has a subquotient isomorphic to the image of
the homomorphism ‘

Fun Opr}jlg’)‘ — Fun Conn(Q_p)ﬁ (9.6-7)

obtained from the above diagram.
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By construction, the last homomorphism fits into a commutative diagram

Z@) —— End; M, — Endg W,
nilp,A

FunOprg(D*) —— FunOp, ;" —— FunConn(Q_p)})

and the composition
Fun OpL (D) — Fun Conn(Q_p)%

of the maps on the bottom row corresponds to the natural action of Z(g) on Wy.
According to Theorem 8.3.3, this map is the Miura transformation map. Therefore
the homomorphism (9.6-7) coincides with the homomorphism obtained by restric-
tion of the Miura transformation. The fact that this homomorphism factors through

Fun Opmlp " simply means that the image of Conn(Q‘p)ﬁ) C Conn(27°) px under

the Miura transformation belongs to Opnllp We already know that from formula

(9.3-4) and the diagram (9.3-5). Moreover we obtain from the diagram (9.6-5) that
the image of the homomorphism

Enda Vy — End=~ W)
nilp,A

is nothing but the algebra of functions on the image of Conn(Q2°)% p nOp.
under the Miura map. Let us find what this image is.

9.6.3. Nilpotent opers and Miura transformation. Recall the space MOp)i’é” C
MOp)g G defined in formula (9.3-11). Consider the case when w = 1. The corre-
sponding space MOp)L“’Cl; parametrizes pairs (x, B,o)’ where x = (#,V,FLp) €
Opnllp * and F, B.0 is a L B-reduction of the fiber at 0 € D of the L' G-bundle %
underlying ¥, which is stable under the residue Res 1 (x) and is in generic relative
position with the oper reduction L g . But since Res; (x) € Lng 1> We find that
such a reduction %, B.0 exists only if Res) (x) = 0, so that y € Op}i - The space
of such reductions for an oper yx satisfying this property is a torsor over the group
L Ng L0 (it is isomorphic to the big cell of the flag variety LG/ LB)
nilp, A

Thus, we obtain that the i 1mage of the forgetful morphism MOp 4 G —Op. " 1s
Op Lg C Opiﬂg’ ,and MOp iz G is a principal L Ny L g ,-bundle over Op LG

On the other hand, according to Theorem 9.3.6, we have an isomorphism

Conn(Q_p)}b a MOpi’G1 )
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and the Miura transformation Conn(Q ) D Opmlp’ coincides with the forgetful

nilp,A

map MOp 7 G — Op, ;~- Thus, we obtain the following:

Lemma 9.6.2. The image of Conn(Q_p))b in Opr}jlg’)” under the Miura transforma-
tion is equal to Opg“G. The map Conn(Q_p))b — Op)iG is a principal LNgQLB)O—

bundle over Op)L“ G

Let (\/;L)SJ”O be the subspace of (\/x);} Endﬁ V; which is the image of

the top left horizontal homomorphism in (9.6-6). Then we obtain the following
commutative diagram:

(\/A);H — FunConn(Q_p)%)

T T (9.6-8)

(\/;L)m” —_— Fun Op)g G

where the vertical maps are injective and the bottom horizontal map is surjective.
We now wish to prove that the top horizontal map is injective and its image is
contained in the image of the right vertical map. This would imply that the top
horizontal map and the left vertical map are isomorphisms, and hence we will obtain
the statement of Theorem 9.6.1.

As the first step, we will now obtain an explicit realization of

Fun Op* ¢ C Fun Conn(Q_p)ﬁ)

as the intersection of kernels of some screening operators, generalizing the descrip-
tion in the case A = 0 obtained in Section 8.2.3.

According to Lemma 9.6.2, Fun Op)L‘ ¢ 1s realized as the subalgebra of the
algebra Fun Conn(27° ))b which consists of the £ N L B’O—invariant, or equivalently,
Ing B,o-invariant functions. An element of Conn(Q_”))b is represented by an
operator of the form

A
0+ +u@),  u@)= > w7 e L], (9.6-9)
n=0
Therefore
Fun Conn(Q )}, = Clutimli=1....e:m<0, (9.6-10)

where u; , = (&, u,). Here and below we are using a canonical identification
Ly = h*. We now compute explicitly the action of generators of Lny. B,o on this
space, by generalizing our computation in Section 8.2.3 (which corresponds to the
case A = 0).
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For that we fix a Cartan subalgebra ) in Zb and a trivialization of %1 B,0 Such

that “ng, . is identified with “n, and “bgr s identified with “b_. Next,
. B.0

choose generators e;,i = 1,...,£, of Ln with respect to the action of L on

Ly in such a way that together with the previously chosen f; they satisfy the
standard relations of Lg. The Lng L p,-action on Conn(Q_p)}b then gives rise

to an infinitesimal action of the ¢;’s on Conn(Q_p))b. We will now compute the
corresponding derivation on Fun Conn(Q‘p))b.

With respect to our trivialization of Fr p ( the oper connection obtained by
applying the Miura transformation to (9.6-9) reads as follows:?

l
0+ Mifi—u@). u@)=) wy e Ly, (9.6-11)

i=1 n=0

where A; = (&, A).
The infinitesimal gauge action of ¢; on this connection operator is given by the
formula

L
Su(t) = —[xi(t)-e;. 0, + Y 1M fi—u()]. (9.6-12)
=1
where x;(¢) € C[[¢]] is such that x;(0) = 1, and the right hand side of formula

(9.6-12) belongs to Lh[[¢]]. These conditions determine x; () uniquely. Indeed, the
right hand side of (9.6-12) reads

M xi () -0 — ui (1)xi(t) - e; + ;X (1) - ¢4,
where u; (1) = (&, u(¢)). Therefore it belongs to Lh[[¢]] if and only if
0rxi(t) = ui(t)xi(2). (9.6-13)

If we write
xi@) =) xint ™",
n=<0

and substitute it into formula (9.6-13), we obtain that the coefficients x; , satisfy
the following recurrence relation:

NXip = — E Ui jcXi,ms n<0.
k+m=n;k<0;m=<0

3The minus sign in front of u(¢) is due to the fact that before applying the Miura transformation
we switch from connections on 7° to connections on 2.
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We find from this formula and the condition x;(0) = 1 that

— Ui, —m
int "= ——m]. 9.6-14
5 s = X o) e

Now we obtain that
su(t) = - x;(t) - o,
and so
Suj(t) = —t*ajixi (1),
where aj; = (&, ;) is the (j,7) entry of the Cartan matrix of g. In other words,
the operator ¢; acts on the algebra Fun Conn(Q_p))b = Clu; ] by the derivation

L

V,‘[X,’ +1]=- Zaj,- Z xi,n—kiaL’ (9.6-15)
j=1 n>A; Uj,—n—1

where the x; ;,’s are given by formula (9.6-14).

Note that when A; = 0,i = 1,..., £, this operator, which appeared in formula
(8.2-10) (up to the substitution u; , = —u; , aj; = a;;, because there we were
considering G-opers and connections on QA), was identified with a limit of the
(—1)st Fourier coefficient of a vertex operator between Fock representations of
the Heisenberg vertex algebra (see Section 8.1.2). We will show in the proof of
Proposition 9.6.7 that the operator (9.6-15) may be identified with the limit of the
—(X; + 1)st Fourier coefficient of the same vertex operator.

Now recall that we have identified Fun Op)L‘ ¢ With the algebra of Ly-invariant
functions on Conn(Q_p);‘). These are precisely the functions that are annihilated
by the generators ¢;,i = 1,...,¢, of Ln, which are given by formula (9.6-15).
Therefore we obtain the following characterization of Fun Opﬁ ¢ s a subalgebra of
Fun Conn(Q_p))b.

Proposition 9.6.3. The image of Fun Opﬁ ¢ in Fun Conn(Q_p)}) under the Miura

map is equal to the intersection of the kernels of the operators V,' [A; +1],i =
1,...,%, given by formula (9.6-15).

As a corollary of this result, we obtain a character formula for Fun Opﬁ ¢ With
respect to the Z4-grading defined by the operator Ly = —td;. According to
Lemma 9.6.2, the action of LN generated by the operators (9.6-15) on

Conn(Q2™° );‘)
is free. Therefore we have an isomorphism of vector spaces

Fun Conn(Q_p))b ~ Fun Op}iG QFun L N.
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According to formula (9.6-15), the operator ¢; is homogeneous of degree
—(Ai+ 1) =—(a;, A+ p)

with respect to the Z-grading introduced above. Therefore the degree of the
root generator ey, & € Ay, of Ln is equal to —(c, A + p). Hence we find that the
character of Fun L NV is equal to

l_[ (1 _q(ovt,)»+p))—1.
&€A+

On the other hand, since degu;, = —n, we find from formula (9.6-10) that the
character of Fun Conn(Q_p))l‘) is equal to

[Ta-am7"

n>0
Therefore we find that the character of Fun Op)L‘ ¢ 18 the ratio of the two, which we
rewrite in the form

(@, A+p)

1—g .
[1 WH [ a-¢H7" (9.6-16)

&e&_,_ i=1n;>d;+1

using the identity

¢ d;
l_[ (1 _q(&,p)) — l_[ l_[ (1—
el i=1m;=1

9.6.4. Computations with jet schemes. In order to complete the proof of Theo-
rem 9.6.1 it would suffice to show that the character of

End~ Vy = (V3 ® V;)dll]]

is less than or equal to the character of Fun OpﬁG given by formula (9.6-16).
In the case when A = 0 we have shown in Theorem 8.1.3 that the natural map
gr(Vo) ! s (gr V)9l is an isomorphism. This makes it plausible that the map

gr(Vy © Vel s (gr(vy, @ 1;))sli] 9.6-17)

is an isomorphism for all A. If we could show that the character of (gr(Vy ® V)\*))g[[’ l
is less than or equal to the character of Fun Op)L‘ - then this would imply that the
map (9.6-17) is an isomorphism, as well as prove Theorem 9.6.1, so we would be
done.

In this section and the next we will compute the character of (gr(V; ® VA*))Q[[’ I
However, we will find that for general A this character is greater than the character
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of Fun Op)L‘ - The equality is achieved if and only if A is a minuscule weight.
This means that the map (9.6-17) is an isomorphism if and only if A is minuscule.
Therefore this way we are able to prove Theorem 9.6.1 for minuscule A only.
Nevertheless, the results presented below may be of independent interest. In order
to prove Theorem 9.6.1 for a general A we will use another argument given in
Section 9.6.6.

Thus, our task at hand is to compute the character of (gr(V; ® VX*))Q[[I I The
PBW filtration on Uy (g) gives rise to a filtration on V, considered as the g, -
module generated from the subspace V). The corresponding associated graded
space is

grVy, = V3 ® Sym(g(())/gll?]) = V3 ® Fun g™[[7]].
Therefore we obtain an embedding
(er(Vy ® V)M < (V3 @ V¥ ® Fun g*[[¢]) .
Thus, we can find an upper bound on the character of End~ V), by computing the

character of (V3 ® V;* ® Fun g*[[t]])g[[t]]'

The first step is the computation of the algebra of invariants in Fun g*[[¢]] under
the action of the Lie algebra ¢g[[¢]] C g[[z]].
Recall the space

= g"/G = Spec(Fung*)® = Spec C[Pii-1....c.
and the morphism
p:gt—P.
Consider the corresponding jet schemes
IN® = Spec C[Pinli=1,...4:-N—1<n<0>

introduced in the proof of Theorem 3.4.2. Here and below we will allow N to be
finite or infinite (the definition of jet schemes is given in Section 3.4.2.
According to Theorem 3.4.2, we have

(Fun Jyg*)"NG = C[P; nli=1,....t;—N—1<n<o0-
In other words, the morphism
Inp:JIngt — INP
factors through an isomorphism

ING*/ING = IND,
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where, by definition,
IJng*/JInG = Spec(Fun Jng*)/NC.
We have natural maps g* — % and Jy% — %. Denote by f;\r@’ the fiber product
IND = INP x g*.
By definition, the algebra Fun :]\]/v@) of functions on :]7\79) is generated by
Fun Jy® = (Fun Jyg*)/NC
and Fun g*, with the only relation being that we identify elements of
(Fun Jyg*)'~¢
and Fun g* obtained by pull-back of the same element of (Fun g)C.
Consider the morphism

Inp:Ing* = IND,
A(t) = (I p(A(1)), A(0))
and the corresponding homomorphism of algebras
Fun Jy% — Fun Jyg*. (9.6-18)

Let Jy G be the subgroup of Jy G of elements congruent to the identity modulo
t. Note that the Lie algebra of JyG is Jyg = g ® (C[[1]]/¢tNT1C[[1]]) and the Lie
algebra of Jy G is Jyg™ = g® (C[[r]]/tVN ' C[[r]]). For all algebras that we
consider in the course of this discussion the spaces of invariants under Jxy G (resp.,
JnNGM) are equal to the corresponding spaces of invariants under Jyg (resp.,
IngD).

It is clear that the image of the homomorphism (9.6-18) consists of elements of
Fun J g* that are invariant under the action of Jy g(l) (and hence J, NG(I)).

Proposition 9.6.4. The homomorphism (9.6-18) is injective and its image is equal
to the algebra of Jn g™V -invariants in Fun Jxg* (for both finite and infinite N ).

Proof. As in the proof of Theorem 3.4.2, consider the subset g;"eg of regular
elements in g*. Then we have a smooth and surjective morphism pre, : g* — P. The
corresponding morphism Ju preg : J Ng;"eg — JNy P is also smooth and surjective.
It follows from the definition of jet schemes that

NGy = Oy x (97 ® L/ V'Ol

Therefore Jp g;"eg is a smooth subscheme of Jyg*, which is open and dense, and
its complement has codimension greater than 1.
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As explained in the proof of Theorem 3.4.2, each fiber of Jy preg consists of a
single orbit of the group JnG. We used this fact to derive that

(Fun Jyg*)/N% = (Fun Jngh,)'NC ~ N ®.

Now we wish to consider the invariants not with respect to the group Jnx G, but
with respect to the subgroup Jy G C JyG. We again have

(Fun Jyg*)"¥" = (Fun Jyg}s,) v G

reg

so we will focus on the latter algebra.
Let us assume first that N is finite.
We show first that the homomorphism (9.6-18) is injective. Let

JN@reg = ]N@ ;gjeg'
Consider the morphism

t};preg : JNg;g - E@reg’
A(1) = (JN Preg(A(2)). A(0)).

We claim that it is surjective. Indeed, suppose that we are given a point (¢, x) €
E@mg. Since the map Jj preg is surjective, there exists A(t) € Jy g:"eg such that
JN Preg(A(t)) = ¢. But then A(0) and x are elements of g;"eg such that preg(A(0)) =
Preg(x). We know that the group G acts transitively along the fibers of the map
Dreg- Therefore x = g - A(0) for some g € G. Hence .mpreg(g A1) = (¢, x).
Thus, .7]:/ Preg 18 surjective, and therefore (9.6-18) is injective.

The group Jy G acts along the fibers of the map :]\1/\1 Preg- We claim that each
fiber is a single Jy G-orbit.

In order to prove this, we describe the stabilizers of the points of Jy g;“eg under
the action of the group Jy G. Any element of J G may be written in the form

N
g(t) = goexp (Z ymtm) . g€G.ymeq.
m=1
The condition that g(¢) stabilizes a point
N
x(t)=ant”, xoeg:‘eg;xneg*,n>0,
n=0
of Jn g;"eg is equivalent to a system of recurrence relations on gg and yq, ..., ym.

The first of these relations is gg - X9 = Xxo, which means that g, belongs to the
stabilizer of x(. The next relation is

ady, (1) = x1 —go' X
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It is easy to see that for a regular element x¢ and any x; € g* the right hand side is
always in the image of ad;"co. Therefore this relation may be resolved for y;. But
since the centralizer of xo has dimension £ = rank(g), we obtain an £-dimensional
family of solutions for ;.

We continue solving these relations by induction. The mith recurrence relation
has the form: adj‘co (ym) equals an element of g* that is completely determined by
the solutions of the previous relations. If this element of g* is in the image of ad} .
then the mth relation may be resolved for y,,, and we obtain an £-dimensional
family of solutions. Otherwise, there are no solutions, and the recurrence procedure
stops. This means that there is no g(¢) € Jy G with g(0) = g in the stabilizer of
x(1).

It follows that the maximal possible dimension of the centralizer of any x(¢) €
J Ng;“eg in JyG is equal to (N 4 1)£. This bound is realized if and only if for
generic go € Staby,(G) all recurrence relations may be resolved (i.e., the right
hand side of the mth relation is in the image of ad;"c0 forallm=1,..., N). Butif
these relations may be resolved for generic g¢, then they may be resolved for all
go € Staby,, (G). Thus, we obtain that the centralizer of x(f) € Jn g;"eg in JnyG has
dimension (N + 1)£ if and only if for any g¢ € Staby,(G) all recurrence relations
may be resolved.

However, observe that the dimension of Jy gl?‘eg is equal to (N + 1)dim g, and
the dimension of Jy % is equal to (N + 1)£. Therefore the dimension of a generic
fiber of the map Jy preg is equal to (N + 1)(dim g —£). Since the group Jy G acts
transitively along the fibers, we find that the dimension of the stabilizer of a generic
point of Jy gr’zg is equal to (N + 1)£. Therefore for a generic x () € Jn g;"eg all of
the above recurrence relations may be resolved, for any go € Staby,,. But then they
may be resolved for all x(7) and go € Staby,. In particular, we find that for any
x(t) € JNg;keg and go € Staby,(G) there exists g(¢) € JyG such that g(0) = go
and g(¢) - x (1) = x(2).

Now we are ready to prove that each fiber of .T]\/r Dreg 18 a single J NG -orbit.
Consider two points x1(?), x(¢) € Jn g;"eg that belong to the same fiber of the map
:l; Dreg- In particular, we have x(0) = x,(0) = xo. These two points also belong
to the same fiber of the map J preg. Therefore there exists g(¢) € Jy G such that
Xx2(t) = g(t) - x1(¢). This means, in particular, that g(0) - xo = x¢. According
to the previous discussion, there exists g(z) € JyG such that g(0) = g(0) and
Z(t) - x2(1) = x,(t). Therefore 3(t)"'g(r) € Jx G has the desired property: it
transforms x1(¢) to x, ().

Thus, we obtain that each fiber of T]\lr PDreg 18 a single J NG orbit. In the
same way as in the proof of Theorem 3.4.2 this implies that the algebra of Jy G-
invariants in Fun Jy g;“eg, and hence in Fun J g*, is equal to the image of Fun .7]\;97’



9.6. ENDOMORPHISMS OF THE WEYL MODULES 301

under the injective homomorphism (9.6-18). This completes the proof for finite
values of N.

Finally, consider the case of infinite jet schemes. As before, we will denote
JooX by JX. By definition, any element A of Fun JP comes by pull-back from
an element Ay of Fun JP for sufficiently large N. The image of A in Fun Jg*
is the pull-back of the image of A in Fun Jyg*. Therefore the injectivity of the
homomorphism (9.6-18) for finite N implies its injectivity for N = oo.

Any J G (D-invariant function on J g:‘eg comes by pull-back from a J NG
invariant function on Jy g;"eg. Hence we obtain that the algebra of J G (D-invariant
functions on Jgp, is equal to Fun JP. |

It is useful to note the following straightforward generalization of this proposition.

For N as above, let k& be a non-negative integer less than N. Denote by J ](f )gp
the fiber product

&) *
I P=JINP x J
N N T k9
with respect to the natural morphisms Jy® — J;® and Jig* — JiP.
Consider the morphism
() ()
J](\,)p cJINgF — J](\,)Q]‘,
A@t) = (Jy p(A@)). A®) mod (*F1))

and the corresponding homomorphism of algebras

Fun J V% — Fun Jyg*. 9.6-19)

Let JyG*TD be the subgroup of Jy G of elements congruent to the identity
modulo (£K+1). Note that the Lie algebra of JyG*+1) is

Ing® D = g (K1) N Cl).

By repeating the argument used in the proof of Proposition 9.6.4, we obtain the
following generalization of Proposition 9.6.4 (which corresponds to the special case
k =0):

Proposition 9.6.5. The homomorphism (9.6-19) is injective and its image is equal
to the algebra of Jn g(k +D invariants in Fun Jy g* (for both finite and infinite N ).

9.6.5. The invariant subspace in the associated graded space. The group G and
the Lie algebra g naturally act on the space of J G (M_invariant polynomial functions
on Jg* = g*[[t]], preserving the natural Z,-grading on the algebra Fun g*[[z]]
defined by the degree of the polynomial. By Proposition 9.6.4, this space of J G-
invariant functions is isomorphic to Fun JP. As a Z 4 -graded g-module, the latter
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is isomorphic to
Fung*/(Ian*)-l- %’ G:[?i,n]izl ..... 4;n<0-

Here (Inv g*) 4+ denotes the ideal in Fun g* generated by the augmentation ideal of

the subalgebra Inv g* of g-invariants. The action of g is non-trivial only on the first

factor, and the Z -grading is obtained by combining the gradings on both factors.
Therefore we have an isomorphism of Z-graded vector spaces

= Homgy(V3, ® V;*,Fung®/(Inv g*) 1) ® C[Pinli=1,.. t;n<0- (9.6-20)

Let us compute the character of (9.6-20).

According to a theorem of B. Kostant [1963], for any g-module V' the Z 4 -graded
space Homg(V, Fun g* /(Inv g*) ) is isomorphic to the space of ge-invariants of
V', where e is a regular nilpotent element of g and g, is its centralizer (which is an
£-dimensional commutative Lie subalgebra of g). Without loss of generality, we
will choose e to be the element ) _, e;, where {e, },— . are generators of n. Then
e is contained in the sl,-triple { f, p, e} C g. The corresponding Z 4 -grading on the
space V9% is the Z4-grading defined by the action of p with appropriate shift (see
below).

Thus, we obtain that the character of the first factor

Homg (V3 ® V", Fung®/(Inv g*)4) (9.6-21)
in the tensor product appearing in the right hand side of (9.6-20) is equal to
V), ® Vk*)ge = Homyg,)(Va, V2).

If V), were a cyclic module over the polynomial algebra U(g,.), generated by a
lowest weight vector u), then any homomorphism of U(g.)-modules V; — V3
would be uniquely determined by the image of u;. Hence we would obtain that

Homgg,)(Va, Va) = Wy,

where the grading on the right hand side is the principal grading on V3 minus
(A, p) (note that the weight of u; is equal to —(A, p)). Thus, we would find that
the character of (9.6-21) is equal to the principal character of Vj times q_()"b).
According to formula (10.9.4) of [Kac 1990], the latter is equal to

| — gl@A+o)
chv, =[] T (9.6-22)
&GA.F
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Therefore the sought-after character of (V; ® V¥ ® Fun g*[[z]])g [[t]], which is equal
to the character of the right hand side of (9.6-20), would be given by formula
(9.6-16).

However, V3 is a cyclic module over U(g,) if and only if A is a minuscule (i.e.,
each weight in 1} has multiplicity one). The “only if” part follows from the fact
that the dimension of (V3 ® Vk*)gf is equal to the dimension of the subspace of
Vi ® VA* of weight 0 (see [Kostant 1963]), which is equal to

D (dm Vi (w)? > Y dim V3 (p) = dim V3.
u u

unless A is minuscule (here V) (1) denotes the weight ;« component of V). The “if”
part is a result of V. Ginzburg, see [1995], Prop. 1.8.1 (see also [Ginzburg 1998]).

Thus, for a minuscule weight A the above calculation implies that the char-
acter of End@( V), = (V) ® V)L*)g[[’]], whose associated graded is contained in

the space (V3 ® V¥ ® Fun g*[[z]])g[[t]], is less than or equal to the character of
Fun Op),:G given by formula (9.6-16). Since we already know from the results
of Section 9.6.2 that Fun Op L 1s isomorphic to a subquotient of EndA Vj,, this

implies the statement of Theorem 9.6.1 for minuscule highest weights k
But for a non-minuscule highest weight A we find that the character of

(Vk ® V)\* ® Fun g*[[t]])G[[t]]

is strictly greater than the character of Fun Op% > and hence the above computation
cannot be used to prove Theorem 9.6.1. (Furthermore, this implies that the map
(9.6-17) is an isomorphism if and only if A is minuscule.) We will give another
argument in the next section.

9.6.6. Completion of the proof. We will complete the proof of Theorem 9.6.1 by
showing that the top horizontal homomorphism of the diagram (9.6-8),

Vs ® V)l = (v ) — Fun Conn(Q )%, (9.6-23)

is injective and its image is contained in the intersection of the kernels of the
operators Vi [Ai +1],i =1,...,4, given by formula (9.6-15).

The following statement (generalizing Proposition 7.1.1, corresponding to the
case A = 0) is proved in [Frenkel and Gaitsgory 2007c].

Theorem 9.6.6. The map 1) : V) — W, is injective for any dominant integral
weight A.
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Therefore the map (9.6-23) is injective. By Lemma 9.5.2, (WX)2+ is the subspace
Fun Conn(Q_p);‘) =1 C Wj.

Therefore we obtain an injective map

(V) + <> Funy,. (9.6-24)

Proposition 9.6.7. The image of the map (9.6-24) is contained in the intersection
of the kernels of the operators Vi[Ai + 1],i = 1,..., £, given by formula (9.6-15).

Proof. We use the same proof as in Proposition 7.3.6, which corresponds to the
case A = 0. In Section 7.3.5 we constructed, for any dominant integral weight A,
the screening operators

<)

S WAKC_)WOAKL

which commute with the action of g, .- It is clear from formula (7.3-17) for these
operators that they annihilate the highest weight vector in W) . Since the image of
Vy in Wy, = W, ., is generated by this vector, we find that this image is contamed

in the intersection of the kernels of the operators S S)a . But the image of (\/A) ,

also contained in the subspace ) C W) . Therefore it is contained in the intersection

of the kernels of the operators obtained by resticting S 43 to ) C W). Asexplained
at the end of Section 7.3.5, this restriction is equal to the operator V;[A; + 1] given
by formula (7.3-18).

Comparlng formula (7.3-18) to (9.6-15), we fi find that upon substitution b; , > u; ,
the operator V;[A; + 1] becoms the operator Vi [A; + 1] given by formula (9.6-15).
This completes the proof. O

Now injectivity of the map (9.6-23), Proposition 9.6.7 and Proposition 9.6.3
imply that the map

(\/k)2+ — 1) = Fun Conn(Q_p))b

is injective and its image is contained in Fun Opﬁ ¢ C Fun Conn(Q_p))b. As
explained in Section 9.6.3 (see the discussion after the diagram (9.6-8)), this proves
Theorem 9.6.1.



CHAPTER 10

Constructing the Langlands
correspondence

It is time to use the results obtained in the previous chapters in our quest for the
local Langlands correspondence for loop groups. So we go back to the question
posed at the end of Chapter 1: let

Loczg(D*) = {a, + A(t), A@t) € Lg((t))} /EG(1) (10.0-25)

be the set of gauge equivalence classes of ' G-connections on the punctured disc
D> = Spec C((¢)). We had argued in Chapter 1 that Locr g (D) should be taken
as the space of Langlands parameters for the loop group G((¢)). Recall that the loop
group G((¢)) acts on the category g, -mod of (smooth) g-modules of level « (see
Section 1.3.6 for the definition of this category). We asked the following question:

Associate to each local Langlands parameter o € LocLg(D>) a

subcategory g, -mody of @, -mod which is stable under the action

of the loop group G((t)).
Even more ambitiously, we wish to represent the category g, -mod as “fibering”
over the space of local Langlands parameters Locr g (D>), with the categories
9, -mod, being the “fibers” and the group G((¢)) acting along these fibers. If we
could do that, then we would think of this fibration as a “spectral decomposition”
of the category g, -mod over Locz g (D).

At the beginning of Chapter 2 we proposed a possible scenario for solving this
problem. Namely, we observed that any abelian category may be thought of as
“fibering” over the spectrum of its center. Hence our idea was to describe the center
of the category @, -mod (for each value of k) and see if its spectrum is related to
the space Locr g (D) of Langlands parameters.

305
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We have identified the center of the category g, -mod with the center Z, (g)
of the associative algebra Uy (g), the completed enveloping algebra of g of level
K, defined in Section 2.1.2. Next, we described the algebra Z,(g). According
to Proposition 4.3.9, if k # k., the critical level, then Z,(g) = C. Therefore our
approach cannot work for k # k.. However, we found that the center Z,, (g) at
the critical level is highly non-trivial and indeed related to £ G-connections on the
punctured disc.

In this chapter, following my joint works with D. Gaitsgory [Frenkel and Gaits-
gory 2004; Frenkel and Gaitsgory 2006¢; Frenkel and Gaitsgory 2006a; Frenkel and
Gaitsgory 2005; Frenkel and Gaitsgory 2006b; Frenkel and Gaitsgory 2007c], we
will use these results to formulate more precise conjectures on the local Langlands
correspondence for loop groups and to provide some evidence for these conjectures.
We will also discuss the implications of these conjectures for the global geometric
Langlands correspondence.

We note that A. Beilinson has another proposal [2006] for local geometric
Langlands correspondence, using representations of affine Kac—Moody algebras
of levels less than critical. It would be interesting to understand the connection
between his proposal and ours.

Here is a more detailed plan of this chapter. In Section 10.1 we review the relation
between local systems and opers. We expect that the true space of Langlands
parameters for loop groups is the space of £G-local systems on the punctured
disc D*. On the other hand, the category of g,..-modules fibers over the space of
L G-opers on D*. We will see that this has some non-trivial consequences. Next, in
Section 10.2 we introduce the Harish-Chandra categories; these are the categorical
analogues of the subspaces of invariant vectors under a compact subgroup K C G(F).
Our program is to describe the categories of Harish-Chandra modules over g, in
terms of the Langlands dual group £ G and find connections and parallels between
the corresponding objects in the classical Langlands correspondence. We implement
this program in two important examples: the “unramified” case, where our local
system on D* is isomorphic to the trivial local system, and the “tamely ramified”
case, where the corresponding connection has regular singularity and unipotent
monodromy.

The unramified case is considered in detail in Section 10.3. We first recall
that in the classical setting it is expressed by the Satake correspondence between
isomorphism classes of unramified representations of the group G(F) and semi-
simple conjugacy classes in the Langlands dual group £G. We then discuss the
categorical version of this correspondence. We give two realizations of the cat-
egorical representations of the loop group associated to the trivial local system,
one in terms of g, -modules and the other in terms of %-modules on the affine
Grassmannian, and the conjectural equivalence between them. In particular, we
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show that the corresponding category of Harish-Chandra modules is equivalent to
the category of vector spaces, in agreement with the classical picture.

The tamely ramified case is discussed in Section 10.4. In the classical setting the
corresponding irreducible representations of G'(F') are in one-to-one correspondence
with irreducible modules over the affine Hecke algebra associated to G(F). Ac-
cording to [Kazhdan and Lusztig 1987; Chriss and Ginzburg 1997], these modules
may be realized as subquotients of the algebraic K-theory of the Springer fibers
associated to unipotent elements of G (which play the role of the monodromy
of the local system in the geometric setting). This suggests that in our categorical
version the corresponding categories of Harish-Chandra modules over g, should
be equivalent to suitable categories of coherent sheaves on the Springer fibers (more
precisely, we should consider here the derived categories). A precise conjecture to
this effect was formulated in [Frenkel and Gaitsgory 2006c]. In Section 10.4 we
discuss this conjecture and various supporting evidence for it, following [Frenkel
and Gaitsgory 2006c; Frenkel and Gaitsgory 2006a; Frenkel and Gaitsgory 2005;
Frenkel and Gaitsgory 2006b]. We note that the appearance of the Springer fiber
may be traced to the construction associating Wakimoto modules to Miura opers
exposed in the previous chapter. We emphasize the parallels between the classical
and the geometric pictures. We also present some explicit calculations in the case
of g = sl,, which should serve as an illustration of the general theory.

Finally, in Section 10.5 we explain what these results mean for the global
geometric Langlands correspondence. We show how the localization functors link
local categories of Harish-Chandra modules over g,.. and global categories of Hecke
eigensheaves on moduli stacks of G-bundles on curves with parabolic structures.
We expect that, at least in the generic situation, the local and global categories
are equivalent to each others. Therefore our results and conjectures on the local
categories translate into explicit statements on the structure of the categories of
Hecke eigensheaves. This way the representation theory of affine Kac—-Moody
algebras yields valuable insights into the global Langlands correspondence.

10.1. Opers vs. local systems

Over the course of several chapters we have given a detailed description of the center
Z . (9) at the critical level. According to Theorem 4.3.6 and related results obtained
in Chapter 8, Zy, (g) is isomorphic to the algebra Fun Opz 5 (D) of functions on
the space of L G-opers on the punctured disc D*, in a way that is compatible with
various symmetries and structures on both algebras. Now observe that there is a
one-to-one correspondence between points x € Opr g (D™) and homomorphisms
(equivalently, characters)

Fun OpLg(D™) — C,
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corresponding to evaluating a function at y. Hence points of Opr g (D™) parame-
terize central characters Z,_(g) — C.
Given a L' G-oper x € OpLg (D), we define the category

g K(}-mod X

as a full subcategory of g, -mod whose objects are g-modules of critical level
(hence U «. (@)-modules) on which the center Z,,.(g) C U «. (@) acts according to
the central character corresponding to y. Since the algebra Opr g (D) acts on the
category g, -mod, we may say that the category g, -mod “fibers” over the space
Oprg(D™), in such a way that the fiber-category corresponding to x € Opr (D)
is the category @, -mody.

More generally, for any closed algebraic subvariety ¥ C Opr g (D™) (not neces-
sarily a point), we have an ideal

Iy C FunOpLg(DX) =~ ch(ﬁ)

of those functions that vanish on Y. We then have a full subcategory g, -mody of
8i,-mod whose objects are g-modules of critical level on which Iy acts by 0. This
category is an example of a “base change” of the category g, -mod with respect to
the morphism ¥ — OpL (D). Itis easy to generalize this definition to an arbitrary
affine scheme Y equipped with a morphism ¥ — Opr g (D*). The corresponding
base changed categories ﬁkc—mody may then be “glued” together, which allows
us to define the base changed category g, -mody for any scheme ¥ mapping to
OpLg (D). It is not difficult to generalize this to a general notion of an abelian
category fibering over an algebraic stack (see [Gaitsgory 2005]). A model example
of a category fibering over an algebraic stack % is the category of coherent sheaves
on an algebraic stack & equipped with a morphism & — %Y.

Recall that the group G((¢)) acts on U «. (9) and on the category g, -mod. Ac-
cording to Proposition 4.3.8, the action of G((?)) on Z . (g) C U «. (@) is trivial.
Therefore the subcategories g, -mod, (and, more generally, g, -mody) are stable
under the action of G((¢)). Thus, the group G((z)) acts “along the fibers” of the
“fibration” ﬁxc—mod — Opr g (D™) (see [Frenkel and Gaitsgory 2006¢], Section 20,
for more details).

The fibration g, -mod — Opr g (D) almost gives us the desired local Langlands
correspondence for loop groups. But there is one important difference: we asked
that the category g, -mod fiber over the space Locz g (D) of local systems on
D*. We have shown, however, that g, -mod fibers over the space Opz (D) of
L G-opers.

What is the difference between the two spaces? While a L' G-local system is a
pair (%, V), where % is an ' G-bundle and V is a connection on %, an ©G-oper
is a triple (%, V, %L ), where & and V are as before, and ¥ p is an additional
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piece of structure; namely, a reduction of % to a (fixed) Borel subgroup £ B c LG
satisfying the transversality condition explained in Section 4.2.1. Thus, for any
curve X we clearly have a forgetful map

Oprg(X) — Locrg(X).

The fiber of this map over (%, V) € Locr g (X) consists of all L B-reductions of %
satisfying the transversality condition with respect to V.

It may well be that this map is not surjective, i.e., that the fiber of this map over a
particular local system (%, V) is empty. For example, if X is a projective curve and
L @G is a group of adjoint type, then there is a unique = G-bundle %, such that the
fiber over (¥¢, V) is non-empty. Furthermore, for this % the fiber over (%q, V)
consists of one point for any connection V (in other words, for each connection
V on %, there is a unique £ B-reduction %1, p of Fg satisfying the transversality
condition with respect to V).

The situation is quite different when X = D*. In this case any L G-bundle %
may be trivialized. A connection V therefore may be represented as a first order
operator d; + A(t), A(t) € Lg((t)). However, the trivialization of % is not unique;
two trivializations differ by an element of G ((¢)). Therefore the set of equivalence
classes of pairs (%, V) is identified with the quotient (10.0-25).

Suppose now that (%, V) carries an oper reduction %1 g. Then we consider only
those trivializations of & which come from trivializations of % p. There are fewer
of these, since two trivializations now differ by an element of L B((t)) rather than
LG((t)). Due to the oper transversality condition, the connection V must have a
special form with respect to any of these trivializations; namely,

L
V=03 +) vit) fi +v(0),

i=1
where each ¥; () # 0 and v(¢) € Lb(()) (see Section 4.2.2). Thus, we obtain a

concrete realization of the space of opers as a space of gauge equivalence classes

OPLG(DX) =

L
= 0+ >_wi) fi + V(). i #0.v() € Lb(0) /LB((t)). (10.1-1)

i=1
Now the map
o :0pLg(D™) — LocLg (D)

simply takes a = B((¢))-equivalence class of operators of the form (10.1-1) to its
L G((t))-equivalence class.
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Unlike the case of projective curves X discussed above, we expect that the map
« is surjective for any simple Lie group LG. This has been proved in [Deligne
1970] in the case of S'L,, and we conjecture it to be true in general.

Conjecture 10.1.1. The map o is surjective for any simple Lie group L G.

Now we find ourselves in the following situation: we expect that there exists
a category 6 fibering over the space Locr g (D™) of “true” local Langlands pa-
rameters, equipped with a fiberwise action of the loop group G((¢)). The fiber
categories €, corresponding to various o € Locrg(D™) should satisfy various,
not yet specified, properties. Moreover, we expect 6 to be the universal category
equipped with an action of G((¢)). In other words, we expect that Locr g (D) is
the universal parameter space for the categorical representations of G((¢)) (at the
moment we cannot formulate this property more precisely). The ultimate form
of the local Langlands correspondence for loop groups should be, roughly, the
following statement:

categories fibering categories equipped
= 10.1-2
over Locrg(D™) with action of G((¢)) (10.1-2)

The idea is that given a category s on the left hand side we construct a category on
the right hand side by taking the “fiber product” of &{ and the universal category €
over LocL (D).

Now, we have constructed a category g, -mod, which fibers over a close cousin
of the space Locr g (D) — namely, the space Opzg(D>) of LG-opers — and is
equipped with a fiberwise action of the loop group G((¢)).

What should be the relationship between g, -mod and the conjectural universal
category €?

The idea of [Frenkel and Gaitsgory 2006c¢] is that the second fibration is a “base
change” of the first one, that is, there is a Cartesian diagram

G mod —— %

l J (10.1-3)

OprLg(D>) LN LocLg(D™)

that commutes with the action of G((¢)) along the fibers of the two vertical maps.
In other words,

9,.-mod >~ 6 X o) D™).

Bice Locr (D>) pLG( )
Thus, g, -mod should arise as the category on the right hand side of the correspon-
dence (10.1-2) attached to the category of quasicoherent sheaves on OpL g (D) on
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the left hand side. The latter is a category fibering over Locz (D), with respect
to the map Opr (D) — Locr (D).

At present, we do not have a definition of 6, and therefore we cannot make this
isomorphism precise. But we will use it as our guiding principle. We will now
discuss various corollaries of this conjecture and various pieces of evidence that
make us believe that it is true.

In particular, let us fix a Langlands parameter 0 € Locr g(D™) that is in the
image of the map o (according to Conjecture 10.1.1, all Langlands parameters
are). Let x be an £ G-oper in the preimage of o, ! (¢). Then, according to the
above conjecture, the category g, -mod, is equivalent to the “would be” Langlands
category €, attached to 0. Hence we may take g, -mod, as the definition of €.

The caveat is, of course, that we need to ensure that this definition is independent
of the choice of x in @~ !(c). This means that for any two LG—opers, x and ¥/, in
the preimage of o, the corresponding categories, g, -mod, and g, -mod,-, should
be equivalent to each other, and this equivalence should commute with the action
of the loop group G((¢)). Moreover, we should expect that these equivalences
are compatible with each other as we move along the fiber a~! (o). We will not
try to make this condition more precise here (however, we will explain below in
Conjecture 10.3.10 what this means for regular opers).

Even putting the questions of compatibility aside, we arrive at the following
rather non-trivial conjecture.

Conjecture 10.1.2. Suppose that x, x' € OpLg(D>) are such that a(x) = a(x'),
i.e., that the flat L G-bundles on D* underlying the £ G-opers x and ' are isomor-
phic to each other. Then there is an equivalence between the categories g, -mody
and G, -mod,s which commutes with the actions of the group G((t)) on the two
categories.

Thus, motivated by our quest for the local Langlands correspondence, we have
found an unexpected symmetry in the structure of the category g, -mod of g-modules
of critical level.

10.2. Harish—Chandra categories

As we explained in Chapter 1, the local Langlands correspondence for the loop group
G ((?)) should be viewed as a categorification of the local Langlands correspondence
for the group G(F), where F is a local non-archimedian field. This means that
the categories 6, equipped with an action of G((¢)), that we are trying to attach to
the Langlands parameters o € LocL g (D) should be viewed as categorifications
of the smooth representations of G'(F) on complex vector spaces attached to the
corresponding local Langlands parameters discussed in Section 1.1.5. Here we use
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the term “categorification” to indicate that we expect the Grothendieck groups of
the categories 6, to “look like” irreducible smooth representations of G(F).

Our goal in this chapter is to describe the categories €, as categories of g, -
modules. We begin by taking a closer look at the structure of irreducible smooth
representations of G(F).

10.2.1. Spaces of K -invariant vectors. It is known that an irreducible smooth
representation (R, ) of G(F) is automatically admissible, in the sense that for
any open compact subgroup K, such as the Nth congruence subgroup K defined
in Section 1.1.2, the space R™ (K) of K-invariant vectors in R is finite-dimensional.
Thus, while most of the irreducible smooth representations (R, ) of G(F) are
infinite-dimensional, they are filtered by the finite-dimensional subspaces R™ (K)
of K-invariant vectors, where K are smaller and smaller open compact subgroups.
The space R™X) does not carry an action of G(F), but it carries an action of the
Hecke algebra H(G(F), K).

By definition, H(G(F), K) is the space of compactly supported K bi-invariant
functions on G(F). It is given an algebra structure with respect to the convolution
product

i+ f)(g) = /G INACVAOYD (102-1)

where dh is the Haar measure on G'(F') normalized in such a way that the volume
of the subgroup Koy = G(0) is equal to 1 (here O is the ring of integers of F;e.g.,
for F' = F4((¢)) we have O = F4[[¢]]). The algebra H(G(F), K) acts on the space
R™X) by the formula

frv= / filgh ™ (h)-v)dh,  ve RTHO. (10.2-2)
G(F)

Studying the spaces of K-invariant vectors and their #(G(F'), K)-module struc-
ture gives us an effective tool for analyzing representations of the group G(F),
where F = F,((?)).

Can we find a similar structure in the categorical local Langlands correspondence
for loop groups?

10.2.2. Equivariant modules. In the categorical setting a representation (R, ) of
the group G(F) is replaced by a category equipped with an action of G((¢)), such
as g, -mody. The open compact subgroups of G(F) have obvious analogues for
the loop group G((¢)) (although they are, of course, not compact with respect to the
usual topology on G((?))). For instance, we have the “maximal compact subgroup”
Ko = G[[t]], or, more generally, the N th congruence subgroup K 7, whose elements
are congruent to 1 modulo Y C[[¢]]. Another important example is the analogue
of the Iwahori subgroup. This is the subgroup of G[[¢]], which we denote by 1,
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whose elements g(¢) have the property that their value at 0, that is g(0), belong to
a fixed Borel subgroup B C G.

Now, in the categorical setting, an analogue of a vector in a representation
of G(F) is an object of our category, i.e., a smooth g, -module (M, p), where
p 1 8y, — End M. Hence for a subgroup K C G((¢)) of the above type an analogue
of a K-invariant vector in a representation of G(F) is a smooth g,..-module (M, p)
which is stable under the action of K. Recall from Section 1.3.6 that for any
g € G((t)) we have a new g, -module (M, pg), where pg(x) = p(Adg(x)). We
say that (M, p) is stable under K, or that (M, p) is weakly K-equivariant, if
there is a compatible system of isomorphisms between (M, p) and (M, py) for all
k € K. More precisely, this means that for each k € K there exists a linear map
TkM : M — M such that

T pCNTM ™ = p(Ade (v)
for all x € g, and we have
M MM M
T] - IdM, Tkl Tk2 = TklkZ'

Thus, M becomes a representation of the group K.! Consider the corresponding
representation of the Lie algebra € =Lie K on M . Let us assume that the embedding
& < g((v) lifts to £ < 7, (i.e., that the central extension cocycle is trivial on ).
This is true, for instance, for any subgroup contained in K¢ = G|[[¢]], or its conjugate.
Then we also have a representation of € on M obtained by restriction of p. In
general, the two representations do not have to coincide. If they do coincide, then
the module M is called strongly K-equivariant, or simply K-equivariant.

The pair (g, . K) is an example of Harish-Chandra pair, that is, a pair (g, H)
consisting of a Lie algebra g and a Lie group H whose Lie algebra is contained in
g. The K-equivariant g, -modules are therefore called (g, . K) Harish-Chandra
modules. These are (smooth) g,..-modules on which the action of the Lie algebra
Lie K C 3, may be exponentiated to an action of K (we will assume that K
is connected). We denote by ﬁK(,-modK and /g\,cc—modf the full subcategories of
8¢,-mod and g, -mod,, respectively, whose objects are (g, , K) Harish-Chandra
modules.

We stipulate that the analogues of K-invariant vectors in the category g, -mody
are (ﬁxc, K) Harish—Chandra modules. Thus, while the categories ﬁxc—modx should
be viewed as analogues of smooth irreducible representations (R, i) of the group

In general, it is reasonable to modify the last condition to allow for a non-trivial two-cocycle
and hence a non-trivial central extension of K; however, in the case of interest K does not have any
non-trivial central extensions.
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G(F), the categories ﬁ,cc-modf are analogues of the spaces of K-invariant vectors
Rrr(K) )

Next, we discuss the categorical analogue of the Hecke algebra H(G(F), K).

10.2.3. Categorical Hecke algebras. We recall that H(G(F), K) is the algebra of
compactly supported K bi-invariant functions on G(F). We realize it as the algebra
of left K-invariant compactly supported functions on G(F)/ K. In Section 1.3.3 we
have already discussed the question of categorification of the algebra of functions
on a homogeneous space like G(F)/ K. Our conclusion was that the categorical
analogue of this algebra, when G (F) is replaced by the complex loop group G((¢)),
is the category of %-modules on G(())/ K. More precisely, this quotient has the
structure of an ind-scheme which is a direct limit of finite-dimensional algebraic
varieties with respect to closed embeddings. The appropriate notion of (right) %-
modules on such ind-schemes is formulated in [Beilinson and Drinfeld 1997] (see
also [Frenkel and Gaitsgory 2004; Frenkel and Gaitsgory 2006c]). As the categorical
analogue of the algebra of left K-invariant functions on G(F)/K, we take the
category #(G((?)), K) of K-equivariant %-modules on the ind-scheme G((¢))/ K
(with respect to the left action of K on G((¢))/ K). We call it the categorical Hecke
algebra associated to K.

It is easy to define the convolution of two objects of the category #(G (), K)
by imitating formula (10.2-1). Namely, we interpret this formula as a composition
of the operations of pulling back and integrating functions. Then we apply the
same operations to %-modules, thinking of the integral as push-forward. However,
here one encounters two problems. The first problem is that for a general group
K the morphisms involved will not be proper, and so we have to choose between
the x- and !-push-forward. This problem does not arise, however, if K is such
that I C K C GJ[t]], which will be our main case of interest. The second, and
more serious, issue is that in general the push-forward is not an exact functor,
and so the convolution of two %-modules will not be a @-module, but a complex,
more precisely, an object of the corresponding K-equivariant (bounded) derived
category D?(G((1))/ K)X of @-modules on G((r))/ K. We will not spell out the
exact definition of this category here, referring the interested reader to [Beilinson
and Drinfeld 1997] and [Frenkel and Gaitsgory 2006¢c]. The exception is the case
of the subgroup Ky = GJ[[¢]], when the convolution functor is exact and so we
may restrict ourselves to the abelian category of Ky-equivariant 2-modules on
G(1)/Ko.

The category D2(G(1) /K)X has a monoidal structure, and as such it acts on the
derived category of (ﬁkc, K) Harish—Chandra modules (again, we refer the reader
to [Beilinson and Drinfeld 1997; Frenkel and Gaitsgory 2006c¢] for the precise
definition). In the special case when K = K, we may restrict ourselves to the
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corresponding abelian categories. This action should be viewed as the categorical
analogue of the action of H(G(F), K) on the space R™X) of K-invariant vectors
discussed above.

Our ultimate goal is understanding the “local Langlands categories” €, associated
to the “local Langlands parameters” o € Locz (D). We now have a candidate
for the category €, ; namely, the category g, -mod,, where o = (). Therefore
’g}(;modx should be viewed as a categorification of a smooth representation (R, i)
of G(F). The corresponding category ﬁKC—mod)I(( of (ﬁxc, K) Harish—Chandra
modules should therefore be viewed as a categorification of R” (&) This category
is acted upon by the categorical Hecke algebra 9¢(G((¢)), K). Actually, this action
does not preserve the abelian category ’g\,cc—modf ; rather #(G((2)), K) acts on the
corresponding derived category.?

We summarize this analogy in the following table.

Classical theory Geometric theory

Representation of G(F) Representation of G (7))

on a vector space R on a category g, -mody

A vector in R An object of g, -mod,

The subspace R”™ &) of The subcategory ’g\,cc—modf of
K-invariant vectors of R (8¢, . K) Harish—-Chandra modules
Hecke algebra H(G(F), K) | Categorical Hecke algebra #(G((2)), K)
acts on R7(K) acts on ﬁxc—modf

Now we may test our proposal for the local Langlands correspondence by studying
the categories /g\,(c—modf of Harish-Chandra modules and comparing their structure
to the structure of the spaces R™ (K) of K-invariant vectors of smooth representations
of G(F) in the known cases. Another possibility is to test Conjecture 10.1.2 when
applied to the categories of Harish-Chandra modules.

In the next section we consider the case of the “maximal compact subgroup” Ko =
G[t]]. We will show that the structure of the categories ’g\,c(,-mod)l((0 is compatible
with the classical results about unramified representations of G'(F). We then take
up the more complicated case of the Iwahori subgroup 7 in Section 10.4. Here we
will also find the conjectures and results of [Frenkel and Gaitsgory 2006c] to be
consistent with the known results about representations of G (F) with Iwahori fixed
vectors.

2This is the first indication that the local Langlands correspondence should assign to a local system
o € Locr (D) not an abelian, but a triangulated category (equipped with an action of G((7))). We
will see in the examples considered below that these triangulated categories carry different 7-structures.
In other words, they may be interpreted as derived categories of different abelian categories, and we
expect that one of them is ’g\KC—modX.
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10.3. The unramified case

We first take up the case of the “maximal compact subgroup” Ko = G|[t]] of G((2))
and consider the categories g, -mod, which contain non-trivial Ko-equivariant
objects.

10.3.1. Unramified representations of G (F). These categories are the analogues
of smooth representations of the group G(F), where F is a local non-archimedian
field (such as Fg4((#))), that contain non-zero Ky-invariant vectors. Such repre-
sentations are called unramified. The classification of the irreducible unramified
representations of G(F) is the simplest case of the local Langlands correspondence
discussed in Sections 1.1.4 and 1.1.5. Namely, we have a bijection between the sets
of equivalence classes of the following objects:

unramified admissible irreducible unramified

homomorphisms Wl’: —Lg — representations of G(F) (L05=1)

where W/, is the Weil-Deligne group introduced in Section 1.1.3.
By definition, unramified homomorphisms Wy — LG are those which factor
through the quotient

Wi —>Wp —>1Z

(see Section 1.1.3 for the definitions of these groups and homomorphisms). Its
admissibility means that its image in G consists of semi-simple elements. There-
fore the set on the left hand side of (10.3-1) is just the set of conjugacy classes of
semi-simple elements of £G. Thus, the above bijection may be reinterpreted as
follows:

semi-simple conjugacy irreducible unramified

S 10.3-2
classes in LG representations of G(F) (10.3-2)

To construct this bijection, we look at the spherical Hecke algebra
H(G(F), Ko).

According to the Satake isomorphism [Satake 1963], in the interpretation of
Langlands [Langlands 1970], this algebra is commutative and isomorphic to the
representation ring of the Langlands dual group L G:

H(G(F), Ko) ~RepLG. (10.3-3)

We recall that Rep G consists of finite linear combinations >; ai[V;], where the
V; are finite-dimensional representations of G (without loss of generality we may
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assume that they are irreducible) and a; € C, with respect to the multiplication
V- Wl=[Ve W]

Because Rep LG is commutative, its irreducible modules are all one-dimensional.
They correspond to characters Rep LG — C. We have a bijection

semi-simple conjugacy characters

classes in LG = | RepLG (10.3-4)

where the character ¢,, corresponding to the conjugacy class y is given by the
formula®
oy (V] Tr(y. V).

Now, if (R, ) is a representation of G(F), then the space R*K0) of K-
invariant vectors in V is a module over H(G(F), Ky). It is easy to show that this
sets up a one-to-one correspondence between equivalence classes of irreducible
unramified representations of G(F) and irreducible H(G(F), K¢)-modules. Com-
bining this with the bijection (10.3-4) and the isomorphism (10.3-3), we obtain the
sought-after bijections (10.3-1) and (10.3-2).

In particular, we find that, because the Hecke algebra H(G(F'), K¢) is commu-
tative, the space R™(K0) of K-invariants of an irreducible representation, which
is an irreducible H(G(F), Ky)-module, is either 0 or one-dimensional. If it is
one-dimensional, then H(G(F), Ko) acts on it by the character ¢, for some y:

Hy v=¢,(VDv=Tr(y.V)v,  ve R™K0 [V]eReplG, (10.3-5)

where Hy is the element of H(G(F), K¢) corresponding to [V'] under the isomor-
phism (10.3-3) (see formula (10.2-2) for the definition of the convolution action).
Thus, any v € R7K0) js a Hecke eigenvector.

We now discuss the categorical analogues of these statements.

10.3.2. Unramified categories of g, .-modules. In the categorical setting, the role
of an irreducible representation (R, 7) of G(F) is played by the category g, -mod
for some x € Oprg(D™). The analogue of an unramified representation is a
category g, -mod, which contains non-zero (g, . G[[¢]]) Harish-Chandra modules.
This leads us to the following question: for what y € Opr g (D™) does the category
@x,-mod, contain non-zero (g, . G[[¢]]) Harish-Chandra modules?

We saw in the previous section that (R, ) is unramified if and only if it
corresponds to an unramified Langlands parameter, which is a homomorphism
Wi — LG that factors through W}, — Z. Recall that in the geometric setting the

31t is customary to multiply the right hand side of this formula, for irreducible representation V,
by a scalar depending on ¢ and the highest weight of V, but this is not essential for our discussion.
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Langlands parameters are L G-local systems on D*. The analogues of unramified
homomorphisms W, — LG are those local systems on D> which extend to the
disc D, in other words, have no singularity at the origin 0 € D. Note that there is a
unique, up to isomorphism local system on D. Indeed, suppose that we are given a
regular connection on a £ G-bundle % on D. Let us trivialize the fiber %, of F at
0 € D. Then, because D is contractible, the connection identifies % with the trivial
bundle on D. Under this identification the connection itself becomes trivial, i.e.,
represented by the operator V = d;.

Therefore all regular £ G-local systems (i.e., those which extend to D) correspond
to a single point of the set LocL g (D*); namely, the equivalence class of the trivial
local system .* From the point of view of the realization of LocL g(D>) as the
quotient (1.2-7) this simply means that there is a unique G ((¢)) gauge equivalence
class containing all regular connections of the form d; + A(t), where A(z) € Lg[[t]].

The gauge equivalence class of regular connections is the unique local Langlands
parameter that we may view as unramified in the geometric setting. Therefore, by
analogy with the unramified Langlands correspondence for G(F), we expect that
the category g, -mod, contains non-zero (g, . G[[¢]]) Harish-Chandra modules if
and only if the ' G-oper x € Oprg(DX) is LG((t)) gauge equivalent to the trivial
connection, or, in other words, x belongs to the fiber «~! (o) over oy.

What does this fiber look like? Let P be the set of dominant integral weights of
G (equivalently, dominant integral coweights of ). In Section 9.2.3 we defined,
for each A € P, the space Op),: ¢ of L B[[t]]-equivalence classes of operators of
the form

l
V=04 %y fi +v(0), (10.3-6)

i=1

where ¥; (t) € C[[Z]]. ¥ (0) # 0, v(¢) € Lb[[z]).

Lemma 10.3.1. Suppose that the local system which underlies an oper
X € Opg(D™)

is trivial. Then x belongs to the disjoint union of the subsets

Op}; COprg(D*). A e PT.

Proof. It is clear from the definition that any oper in Op)L‘ ¢ 1s regular on the
disc D and is therefore £ G((¢)) gauge equivalent to the trivial connection.

4Note however that the trivial £ G-local system on D has a non-trivial group of automorphisms,
namely, the group LG itself (it may be realized as the group of automorphisms of the fiber at 0 € D).
Therefore if we think of Locr (D) as a stack rather than as a set, then the trivial local system
corresponds to a substack pt / Lg.
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Now suppose that we have an oper x = (%, V, %L ) such that the underly-
ing £ G-local system is trivial. Then V is LG((¢)) gauge equivalent to a regular
connection, that is one of the form 9, + A(t), where A(t) € Lg[[t]. We have
the decomposition LG((?)) = LG[[¢]]X B((t)). The gauge action of LG[[]] clearly
preserves the space of regular connections. Therefore if an oper connection V
is L G((t)) gauge equivalent to a regular connection, then its £ B((7)) gauge class
already must contain a regular connection. The oper condition then implies that this
gauge class contains a connection operator of the form (10.3-6) for some dominant
integral weight A of L' G. Therefore x € Op)L‘ G O

Thus, we see that the set of opers corresponding to the (unique) unramified
Langlands parameter is the disjoint union | |, ¢ p+ Op)iG. We call such opers
“unramified.” The following result then confirms our expectation that the category
@i,-mod, corresponding to an unramified oper x is also “unramified,” that is,
contains non-zero G[[¢]]-equivariant objects, if and only if x is unramified.

Lemma 10.3.2. The category g, -mody contains a non-zero (g, G[[t]]) Harish-
Chandra module if and only if

xe ] orig- (10.3-7)
AEPT

Proof. Let us write G[[t]] = G x K, where K is the pro-unipotent pro-algebraic
group, which is the first congruence subgroup of G[[¢]]. A g,..-module M is G[[t]]-
equivariant if and only if the action of the Lie algebra g ® tC[[¢]] of K; on M is
locally nilpotent and exponentiates to an action of K; and in addition M decomposes
into a direct sum of finite-dimensional representations under the action of the Lie
subalgebra g ® 1.

Suppose that the category g, -mod, contains a non-zero (g, . G[[t]]) Harish—
Chandra module M. Since M is smooth, any vector v € M is annihilated by g ®
tN C[[t]] for some N > 0. Consider the g ® ¢ C[[¢]]-submodule M, = U(g®(C[[¢]])v
of M. By construction, the action of g ® ¢C[[¢]] on M, factors through the quotient
(a®@1C[[t]]) /(g @tV C[[t]]). Since M is G[[t]]-equivariant, it follows that the action
of this Lie algebra may be exponentiated to an algebraic action of the corresponding
algebraic group K;/Ky, where K is the Nth congruence subgroup of G|[t]],
which is a normal subgroup of K. The group K;/Ky is a finite-dimensional
unipotent algebraic group, and we obtain an algebraic representations of K;/ Ky
on M,. Any such representation contains an invariant vector.> Thus, we obtain that
M, and hence M, contains a vector v annihilated by g ® ¢CJ[[¢]].

The gl[[¢]]-submodule (equivalently, g-submodule) of M generated by v’ is a
direct sum of irreducible finite-dimensional representations of g. Let us pick one

3This follows by induction from the analogous statement for the additive group G.
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of those irreducible representations and denote it by M’. By construction, M’ is
annihilated by g ® tC[[¢]] and it is isomorphic to V}, the irreducible representation
of g with highest weight A, as a g-module. Therefore there exists a non-zero
homomorphism V; — M, where V), is the Weyl module introduced in Section 9.6,
sending the generating subspace V) C V, to M.

By our assumption, M is an object of the category g, -mod, on which the center
Z(g) acts according to the central character corresponding to x € OpLg(D*). The
existence of a non-zero homomorphism V; — M implies that xy belongs to the
spectrum of the image of Z(g) in End~ V,. According to Theorem 9.6.1, the

latter spectrum is equal to Op}L‘ - Therefore we obtain that x € Op}L‘ G

On the other hand, if x € Op)L“ - then the quotient of V, by the central character
corresponding to x is non-zero, by Theorem 9.6.1. This quotient is clearly a
G|[t]]-equivariant object of the category g, -mody. This completes the proof. [

The next question is to describe the category ’g\KC,—modg[[I]] of (g, . G[t]]) Harish-
Chandra modules for x € Op)i G

10.3.3. Categories of G [[t]]-equivariant modules. Recall from 10.3.1 that the
space of Ky-invariant vectors in an unramified irreducible representation of G (F)
is always one-dimensional. According to our proposal, the category ﬁ,cc—modg[[t]]
should be viewed as a categorical analogue of this space. Therefore we expect it to
be the simplest possible abelian category: the category of C-vector spaces. Recall

that here we assume that x belongs to the union of the spaces Op)L‘ G Where AePTt,

for otherwise the category ﬁxc—modg[[t]] would be trivial (i.e., the zero object would
be the only object).

In this subsection we will prove, following [Frenkel and Gaitsgory 2004] (see
also [Beilinson and Drinfeld 1997]), that our expectation is in fact correct provided
that A = 0, in which case Ong = OpLg(D), and so

X € Oprg(D) C Oprg(D™).

We will also conjecture that this is true if x € Op)L‘ ¢ for all LePt.
Recall the vacuum module Vo = V. (g). According to the isomorphism (9.5-1),
we have
Endﬁ,( Vo >~ FunOpr g (D). (10.3-8)

Let x € Oprg(D) C Oprg(D*). Then yx defines a character of the algebra
End/g~ Vo. Let Vo () be the quotient of Vj by the kernel of this character. Then
we have the following result.

Theorem 10.3.3. Let x € Oprg(D) C OprLg(D>). The category ﬁxc—modg[[t]]

is equivalent to the category of vector spaces: its unique, up to isomorphism,
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irreducible object is Vo (x) and any other object is isomorphic to a direct sum of
copies of Vo ().

This theorem may be viewed as a categorical analogue of the local unramified
Langlands correspondence discussed in Section 10.3.1. It also provides the first
piece of evidence for Conjecture 10.1.2: we see that the categories ﬁxc—modg[[t]]
are equivalent to each other for all x € OpL (D).

It is more convenient to consider, instead of an individual regular £ G-oper y, the
entire family Op%G = Opz (D) of regular opers on the disc D. Let g, -modyc,
be the full subcategory of the category /g\,cc—mod whose objects are ’g\,cc -modules on
which the action of the center Z(g) factors through the homomorphism

Z(g) ~ FunOpLg(D*) — FunOpL (D).

Note that the category ﬁxc—modreg is an example of a category ’g\,cc—mody introduced
in Section 10.1, in the case when Y = Opr g (D).
Let ﬁkc—modggt pe the corresponding G|[¢]]-equivariant category. It is instructive

to think of g, -mod;c, and ﬁxc—modgg’ Il a5 categories fibered over Opz ¢ (D), with
Gll]]

the fibers over x € Op. (D) being g, -mod, and g, -mod, ™, respectively.
We will now describe the category ﬁxc—modgg[[t 1. This description will in partic-

ular imply Theorem 10.3.3.
In order to simplify our formulas, in what follows we will use the following
notation for Fun Opr ; (D):

3 =3(g) =FunOpr (D).

Let 3 -mod be the category of modules over the commutative algebra 3. Equiva-
lently, this is the category of quasicoherent sheaves on OpL g (D).
By definition, any object of g, -mo Geg’ Iisa 3-module. Introduce the functors

F :ﬁ,cc-moereg[[’ I 5 -mod, M — HomAK (Vo M),

reg

G :3-mod — ﬁKC-mOdG[[t]], F Vo RF.
3

The following theorem has been proved in [Frenkel and Gaitsgory 2004], Theo-
rem 6.3 (important results in this direction were obtained earlier in [Beilinson and
Drinfeld 1997]).

Theorem 10.3.4. The functors F and G are mutually inverse equivalences of cate-
gories
B -modZI ~ 5 -mod . (10.3-9)

We will present the proof in the next section. Before doing this, let us note
that it immediately implies Theorem 10.3.3. Indeed, for each y € Oprg (D) the
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category ﬁxc—modg[[t]] is the full subcategory of ﬁxc—modggt I whose objects are the
@¢,-modules which are annihilated, as 3-modules, by the maximal ideal 7, of x. By
Theorem 10.3.4, this category is equivalent to the category of 3-modules annihilated
by 7,. But this is the category of 3-modules supported (scheme-theoretically) at
the point x, which is equivalent to the category of vector spaces.

10.3.4. Proof of Theorem 10.3.4. First of all, we note that the functor F is faithful,
i.e., if M # 0, then F(M) is non-zero. Indeed, note that

F(M) =Homg (Vo, M) = M e,

because any g, -homomorphism Vo — M is uniquely determined by the image
in M of the generating vector of Vq, which is g[[¢]]-invariant. As shown in the
proof of Lemma 10.3.2, any non-zero g,..-module M in ﬁ,cc-modgg’ I hecessarily
contains a non-zero vector annihilated by g ® ¢C[[¢]]. The g-module generated by
this vector has to be trivial, for otherwise the action of the center on it would not
factor through 3. Hence M contains a non-zero vector annihilated by g[[¢]], and so
Mollell £ g,

Next, we observe that the functor G is left adjoint to the functor F, i.e., we have
a compatible system of isomorphisms

Hom(%, F(M)) ~ Hom(G(%), M). (10.3-10)
In particular, taking M = G(%) in this formula, we obtain a compatible system of
maps
F — FoG(F),
i.e.,

9—>Homa (\/0,\/0@)@) . (10.3-11)
K¢ 3

We claim that this is in fact an isomorphism. For this we use the following two
results.

Theorem 10.3.5. The 3-module V is free.

Proof. Recall that we have the PBW filtration on V, and the associated graded
is isomorphic to Fun g*[[¢]] (see Section 3.3.3). The PBW filtration induces a
filtration on 3(g) = (Vo) 9], and the associated graded is isomorphic to Inv g*[[t]] =
(Fun g*[[¢]]) 2] (see Proposition 4.3.3). According to [Mustati 2001], Fun g*[[7]]
is a free module over Inv g*[[¢]]. This implies in a straightforward way that the same
holds for the original filtered objects, and so Vj is free over 3 = FunOp. 4 (D). O

This has the following immediate consequence.

Corollary 10.3.6. The functor G is exact.
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Next, let ﬁKC-mOdG[[’ I be the category of (@, - GI[t]]) Harish-Chandra modules
(without any restrictions on the action of the center). Let

B V. M
Xtﬁc[[r]]( 0, M)

be the higher derived functors of the functor

M — Hom~ (Vo, M)

from ﬁKC—modG[[’ I to the category of vector spaces.

Theorem 10.3.7 ([Frenkel and Teleman 2006]). We have

Extl. G[[ (Vo Vo) = (10.3-12)

the space of differential forms of degree i on Opr (D).

Note that this is a generalization of the isomorphism
Homg (Vo, Vo) =3,

corresponding to the case i = 0 in formula (10.3-12).
We will now prove the following isomorphisms:

Exth Vo, Vg) ® F ~ Exth

Vo,V F i > 0. (10.3-13
Bee Gl O, -Gllt ]]( 0> 0? ), 1= ( )

For i = 0 we will then obtain that the map (10.3-11) is an isomorphism, as needed.
In order to prove the isomorphism (10.3-13), we note that the functors

Exth Vo, Vo ® F
T XgKCG[[]]( 0 V0 & )

commute with taking the direct limits. This follows from their realization as
the cohomology of the Chevalley complex computing the relative Lie algebra

cohomology H' (g[[z]], g, Vo ® 9'*) as shown in [Frenkel and Teleman 2006],
3

Prop. 2.1 and Lemma 3.1. Therefore without loss of generality we may, and will,
assume that & is a finitely presented 3-module.

Since 3 is isomorphic to a free polynomial algebra (see formula (4.3-1)), any
such module admits a finite resolution

0->P,—>..>P1 >Py—>F—>0

by projective modules. According to standard results of homological algebra, the
right hand side of (10.3-13) may be computed by the spectral sequence, whose term
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E?? is isomorphic to

Ext? Vo, Vo QP_, ).
XgKC,G[[t]]( 0, Yo & q)

Since each ®; is projective, we have

Ext2 Vo, Vo ® P_, | = Ext2 Vo, Vo) @ P_,.
XgKC,G[[t]]( 0 Vo® q) XgKC,G[[t]]( 0:Vo) &%

Next, by Theorem 10.3.7, each Ext,;i Gl (Vo, Vp) is a free 3-module. Therefore

the second term of the spectral sequence is equal to

EPO — Ext? Vo. Vo) ® F,
2 XG...cm Vo VO 8

and EP9 =0 for ¢ # 0. Therefore the spectral sequence degenerates in the second
term and the result is the isomorphism (10.3-13).

Thus, we have proved that F o G ~ Id. Let us prove that Go F ~ Id.

Note that by adjunction (10.3-10) we have a map Go F — Id, i.e., a compatible
system of maps

GoF(M) — M, (10.3-14)

for M in ﬁ,cc—modgg[[t]]. We need to show that this map is an isomorphism.
Let us show that the map (10.3-14) is injective. If M is the kernel of GoF(M ) —
M , then by the left exactness of F, we would obtain that

F(M') =Ker(FoGoF(M) — F(M)) ~ Ker(F(M) - F(M)) = 0.

But we know that the functor F is faithful, so M’ = 0.
Next, we show that the map (10.3-14) is surjective. Let M"” be the cokernel of
GoF(M) — M. We have the long exact sequence

0—>FoGoF(M)—F(M)—FM")— R'F(GoF(M)) — ..., (10.3-15)
where R'F is the first right derived functor of the functor F. Thus, we have

R'F(L) = EX%K modGI (Vo, L).

To complete the proof, we need the following:

Lemma 10.3.8. For any 3-module & we have

1
EXtﬁ -modGlr1] (\/O’ Vo ® 9"7) =0.
Kc reg 3
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Proof. In the case when & = j3 this was proved in [Beilinson and Drinfeld 1997].
Here we follow the proof given in [Frenkel and Gaitsgory 2004] in the general case.
Any element of

1 a | — 1 fers
EXtTg\Kc-mOdG[[t]] (\/0, Vo Q? J") = EXLQ\KC,G[[I]] (\/0, Vo %{) J")

defines an extension of the g, -modules

0= Vo®F — M — Vg — 0. (10.3-16)
3

Thus, Jl is an extension of two objects of the category ’g\,cc—modrcegt]], on which the

center Z(g) acts through the quotient Z(g) — 3. But the module ./l may not be

an object of ’g\,cc—modgg[[’ Il The statement of the proposition means that if Jl is an
object of ’g\Kc—moeregt]], then it is necessarily split as a g, -module.

Let I be the ideal of 3(g) in Z(g). Then .l is an object of Tj,cc—rnodrceg[[t]] if and
only if I acts on it by 0. Note that I necessarily vanishes on the submodule V( ® %

3
and the quotient V. Therefore, choosing a linear splitting of (10.3-16) and applying
I to the image of Vj in .M, we obtain a map

1 — Homa (\/0,\/0 ® 97) .
K¢ 3

Moreover, any element of /2 C I maps to 0. Thus, we obtain a map

1/1%) ® ExtL Vo.Vo®F | > H Vo Vo %),
Hre Xgm.,G[[t]]( 3D & )" Omgkc( 0. Vo® )

We need to show that for any element of Ext}g Gl (\/o, Vo ® 9«*) the corre-
Ke? 3

sponding map

g
is non-zero. Equivalently, we need to show that the kernel of the map

I/1* — Hom~ (\/O, Vo ® @)
K¢ 3

1 o 5 _
=G, oun (o0 0) = tom (177 Hom,_ (121097

is 0. In fact, this kernel is equal to Ext,;\ Gl (\/o, Vo ® 9**) whose vanishing
Ke” reg 3

we wish to prove.
Now, according to Theorem 10.3.7 and formula (10.3-13), the last map may be
rewritten as follows:

Q! ® % — Hom, (1/12,%). (10.3-17)
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In order to write down an explicit formula for this map, let us explain, following
[Frenkel and Teleman 2006], how to construct an isomorphism

Q! @ F ~ ExtL Vo,Vo @ F |, 10.3-18
2 % XgKC,G[[zn( 0 V0P ) ( )

or, in other words, how to construct an extension Jil of the form (10.3-16) starting
from an element of €2 ; ® %. For simplicity let us suppose that & = 3 (the general
3

case is similar). Then as a vector space, the extension .l is the direct sum of
two copies of V. By linearlity, we may assume that our element of 2 ; has the
form BdA, where A, B € 3. Since V is generated by the vacuum vector |0), the
extension Jl is uniquely determined by the action of g[[¢]] on the vector |0) in the
summand corresponding to the quotient Vy. We then set

1
X-|0)=B-lim —X- A, X e g[[z]].
e—>0 €
Here A is an arbitrary deformation of A € 3(g) C Vo = Vi.(g), considered as
an element of the vacuum module Vi, tex,(g) of level k¢ 4 €xo (Where kg is a
non-zero invariant inner product on g). Since X - 4 = 0 in Vo = V. (g) for all
X € g][t]], the right hand side of this formula is well-defined.
Now recall that the center Z(g) is a Poisson algebra with the Poisson bracket
defined in Section 8.3.1. Moreover, according to Theorem 8.3.1 and Lemma 8.3.2,
this Poisson algebra is isomorphic to the Poisson algebra

FunOpg (D)

with the Poisson algebra structure obtained via the Drinfeld—Sokolov reduction. It
is easy to see that with respect to this Poisson structure the ideal I is Poisson, i.e.,
{I,1} C I. In this situation the Poisson bracket map

Fun Opg (D*) — ©(Opg (D).
where ®(Opg (D™)) is the space of vector fields on Opg (D*), induces a map
1/1* - @, (10.3-19)

where ©; is the space of vector fields on Opg (D).

It follows from the above description of the isomorphism (10.3-18) and the
definition of the Poisson structure on Z(g) from Section 8.3.1 that the map (10.3-17)
is the composition of the tautological isomorphism

Q! ®F —> Hom, (0, F)
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(note that €2 31 is a free 3-module) and the map
Hom, (©;, %) — Hom, (1/1%,7) (10.3-20)

induced by (10.3-19). But according to [Beilinson and Drinfeld 1997], Theorem
3.6.7, the map (10.3-19) is surjective (in fact, 7 /I? is isomorphic to the Lie algebroid
on Oprg(D) corresponding to the universal ~G-bundle, and (10.3-19) is the
corresponding anchor map, so its kernel is free as a 3-module). Therefore we obtain
that for any 3-module & the map (10.3-20) is injective. Hence the map (10.3-17) is
also injective. This completes the proof. O

By Lemma 10.3.8, the sequence (10.3-15) gives us a short exact sequence
0—>FoGoF(M)—F(M)—FM")—0.

But the first arrow is an isomorphism because F o G >~ Id, which implies that
F(M") =0 and hence M" = 0.
Theorem 10.3.4, and therefore Theorem 10.3.3, are now proved.

10.3.5. The action of the spherical Hecke algebra. In Section 10.3.1 we discussed
irreducible unramified representations of the group G(F), where F is a local non-
archimedian field. We have seen that such representations are parameterized by
conjugacy classes of the Langlands dual group £ G. Given such a conjugacy class y,
we have an irreducible unramified representation (R, ) ), which contains a one-
dimensional subspace (R, )™ (K0) of Ky-invariant vectors. The spherical Hecke
algebra H(G(F), Kg), which is isomorphic to Rep LG via the Satake isomorphism,
acts on this space by a character ¢, , see formula (10.3-5).

In the geometric setting, we have argued that for any x € Opr g (D) the category
@¢-mody, equipped with an action of the loop group G((t)), should be viewed

as a categorification of (R, m,). Furthermore, its subcategory ﬁkc—modf[m] of
(.- G[[t]]) Harish-Chandra modules should be viewed as a “categorification” of
the one-dimensional space (R,,)”V(K"). According to Theorem 10.3.3, the latter
category is equivalent to the category of vector spaces, which is indeed the cate-
gorification of a one-dimensional vector space. So this result is consistent with the
classical picture.

We now discuss the categorical analogue of the action of the spherical Hecke
algebra on this one-dimensional space.

As explained in Section 10.2.3, the categorical analogue of the spherical Hecke
algebra is the category of G[[¢]]-equivariant %-modules on the affine Grassmannian
Gr = G((t))/ G[[t]]. We refer the reader to [Beilinson and Drinfeld 1997; Frenkel
and Gaitsgory 2006¢] for the precise definition of Gr and this category. There is an
important property that is satisfied in the unramified case: the convolution functors
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with these %-modules are exact, which means that we do not need to consider the
derived category; the abelian category of such @-modules will do. Let us denote
this abelian category by #(G((?)), G[[t]]). This is the categorical version of the
spherical Hecke algebra H(G((2)), G[[t]]).

By the results in [Mirkovi¢ and Vilonen 2007], the category #(G((¢)), G[[]])
carries a natural structure of tensor category, which is equivalent to the tensor
category ep L' G of representations of £ G. This should be viewed as a categorical
analogue of the Satake isomorphism. Thus, for each object V of %tep LG we have
an object of #(G((?)), G[[t]]) which we denote by 9€},. What should be the analogue
of the Hecke eigenvector property (10.3-5)?

As we explained in Section 10.2.3, the category #(G((¢)), G[[¢]]) naturally acts
on the category ﬁxc—modf[m], and this action should be viewed as a categorical
analogue of the action of H(G(F), Kg) on (RJ,)”V(KO).

Now, by Theorem 10.3.3, any object of /g\,cc—modg[[t]] is a direct sum of copies
of Vo(x). Therefore it is sufficient to describe the action of #(G((¢)), G[[t]]) on
Vo(x). This action is described by the following statement, which follows from
[Beilinson and Drinfeld 1997]: there exists a family of isomorphisms

ay %y * Vo(x) — V. ® Vo (%), VeRepLa, (10.3-21)

where V is the vector space underlying the representation V' (see [Frenkel and
Gaitsgory 2006c; Frenkel and Gaitsgory 2005] for more details). Moreover, these
isomorphisms are compatible with the tensor product structure on ¥y (given by
the convolution) and on V (given by tensor product of vector spaces).

In view of Theorem 10.3.3, this is not surprising. Indeed, it follows from the
definition that 7} x V() is again an object of the category ’g\,{c—modg[[t]]. Therefore
it must be isomorphic to Uy ®c Vo (x), where Uy is a vector space. But then we
obtain a functor

H(G(2), G[[t]]) — Vect, Hy — Up.

It follows from the construction that this is a tensor functor. Therefore the standard
Tannakian formalism implies that Uy is isomorphic to V.

The isomorphisms (10.3-21) should be viewed as the categorical analogues
of the Hecke eigenvector conditions (10.3-5). The difference is that while in
(10.3-5) the action of elements of the Hecke algebra on a Ky-invariant vector in R,
amounts to multiplication by a scalar, the action of an object of the Hecke category
H(G (). G[[1]]) on the G[[t]]-equivariant object Vo(x) of g, -mod, amounts to
multiplication by a vector space; namely, the vector space underlying the corre-
sponding representation of £ G. It is natural to call a module satisfying this property
a Hecke eigenmodule. Thus, we obtain that V() is a Hecke eigenmodule. This
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is in agreement with our expectation that the category Tj,cc—modg[[t]]
version of the space of Ky-invariant vectors in R,,.

One ingredient that is missing in the geometric case is the conjugacy class y of
L G. We recall that in the classical Langlands correspondence this was the image
of the Frobenius element of the Galois group Gal(Fq /Fq), which does not have an
analogue in the geometric setting where our ground field is C, which is algebraically
closed. So while unramified local systems in the classical case are parameterized

is a categorical

by the conjugacy classes y, there is only one, up to an isomorphism, unramified
local system in the geometric case. However, this local system has a large group
of automorphisms; namely, G itself. We will argue that what replaces y in the
geometric setting is the action of this group G by automorphisms of the category
@i,-mod,. We will discuss this in the next two sections.

10.3.6. Categories of representations and %-modules. When we discussed the
procedure of categorification of representations in Section 1.3.4, we saw that there
are two possible scenarios for constructing categories equipped with an action of
the loop group G((¢)). In the first one we consider categories of 9-modules on the
ind-schemes G((¢))/ K, where K is a “compact” subgroup of G((¢)), such as G[[¢]] or
the Iwahori subgroup. In the second one we consider categories of representations
@, -mody. So far we have focused exclusively on the second scenario, but it is
instructive to also discuss categories of the first type.

In the toy model considered in Section 1.3.3 we discussed the category of g-
modules with fixed central character and the category of %-modules on the flag
variety G/ B. We have argued that both could be viewed as categorifications of the
representation of the group G(F,) on the space of functions on (G/B)(F,). These
categories are equivalent, according to the Beilinson—Bernstein theory, with the
functor of global sections connecting the two. Could something like this be true in
the case of affine Kac—Moody algebras as well?

The affine Grassmannian Gr = G((¢))/ G[[t]] may be viewed as the simplest
possible analogue of the flag variety G/ B for the loop group G((¢)). Consider the
category of %-modules on G((¢))/ G|[t]] (see [Beilinson and Drinfeld 1997; Frenkel
and Gaitsgory 2006c] for the precise definition). We have a functor of global
sections from this category to the category of g((¢))-modules. In order to obtain
8¢.-modules, we need to take instead the category @, -mod of %-modules twisted
by a line bundle &£,. This is the unique line bundle £, on Gr which carries an
action of g, (such that the central element 1 is mapped to the identity) lifting the
natural action of g((#)) on Gr. Then for any object Jl of %, -mod, the space of
global sections I'(Gr, .t) is a g, -module. Moreover, it is known (see [Beilinson
and Drinfeld 1997; Frenkel and Gaitsgory 2004]) that I"(Gr, /) is in fact an object
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of ﬁkc—modmg. Therefore we have a functor of global sections
' : %y, -mod — @ -mOdyeg -

We note that the categories % -mod and %, -mod are equivalent under the functor
M= M@ L. But the corresponding global sections functors are very different.

However, unlike in the Beilinson—Bernstein scenario, the functor I" cannot
possibly be an equivalence of categories. There are two reasons for this. First of all,
the category @, -mod,.g has a large center, namely, the algebra 3 = Fun Opr (D),
while the center of the category %, -mod is trivial.® The second, and more serious,
reason is that the category %, -mod carries an additional symmetry, namely, an
action of the tensor category Rep’ G of representations of the Langlands dual
group LG, and this action trivializes under the functor I" as we explain presently.

Over OpLg (D) there exists a canonical principal L G-bundle, which we will
denote by %. By definition, the fiber of % at x = (¥, V, FrL g) € Oprg(D) is Fy,
the fiber at 0 € D of the £ G-bundle ¥ underlying x. For an object V € Rep LG
let us denote by V" the associated vector bundle over OpL (D), i.e.,

V=P x V.
LG

Next, consider the category %y, -mod N of G|[[t]]-equivariant % -modules on
Gr. It is equivalent to the category

% -mod ¢l = H(G(). G[]D

considered above. This is a tensor category, with respect to the convolution functor,
which is equivalent to the category Rep L' G. We will use the same notation %y
for the object of %, -modCl*]] corresponding to V € %Rep LG. The category
D, -mod®l) acts on %y, -mod by convolution functors

M > Fep % M

which are exact. This amounts to a tensor action of the category Rep™G on
D, -mod.

Now, it follows from the results of [Beilinson and Drinfeld 1997] that there are
functorial isomorphisms

['(Gr, %y * ) ~ T'(Gr, M) @V, VeRrepta,
3

Recall that we are under the assumption that G is a connected simply-connected algebraic group,
and in this case Gr has one connected component. In general, the center of the category @y -mod has
a basis enumerated by the connected components of Gr and is isomorphic to the group algebra of the
finite group 771 (G).
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compatible with the tensor structure (see [Frenkel and Gaitsgory 2006c; Frenkel
and Gaitsgory 2005] for details). Thus, we see that there are non-isomorphic
objects of 9. -mod, which the functor I" sends to isomorphic objects of g -modreg.
Therefore the category %, -mod and the functor I" need to be modified in order to
have a chance to obtain a category equivalent to g, -modycg.

In [Frenkel and Gaitsgory 2006c¢] it was shown how to modify the category
9. -mod, by simultaneously “adding” to it 3 as a center, and “dividing” it by the
above Jtep L G-action. As the result, we obtain a candidate for a category that can
be equivalent to g, -mod.. This is the category of Hecke eigenmodules on Gr,
denoted by QDECeCke -mOdeg.

By definition, an object of QDEkaC -mod,, is an object of %, -mod, equipped
with an action of the algebra 3 by endomorphisms and a system of isomorphisms

aV:%V*M;ﬁf?M, VeRepla,

compatible with the tensor structure.
The above functor I' naturally gives rise to a functor

[Hecke . @Ececke -mod,eq — axc'mOdreg . (10.3-22)

This is in fact a general property. To explain this, suppose for simplicity that
we have an abelian category ‘6 which is acted upon by the tensor category Rep H,
where H is an algebraic group; we denote this action by

M= MV, V eRep H.

Let €Hecke be the category whose objects are collections (M, {&y }pege p H), Where
M € € and {ay } is a compatible system of isomorphisms

apy MxV —V @, V eRep H,
C

where V is the vector space underlying V. The category €1k carries a natural
action of the group H: for i € H, we have

h- (Jl/[, {aV}VEQlep H) = (Jl/t, {(h ® id/i/t) e aV}VEQRep H)

In other words, Jl remains unchanged, but the isomorphisms «j get composed
with 4.

The category ‘€ may be reconstructed as the category of H-equivariant objects
of @Hecke with respect to this action, see [Arkhipov and Gaitsgory 2003]. Therefore
one may think of @Hek¢ ag the “de-equivariantization” of the category €.
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Suppose that we have a functor G : ¢ — %’, such that we have functorial
isomorphisms

GUM*V)~GU)®Y,  VeRepH, (10.3-23)
C

compatible with the tensor structure. Then, according to [Arkhipov and Gaitsgory
2003], there exists a functor

GHecke . (6Hecke — (6,

such that G ~ GHeeke 5 Ind, where the functor Ind : € — €Hecke gends Al to M + O,
where O is the regular representation of H. The functor GHe*® may be explicitly
described as follows: the isomorphisms «y- and (10.3-23) give rise to an action of
the algebra O on G(), and GH*¢( L) is obtained by taking the fiber of G(.l) at
le H.

In our case, we take € = %, -mod, @ = ’g\,cc—modreg, and G = I'. The only
difference is that now we are working over the base Op. g (D), which we have to
take into account. Then the functor I" factors as

I ~ rHecke o 1pq,

where T'Hecke jg the functor (10.3-22) (see [Frenkel and Gaitsgory 2006c; Frenkel
and Gaitsgory 2005] for more details). Moreover, the left action of the group G (7))
on Gr gives rise to its action on the category ngc“ke -modye,, and the functor it
intertwines this action with the action of G((¢)) on g, -modyc,.

The following was conjectured in [Frenkel and Gaitsgory 2006c]:

Conjecture 10.3.9. The functor T jn formula (10.3-22) defines an equivalence
of the categories @E:Cke -modyeg and ﬁkc—modreg.

It was proved in [Frenkel and Gaitsgory 2006¢] that the functor '€, when
extended to the derived categories, is fully faithful. Furthermore, it was proved in
[Frenkel and Gaitsgory 2005] that it sets up an equivalence of the corresponding
I°-equivariant categories, where 7 =[I, I is the radical of the Iwahori subgroup.

Let us specialize Conjecture 10.3.9 to a point x = (%, V, %L ) € Oprg(D).
Then on the right hand side we consider the category g, -mod,, and on the left hand
side we consider the category @Efd‘e -mod, . Its object consists of a %,.-module
A and a collection of isomorphisms

ay Wy« M— Vg, @A, Verepla. (10.3-24)

Here Vg, is the twist of the representation V' by the L G-torsor F. These isomor-
phisms have to be compatible with the tensor structure on the category

H(G (@), Gl
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Conjecture 10.3.9 implies that there is a canonical equivalence of categories
Fplecke mody ~ G, -mod, . (10.3-25)

It is this conjectural equivalence that should be viewed as an analogue of the
Beilinson—Bernstein equivalence.

From this point of view, we may think of each of the categories QDEkae -mod, as
the second incarnation of the sought-after Langlands category €, corresponding
to the trivial £ G-local system.

Now we give another explanation for why it is natural to view the category
@Ekae -mod, as a categorification of an unramified representation of the group
G(F). First of all, observe that these categories are all equivalent to each other
and to the category QDE:'Cke -mod, whose objects are %,.-modules .l together with
a collection of isomorphisms

ay Ky« M— V Q M, VeRepLa. (10.3-26)
Comparing formulas (10.3-24) and (10.3-26), we see that there is an equivalence
@Ec“ke -mod, =~ QDECGCke -mod,

for each choice of trivialization of the £G-torsor %, (the fiber at 0 € D of the
principal £G-bundle % on D underlying the oper ¥).

Now recall from Section 10.3.1 that to each semi-simple conjugacy class y in
LG corresponds an irreducible unramified representation (Ry, my) of G(F) via the
Satake correspondence (10.3-2). It is known that there is a non-degenerate pairing

() Ry xRy,—1 > C,

in other words, R,,—1 is the representation of G (£) which is contragredient to R,
(it may be realized in the space of smooth vectors in the dual space to Ry ).

Let v € R,,—1 be a non-zero vector such that Kov = v (this vector is unique up
to a scalar). It then satisfies the Hecke eigenvector property (10.3-5) (in which we
need to replace y by y~1). This allows us to embed R, into the space of smooth
locally constant right Ky-invariant functions on G(F) (equivalently, functions on
G(F)/Ky), by using matrix coefficients, as follows:

MERy'_)fu’ fu(g):<uvgv>'

The Hecke eigenvector property (10.3-5) implies that the functions f, are right
K-invariant and satisfy the condition

f*xHy =Te(y 1, V) f, (10.3-27)

where x denotes the convolution product (10.2-1). Let C(G(F)/Ky), be the space
of smooth locally constant functions on G(F)/ K satisfying (10.3-27). It carries a
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representation of G (F) induced by its left action on G(F)/ Ky. We have constructed
an injective map R, — C(G(R)/G(R))y, and one can show that for generic y it
is an isomorphism.

Thus, we obtain a realization of an irreducible unramified representation of
G(F) in the space of functions on the quotient G(F)/ K satisfying the Hecke
eigenfunction condition (10.3-27). The Hecke eigenmodule condition (10.3-26)
may be viewed as a categorical analogue of (10.3-27). Therefore the category
Qb,}c’kae -mod of twisted %-modules on Gr = G((¢))/ K satisfying the Hecke eigen-
module condition (10.3-26), equipped with its G((¢))-action, appears to be a natural
categorification of the irreducible unramified representations of G'(F).

10.3.7. Equivalences between categories of modules. All opers in OpL g (D) cor-
respond to one and the same £ G-local system; namely, the trivial local system.
Therefore, according to Conjecture 10.1.2, we expect that the categories g, -mod,
are equivalent to each other. More precisely, for each isomorphism between the
underlying local systems of any two opers in Opr g (D) we wish to have an equiva-
lence of the corresponding categories, and these equivalences should be compatible
with respect to the operation of composition of these isomorphisms.

Let us spell this out in detail. Let x = (%,V,FLp) and x' = (F, V', F] p)
be two opers in OpLg (D). Then an isomorphism between the underlying local
systems (%, V) —> (%, V') is the same as an isomorphism %o —> F, between
the £ G-torsors %o and 97’6, which are the fibers of the £G-bundles ¥ and ¥,
respectively, at 0 € D. Let us denote this set of isomorphisms by Isomy ,’. Then
we have

Isomy, ,» = Fo 2 La % Fy,
where we twist LG by %, with respect to the left action and by F, with respect to
the right action. In particular,

Isom, y = LGy, = Fo x AdLG

X
Lg
is just the group of automorphisms of .

It is instructive to combine the sets Isom, , into a groupoid Isom over Opr (D).
Thus, by definition Isom consists of triples (x, x’, ¢), where x, x’ € OpLg (D) and
¢ € Isomy y is an isomorphism of the underlying local systems. The two morphisms
Isom — OpcL (D) correspond to sending such a triple to x and x’. The identity
morphism Opz g (D) — Isom sends y to (x, x, Id), and the composition morphism

Isom x  Isom — Isom
OpL @ (D)
corresponds to composing two isomorphisms.
Conjecture 10.1.2 has the following more precise formulation for regular opers.
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Conjecture 10.3.10. For each ¢ € Isomy , there exists an equivalence
Ey gy -mody — g, -mody/,

which intertwines the actions of G((t)) on the two categories, such that Eyg = 1d
and there exist isomorphisms By ¢ : Egogr = Eg 0 Eg satisfying

ﬂ¢0¢/’¢//ﬂ¢’¢/ = ﬂ¢’¢/o¢//ﬂ¢/’¢//

for all isomorphisms ¢, ¢, ¢, whenever they may be composed in the appropriate
order.

That is, the groupoid Isom over Opi g (D) acts on the category ﬁKC—modreg fibered
over OpL (D), preserving the action of G((t)) along the fibers.

In particular, this conjecture implies that the group LG% acts on the category
8i,-mod, for any x € Opr (D).

Now we observe that Conjecture 10.3.9 implies Conjecture 10.3.10. Indeed, by
Conjecture 10.3.9, there is a canonical equivalence of categories (10.3-25),

ek -mody = G,,-mod, .

It follows from the definition of the category @Ekae -mod, (namely, (10.3-24)) that
for each isomorphism ¢ € Isomy -, i.e., an isomorphism of the L G-torsors F, and
97’6 underlying the opers x and x’, there is a canonical equivalence

Hecke ~~ orHecke
Dy -mody >~ D" -mody .
Therefore we obtain the sought-after equivalence
Eg : g, -mody — @, -mod, .

Furthermore, it is clear that these equivalences satisfy the conditions of Conjec-
ture 10.3.10. In particular, they intertwine the actions of G((¢)), because the action
of G((¢)) affects the @-module Jl underlying an object of QDE:'Cke -mod,, but does
not affect the isomorphisms oy .

Equivalently, we can express this by saying that the groupoid Isom naturally acts
on the category @Efd‘e -mod;eg. By Conjecture 10.3.9, this gives rise to an action
of Isom on g, -modcg.

In particular, we construct an action of the group (LG)%, the twist of LG by
the L G-torsor % underlying a particular oper ¥, on the category @E{?Cke -mod,.
Indeed, each element g € (£ G)#, acts on the Fo-twist Vg, of any finite-dimensional
representation V of £G. Given an object (M, () of @Efd‘e -mod,’, we construct
a new object; namely, (M, ((g ®Idy)oay)). Thus, we do not change the Z@-module
M, but we change the isomorphisms «y appearing in the Hecke eigenmodule
condition (10.3-24) by composing them with the action of g on V,. According to
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Conjecture 10.3.9, the category @E{?Cke -mod, is equivalent to g, -mod,. Therefore
this gives rise to an action of the group (LG)g0 on g, -mod,. But this action is
much more difficult to describe in terms of g,..-modules. We will see examples of
the action of these symmetries below.

10.3.8. Generalization to other dominant integral weights. We have extensively
studied above the categories g, -mod, and /g\,cc—modg[[t]] associated to regular opers
X € OpLg (D). However, by Lemma 10.3.1, the (set-theoretic) fiber of the map
o :OpLg (D) — Locr g (D™) over the trivial local system oy is the disjoint union
of the subsets Op}L‘ o M€ Pt Here we discuss briefly the categories Gx,-mod, and
ﬁkc—modg[[t]] for x € Op* G+ Where A # 0.

Consider the Weyl module V; with highest weight A defined in Section 9.6.
According to Theorem 9.6.1, we have

Endg Vi > FunOpi . (10.3-28)

Let y € Op LgC OpLg(D*). Then x defines a character of the algebra EndA V;.

Let Vy (X) be the quotient of Vj by the kernel of this character. The followmg
conjecture’ of [Frenkel and Gaitsgory 2007c] is an analogue of Theorem 10.3.3:

Conjecture 10.3.11. Let x OpLG C Oprg(D™). Then the category g, -mody g

is equivalent to the category of vector spaces: its unique, up to zsomorphzsm,
irreducible object is V; (x) and any other object is isomorphic to a direct sum of
copies of V. (x).

Note that this is consistent with Conjecture 10.1.2, which tells us that the cat-
egories gy, modG[[t]] should be equivalent to each other for all opers which are
gauge equwalent to the trivial local system on D.

As in the case A = 0, it is useful to consider, instead of an individual LG—oper
X, the entire family Op% g Let ’g\,cc—mod;h,reg be the full subcategory of the category
8,-mod whose objects are g, -modules on which the action of the center Z(g)
factors through the homomorphism

Z(g) ~ FunOpLg(D™) — 33,

where we have set
A
3» = Fun Op7 G-

Let /g\KC—modf[rEg]] be the corresponding G|[¢]]-equivariant category. Thus,

Gl

gi,mod) g and g, -mod, reg

7 Added in proof: Conjectures 10.3.11-10.3.13 have been proved by E. Frenkel and D. Gaitsgory
in [Frenkel and Gaitsgory 2007b].
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are categories fibered over Op)L“ > With the fibers over x € Op}L‘ ¢ being Ox,-mody

and ﬁkc—modf[[t]] , respectively.

We have the following conjectural description of the category ﬁ,cc—modi[r[é;],
which implies Conjecture 10.3.11 (see [Frenkel and Gaitsgory 2007b]).

Let 3 -mod be the category of modules over the commutative algebra 3, . Equiv-
alently, this is the category of quasicoherent sheaves on the space Op)L‘ G

By definition, any object of ’jkc_modf[[t]]

is a 3 -module. Introduce the functors
reg

Fi Beemod{ 1) 55 -mod, M > Homg  (Vy, M),
Gj, 13 -mod eﬁkc—modf’[r[é;], Fi>V;, F.

28

Conjecture 10.3.12. The functors Fy, and Gy, are mutually inverse equivalences of
categories.

We expect that this conjecture may be proved along the lines of the proof of The-
orem 10.3.4 presented in Section 10.3.4. More precisely, it should follow from the
conjecture of [Frenkel and Gaitsgory 2007c], which generalizes the corresponding
statements in the case A = 0.

Conjecture 10.3.13. (1) Vy, is free as a 3y -module.
2)

i Ol
EXTﬁG[[t]](\/A,\/x) ~ Q5

the space of differential forms of degree i on Op),: G

(10.3-29)

10.4. The tamely ramified case

In the previous section we have considered categorical analogues of the irreducible
unramified representations of a reductive group G (F) over a local non-archimedian
field F. We recall that these are the representations containing non-zero vectors
fixed by the maximal compact subgroup Ko C G(F). The corresponding Langlands
parameters are unramified admissible homomorphisms from the Weil-Deligne
group W, to L@, i.e., those which factor through the quotient

Wﬁ—)WF—>Z,

and whose image in LG is semi-simple. Such homomorphisms are parameterized
by semi-simple conjugacy classes in £G.

We have seen that the categorical analogues of unramified representations of
G(F) are the categories g, -mod, (equipped with an action of the loop group
G((1))), where x is a L G-oper on D* whose underlying £ G-local system is trivial.
These categories can be called unramified in the sense that they contain non-zero
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G|[t]]-equivariant objects. The corresponding Langlands parameter is the trivial £ G-
local system o¢ on D>, which should be viewed as an analogue of an unramified
homomorphism Wl’, — LG. However, the local system oy is realized by many
different opers, and this introduces an additional complication into our picture: at
the end of the day we need to show that the categories g, -mod,, where y is of the
above type, are equivalent to each other. In particular, Conjecture 10.3.10 describes
what we expect to happen when x € Opr g (D).

The next natural step is to consider categorical analogues of representations of
G(F) that contain vectors invariant under the Iwahori subgroup I C G[[¢]], the
preimage of a fixed Borel subgroup B C G under the evaluation homomorphism
G[[t]] = G. We begin this section by recalling a classification of these represen-
tations, due to D. Kazhdan and G. Lusztig [1987] and V. Ginzburg [1997]. We
then discuss the categorical analogues of these representations following [Frenkel
and Gaitsgory 2006c; Frenkel and Gaitsgory 2006a; Frenkel and Gaitsgory 2005;
Frenkel and Gaitsgory 2006b] and the intricate interplay between the classical and
the geometric pictures. We close this section with some explicit calculations in the
case of g = sl,, which should serve as an illustration of the general theory.

10.4.1. Tamely ramified representations. The Langlands parameters correspond-
ing to irreducible representations of G(F) with /-invariant vectors are tamely
ramified homomorphisms Wy, — LG. Recall from Section 1.1.3 that Wi =WgxC.
A homomorphism Wy — LG is called tamely ramified if it factors through the
quotient

Wy —ZxC.

According to the relation (1.1-1), the group Z x C is generated by two elements
F =1 € Z (Frobenius) and M = 1 € C (monodromy) satisfying the relation

FMF ' =gM. (10.4-1)

Under an admissible tamely ramified homomorphism the generator F' goes to
a semi-simple element ¥ € LG and the generator M goes to a unipotent element
N e LG. According to formula (10.4-1), they have to satisfy the relation

yNy~ ! = N4, (10.4-2)

Alternatively, we may write N = exp(u), where u is a nilpotent element of Lg.
Then this relation becomes

yuy™' =qu.
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Thus, we have the following bijection between the sets of equivalence classes

tamely ramified admissible pairs y € LG, semi-simple,
h hisms Wi, — LG | < Lg, nilpotent, yuy~! =

omomorphisms W, — u € ~g, nilpotent, yuy™ = qu
(10.4-3)

In both cases equivalence relation amounts to conjugation by an element of £ G.
Now to each Langlands parameter of this type we wish to attach an irreducible
smooth representation of G(F'), which contains non-zero /-invariant vectors. It
turns out that if G = GL, there is indeed a bijection, proved in [Bernstein and

Zelevinsky 1977], between the sets of equivalence classes of the following objects:

tamely ramified admissible irreducible representations
homomorphisms Wy, — GL,, (R, 7) of GL,(F), R™™) £ 0
(10.4-4)

However, such a bijection is no longer true for other reductive groups: two new
phenomena appear, which we discuss presently.

The first one is the appearance of L-packets. One no longer expects to be able
to assign to a particular admissible homomorphism Wy, — LG a single irreducible
smooth representation of G(F). Instead, a finite collection of such representations
(more precisely, a collection of equivalence classes of representations) is assigned,
called an L-packet. In order to distinguish representations in a given L-packet, one
needs to introduce an additional parameter. We will see how this is done in the
case at hand shortly. However, and this is the second subtlety alluded to above,
it turns out that not all irreducible representations of G'(F) within the L-packet
associated to a given tamely ramified homomorphism Wy, — LG contain non-zero
I-invariant vectors. Fortunately, there is a certain property of the extra parameter
used to distinguish representations inside the L-packet that tells us whether the
corresponding representation of G(F) has [-invariant vectors.

In the case of tamely ramified homomorphisms WI/, — LG this extra parameter
is an irreducible representation p of the finite group C(y, u) of components of
the simultaneous centralizer of ¥ and u in LG, on which the center of LG acts
trivially (see [Lusztig 1995]). In the case of G = G L, these centralizers are always
connected, and so this parameter never appears. But for other reductive groups
G this group of components is often non-trivial. The simplest example is when
LG = G, and u is a subprincipal nilpotent element of the Lie algebra Lg.8 In this
case for some y satisfying yuy ~! = qu the group of components C(y, u) is the
symmetric group S3, which has three irreducible representations (up to equivalence).
Each of them corresponds to a particular member of the L-packet associated with

8The term “subprincipal” means that the adjoint orbit of this element has codimension 2 in the
nilpotent cone.
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the tamely ramified homomorphism Wy — LG defined by (y,u). Thus, the L-
packet consists of three (equivalence classes of) irreducible smooth representations
of G(F). However, not all of them contain non-zero /-invariant vectors.

The representations p of the finite group C(y, u) which correspond to representa-
tions of G(F) with I-invariant vectors are distinguished by the following property.
Consider the Springer fiber Sp,. We recall (see formula (9.3-10)) that

Sp,=1{b' e LG/EB|uev’). (10.4-5)

The group C(y,u) acts on the homology of the variety Sp), of y-fixed points
of Sp,. A representation p of C(y,u) corresponds to a representation of G(F’)
with non-zero [-invariant vectors if and only if p occurs in the homology of Sp},,
Ho(Sp}).

In the case of G, the Springer fiber Sp,, of the subprincipal element u is a union
of four projective lines connected with each other as in the Dynkin diagram of Dy.
For some y the set Sp, is the union of a projective line (corresponding to the central
vertex in the Dynkin diagram of Dy4) and three points (each in one of the remaining
three projective lines). The corresponding group C(y, u) = S3 on Sp), acts trivially
on the projective line and by permutation of the three points. Therefore the trivial
and the two-dimensional representations of S3 occur in He(Sp}), but the sign
representation does not. The irreducible representations of G(F) corresponding to
the first two contain non-zero /-invariant vectors, whereas the one corresponding
to the sign representation of S3 does not.

The ultimate form of the local Langlands correspondence for representations of
G (F) with [-invariant vectors is then as follows (here we assume, as in [Kazhdan
and Lusztig 1987; Chriss and Ginzburg 1997], that the group G is split and has
connected center):

triples (y, u, p), yuy~! = qu, irreducible representations

p € Rep C(y,u) occurs in He(Sp),,C) (R, 7) of G(F), R™) £ 0

(10.4-6)
Again, this should be understood as a bijection between two sets of equivalence
classes of the objects listed. This bijection is due to [Kazhdan and Lusztig 1987]
(see also [Chriss and Ginzburg 1997]). It was conjectured by Deligne and Langlands,
with a subsequent modification (addition of p) made by Lusztig.

How to set up this bijection? The idea is to replace irreducible representations
of G(F) appearing on the right hand side of (10.4-6) with irreducible modules
over the corresponding Hecke algebra H(G(F), I). Recall from Section 10.2.1
that this is the algebra of compactly supported / bi-invariant functions on G(F),
with respect to convolution. It naturally acts on the space of I-invariant vectors
of any smooth representation of G(F) (see formula (10.2-2)). Thus, we obtain a
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functor from the category of smooth representations of G(F) to the category of
H(G(F), I). According to a theorem of A. Borel [1976], it induces a bijection
between the set of equivalence classes of irreducible smooth representations of G (F')
with non-zero [-invariant vectors and the set of equivalence classes of irreducible
H(G(F), I)-modules.

The algebra H(G(F), I) is known as the affine Hecke algebra and has the
standard description in terms of generators and relations. However, for our pur-
poses we need another description, due to [Kazhdan and Lusztig 1987; Chriss and
Ginzburg 1997], which identifies it with the equivariant K-theory of the Steinberg
variety

St=N 35 j\f,

where N C Lg is the nilpotent cone and N is the Springer resolution
N={xeN b eclG/LB|xeb}.

Thus, a point of St is a triple consisting of a nilpotent element of g and two
Borel subalgebras containing it. The group £ G x C* naturally acts on St, with £ G
conjugating members of the triple and C* acting by multiplication on the nilpotent
elements,

a-(x,0,6") = (a 'x,0,0"). (10.4-7)

According to a theorem of [Kazhdan and Lusztig 1987; Chriss and Ginzburg
1997], there is an isomorphism

H(G(F), I) ~ K"9<C*(sy). (10.4-8)

The right hand side is the LG x C*-equivariant K-theory of St. It is an algebra
with respect to a natural operation of convolution (see [Chriss and Ginzburg 1997]
for details). It is also a free module over its center, isomorphic to

L x _
K (pt)y =RepLG @ Clq.q7 1.

Under the isomorphism (10.4-8) the element q goes to the standard parameter
q of the affine Hecke algebra H(G(F'), I) (here we consider H(G(F),I) as a
Clq, g~ ']-module).

Now, the algebra K Loxex (St), and hence the algebra H(G(F), I), has a natural
family of modules, which are parameterized precisely by the conjugacy classes of
pairs (y, u) as above. On these modules H(G(F), I) acts via a central character
corresponding to a point in Spec(Rep LG (%) Clq. q~']), which is just a pair (y,q),

where y is a semi-simple conjugacy class in £ G and ¢ € C*. In our situation ¢ is the
cardinality of the residue field of F' (hence a power of a prime), but in what follows
we will allow a larger range of possible values of ¢: all non-zero complex numbers
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except for the roots of unity. Consider the quotient of H(G(F), I') by the central
character defined by (y, «). This is just the algebra K LGxex (St), specialized at
(¥, q). We denote it by KGxex (S (3.9)-

Now for a nilpotent element « € N consider the Springer fiber Sp,,. The condition
that yuy~! = qu means that u, and hence Sp,, is stabilized by the action of
(v.q) € LG x C* (see formula (10.4-7)). Let A be the smallest algebraic subgroup
of LG x C* containing (y, ¢). The algebra Khoxe (St)(y,¢) naturally acts on the
equivariant K-theory K4 (Sp,) specialized at (y, g),

K4 Spu)(v.9) = K4(Sp,) ® Cir.a)-
Rep 4

It is known that K4 (Spy,)(y,q) is isomorphic to the homology He (SpY) of the
y-fixed subset of Sp,, (see [Kazhdan and Lusztig 1987; Chriss and Ginzburg 1997]).
Thus, we obtain that K (SPy)(y.,q) 18 @ module over H(G(F), I).

Unfortunately, these H(G(F'), I)-modules are not irreducible in general, and
one needs to work harder to describe the irreducible modules over H(G(F), I'). For
G = G L, one can show that each of these modules has a unique irreducible quotient,
and this way one recovers the bijection (10.4-4). But for a general groups G the finite
groups C(y, u) come into play. Namely, the group C(y, u) acts on K“ (Spy) (v,9)>
and this action commutes with the action of K~ G*C” (St)(y,¢)- Therefore we have
a decomposition

KA (Sp)y.q) = @ P ® K4(Sp,) (r.q.0)-
p€lrrep C(y,u)

of KA(Spu)(y,q) as a representation of C(y,u) x H(G(F), I). One shows (see
[Kazhdan and Lusztig 1987; Chriss and Ginzburg 1997] for details) that each
H(G(F), I)-module K4 (SPy)(y,4.p) has a unique irreducible quotient, and this
way one obtains a parameterization of irreducible modules by the triples appearing
in the left hand side of (10.4-6). Therefore we obtain that the same set is in
bijection with the right hand side of (10.4-6). This is how the tame local Langlands
correspondence (10.4-6), also known as the Deligne-Langlands conjecture, is
proved.

10.4.2. Categories admitting (g, , I) Harish-Chandra modules. We now wish
to find categorical analogues of the above results in the framework of the categorical
Langlands correspondence for loop groups.

As we explained in Section 10.2.2, in the categorical setting a representation
of G(F) is replaced by a category g, -mod, equipped with an action of G((t)),
and the space of /-invariant vectors is replaced by the subcategory of (g, . /)
Harish-Chandra modules in g, -mod,. Hence the analogue of the question as to
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which representations of G(F) admit non-zero [-invariant vectors becomes the
following question: for which x does the category g, -mod, contain non-zero
(@, 1) Harish-Chandra modules? The answer is given by the following lemma.

Recall that in Section 9.1.2 we introduced the space OpESG (D)4 of L G-opers
on D with regular singularity and residue @ € Lh/ W = h*/ W, where W is the
Weyl group of LG. Given p € h*, we write @ (1) for the projection of y onto
h*/W. Finally, let P be the set of integral (not necessarily dominant) weights of g,
viewed as a subset of h*.

Lemma 10.4.1. The category g, -mody contains a non-zero (gy,. 1) Harish—Chan-
dra module if and only if

xe || opfs(D)ww).- (10.4-9)
veP/W

Proof. Let M be a non-zero (g, , /) Harish-Chandra module in g, -mod,. We
show, in the same way as in the proof of Lemma 10.3.2, that it contains a vector
v annihilated by 7° = [I, I] and such that //I° = H acts via a character v € P.
Therefore there is a non-zero homomorphism from the Verma module M,, to M
sending the highest weight vector of M), to v. According to Theorem 9.5.3, the action
of the center Z(g) >~ Fun OpL 5 (D*) on M, factors through Fun OpleG (D) (—v—p)-
Therefore y € OpESG (D) (—v—p)-

On the other hand, suppose that x belongs to Oplsz (D) (v) for some v € P.
Let My, (x) be the quotient of the Verma module M), by the central character
corresponding to . It follows from Theorem 9.5.3 that M, (x) is a non-zero
object of ﬁ,{c—modx. On the other hand, it is clear that M,,, and hence M, (), are
I -equivariant g, -modules. O

Thus, the opers y for which the corresponding category ﬁxc—modx contain non-
trivial /-equivariant objects are precisely the points of the subscheme (10.4-9) of
OpLg (D). The next question is what are the corresponding L G-local systems.

Let LOCESG’talme C LocLg(D>) be the locus of £ G-local systems on D* with
regular singularity and unipotent monodromy. Such a local system is determined,
up to an isomorphism, by the conjugacy class of its monodromy (see, e.g., [Babbitt
and Varadarajan 1983], Section 8). Therefore LOCESG’tame is an algebraic stack
isomorphic to N/ G. The following result is proved in a way similar to the proof
of Lemma 10.3.1.

Lemma 10.4.2. [f the local system underlying an oper x € Opr g (D™) belongs to

Loclzsétame, then x belongs to the subset (10.4-9) of Opr (D).

In other words, the subscheme (10.4-9) is precisely the (set-theoretic) preimage

of LOCESG’tame C LocL (D) under the map & : Opr g (D) — Locr g(D™).
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This hardly comes as a surprise. Indeed, by analogy with the classical Langlands
correspondence we expect that the categories g, -mod, containing non-trivial -
equivariant objects correspond to the Langlands parameters which are the geometric
counterparts of tamely ramified homomorphisms W, — LG. The most obvious
candidates for those are precisely the G-local systems on D> with regular singu-
larity and unipotent monodromy. For this reason we will call such local systems
tamely ramified (this is reflected in the above notation).

Let us summarize: suppose that o is a tamely ramified G-local system on
D*, and let x be a LG-oper that is in the gauge equivalence class of o. Then
x belongs to the subscheme (10.4-9), and the corresponding category ﬁxc—modx
contains non-zero [ -equivariant objects, by Lemma 10.4.1. Let /g\,cc—mod)l( be the
corresponding category of I-equivariant (or, equivalently, (g,... /) Harish-Chandra)
modules. This is our candidate for the categorification of the space of [-invariant
vectors in an irreducible representation of G(F) corresponding to a tamely ramified
homomorphism W, — Lg.

Note that according to 10.1.2, the categories g, -mody (resp., ﬁkc—modf() should
be equivalent to each other for all y which are gauge equivalent to each other as
L G-local systems.

In the next section, following [Frenkel and Gaitsgory 2006c], we will give a
conjectural description of the categories ’g\,cc-mod)]( for x € OpESG (D) gy (—p) in terms
of the category of coherent sheaves on the Springer fiber corresponding to the residue
of x. This description in particular implies that at least the derived categories of
these categories are equivalent to each other for the opers corresponding to the same
local system. We have a similar conjecture for x € Oplsz(D)w(v) for other v € P,
which the reader may easily reconstruct from our discussion of the case v = —p.

10.4.3. Conjectural description of the categories of (g, ,1) Harish-Chandra
modules. Let us consider one of the connected components of the subscheme
(10.4-9), namely, Ople‘G (D) (—p)- Recall from Section 9.2.1 and Proposition 9.2.1

that this space is isomorphic to the space Opiﬂg of nilpotent opers on D (corre-
sponding to the weight A = 0). As explained in Section 9.2.3, it comes equipped
with the residue maps

ReSgZOpzﬂg—)Lng«LB'O, Res:OplzilgeLn/LB:ff\?/LG.
For any x € Opiﬂg the L G-gauge equivalence class of the corresponding connection

is a tamely ramified = G-local system on D*. Moreover, its monodromy conjugacy
class is equal to exp(27i Res(x)).
We wish to describe the category ﬁ,cc—mod)l( of (g, . I) Harish—-Chandra modules

with the central character y € Oprflg. However, here we face the first major
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complication as compared to the unramified case. While in the ramified case we
worked with the abelian category ﬁ,cc—modg[[t]], this does not seem to be possible in
the tamely ramified case. So from now on we will work with the appropriate derived
category Db (’g\,cc—modx)l . By definition, this is the full subcategory of the bounded
derived category Db (@¢,-mod, ), whose objects are complexes with cohomologies
in 'j,cc—mod)l(.

Roughly speaking, the conjecture of [Frenkel and Gaitsgory 2006¢] is that the cat-
egory DP (ﬁkc—modx)l is equivalent to the derived category D? (QCoh(SpRes, (x)))
of the category QCoh(Spges, (5)) Of quasicoherent sheaves on the Springer fiber of
Resz(x). However, we need to make some adjustments to this statement. These
adjustments are needed to arrive at a “nice” statement, Conjecture 10.4.4 below.
We now explain what these adjustments are and the reasons behind them.

The first adjustment is that we need to consider a slightly larger category of
representations than D? (/gf,cc—modx)l . Namely, we wish to include extensions of
I-equivariant g, -modules which are not necessarily /-equivariant, but only / 8
equivariant, where 1% =1, I]. To explain this more precisely, let us choose a Cartan
subgroup H C B C I and the corresponding Lie subalgebra ) C b C Lie /. We then
have an isomorphism / = H x I°. An I-equivariant @¢,-module is the same as a
module on which § acts diagonally with eigenvalues given by integral weights and
the Lie algebra Lie 7° acts locally nilpotently. However, there may exist extensions
between such modules on which the action of h is no longer semi-simple. Such
modules are called 7-monodromic. More precisely, an /-monodromic g, -module
is a module that admits an increasing filtration whose consecutive quotients are
I-equivariant. It is natural to include such modules in our category. However,
it is easy to show that an J-monodromic object of g, -mod, is the same as an
I°-equivariant object of By,-mod,, for any x € Opzﬂg (see [Frenkel and Gaitsgory
2006c]). Therefore instead of 7-monodromic modules we will use 7 °-equivariant
modules. Denote by Db (Tj,cc—mod X)I ® the full subcategory of Db (ﬁKC—modX) whose
objects are complexes with cohomologies in ﬁkc—mod)l(o.

The second adjustment has to do with the non-flatness of the Springer resolution
N — N. By definition, the Springer fiber Sp,, is the fiber product N 5\(r pt, where pt

is the point # € N. This means that the structure sheaf of Sp, is given by

Osp, = @F g{: C. (10.4-10)

However, because the morphism N — N is not flat, this tensor product functor is
not left exact, and there are non-trivial derived tensor products (the 7Tor’s). Our

(conjectural) equivalence is not going to be an exact functor: it sends a general object
= 0 . .
of the category g ,Cc—mod)l( not to an object of the category of quasicoherent sheaves,
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but to a complex of sheaves, or, more precisely, an object of the corresponding
derived category. Hence we are forced to work with derived categories, and so the
higher derived tensor products need to be taken into account.

To understand better the consequences of this non-exactness, let us consider
the following model example. Suppose that we have established an equivalence
between the derived category Db (QCoh(N)) and another derived category D’ ().
In particular, this means that both categories carry an action of the algebra Fun N
(recall that N is an affine algebraic variety). Let us suppose that the action of Fun N
on D? () comes from its action on the abelian category 6. Thus, € fibers over N,
and let €, the fiber category corresponding to u € N. This is the full subcategory
of € whose objects are objects of ¢ on which the ideal of « in Fun .\ acts by 0.°
What is the category D?(6,) equivalent to?

It is tempting to say that it is equivalent to D (QCoh(Sp,)). However, this
does not follow from the equivalence of D?(QCoh(N)) and D? (%) because of the
tensor product (10.4-10) having non-trivial higher derived functors. Suppose that
the category € is flat over N'; this means that all projective objects of € are flat as
modules over Fun N'. Then D? ((6‘,‘2 is equivalent to the category Db (QCoh(SpEG)),

where SpgG is the “DG fiber” of N — N at u. By definition, a quasicoherent sheaf
on SpLY is a DG module over the DG algebra
L

Ogppe = @N(%Cu, (10.4-11)

where we now take the full derived functor of tensor product. Thus, the category
Db(QCOh(SpIMDG)) may be thought of as the derived category of quasicoherent
sheaves on the “DG scheme” SpBG (see [Ciocan-Fontanine and Kapranov 2001]
for a precise definition of DG scheme).

Finally, the last adjustment is that we should consider the non-reduced Springer
fibers. This means that instead of the Springer resolution N we should consider the
“thickened” Springer resolution

=g
N="g z<g N,

where g is the so-called Grothendieck alteration,

Ly=ixelg v cltG/EB|x el

9The relationship between % and %, is similar to the relationship between /g\,cl,—mod and and
Ekc—modx, where x € OpL (D).
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which we have encountered previously in Section 7.1.1. The variety N is non-
reduced, and the underlying reduced variety is the Springer resolution N. For in-
stance, the fiber of ﬁ~over aregular element in N consists of a single point, but the cor-
responding fiber of N is the spectrum of the Artinian ring /¢ = Fun £f/(Fun £ h)z/.
Here (Fun © [))K/ is the ideal in Fun L' generated by the augmentation ideal of the
subalgebra of W -invariants. Thus, Spec /¢ is the scheme-theoretic fiber of w : L't —
L/ W at 0. It turns out that in order to describe the category Db (ﬁ,cc—modx)l * we
need to use the “thickened” Springer resolution.!®

Let us summarize: in order to construct the sought-after equivalence of categories
we take, instead of individual Springer fibers, the whole Springer resolution, and we
further replace it by the “thickened” Springer resolution N defined above. In this
version we will be able to formulate our equivalence so that we avoid DG schemes.

This means that instead of considering the categories Tj,cc—modx for individual
nilpotent opers x, we should consider the “universal” category g, -modnp, Which is
the “family version” of all of these categories. By definition, the category g, -modniip
is the full subcategory of g, -mod whose objects have the property that the action
of Z(g) = Fun OpL (D) on them factors through the quotient Fun Opr (D) —
Fun Opiﬂg. Thus, the category g, -mody;p is similar to the category g, -modyc, that
we have considered above. While the former fibers over Opzile, the latter fibers
over Opr g (D). The individual categories g, -mod, are now realized as fibers of
these categories over particular opers .

Our naive idea was that for each x € Opriilg the category Db (ﬁxc—modx)l % is
equivalent to QCoh(Spges, (). We would like to formulate now a “family version”
of such an equivalence. To this end we form the fiber product

I=_L— L
n="g L><g n.
It turns out that this fiber product does not suffer from the problem of the individual
Springer fibers, as the following lemma shows:

Lemma 10.4.3 ([Frenkel and Gaitsgory 2006c],Lemma 6.4). The derived tensor
product

I
FunLg ® Funln
FunL g

is concentrated in cohomological dimension 0.

The variety LY may be thought of as the family of (non-reduced) Springer fibers
parameterized by Ln C Lg. It is important to note that it is singular, reducible, and
non-reduced. For example, if g = sl;, it has two components, one of which is P! (the

10This is explained in Section 10.4.6 for g = sl5.
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Springer fiber at 0) and the other is the doubled affine line (i.e., Spec C[x, y]/(»?)),
see Section 10.4.6.

We note that the corresponding reduced scheme is ©

T introduced in Section 9.3.2:

LE:NﬁLn. (10.4-12)
However, the derived tensor product corresponding to (10.4-12) is not concentrated
in cohomological dimension 0, and this is the reason why we prefer to use L rather
than L.

Now we set

L0 nilp L
MOpLg =OPrg , X , Ya/t B,

where we use the residue morphism Res : Opnllp — Ln/LB. Thus, informally

MOp L may be thought as the family over Op) - G whose fiber over x € Opnllp

the Sprlnger fiber of Res( X)

As the notation suggests, MOp LG is closely related to the space of Miura opers
whose underlying opers are nilpotent (see Section 10.4.5 below). More precisely,
the reduced scheme of MOp? G is the scheme MOp? ¢ Of nilpotent Miura LG-opers
of weight 0, introduced in Section 9.3.2:

~ nilp L~
MOpG ~Op. ., /LB n/B
(see formulas (9.3-9) and (10.4-12)).

We also introduce the category @, -modZ; as the full subcategory of g, -modniip

mlp
whose objects are 7°-equivariant, and the corresponding derived category

N 0
Db (g,cc-modnnp)l
Now we can formulate the Main Conjecture of [Frenkel and Gaitsgory 2006¢]:!!

Conjecture 10.4.4. There is an equivalence of categories
D, -modyip)’’ =~ D?(QCoh(MOP!? ). (10.4-13)

which is compatible with the action of the algebra Fun Opiﬂg on both categories.

nilp

Note that the action of Fun Op,, - on the first category comes from the action of

the center Z(g), and on the second category it comes from the fact that MOp? G is

nil
a scheme over Op, . b

11 Added in proof: Conjecture 10.4.4 has been proved by E. Frenkel and D. Gaitsgory in [Frenkel
and Gaitsgory 2007a].
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The conjectural equivalence (10.4-13) may be viewed as a categorical analogue
of the local Langlands correspondence in the tamely ramified case, as we discuss
in the next section.

An important feature of the equivalence (10.4-13) does not preserve the 7-structure

. . . = 0
on the two categories. In other words, objects of the abelian category g,cc-modrllilp
—0
are in general mapped under this equivalence to complexes in D? (QCoh(MOpr. G))s
and vice versa. We will see examples of this in the case of sl, in Section 10.4.6.
There are similar conjectures for the categories corresponding to the spaces
Opr;‘ﬂg’)” of nilpotent opers with dominant integral weights A € P.
In the next section we will discuss the connection between Conjecture 10.4.4
and the classical tamely ramified Langlands correspondence. We then present some

evidence for this conjecture and consider in detail the example of g = sl5.

10.4.4. Connection between the classical and the geometric settings. Let us dis-
cuss the connection between the equivalence (10.4-13) and the realization of rep-
resentations of affine Hecke algebras in terms of K-theory of the Springer fibers.
As we have explained, we would like to view the category D? (ﬁkc—modx)l * for
X € Opriilg as, roughly, a categorification of the space R™ (I) of [-invariant vectors
in an irreducible representation (R, ) of G(F). Therefore, we expect that the
Grothendieck group of the category D? (ﬁ,cc—modx)l ® is somehow related to the
space R™(D).

Let us try to specialize the statement of Conjecture 10.4.4 to a particular oper
Xx=(FV,FrLp) € Opriﬂg. Let s}SESSg(X) be the DG fiber of MOLG over x. By
definition (see Section 9.2.3), the residue Resg () of x is a vector in the twist of
Ln by the £ B-torsor 1. B,o- 1t follows that %Eei%(x) is the DG fiber over Resg ()
of the FL p o-twist of the Grothendieck alteration.

If we trivialize %L p , then u = Resg () becomes an element of Ln. By defini-

tion, the (non-reduced) DG Springer fiber %EG is the DG fiber of the Grothendieck
alteration g — Lg at u. In other words, the corresponding structure sheaf is the
DG algebra
IZ
O~pc =037 ® C
Sp. '@ @(i !
(compare with formula (10.4-11)).
To see what these DG fibers look like, let # = 0. Then the naive Springer
fiber is just the flag variety G/L B (it is reduced in this case), and ©§f> is the
0
structure sheaf of G /L B. But the sheaf 0 gope is a sheaf of DG algebras, which

Po
is quasi-isomorphic to the complex of differential forms on G/~ B, with the zero

differential. In other words, é\f)gG may be viewed as a “Z-graded manifold” such
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that the corresponding supermanifold, obtained by replacing the Z-grading by the
corresponding Z /27-grading, is I1T (¥ G/L B), the tangent bundle to G/~ B with
the parity of the fibers changed from even to odd.

o~ 0
We expect that the category g ,Cc—modI{ilp

nilp
LG
we obtain as a corollary an

is flat over Op
nilp
LG’

Therefore, specializing

Conjecture 10.4.4 to a particular oper x € Op
equivalence of categories

z & &~ DG
DP (g, -mody)"" = D®(QCoh(Spgey, (1)))- (10.4-14)

This fits well with Conjecture 10.1.2 saying that the categories g, -mod,, and
B¢, -mod,, (and hence Db (G, mody, )! ® and D? (G, mod, )’ %) should be equiv-
alent if the underlying local systems of the opers x; and x, are isomorphic. For
nilpotent opers x; and x this is so if and only if their monodromies are conjugate to
each other. Since their monodromies are obtained by exponentiating their residues,
this is equivalent to saying that the residues, Resg (1) and Resg()2), are conjugate
with respect to the FL p o-twist of LG. But in this case the DG Springer fibers

corresponding to x; and x, are also isomorphic, and so Db (9,-mod, 1)1 ® and
Db (ﬁkc—modxz)l * are equivalent to each other, by (10.4-14).

The Grothendieck group of the category D? (QCoh(S~p]uDG)), where u is any
nilpotent element, is the same as the Grothendieck group of QCoh(Sp,,). In other
words, the Grothendieck group does not “know” about the DG or the non-reduced
structure of %EG. Hence it is nothing but the algebraic K-theory K(Sp,). As
we explained at the end of Section 10.4.1, equivariant variants of this algebraic
K-theory realize the “standard modules” over the affine Hecke algebra H(G(F), I).
Moreover, the spaces of [-invariant vectors R™() as above, which are naturally
modules over the affine Hecke algebra, may be realized as subquotients of K(Sp,).
This indicates that the equivalences (10.4-14) and (10.4-13) are compatible with
the classical results.

However, at first glance there are some important differences between the classical
and the categorical pictures, which we now discuss in more detail.

In the construction of H(G(F), I)-modules outlined in Section 10.4.1 we had
to pick a semi-simple element y of LG such that yuy~! = qu, where g is the
number of elements in the residue field of F. Then we consider the specialized A-
equivariant K -theory K4 (Spy) (y.,q)» Where A is the the smallest algebraic subgroup
of LG x C* containing (y, ¢). This gives K(Sp,,) the structure of an H(G(F), I)-
module. But this module carries a residual symmetry with respect to the group
C(y.u) of components of the centralizer of y and u in £ G, which commutes with
the action of H(G(F), I). Hence we consider the H(G(F'), I)-module

KA(SPy) (y.q.0) = Home . (0, K(Spy)),
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corresponding to an irreducible representation p of C(y, u). Finally, each of these
components has a unique irreducible quotient, and this is an irreducible represen-
tation of H(G(F), I), which is realized on the space R*), where (R, 7) is an
irreducible representation of G(F) corresponding to (y, u, p) under the bijection
(10.4-6). How is this intricate structure reflected in the categorical setting?

Our category D? (QCoh(SBEG)), where u = Resg (), is a particular categori-
fication of the (non-equivariant) K-theory K(Sp,). Note that in the classical
local Langlands correspondence (10.4-6), the element u of the triple (y, u, p) is
interpreted as the logarithm of the monodromy of the corresponding representation
of the Weil-Deligne group Wy. This is in agreement with the interpretation
of Resg(x) as the logarithm of the monodromy of the ' G-local system on D*
corresponding to x, which plays the role of the local Langlands parameter for the
category g, -mod, (up to the inessential factor 271).

But what about the other parameters, ¥ and p? And why does our category
correspond to the non-equivariant K-theory of the Springer fiber, and not the
equivariant K-theory, as in the classical setting?

The element y corresponding to the Frobenius in Wy, does not seem to have an
analogue in the geometric setting. We have already seen this above in the unramified
case: while in the classical setting unramified local Langlands parameters are the
semi-simple conjugacy classes y in LG, in the geometric setting we have only one
unramified local Langlands parameter; namely, the trivial local system.

To understand better what is going on here, we revisit the unramified case. Recall
that the spherical Hecke algebra H(G(F'), Ky) is isomorphic to the representation
ring Rep L' G. The one-dimensional space of Ky-invariants in an irreducible un-
ramified representation (R, i) of G(F) realizes a one-dimensional representation
of H(G(F), Ky), i.e., a homomorphism Rep G — C. The unramified Langlands
parameter y of (R, 7), which is a semi-simple conjugacy class in G, is the point
in Spec(Rep L' G) corresponding to this homomorphism. What is a categorical
analogue of this homomorphism? The categorification of Rep LG is the category
Jep L'G. The product structure on Rep LG is reflected in the structure of tensor
category on %ep L'G. On the other hand, the categorification of the algebra C
is the category V'ect of vector spaces. Therefore a categorical analogue of a
homomorphism Rep G — C is a functor ep L'G — Vect respecting the tensor
structures on both categories. Such functors are called the fiber functors. The
fiber functors form a category of their own, which is equivalent to the category
of L' G-torsors. Thus, any two fiber functors are isomorphic, but not canonically.
In particular, the group of automorphisms of each fiber functor is isomorphic to
LG. (Incidentally, this is how LG is reconstructed from a fiber functor in the
Tannakian formalism.) Thus, we see that, while in the categorical world we do not
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have analogues of semi-simple conjugacy classes y (the points of Spec(Rep L G)),
their role is in some sense played by the group of automorphisms of a fiber functor.

This is reflected in the fact that, while in the categorical setting we have a unique
unramified Langlands parameter — namely, the trivial ZG-local system o on D*
— this local system has a non-trivial group of automorphisms, namely, G. We
therefore expect that the group £ G should act by automorphisms of the Langlands
category 6, corresponding to o, and this action should commute with the action
of the loop group G((¢)) on €. It is this action of £ G that is meant to compensate
for the lack of unramified Langlands parameters, as compared to the classical
setting.

We have argued in Section 10.3 that the category g, -mod,, where

X = (@, V, 9;1‘3) (S OpLG(D),

is a candidate for the Langlands category “6,,. Therefore we expect that the group
LG (more precisely, its twist L G) acts on the category 8x,-mody. In Section 10.3.7
we showed how to obtain this action using the conjectural equivalence between
8,-mod, and the category @Ef“ke -mod, of Hecke eigenmodules on the affine
Grassmannian Gr (see Conjecture 10.3.9). The category QDEkae -mod, was defined
in Section 10.3.6 as a “de-equivariantization” of the category %, -mod of twisted
9-modules on Gr with respect to the monoidal action of the category Rep LG.

Now comes a crucial observation that will be useful for understanding the way
things work in the tamely ramified case: the category %ep LG may be interpreted as
the category of L G-equivariant quasicoherent sheaves on the variety pt = Spec C. In
other words, %ep 'G may be interpreted as the category of quasicoherent sheaves
on the stack pt /L'G. The existence of monoidal action of the category Jtep LG
on 9. -mod should be viewed as the statement that the category %, -mod “fibers’
over the stack pt /' G. The statement of Conjecture 10.3.9 may then be interpreted
as saying that

9

B mody >~ D, -mod X pt.
' pt/LG

In other words, if € is the conjectural Langlands category fibering over the stack
LocLg(D>) of all £G-local systems on D*, then
Dy, -mod ~ € X pt /LG,
Locr (D>)
whereas
O, -mod, ~ € X t,
Bce X LocLG(D><)p
where the morphism pt — Locr g (D™) corresponds to the oper .
Thus, in the categorical setting there are two different ways to think about the
trivial local system og: as a point (defined by a particular £ G-bundle on D with
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connection, such as a regular oper x), or as a stack pt /L G. The base change of
the Langlands category in the first case gives us a category with an action of LG,
such as the categories g, -mod, or QDE(f’Cke -mod. The base change in the second
case gives us a category with a monoidal action of %tep LG, such as the category
9. -mod. We can go back and forth between the two versions by applying the
procedures of equivariantization and de-equivariantization with respect to G and
Rep LG, respectively.

Now we return to the tamely ramified case. The semi-simple element y appearing
in the triple (y, u, p) plays the same role as the unramified Langlands parameter y .
However, now it must satisfy the identity yuy ~! = qu. Recall that the center Z of
H(G(F), I) is isomorphic to Rep LG, and so Spec Z is the set of all semi-simple
elements in £ G. For a fixed nilpotent element u the equation yuy~! = qu cuts
out a locus Cy in Spec Z corresponding to those central characters which may
occur on irreducible H(G(F), I)-modules corresponding to u. In the categorical
setting (where we set ¢ = 1) the analogue of C,, is the centralizer Z(u) of u in
L @G, which is precisely the group Aut(c) of automorphisms of a tame local system
o on D* with monodromy exp(2wiu). On general grounds we expect that the
group Aut(o) acts on the Langlands category @, just as we expect the group LG
of automorphisms of the trivial local system oy to act on the category €,,. It is
this action that replaces the parameter y in the geometric setting.

In the classical setting we also have one more parameter, p. Let us recall
that p is a representation of the group C(y, u) of connected components of the
centralizer Z(y, u) of y and u. But the group Z(y, u) is a subgroup of Z(u), which
becomes the group Aut(o) in the geometric setting. Therefore one can argue that
the parameter p is also absorbed into the action of Aut(c) on the category €, .

If we have an action of Aut(c) on the category 65, or on one of its many
equivariantized,” just like the categories g, -mody, x € Opz (D), in the unram-
ified case. This is the reason why in the equivalence (10.4-14) (and in Conjec-
ture 10.4.4) we have the non-equivariant categories of quasicoherent sheaves (whose
Grothendieck groups correspond to the non-equivariant K-theory of the Springer
fibers).

However, there is also an equivariant version of these categories. Consider the
substack LOCIESG’tame of tamely ramified local systems in Locz (D) introduced in
Section 10.4.2. Since a tamely ramified local system is completely determined by
the logarithm of its (unipotent) monodromy, this substack is isomorphic to N/LG.

This substack plays the role of the substack pt /ZG corresponding to the trivial

incarnations g, -mody, x € Op it means that these categories must be “de-
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local system. Let us set

Game =€ x  N/EG
Locy, (D>)
Then, according to our general conjecture expressed by the Cartesian diagram
(10.1-3), we expect to have

B m0dnitp = Gume X 0Py . (10.4-15)
N/LG
Let D (%mme)l ® be the I 0—equivariant derived category corresponding to @me.
Combining (10.4-15) with Conjecture 10.4.4, and noting that

MOp) ; = Op}'¥ X Gﬁ /LG,

we obtain the following conjecture (see [Frenkel and Gaitsgory 2006c¢]):
Db (@ame)’’ ~ D?(QCoh(N/LG)). (10.4-16)

The category on the right hand side may be interpreted as the derived category of
L G-equivariant quasicoherent sheaves on the “thickened” Springer resolution N.

Together, the conjectural equivalences (10.4-14) and (10.4-16) should be thought
of as the categorical versions of the realizations of modules over the affine Hecke
algebra in the K-theory of the Springer fibers.

One corollary of the equivalence (10.4-14) is the following: the classes of irre-
ducible objects of the category ﬁkc—mod)l(o in the Grothendieck group of ﬁxc—mod)](o
give rise to a basis in the algebraic K-theory K(Sp,), where u = Resg()). Pre-
sumably, this basis is closely related to the bases in (the equivariant version of) this
K-theory constructed by G. Lusztig in [1998] (from the perspective of unrestricted
g-modules in positive characteristic).

10.4.5. Evidence for the conjecture. We now describe some evidence for Conjec-
ture 10.4.4. It consists of the following four groups of results:

Interpretation of the Wakimoto modules as g, -modules corresponding to the
skyscraper sheaves on MOp? G

Proof of the equivalence of certain quotient categories of Db (/g\,(c—modnilp)l ’
and D?(QCoh(MOp! ).

Proof of the restriction of the equivalence (10.4-13) to regular opers.

e Connection to R. Bezrukavnikov’s theory.

We start with the discussion of Wakimoto modules.
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Suppose that we have proved the equivalence of categories (10.4-13). Then
each quasicoherent sheaf on MOp? G should correspond to an object of the derived
category Db (ﬁkc—modnilp)l ° The simplest quasicoherent sheaves on M~Op0L G are
the skyscraper sheaves supported at the C-points of M~Op°LG. It follows from
the definition that a C-point of 1\%{)2 G which is the same as a C-point of the
reduced scheme MOp¢., is a pair (x, b’), where x = (%, V, %L p) is a nilpotent
L G-oper in Opiﬂg and b’ is a point of the Springer fiber corresponding to Resg (),
which is the variety of Borel subalgebras in = g7, that contain Resg(x). Thus,
if Conjecture 10.4.4 is true, we should have a family of objects of the category
Db (ﬁxc—modnilp)l 0 parameterized by these data. What are these objects?

The reader who has studied the previous chapter of this book will no doubt
have already guessed the answer: these are the Wakimoto modules! Indeed, let
us recall that Wakimoto modules of critical level are parameterized by the space
Conn(27°) px. The Wakimoto module corresponding to V € Conn(Q~P)px is
denoted by W5 (see Section 9.4.3). According to Theorem 8.3.3, the center Z )

acts on Wy via the central character w(V), where 1 is the Miura transformation.
nilp

Moreover, as explained in Section 9.4.3, if y € Op, G’

then W5 is an object of the
category /gf,cc—mod)l( for any V € =1 (x).

According to Theorem 9.3.7, the points of 12~ () are in bijection with the points
of the Springer fiber Spge,, () corresponding to the nilpotent element Resg ().
Therefore to each point of Spg. () We have assigned a Wakimoto module, which

is an object of the category ’g\,cc—mod)lco (and hence of the corresponding derived

1

category). In other words, Wakimoto modules are objects of the category /gf,cc—modnﬂp

parameterized by the C-points of MOp? ¢ It is natural to assume that they corre-

spond to the skyscraper sheaves on mg G under the equivalence (10.4-13). This
was in fact one of our motivations for this conjecture.

Incidentally, this gives us a glimpse into how the group of automorphisms of the
L G-local system underlying the oper x acts on the category ’g\,cc—modx. This group
is Z(Resg())), the centralizer of the residue Resg (), and it acts on the Springer
fiber Spges,, (5)- Therefore g € Z(Resg(x)) sends the skyscraper sheaf supported at
a point p € Spgeg, () to the skyscraper sheaf supported at g - p. Hence we expect
that g sends the Wakimoto module corresponding to p to the Wakimoto module
corresponding to g - p.

If the Wakimoto modules indeed correspond to the skyscraper sheaves, then
the equivalence (10.4-13) may be thought of as a kind of “spectral decomposition”
of the category D? (ﬁkc—modnilp)l O, with the basic objects being the Wakimoto
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modules W7, where V runs over the locus in Conn(Q2~°) p=, which is isomorphic,
pointwise, to MOp? G
Note however that, even though the (set-theoretic) preimage of

nilp
Op; G

in Conn(2™°) p= under the Miura transformation j is equal to MOp%, they are not
nilp )

isomorphic as algebraic varieties. Instead, according to Section 9.3.3, 1~ !(Op} G

is the disjoint union of subvarieties

— il; — —
w'Opg) = || Comn(@ )57,
wew

where Conn(Q_p)g(p )P is the variety of connections with regular singularity
and residue w(p) — p. On the other hand, MOp? ¢ has a stratification (obtained
from intersections with the Schubert cells on the flag variety £ G/~ B), with the
strata MOpg’g isomorphic to Conn(Q_p)g(p )=p ,we W (see Section 9.3.2 and
Theorem 9.3.6). But these strata are “glued” together in MOp? ¢ 1n a non-trivial
way.

For each stratum, which is an affine algebraic variety (in fact, an infinite-
dimensional affine space), we can associate a functor

Fw : QCoh(Conn(27° )llu)(p )=p ) — ﬁ,cc-mOdr{i(l)p,

using the Wakimoto module W, (,)—, defined by formula 9.4.3. The functor Fy,
maps an object of QCoh(Conn(Q_p)g(p )=, ), which is the same as a module ¥
over the algebra Fun Conn(Q_p)z’)(p )=, , to the @, -module

W (p)—p ® F.

Fun Conn(Q_p)lu;(p)_p

Informally, one can say that the category D?(QCoh(MOp? ¢)) is “glued” from

the categories of quasi-coherent sheaves on the strata Conn(Q_p)IlU)(p )= Thus
Conjecture 10.4.4 may be interpreted as saying that the category Db (ﬁxc—modnﬂp)l 0
is “glued” from its subcategories obtained as the images of these functors. For more
on this, see [Frenkel and Gaitsgory 2006b].

At this point it is instructive to compare the conjectural equivalence (10.4-13)
with the equivalence (10.3-9) in the case of regular opers, which we rewrite in a
more suggestive way as

B modSI ~ QCoh(OpL ¢ (D)). (10.4-17)
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There are two essential differences between the two statements. First of all, (10.4-17)
is an equivalence between abelian categories, whereas in (10.4-13) we need to use
the derived categories. The second difference is that while in (10.4-17) we have the
category of quasicoherent sheaves on a smooth affine algebraic variety Opr (D)
(actually, an infinite-dimensional affine space), in (10.4-13) we have the category of
quasicoherent sheaves on a quasi-projective variety M~Op2 ¢ Whichis highly singular
and non-reduced. In some sense, most of the difficulties in proving (10.4-13) are
caused by the non-affineness of 1/\/1\052 G

However, there is a truncated version of the equivalence (10.4-13), which involves
the category of quasicoherent sheaves on an affine subscheme of M~Op(L) g anda

. . = 0 . .
certain quotient of the category Db (ch—modnilp)I . Let us give a precise statement.

Foreachi =1,...,¢,let 5[g) be the sl subalgebra of g=g® 1 C g, generated
by e;, hi, fi. Let us call a g, -module M partially integrable if there exists
i =1,...,4, such that the action of 5[2” on M may be exponentiated to an action
of the corresponding group S L2 It easy to see that partially integrable objects

form a Serre subcategory in gmlp Let /g Oy, -modZ  be the quotient category of

n11p

g,c -mod. by the subcategory of partially integrable objects. We will denote by

mlp
f pb (g,cc—modnilp)l * the triangulated quotient category of D? (ﬁ,c(,-modnﬂp)l °b
the subcategory whose objects have partially integrable cohomology.

On the other hand, consider the subscheme MOpg’go of MOp? > Which is the

closure of the restriction of MOp? ¢ to the locus of regular nilpotent elements in Ly

under the map MOp? ¢~ Ln. As we have seen in Section 10.4.3, the non-reduced
Springer fiber over regular nilpotent elements is isomorphic to Spec /g, where
ho = Fun L'/ (Fun Lh)f is the Artinian algebra of dimension |W|. Therefore we
have

MOpOL W0 ~ Opnllp x Spec hy.

Thus, we see that it is an affine subscheme of MOp? - The corresponding reduced

scheme is in fact the stratum MOp0 w0 MOp? ¢ Introduced in Section 9.3.2. The

category of quasicoherent sheaves on MOpg’(u;’O may be realized as a Serre quotient

of the category of quasicoherent sheaves on M~OpOL G

The following result, proved in [Frenkel and Gaitsgory 2006c], shows that the
two quotient categories are equivalent to each other (already at the level of abelian
categories).
Theorem 10.4.5. The categories ', Uz -modZ and QCoh(mg’go) are equivalent
to each other.

mlp
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This is the second piece of evidence for Conjecture 10.4.4 from the list given at
the beginning of this section.

Let us now discuss the thlrd piece of evidence. The categories on both sides
of (10.4-13) fiber over Op; © G’ in other words, the algebra Fun Op; ;- G acts on ob-
jects of each of these categories. Consider the restrictions of these categories to

the subscheme of regular opers Opr (D) C Opnllp The corresponding abelian

categories are defined as the full subcategories on which the action of Fun Opnllp

factors through Fun Opr 5 (D). The objects of the corresponding derived categories
are those complexes whose cohomologies have this property.

The restriction of the category on the right hand side of (10.4-13) to the subscheme
Opr (D) is the derived category of quasicoherent sheaves on the DG scheme

reg — L
MOprg = MOpOLG 5 X Oprg(D).
pLG

The corresponding tensor product functor is not left exact, and so we are in the
situation described in Section 10.4.3. Therefore we need to take the DG fiber
product. Since the residue of any regular oper is equal to 0, we find that the fiber
of 1\/716-;;16% over each oper x € Opr (D) is isomorphic to the DG Springer fiber
SplgG, which is the DG scheme TT17 (Y G/L B), as we discussed in Section 10.4.3.

On the other hand, the restriction of the category on the left hand side of (10.4-13)
to Oprg (D) is the category Db (ﬁ,{c-modreg)l 0, the I°-equivariant part of the
derived category of ﬁkc—modmg. According to a theorem proved in [Frenkel and
Gaitsgory 2005] (which is the 7°-equivariant version of Conjecture 10.3.9), there
is an equivalence of categories

¢ Hecke i
Gy MOdeq > D ¢ -mod,,

and hence the corresponding derived categories are also equivalent. On the other
hand, it follows from the results of [Arkhipov et al. 2004] that the derived cate-
gory of D? (@HeRe -modyeg) ! ® is equivalent to D? (QCoh(i\—/Ib-ﬁrLegG)). Therefore the
restrictions of the categories appearing in (10.4-13) to Opr (D) are equivalent.

Finally, we discuss the fourth piece of evidence, connection with Bezrukavnikov’s
theory.

To motivate it, let us recall that in Section 10.3.5 we discussed the action of
the categorical spherical Hecke algebra #(G(t)), G[[t]]) on the category g, -mod,,
where x is a regular oper. The affine Hecke algebra H (G (F), I) also has a categori-
cal analogue. Consider the affine flag variety Fl = G((¢))/I. The categorical affine
Hecke algebra is the category 9¢(G((¢)), /), which is the full subcategory of the
derived category of %-modules on F1 = G((t))/I whose objects are complexes with
I-equivariant cohomologies. This category naturally acts on the derived category
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Db(ﬁxc—modx)l . What does this action correspond to on the other side of the
equivalence (10.4-13)?

The answer is given by a theorem of R. Bezrukavnikov [2006], which may be
viewed as a categorification of the isomorphism (10.4-8):

D?@F -mod)!® ~ DP(QCoh(SV)), (10.4-18)

where @Ei -mod is the category of twisted %-modules on Fl and Stis the “thickened”
Steinberg variety "
St=NxN=N x g
N Ly
Morally, we expect that the two categories in (10.4-18) act on the two categories
in (10.4-13) in a compatible way. However, strictly speaking, the left hand side of
(10.4-18) acts like this:

o~ o~ 0
Db (g/cc'mOdnilp) I, pb (QKC‘mOdnilp) ! 5
and the right hand side of (10.4-18) acts like this:
D?(QCoh(MOp} ,)) — D?(QCoh(MOp! ).

So one needs a more precise statement, which may be found in [Bezrukavnikov
2006], Section 4.2. Alternatively, one can consider the corresponding actions of the
affine braid group of LG, as in [Bezrukavnikov 2006].

A special case of this compatibility concerns some special objects of the cate-
gory Db (QDEIC -mod)’, the central sheaves introduced in [Gaitsgory 2001]. They
correspond to the central elements of the affine Hecke algebra H(G(F), I). These
central elements act as scalars on irreducible H(G(F'), I)-modules, as well as on
the standard modules K~ (SPy)(y.q,p) discussed above. We have argued that the
categories ﬁ,c(,-mod)l(o, X € Opl,iﬂg, are categorical versions of these representations.
Therefore it is natural to expect that its objects are “eigenmodules” with respect to the
action of the central sheaves from D? (@E{ -mod)’ (in the sense of Section 10.3.5).
This has indeed been proved in [Frenkel and Gaitsgory 2006a].

This discussion indicates the intimate connection between the categories

Db (ﬁxc—modnﬂp)

and the category of twisted %-modules on the affine flag variety, which is similar
to the connection between g, -mod;, and the category of twisted %-modules on
the affine Grassmannian, which we discussed in Section 10.3.6. A more precise
conjecture relating Db (8c,-modpijp) and Db (QDEL -mod) was formulated in [Frenkel
and Gaitsgory 2006c¢] (see the Introduction and Section 6), where we refer the reader
for more details. This conjecture may be viewed as an analogue of Conjecture 10.3.9
for nilpotent opers. As explained in [Frenkel and Gaitsgory 2006c¢], this conjecture
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is supported by the results of [Arkhipov and Bezrukavnikov 2002; Arkhipov et al.
2004] (see also [Bezrukavnikov 2006]). Together, these results and conjectures
provide additional evidence for the equivalence (10.4-13).

10.4.6. The case of g = sl,. In this section we will illustrate Conjecture 10.4.4
in the case when g = sl;, thus explaining the key ingredients of this conjecture in
more concrete terms.

First, let us discuss the structure of the scheme m(}, GL," By definition,

MOpYgr, = Opper, P M PGL.
The Variety%maps to n = C, and its fiber over u € n is the non-reduced Springer
fiber of u, the variety of Borel subalgebras of sl, containing u.

There are two possibilities. If # = 0, then the fiber is P!, the flag variety of
PGL,. If u # 0, then it corresponds to a regular nilpotent element, and therefore
there is a unique Borel subalgebra containing . Therefore the reduced Springer
fiber is a single point. However, the non-reduced Springer fiber is a double point
Spec Cle]/(€?) = Spec hy.

To see this, we show there are non-trivial C[e]/(e?)-points of the Grothendieck
alteration ﬁz which project onto a regular nilpotent element in sl,. Without loss of
generality we may choose this element to be represented by the matrix

o 01
~\00)°
Then a C[e]/(e?)-point of :372 above e is a Borel subalgebra in sl;[€]/(e2) whose

reduction modulo € contains e. Now observe that the Lie algebra b[e]/(€?) of upper
triangular matrices in sl,[€]/(€?) contains the element

(_Le (1)) ¢ (ale (1)) N (aoe —LE)

for any a € C. Therefore

ee (—ize (1)) blel/(?) (ale (1)) , aeC.

Hence we find non-trivial C[e]/(e?)-points of the Springer fiber over e.

Thus, we obtain that the Variety%has two components: one of them is P! and
the other one is a double affine line A . These components correspond to two
elements of the Weyl group of sl,, which label possible relative positions of two
Borel subalgebras in sl,. The points on the line correspond to the case when the
Borel subalgebra coincides with the fixed Borel subalgebra b containing n, and
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generic points of P! correspond to Borel subalgebras that are in generic relative
position with b. These two components are “glued together” at one point. Thus,
we find that 7 is a singular reducible non-reduced quasi-projective variety.

This gives us a rough idea as to what mﬁ%G L looks like. It fibers over the

space Op?lg L of nilpotent PG L,-opers. Let us choose a coordinate ¢ on the disc

and use it to identify Op'},ﬂg L with the space of second order operators

9% —v(t), v(A) = Y vat".

n=—1

It is easy to see that the residue map Opnl.}lg iy s C is given by the formula
v(t) = v_1. Therefore, if we decompose Oprll,llg L into the Cartesian product of
a line with the coordinate v_; and the infinite-dimensional affine space with the
coordinatei vy, n > 0, we obtain that MOp(},G L is isomorphic to the Cartesian
product of n and an infinite-dimensional affine space.

Thus, MOp(;, GL, has two components, MOp(I),’é; L, and MOp(I);'C?%2 corresponding
to two elements, 1 and wy, of the Weyl group of sl,.

Conjecture 10.4.4 states that the derived category of quasicoherent sheaves on
the scheme MOp(;, GL» is equivalent to the equivariant derived category

~ 0
D (s1; -modyip) L.

We now consider examples of objects of these categories.
First, we consider the skyscraper sheaf at a point of MOp?D GL>" which is the

same as a point of MOp%G L,- The variety MOp%G L, 18 a union of two strata
0 0,1 0,w
MOppgr, =MOpyg;, | |[MOPpG, -
By Theorem 9.3.6, we have
0, _ —
MOpPé’L2 ~ Conn(£2 p)g(p) ’

(here we switch from QP to P, as before).
The stratum MOp(I),’é; L, for w = 1 fibers over the subspace of regular opers

Oppgr,(D) C Opl;,ﬂg L (those with zero residue, v—; = 0). The corresponding

space of connections Conn(Q_p)lu;(p )= is the space of regular connections on the
line bundle Q~'/2 on D. Using our coordinate 7, we represent such a connection
as an operator

V=0+u@). u@)=>) unt".

n=0
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The map MOpOP’CI; 1, ~ OppcgL, (D) is the Miura transformation

3 +u(t) = (3 —u(®)) (3 +u(t) = 32 —v(),

where
v(t) = u()® = d;u(r). (10.4-19)

These formulas were previously obtained in Section 8.2.2, except that we have now
rescaled u(z) by a factor of 2 to simplify our calculations.

The fiber of the Miura transformation Conn(2~'/2) — Oppgr,(D) atv(r) €
C[[7]] ~ Oppgr, (D) consists of all solutions u(¢) € C[[¢]] of the Riccati equation
(10.4-19). This equation amounts to an infinite system of algebraic equations on
the coefficients u; of u(¢), which may be solved recursively. These equations read

nuy = —vy—1 + E ujuj, n>1.
i+j=n—1

Thus, we see that all coefficients u,,n > 1, are uniquely determined by these
equations for each choice of ug, which could be an arbitrary complex number.
Therefore the fiber of this map is isomorphic to the affine line, as expected.

For each solution u(#) € C[[¢]] of these equations we have the Wakimoto mod-
ule W, as defined in Corollary 6.1.5. According to Theorem 8.3.3, the center
A (;[2) acts on W, () via the central character corresponding to the PG L;-oper
x corresponding to the projective connection d? — v(¢). Thus, we obtain a family
of Wakimoto modules in the category ;[2 -mod, parameterized by the affine line.
These are the objects corresponding to the skyscraper sheaves supported at the
points of MOpg,’lG L,

Now we consider the points of the other stratum

0, 12—
MOpPé’]‘i2 ~ Conn(2 1/Z)DI.

The corresponding connections on Q=2 have regular singularity at 0 € D with

the residue —1 (corresponding to —2p). With respect to our coordinate ¢ they
correspond to the operators

V=0,+u@®), u@®)= Y un" u_=-1L

n=—1

The Miura transformation Conn(Q ™!/ 2)1_)1 — Opr;lg L is again given by formula
(10.4-19). Let us determine the fiber of this map over a nilpotent oper corresponding
to the projective connection 32 — v(¢). We obtain the following system of equations
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on the coefficients u, of u(t):

(N4 2)tp = —vp_1 + > wiuj,  n>0 (10.4-20)
i+j=n—1;i,j=0

(here we use the fact that u_; = —1). This system may be solved recursively, but
now ug is determined by the first equation, and so there is no free parameter as in
the previous case. Thus, we find that the map Conn(Q~1/2) ;! — Oprll,llg L, isan
isomorphism, as expected.

If v_; =0, and so our oper y = 9> —v(¢) is regular, then we obtain an additional
point in the fiber of the Miura transformation over x. Therefore we find that the
set of points in the fiber over a regular oper x is indeed in bijection with the set

of points of the projective line. The Wakimoto module W), where u(¢) is as

above, is the object of the category 5’1\[2 —mod)I(0 corresponding to the extra point
represented by u(¢). Thus, for each regular oper y we obtain a family of Wakimoto
modules in ;[2 —mod)I(0 parameterized by P!, as expected.

Now suppose that v_; # 0, so the residue of our oper y is non-zero, and hence
it has non-trivial unipotent monodromy. Then the set-theoretic fiber of the Miura
transformation over x consists of one point. We have one Wakimoto module W)
withu(t) =—1/t+... corresponding to this point. However, the fiber of K/IB{)?, GL,
is a double point. Can we see this doubling effect from the point of view of the
Miura transformation?

It turns out that we can. Let us consider the equation (10.4-19) with v_; # 0
and u(t) = Y,z unt", where u, € Cle]/(€?). It is easy to see that the general
solution to this equation such that u(#) mod € is the above solution uq(f) =
=1/t 43,50 Ured,nt", has the form

ae
Uqg(t) = Urea(?) + l_2 + ae Z Snt”,

n>—1

where «a is an arbitrary complex number and 6, € C are uniquely determined by
(10.4-19). Thus, we obtain that the scheme-theoretic fiber of the Miura transforma-
tion Conn(27°)px — Op'},”g L, atx of the above form (with v_; # 0) is a double

point, just like the fiber of MOp%;; .

This suggests that in general the scheme theoretic fiber of the Miura transforma-
tion over a nilpotent oper x € Op} » G is also isomorphic to the non-reduced Springer
fiber Spge, (5)- In [Frenkel and Gaitsgory 2006c¢] it was shown that this is indeed
the case.

The existence of the above one-parameter family of solutions u,(?),a € C,
of (10.4-19) over C[e]/(¢?) means that there is a one-dimensional space of self-
extensions of the Wakimoto module W, (). Recall that this module is realized
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in the vector space Ms,, the Fock module of the Weyl algebra generated by
an,ak,n € Z. This extension is realized in My, ® Cle]/(€2). The action of the Lie
algebra s:\[z is given by the same formulas as before (see Section 6.1.2), except that
now b,,n € Z, acts as the linear operator on C[e]/(€?) corresponding to the nth
coefficient u, , of ug(t).

In fact, it follows from Theorem 10.4.5 (or from an explicit calculation) that the
category ;[2 -mod)l(0 corresponding to x € Opﬁlg L with non-zero residue has a
unique irreducible object; namely, W,, (). We note that this module is isomorphic
to the quotient of the Verma module M_, by the central character corresponding
to x. This module has a non-trivial self-extension described by the above formula,
and the category ;[2 —mod)l(O is equivalent to the category QCoh(Spec /), where
ho = Clel/(€?).

Now let us consider the category ;[2 —mod)I(O, where x is a PG L,-oper corre-
sponding to the operator 32 — v(¢), which is regular at # = 0 (and so its residue is
v_1 = 0). We have constructed a family of objects W,,(;) of this category, where
u(t) are the solutions of the Riccati equation (10.4-19), which are in one-to-one
correspondence with points of P! (for all but one of them (¢) is regular at t = 0 and
the last one has the form u(z) = —1/¢+. ..). What s the structure of these Wakimoto
modules? It is not difficult to see directly that each of them is an extension of the
same two irreducible glz—modules, which are in fact the only irreducible objects
of the category s:\[2 —mod)l(o. The first of them is the module V() introduced in
Section 10.3.3, and the second module is obtained from V() by the twist with
the involution of ;[2 defined on the Kac—Moody generators (see Appendix A.5) by
the formula

eq < ey, ho < hy, Jo< f1.

We denote this module by V_, (). While V() is generated by a vector annihilated
by the “maximal compact” Lie subalgebra ¢y = sl [[¢]], V_()) is generated by a
vector annihilated by the Lie subalgebra £/, which is obtained by applying the above
involution to sl,[[¢]]. These two Lie subalgebras, £y and €, are the two “maximal
compact” Lie subalgebras of s:\[z up two conjugation by SL,((¢)). In particular, the
generating vector of V_; () is annihilated by the Lie algebra n and the Cartan
subalgebra f acts on it according to the weight —2 (corresponding to —c). Thus,
V_»(x) is a quotient of the Verma module M_,.

We have a two-dimensional space of extensions Ext! (V_»(x), Vo(x)). Since the
extensions corresponding to vectors in Ext! (V_,(x), Vo(x)) that are proportional
are isomorphic as s?[z -modules, we obtain that the isomorphism classes of extensions
are parameterized by points of °!. They are represented precisely by our Wakimoto
modules W, ;). Thus, our P!, the fiber of the Miura transformation at a regular oper,
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acquires a useful interpretation as the projectivization of the space of extensions of
g g g =g 0
the two irreducible objects of the category sl; —mod)l( .

According to our conjectures, the derived category Db (s?[z —modX)I *is equivalent
to the derived category of quasicoherent sheaves on the DG Springer fiber at 0, which
is TITP!. The Wakimoto modules considered above correspond to the skyscraper
sheaves. What objects of the category of quasi-coherent sheaves correspond to the
irreducible s?[z—modules Vo(x) and V_5(x)? The answer is that V() corresponds
to the trivial line bundle O on P! and V_, () corresponds to the complex O(—1)[1],
i.e., the line bundle O(—1) placed in cohomological degree —1. The exact sequences
in the category of quasicoherent sheaves on P!

0—->0(-1)—0—-0,—0,

where p € P! and Op is the skyscraper sheaf supported at p, become the exact

sequences in the category ;[2 —mod)I(O
0= Vo(x) = Wy) = V—2(x) =0,

where u(¢) is the solution of (10.4-19) corresponding to the point p.

Now we observe that in the category ;[2 -mod)I(O there is a complete symmetry
between the objects Vo (x) and V_, (), because they are related by an involution
of ;[2 which gives rise to an auto-equivalence of ;[2 —mod)I(O. In particular, we have
Ext! (Vo(x), V_2(x)) ~ C2. But in the category D?(QCoh(P!)) we have

Ext! (0,0(-1)[1]) = H2(P!,0(-1)) =0.

This is why the category D?(QCoh(P')) cannot be equivalent to ;[2 -mod)l(o. It
needs to be replaced with the category D?(QCoh(ITTP')) of quasicoherent sheaves
on the DG Springer fiber [17P'. This is a good illustration of the necessity of
using the DG Springer fibers in the equivalence (10.4-14).

10.5. From local to global Langlands correspondence

We now discuss the implications of the local Langlands correspondence studied in
this chapter for the global geometric Langlands correspondence.

The setting of the global correspondence that was already outlined in Section 1.1.6.
We recall that in the classical picture we start with a smooth projective curve X
over 4. Denote by F the field F;(X) of rational functions on X . For any closed
point x of X we denote by Fy the completion of F' at x and by Oy its ring of
integers. Thus, we now have a local field F attached to each point of X. The
ring A = Af of adeles of F is by definition the restricted product of the fields Fy,
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where x runs over the set | X'| of all closed points of X (the meaning of the word
“restricted” is explained in Section 1.1.6). It has a subring O = [[,.c y Ox.

Let G be a (split) reductive group over F,. Then for each x € X we have a
group G(Fy). Their restricted product over all x € X is the group G(AFr). Since
F C AF, the group G(F) is a subgroup of G(AF).

On one side of the global Langlands correspondence we have homomorphisms
o : Wg — LG satisfying some properties (or perhaps, some more refined data,
as in [Arthur 1989]). We expect to be able to attach to each o an automorphic
representation 7 of GL,(Ar).!> The word “automorphic” means, roughly, that
the representation may be realized in a reasonable space of functions on the quotient
GL,(F)\GL,(A) (on which the group GL,(A) acts from the right). We will not
try to make this precise. In general, we expect not one but several automorphic
representations assigned to o, which are the global analogues of the L-packets
discussed above (see [Arthur 1989]). Another complication is that the multiplicity
of a given irreducible automorphic representation in the space of functions on
GL,(F)\GL,(A) may be greater than one. We will mostly ignore all of these
issues here, as our main interest is in the geometric theory (note that these issues
do not arise if G = GL;).

An irreducible automorphic representation may always be decomposed as the
restricted tensor product X, ¢ y 7x, where each 7y is an irreducible representation
of G(Fy). Moreover, for all by finitely many x € X the factor 7y is an unramified
representation of G(Fy): it contains a non-zero vector invariant under the maximal
compact subgroup Ko x = G(Oy) (see Section 10.3.1). Let us choose such a vector
Ux € 1y (it is unique up to a scalar). The word “restricted” means that we consider
the span of vectors of the form ® e yuy, Where uy € my and ux = vy for all but
finitely many x € X.

An important property of the global Langlands correspondence is its compatibility
with the local one. We can embed the Weil group W, of each of the local fields
F into the global Weil group Wr. Such an embedding is not unique, but it is well-
defined up to conjugation in W. Therefore an equivalence class of o : Wg — LG
gives rise to a well-defined equivalence class of oy : Wg, — LG. We will impose
the condition on o that for all but finitely many x € X the homomorphism oy is
unramified (see Section 10.3.1).

By the local Langlands correspondence, to o one can attach an equivalence class
of irreducible smooth representations 7, of G(F. x).13 Moreover, an unramified oy
will correspond to an unramified irreducible representation . The compatibility

1211 this section, by abuse of notation, we will use the same symbol to denote a representation of
a group and the vector space underlying this representation.

13 Here we are considering £-adic homomorphisms from the Weil group WE, to LG, and therefore
we do not need to pass from the Weil group to the Weil-Deligne group.
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between local and global correspondences is the statement that the automorphic
representation of G(A) corresponding to ¢ should be isomorphic to the restricted
tensor product ®;€ y Tx. Schematically, this is represented as follows:

global 7
O <—> T = ® TTx
xeX

local
Ox <— Tx.

In this section we discuss the analogue of this local-to-global principle in the
geometric setting and the implications of our local results and conjectures for
the global geometric Langlands correspondence. We focus in particular on the
unramified and tamely ramified Langlands parameters.

10.5.1. The unramified case. An important special case is when o : Wr — LG
is everywhere unramified. Then for each x € X the corresponding homomorphism
ox:Wp,— L G is unramified, and hence corresponds, as explained in Section 10.3.1,
to a semi-simple conjugacy class yx in £ G, which is the image of the Frobenius
element under oy. This conjugacy class in turn gives rise to an unramified irreducible
representation wy of G(Fy) with a unique, up to a scalar, vector vy such that
G(Ox)vyx = vx. The spherical Hecke algebra H(G(Fyx), G(0y)) ~ Rep LG acts
on this vector according to formula (10.3-5):

Hy . *x = Tr(yx, V)vx,  [V]€ReplG. (10.5-1)

The tensor product v = ). y Ux of these vectors is a G(0)-invariant vector in 7 =
®;e y Tx, Which, according to the global Langlands conjecture, is automorphic.
This means that 7 is realized in the space of functions on G(F)\G(Af). In
this realization the vector v corresponds to a right G(0)-invariant function on
G(F)\G(AF), or, equivalently, a function on the double quotient

G(F)\G(AF)/G(0). (10.5-2)

Thus, an unramified global Langlands parameter o gives rise to a function on
(10.5-2). This function is the automorphic function corresponding to . We
denote it by f. Since it corresponds to a vector in an irreducible representation
7 of G(AF), the entire representation 7 may be reconstructed from this function.
Thus, we do not lose any information by passing from 7 to f5.

Since v € m is an eigenvector of the Hecke operators, according to formula
(10.5-1), we obtain that the function f;; is a Hecke eigenfunction on the double
quotient (10.5-2). In fact, the local Hecke algebras H(G(Fy), G(0Oy)) act naturally
(from the right) on the space of functions on (10.5-2), and f; is an eigenfunction
of this action. It satisfies the same property (10.5-1).
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To summarize, the unramified global Langlands correspondence in the classical
setting may be viewed as a correspondence between unramified homomorphisms
o : Wg — LG and Hecke eigenfunctions on (10.5-2) (some irreducibility condition
on o needs to be added to make this more precise, but we will ignore this).

What should be the geometric analogue of this correspondence when X is a
complex algebraic curve?

As explained in Section 1.2.1, the geometric analogue of an unramified homo-
morphism Wr — LG is a homomorphism 7; (X) — LG, or, equivalently, since
X is assumed to be compact, a holomorphic £ G-bundle on X with a holomorphic
connection (it automatically gives rise to a flat connection, see Section 1.2.3). The
global geometric Langlands correspondence should therefore associate to a flat
holomorphic £ G-bundle on X a geometric object on a geometric version of the
double quotient (10.5-2). As we argued in Section 1.3.2, this should be a @-module
on an algebraic variety whose set of points is (10.5-2).

Now, it is known that (10.5-2) is in bijection with the set of isomorphism classes
of G-bundles on X. This key result is due to A. Weil (see, e.g., [2007]). This
suggests that (10.5-2) is the set of points of the moduli space of G-bundles on
X. Unfortunately, in general this is not an algebraic variety, but an algebraic
stack, which locally looks like a quotient of an algebraic variety by an action of
an algebraic group. We denote it by Bung. The theory of %-modules has been
developed in the setting of algebraic stacks like Bung in [Beilinson and Drinfeld
1997], and so we can use it for our purposes. Thus, we would like to attach to a
flat holomorphic LG-bundle E on X a %-module Aut E on Bung. This %-module
should satisfy an analogue of the Hecke eigenfunction condition, which makes it
into a Hecke eigensheaf with eigenvalue E. This notion is spelled out in [Frenkel
2007] (following [Beilinson and Drinfeld 1997]), where we refer the reader for
details.

Thus, the unramified global geometric Langlands correspondence may be sum-
marized by the following diagram:

flat LG-bundles on X | —> |Hecke eigensheaves on Bung

E +— Autg

(some irreducibility condition on E should be added here).

The unramified global geometric Langlands correspondence has been proved in
[Frenkel et al. 2002; Gaitsgory 2004] for G = G L, and an arbitrary irreducible
G Ly-local system E, and in [Beilinson and Drinfeld 1997] for an arbitrary simple
Lie group G and those £ G-local systems which admit the structure of an oper. In
this section we discuss the second approach.

To motivate it, we ask the following question:
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How to relate this global correspondence to the local geometric
Langlands correspondence discussed above?

The key element in answering this question is a localization functor from g-
modules to (twisted) %-modules on Bung. In order to construct this functor we
note that for a simple Lie group G the moduli stack Bung has another realization
as a double quotient. Namely, let x be a point of X. Denote by Oy the completed
local ring and by ¥ its field of fractions. Let G(¥,) the formal loop group
corresponding to the punctured disc D3 = Spec ¥ around x and by Gy the group
of algebraic maps X \x — G, which is naturally a subgroup of G (). Then Bung
is isomorphic to the double quotient

Bung =~ Gou\G(¥x)/G(Ox). (10.5-3)

This is a “one-point” version of (10.5-2). This is not difficult to prove at the level
of C-points, but the isomorphism is also true at the level of algebraic stacks (see
[Beauville and Laszlo 1995; Drinfel’d and Simpson 1995]).

The localization functor that we need is a special case of the following general
construction. Let (g, K) be a Harish—Chandra pair and g—modK the category
of K-equivariant g-modules (see Section 10.2.2). For a subgroup H C G let
D i\G/k -mod be the category of %-modules on H\G/K. Then there is a localiza-
tion functor [Beilinson and Bernstein 1993; Beilinson and Drinfeld 1997] (see also
[Frenkel 2007; Frenkel and Ben-Zvi 2004])

A g—modK — Dp\G/k -mod.

Now let g be a one-dimensional central extension of g, which becomes trivial
when restricted to the Lie subalgebras Lie K and Lie H. Suppose that this central
extension can be exponentiated to a central extension G of the corresponding Lie
group G. Then we obtain a C*-bundle H \@ /K over H\G/K. Let & be the
corresponding line bundle. Let @« be the sheaf of differential operators acting on
¥. Then we have a functor

Ay :ﬁ—modK — P¢ -mod .

In our case we take the Lie algebra g, ., the critical central extension of the
loop algebra g ® K and the subgroups K = G(Ox) and H = Goy of G(Hy). It is
known (see, e.g., [Beilinson and Drinfeld 1997]) that the corresponding line bundle
& is the square root K1/2 of the canonical line bundle on Bung.!* We denote the
corresponding sheaf of twisted differential operators on Bung by %,.. Then we

14Recall that by our assumption G is simply-connected. In this case there is a unique square root.
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have the localization functor
Akex P Bk, x -mod® @) — Dy, -mod .
L ~ G(0y)
We restrict it further to the category g, , -mody, " for some

Xx € OpLg (D).

According to Lemma 10.3.2, this category is non-zero only if y € Opﬁ ¢ (Dx) for
some A € P, Suppose for simplicity that A = 0 and so xx € Opr(Dx). In this
case, by Theorem 10.3.3, the category ’g\,cc, X —mod%@") is equivalent to the category
of vector spaces. Its unique, up to an isomorphism, irreducible object is the quotient

Vo (xx) of the vacuum module

/g\Kc,X
Vo,x =Tnd 30, C

by the central character corresponding to . Hence it is sufficient to determine

Age,x(Vo(xx))-
The following theorem is due to Beilinson and Drinfeld [1997].

Theorem 10.5.1. (1) The D -module Ay x(Vo(xx)) is non-zero if and only if
there exists a global Lg-oper on X, x € Oprg(X) such that xx € Oprg(Dx) is
the restriction of x to Dx.

(2) If this holds, then Ay x(Vo(xx)) depends only on x and is independent of
the choice of x in the sense that for any other point y € X, if x, = X|p,, then
Breox (Vo)) = Ary Vo).

(3) Forany x = (¥,V, %L p) € OpLg(X) the Dy .-module A, x(Vo(xx)) is a
non-zero Hecke eigensheaf with the eigenvalue E, = (F, V).

Thus, for any y € Opr g (X), the @ .-module A, x(Vo(xx)) is the sought-after
Hecke eigensheaf Autg, corresponding to the L G-local system E x under the global
geometric Langlands correspondence 10.5.1.13 For an outline of the proof of this
theorem from [Beilinson and Drinfeld 1997], see [Frenkel 2007]. The key point is
that the irreducible modules Vo (xy), where x, = x|p,, corresponding to all points
y € X, are Hecke eigenmodules as we saw in Section 10.3.5.

A drawback of this construction is that not all £G-local systems on X admit
the structure of an oper. In fact, under our assumption that £ G is a group of the
adjoint type, the £ G-local systems, or flat bundles (%, V), on a smooth projective
curve X that admit an oper structure correspond to a unique = G-bundle Foper 0N X
(described in Section 4.2.4). Moreover, for each such flat bundle (Foper, V) there is

ISMore precisely, Aut E, is the @-module A, x (Vo (xx)) ® K ~1/2 byt here and below we will
ignore the twist by K 1/2,
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a unique ~ B-reduction F oper, g satistying the oper condition. Therefore Opg (D)
is the fiber of the forgetful map

Locrg(X) — Bunwg, (F, V) > %,

over the oper bundle Fpe;.

For a L G-local system E = (%, V) for which & # F e, the above construc-
tion may be modified as follows (see the discussion in [Frenkel 2007] based on
an unpublished work of Beilinson and Drinfeld). Suppose that we can choose
an L B-reduction #_ p satisfying the oper condition away from a finite set of
points yi,..., yn and such that the restriction x,. of the corresponding oper x on
X\{»1,...,yn} to Dy, belongs to Opﬁ"G(Dyi) C OpLg(Dy,) for some A; € Pt
Then we can construct a Hecke eigensheaf corresponding to E by applying a
multi-point version of the localization functor to the tensor product of the quotients
Vy,; (xy;) of the Weyl modules V,, . (see [Frenkel 2007]).

The main lesson of Theorem 10.5.1 is that in the geometric setting the local-
ization functor gives us a powerful tool for converting local Langlands categories,
such as g, -mod%@"), into global categories of Hecke eigensheaves. Therefore
the emphasis shifts to the study of local categories of g, ,-modules. We can
learn a lot about the global categories by studying the local ones. This is a new
phenomenon which does not have any obvious analogues in the classical Langlands
correspondence.

In the case at hand, the category G, » —modgGX) turns out to be very simple:
it has a unique irreducible object, Vo (). That is why it is sufficient to consider
its image under the localization functor, which turns out to be the desired Hecke
eigensheaf Autg, . For general opers, with ramification, the corresponding local cat-
egories are more complicated, as we have seen above, and so are the corresponding
categories of Hecke eigensheaves. We will consider examples of these categories
in the next section.

10.5.2. Global Langlands correspondence with tame ramification. Let us first
consider ramified global Langlands correspondence in the classical setting. Suppose
that we are given a homomorphism o : W — LG that is ramified at finitely many
points yq,..., v, of X. Then we expect that to such o corresponds an automorphic
representation ®;e x Tx (more precisely, an L-packet of representations). Here
7y is still unramified for all x € X'\{y1...., yn}, butis ramified at yq, ..., yp, i.c.,
the space of G(0y,)-invariant vectors in 7y, is zero. In particular, consider the
special case when each o), : WFyi — LG is tamely ramified (see Section 10.4.1
for the definition). Then, according to the results presented in Section 10.4.1,
the corresponding L-packet of representations of G(F)y,) contains an irreducible
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representation my; with non-zero invariant vectors with respect to the Iwahori
subgroup /.. Let us choose such a representation for each point y;.
Consider the subspace

n
R @ R v € R '7x (10.5-4)

i=1 X#£yi xeX

where vy is a G(Oy)-vector in 7y, X # y;j,i = 1,...,n. Then, because ®;eX Tx
is realized in the space of functions on G(F)\G(AF), we obtain that the subspace
(10.5-4) is realized in the space of functions on the double quotient

n
GP\GAR)/ [] 1 x ] G(0x). (10.5-5)
i=1 XF#yi

The spherical Hecke algebras H(G(Fy), G(Ox)),x # yi, act on the subspace
(10.5-4), and all elements of (10.5-4) are eigenfunctions of these algebras (they
satisfy formula (10.5-1)). At the points y;, instead of the action of the com-
mutative spherical Hecke algebra H(G(F),;), G(0),), we have the action of the
non-commutative affine Hecke algebra H(G(F),;), I,,;). Thus, we obtain a subspace
of the space of functions on (10.5-5), which consists of Hecke eigenfunctions with
respect to the spherical Hecke algebras H(G(Fy), G(0x)),x # y;, and which
realize a module over ®_; H(G(F),), I;;) (which is irreducible, since each 7y,
is irreducible).

This subspace encapsulates the automorphic representation ®; cx 7x the way
the automorphic function f; encapsulates an unramified automorphic represen-
tation. The difference is that in the unramified case the function f; spans the
one-dimensional space of invariants of the maximal compact subgroup G(0) in
®;€ x Tx, whereas in the tamely ramified case the subspace (10.5-4) is in general
a multi-dimensional vector space.

Now let us see how this plays out in the geometric setting. As we discussed
before, the analogue of a homomorphism o : W — LG tamely ramified at point
V1s..., Vn € X is now a local system E = (%, V), where & a L G-bundle & on
X with a connection V that has regular singularities at yq, ..., y, and unipotent
monodromies around these points. We will call such a local system tamely ramified
at y1,..., V. What should the global geometric Langlands correspondence attach
to such a local system? It is clear that we need to find a geometric object replacing
the finite-dimensional vector space (10.5-4) realized in the space of functions on
(10.5-5).

Just as (10.5-2) is the set of points of the moduli stack Bung of G-bundles,
the double quotient (10.5-5) is the set of points of the moduli stack Bung (y,)
of G-bundles on X with parabolic structures at y;,i = 1,...,n. By definition,
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a parabolic structure of a G-bundle % at y € X is a reduction of the fiber P,
of P at y to a Borel subgroup B C G. Therefore, as before, we obtain that a
proper replacement for (10.5-4) is a category of @-modules on Bung (y,). As in
the unramified case, we have the notion of a Hecke eigensheaf on Bung (). But
because the Hecke functors are now defined using the Hecke correspondences
over X\{»1,...,yn} (and not over X as before), an “eigenvalue” of the Hecke
operators is now an ©G-local system on X \{y, ..., y,} (rather than on X). Thus,
we obtain that the global geometric Langlands correspondence now should assign
to a L' G-local system E on X tamely ramified at the points y, ..., y, a category

Aut g of D-modules on Bung (y,) with the eigenvalue E|x\(y,, .. y.}»

E+— Autg.

We will construct these categories using a generalization of the localization
functor we used in the unramified case (see [Frenkel and Gaitsgory 2006¢]). For the
sake of notational simplicity, let us assume that our £ G-local system E = (%, V)
is tamely ramified at a single point y € X . Suppose that this local system on X\ y
admits the structure of a LG-oper x = (%,V, Fr B) Whose restriction y, to the
punctured disc D; belongs to the subspace Opriﬂcp;(Dy) of nilpotent £ G-opers.

For a simple Lie group G, the moduli stack Bung ,, has a realization analogous
to (10.5-3):

Let 9y, 1, be the sheaf of twisted differential operators on Bung, acting on the line
bundle corresponding to the critical level (it is the pull-back of the square root of the

canonical line bundle K1/2 on Bung under the natural projection Bung , — Bung).
Applying the formalism of the previous section, we obtain a localization functor

0P 1
A, I, " Ok,,y -mod™ — Dy 1 -mod.

However, in order to make contact with the results obtained above we also consider
= 0 .
the larger category gy, -mod®y of I yo -equivariant modules, where [ ;) =[I,, 1]
Set
0
Bun'G,y =Gou\G(X))/ L,
and let 9, ;o be the sheaf of twisted differential operators on Bung, ,, acting on
Crty sy

the pull-back of the line bundle K 1/2 on Bung. Let % e 10 -mod be the category of
Dy, 10 -modules. Applying the general formalism, we obtain a localization functor

Akc,lﬁ’ 3§/<C,y —modlf — @xc,l,‘? -mod . (10.5-6)

We note that a version of the categorical affine Hecke algebra #(G (%)), I,) dis-
cussed in Section 10.4.5 naturally acts on the derived categories of the above
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categories, and the functors A, 7, and A, 10 intertwine these actions. Equiva-
lently, one can say that this functor intertwines the corresponding actions of the
affine braid group associated to £ G on the two categories (as in [Bezrukavnikov
2006]).

We now restrict the functors Ay, 1, and A ke, 10 to the subcategories

= I, = I
Oc.,y -mody, and g, -mody,

respectively. By using the same argument as in [Beilinson and Drinfeld 1997], we
obtain the following analogue of Theorem 10.5.1.

Theorem 10.5.2. Fix x, € Opmlp (Dy) and let M be an object of the category

k.. y mod ", (resp. k.. y modxy) Then:

() AKCJ}, (M) = 0 (resp., AKC,IS(M) = 0) unless xy is the restriction of a
regular oper x = (¥,V,FLp) on X\y to D}.

(2) In that case Ay, y(M) (resp., AKC’I;J (M)) is a Hecke eigensheaf with the
eigenvalue E, = (%, V).

Thus, we obtain that if x, = x| py» then the image of any object of k.. y —mod)ﬁ,

I .
under the functor Ay, s, belongs to the category Aut ny of Hecke eigensheaves on
g .. ~ %
Bung,). Now consider the restriction of the functor A, ;o 0 gy, -mod,’,. As
. . . ~ n o .
discussed in Section 10.4.3, the category g, , -mod,), coincides with the corre-

sponding category g ¥ mod ’ of I y-monodromic modules. Therefore the image

of any object of g, modxJ under the functor A 10 belongs to the subcategory

QZJK’” o -mod of ¥ ke IO -mod whose objects admit an increasing filtration such that
csly =y

the consecutive quotients are pull-backs of %, j,-modules from Bung ;. Such

9 S so—modules are called monodromic.
csdy

Let &dulg}’(m be the subcategory of QZJK’” 10 -mod whose objects are Hecke eigen-

csly
sheaves with eigenvalue E.
Thus, we obtain the functors
Ao 1y B,y -mody, — ut ], (10.5-7)
A a& i 10.5-8
chlog,(ymox}—> utp’. (10.5-8)

It is tempting to conjecture (see [Frenkel and Gaitsgory 2006c]) that these functors
are equivalences of categories, at least for generic x. Suppose that this is true. Then
we may identify the global categories &ﬁutiﬁ’x and &ﬁutg;m of Hecke eigensheaves



10.5. FROM LOCAL TO GLOBAL LANGLANDS CORRESPONDENCE 375

0

1
on Bung, 7, and Bun', _, with the local categories g, . modx and g, .y -mod,",

G,Iy

respectively. Therefore we can use our results and conjectures on the local Lang-
0

lands categories, such as ﬁkc’ 7 —mod)l(})',, to describe the global categories of Hecke
eigensheaves on the moduli stacks of G-bundles on X with parabolic structures.

Recall that we have the following conjectural description of the derived category
of I }(,) -equivariant modules, Db (’g\,cc, y —modxy)l}(') (see formula (10.4-14)):

-~ 0 DG
D*(,,,,-mody,)"s ~ D (QCoh(Spreg(xy)))- (10.5-9)
The corresponding /,-equivariant version is
D® @,y -mody, )™ = D®(QCoh(SpRe(y,)): (10.5-10)

where we replace the non-reduced DG Springer fiber by the reduced one:

@ DG_@N ®Cu

Spy,
Ly

If the functors (10.5-7), (10.5-8) are equivalences, then by combining them
with (10.5-9) and (10.5-10), we obtain the following conjectural equivalences of
categories:

DP (Aur’ e Db(QCoh(SpRCS(X D) (10.5-11)
Db(&auz’””’) ~ Db(QCOh(SpReS(Xy))). (10.5-12)

In other words, the derived category of a global Langlands category (monodromic
or not) corresponding to a local system tamely ramified at y € X is equivalent
to the derived category of quasicoherent sheaves on the DG Springer fiber of its
residue at y (non-reduced or reduced).

Again, these equivalences are supposed to intertwine the natural actions on
the above categories of the categorical affine Hecke algebra #(G(J(y), ;) (or,
equivalently, the affine braid group associated to L G).

The categories appearing in (10.5-11), (10.5-12) actually make sense for an
arbitrary L G-local system E on X tamely ramified at y. It is therefore tempting to
conjecture that these equivalences still hold in general:

Db (st )’VDb(QCOh(SpReg(E))), (10.5-13)
DP (stut’y™) ~ D (QCoh(Spyey(£)))- (10.5-14)

The corresponding localization functors may be constructed as follows. Suppose
that we can represent a local system E on X with tame ramification at y by an oper
x on the complement of finitely many points yy, ..., ,, whose restriction to D;fl_
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belongs to Op},i"G (Dy;) C OpLg(Dy,) for some A; € PT. Then, in the same way
. . o = i
as in the unramified case, we construct localization functors from g, , -mod, to

&QulE and from g, ,, modXJ} to &Qutl}’ (here, as before, x, = x|py), and this
leads us to the conjectural equlvalences (10.5-13), (10.5-14).

These equivalences may be viewed as the geometric Langlands correspondence
for tamely ramified local systems.

The equivalences (10.5-13) also have family versions in which we allow E to
vary. It is analogous to the family version (10.4-13) of the local equivalences. As
in the local case, in a family version we can avoid using DG schemes.

The above construction may be generalized to allow local systems tamely ramified
at finitely many points yq, ..., . The corresponding Hecke eigensheaves are then
9%-modules on the moduli stack of G-bundles on X with parabolic structures at
Y1,..., Yn. Non-trivial examples of these Hecke eigensheaves arise already in
genus zero. These sheaves were constructed explicitly in [Frenkel 1995] (see also
[Frenkel 2005a; Frenkel 2004]), and they are closely related to the Gaudin integrable
system.

10.5.3. Connections with regular singularities. So far we have only considered
the categories of g, -modules corresponding to LG-opers x on X, which are
regular everywhere except at a point y € X (or perhaps at several points) and
whose restriction x|px is a nilpotent oper in Op)’ G(Dy) In other words, x|px is
an oper with regular smgularlty at y with residue @ (—p). However, we can easﬂy
generalize the localization functor to the categories of g, -modules corresponding
to L' G-opers, which have regular singularity at y with arbitrary residue.

Recall that in Section 9.4.3 for each oper x € Oplsz (D) gy (—1—p) With regular

singularity and residue @w (—A — p) we have defined the category ﬁ,cc—mod)l(o of
I°-equivariant B¢, -modules with central character . The case of A = 0 is an
7 55 ~ 19 . :
extremal” case when the category g, -mod;, is most complicated. On the other

“extreme” is the case of generic opers y corresponding to a generic A. In this case,
as we saw in Section 9.4.3, the category Tg;\,cc—mod)l(0 is quite simple: it contains
irreducible objects My, (x4 p)—p(X) labeled by the Weyl group of g, and each object
of ﬁ,cv-mod)l(O is a direct sum of these irreducible modules. Here My, 4 p)—p(X)
is the quotient of the Verma module My, +)—p. w € W, by the central character
corresponding to ¥.

For other values of A the structure of ﬁ,cc-mod)](O is somewhere in-between these
two extreme cases.

Recall that we have a localization functor (10.5-6)

A= 740
AKC,I}? ' Gk,,y -mod™ — QDKC’I;) -mod
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0

= 1) .
from g, , -mod,, to a category of @-modules on Bun’G’ I twisted by the pull-back

of the line bundle K'/2 on Bung. We now restrict this functor to the subcategory
0

~ 1) . . . . g
Ok,,y -mod,’, where x) is a L G-oper on Dy, with regular singularity at y and residue
w(—A—p).

Consider first the case when A € h* is generic. Suppose that x, extends to a
regular oper x on X'\ y. One then shows in the same way as in Theorem 10.5.2 that

0
for any object M of g, ¥ —mod)ld, the corresponding &, 10 -module A e IO (M)

is a Hecke eigensheaf with eigenvalue E,, which is the L G-local system on X
with regular singularity at y underlying x (if x, cannot be extended to X'\ y, then
Afgc I (M) = 0, as before). Therefore we obtain a functor

19 19
AK(‘,I;’ O,y -mody —>&ﬂutEX,

. . o
where dut ny is the category of Hecke eigensheaves on Bun/G’ I, with eigenvalue

E,.

be

Since we have assumed that the residue of the oper yx, is generic, the monodromy
of E around y belongs to a regular semi-simple conjugacy class of LG containing

0

~ 1y . . g
exp(2riA). In this case the category g, ,-mod, is particularly simple, as we

have discussed above. We expect that the functor A, 70 Sets up an equivalence

- 70 70
y y
between g, , -mod,’ and &ﬂquX.

We can formulate this more neatly as follows. For M € LG let B, be the
variety of Borel subgroups containing M. Observe that if M is regular semi-simple,
then By is a set of points which is in bijection with W. Therefore our conjecture

is that &ﬁutg)x is equivalent to the category QCoh(% ) of quasicoherent sheaves
on By, where M is a representative of the conjugacy class of the monodromy of
Ey.

Consider now an arbitrary £ G-local system E on X with regular singularity at
y € X whose monodromy around y is regular semi-simple. It is then tempting to
conjecture that, at least if £ is generic, this category has the same structure as in
the case when E has the structure of an oper, i.e., it is equivalent to the category
QCoh(%Bar), where M is a representative of the conjugacy class of the monodromy
of E around y.

On the other hand, if the monodromy around y is unipotent, then &, is nothing

but the Springer fiber Sp,,, where M = exp(2wiu). The corresponding category
0

165 . . . . .. . e
Aut bi was discussed in Section 10.5.2 (we expect that it coincides with sfut 15 m).

Thus, we see that in both “extreme” cases — unipotent monodromy and regular
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. . o . I
semi-simple monodromy — our conjectures identify the derived category of slut

with the derived category of the category QCoh(%,s) (Where B, should be viewed
&= DG . . . .

as a DG scheme Sp,, ~ in the unipotent case). One is then led to conjecture, most

ambitiously, that for any © G local system E on X with regular singularity at y € X'

the derived category of &dut £ 1s equivalent to the derived category of quasicoherent
sheaves on a suitable DG version of the scheme %, where M is a representative
of the conjugacy class of the monodromy of E around y:

Db(sﬁuz Y ) =~ D®(QCoh(B59)).

This has an obvious generalization to the case of multiple ramification points,
where on the right hand side we take the Cartesian product of the varieties %DG
corresponding to the monodromies. Thus, we obtain a conjectural realization of
the categories of Hecke eigensheaves, whose eigenvalues are local systems with
regular singularities, in terms of categories of quasicoherent sheaves.

Let us summarize: by using the representation theory of affine Kac—-Moody
algebras at the critical level we have constructed the local Langlands categories
corresponding to local Langlands parameters; namely, £ G-local systems on the
punctured disc. We then applied the technique of localization functors to produce
from these local categories, the global categories of Hecke eigensheaves on the
moduli stacks of G-bundles on a curve X with parabolic structures. These global
categories correspond to global Langlands parameters: ©G-local systems on X
with ramifications. We have used our results and conjectures on the structure of the
local categories to investigate these global categories.

In this chapter we have explained how this works for unramified and tamely
ramified local systems. But we expect that analogous methods may also be used to
analyze local systems with arbitrary ramification. In this way the representation
theory of affine Kac—-Moody algebras may one day fulfill the dream of uncovering
the mysteries of the geometric Langlands correspondence.
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A.1. Lie algebras

A Lie algebra is a vector space g with a bilinear form (the Lie bracket)
[.]:9®g—g.

which satisfies two additional conditions:

° [X,y]:—[y,X]
o [x,[y.zll+ [y, [z, x]| + [z, [x, y]| = 0.

The last of these conditions is called the Jacobi identity.

Lie algebras are closely related to Lie groups. The tangent space at the identity
element of a Lie group naturally has the structure of a Lie algebra. So, thinking
about Lie algebras is a way of linearizing problems coming from the theory of Lie
groups.

A representation of a Lie algebra g, or equivalently, a g-module, is a pair (V, p)
of a vector space V' and a map p : g — End(V') such that

p(x, y]D) = p(x)p(y) — p(¥)p(x).

We will often abuse notation and call the representation V rather than specifying
the homomorphism p; however, p will always be implicit.

A.2. Universal enveloping algebras

A standard tool in the study of Lie algebras and their representations is the universal
enveloping algebra. This is an associative algebra that can be constructed from
any Lie algebra and has the property that any module over the Lie algebra can be
regarded as a module over this associative algebra.

As we want to be able to multiply elements of g together in the associative
algebra it makes sense to look at the tensor algebra of g

T =Chgdg®*a¢g® - .

379
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If we have a representation (V, p) of g, we clearly want want the corresponding
T (g)-module to be such that the action of 7'(g) restricts to (V, p) on the second
summand. Since it should be a module over an associative algebra, we also want

p(g ®h) = p(g)p(h).

However, the Lie algebra modules satisfy one additional relation

p(g, hl) = p(g)p(h) — p(h)p(2).

Therefore the elements [g, /4] and g ® h —h ® g of T'(g) should act in the same
way. This suggests that we should identify [g, /] and g ® h —/h ® g in the tensor
algebra and this leads us to the following definition.

The universal enveloping algebra U(g) is the quotient of the tensor algebra
T (g) by the two sided ideal generated by elements of the form

gRh—h®g—|g.h].

Note that we have a natural map g — U(g).

It is called universal because it has the following universal property: If A is
any associative algebra (regarded naturally as a Lie algebra) and [ :g — A is
a Lie algebra homomorphism then it may be uniquely completed to the following
commutative diagram:

U(g)

[N

There is a natural filtration (sometimes called the PBW filtration) on the uni-
versal enveloping algebra coming from the gradation on the tensor algebra. The ith
term of the filtration is denoted by U(g)<;.

The structure of the universal enveloping algebra is very easy to work out in the
case that g is abelian. In this case the generators for the ideal are simply g®h—h Qg
(as the bracket is zero). This is exactly the definition of the symmetric algebra
generated by g. Hence we get

U(g) = Sym(g).

In the case where g is not abelian, the situation is more complicated.
Given any filtered algebra

0=F< 1 CFcCF<C---CF
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we define the associated graded algebra to be

gr F =@ F<i/Fsi-1.

i=0

This is naturally a graded algebra and considered as vector spaces we have gr F' = F,
but non-canonically. Taking the associated graded algebra of a quotient is reasonably
easy:

gr(F/I) = gr(F)/Symb([)

where Symb is the symbol map. Let x be an element of a filtered algebra F'. There
is an integer i such that x € Fg; but x € F<;—. The symbol of x is defined to
be the image of x in the quotient F<;/F<;—1. In other words, the symbol map is
picking out the leading term of x.

So, for the universal enveloping algebra we have

grU(g) = gr T'(g)/Symb(I).
As the tensor algebra is already graded, gr T'(g) = T'(g).

Lemma A.2.1. The ideal Symb([1) is generated by the symbols of the generators
for the ideal 1.

The proof of this fact is the heart of most proofs of the Poincaré—Birkhoff—Witt
theorem. It fundamentally relies on the fact that the bracket satisfies the Jacobi
identity. If we were using an arbitrary bilinear form to define the ideal I (e.g., if
we used the ideal generated by a ® b — b ® a — B(a, b)), there would be elements
in Symb(/) not obtainable from the symbols of the generators. The symbols of
the generators are easy to work out and are just g ® h —h ® g. The corresponding
quotient is Sym(g). Hence we have shown that

grU(g) = Sym(g)

for an arbitrary Lie algebra g.
In other words, as vector spaces, U(g) and Sym(g) are isomorphic, but non-
canonically. This is often quoted in the following form.

Theorem A.2.2 (Poincaré-Birkhoff-Witt). Let J¢,a=1,...,dimg, be an ordered
basis for g (as a vector space), then the universal enveloping algebra has a basis
given by elements of the form J%! ... J% where a; <

L= ay.

Monomials of this form are often called lexicographically ordered. One of the
main reasons for studying the universal enveloping algebras is that the category of
U(g)-modules is equivalent to the category of g-modules (this is just the statement
that any representation of g can be given a unique structure of module over U(g)).
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A.3. Simple Lie algebras

In this book we consider simple finite-dimensional complex Lie algebras. Here
“simple” means that the Lie algebra has no non-trivial ideals. These Lie algebras
have been completely classified. They are in one-to-one correspondence with the
positive definite Cartan matrices A = (@;;); j—1,...¢. These are symmetrizable
matrices with integer entries satisfying the following conditions: @;; = 2, and for
i # j we have q;; < 0 and g;; = 0 if and only if aj; # 0 (see [Kac 1990] for
more details). Such matrices, and hence simple Lie algebras, fit into four infinite
families and six exceptional ones. The families are called A,, By, Cy, and Dy; the
exceptional Lie algebras are called E¢, E7, Eg, F4 and G5.
A simple Lie algebra g admits a Cartan decomposition

g=n_dhdny.

Here b is a Cartan subalgebra, a maximal commutative Lie subalgebra of g consisting
of semi-simple elements (i.e., those whose adjoint action on g is semi-simple). Its
dimension is ¢, which is the rank of the Cartan matrix corresponding to g; we will
also call ¢ the rank of g. The Lie subalgebra n (resp., n—) is called the upper
(resp., lower) nilpotent subalgebra. Under the adjoint action of h the nilpotent
subalgebras decompose into eigenspaces as follows

n:= P nia.

aeA L
where
Nig = {x €ny |[h, x] = Fa(h)x}.
Here Ay C h* and A_ = — A are the sets of positive and negative roots +« of g,

respectively, for which niy 7 0. In fact, all of these subspaces are one-dimensional,
and we will choose generators ¢4 and fy of ny, and n_,, respectively.

It is known that A contains a subset of simple roots «;,i = 1,..., £, where
¢ = dim b is the rank of g. All other elements of A are linear combinations of
the simple roots with non-negative integer coefficients. The simple roots form a
basis of h*. Let h;,i = 1,..., 4, be the basis of § that is uniquely determined by
the formula

aj(hi) = aij.
These are the simple coroots.
Let us choose non-zero generators e¢; = ey, (resp., f; = fq,) of the one-dimen-
sional spaces ng; (resp., n—q;), i =1,...,£. Then ny (resp., n_) is generated by
et,...,eqp (resp., f1,..., fr) subject to the following Serre relations:

(ade;) it . e; =0, (ad f;)~%i 1. f; =0, i j.
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Here the a;;’s are the entries of the Cartan matrix of g.
The Lie algebra g is generated by #4;, h;, fi,i = 1,...,£, subject to the Serre
relations together with

[hisejl=aijej, [hi, fj]=—aij fj. lei, fj]=6ijhi.

To satisfy the last set of relations we might need to rescale the ¢;’s (or the f;’s) by
non-zero numbers.

For example, the Lie algebra A, is the Lie algebra also called s, 4. This is
the vector space of (n + 1) x (n 4+ 1) matrices with zero trace and bracket given by
[A, Bl = AB — BA. This is the Lie algebra of the special linear group SL,,11(C),
which consists of (n + 1) x (n + 1) matrices with determinant 1. To see this, we
write an elements of SL, (C) in the form I,, + €M, where €2 = 0 and see
what restriction the determinant condition puts on M . This is exactly the trace 0
condition.

The Cartan subalgebra consists of diagonal matrices. The Lie algebras n4 and
n_ are the upper and lower nilpotent subalgebras, respectively, with the zeros on
the diagonal. The generators e;, h; and f; are the matrices E; j11, Eii — Eit+1,i+1,
and E; 1, respectively.

There are four lattices attached to g: the weight lattice P C h* consists of linear
functionals ¢ : ) — C such that ¢ (h;) € Z; the root lattice Q C P is spanned over Z
by the simple roots «;, i =1, ..., £; the coweight lattice PcC b consists of elements
on which the simple roots take integer values; and the coroot lattice Q is spanned
by the simple coroots h;,i =1,..., <.

The lattice P is spanned by elements w; € h* defined by w;(h;) = 6; j. The
coroot lattice is spanned by elements w; € hj defined by the formula o; (@;) = §;, ;.

We note that P may be identified with the group of characters Hy. — C* of
the Cartan subgroup Hy. of the connected simply-connected Lie group G with the
Lie algebra g (such as SLj), and P is identified with the group of cocharacters
C* — Haqj, where H,gq; is the Cartan subgroup of the group of adjoint type associated
to G (with the trivial center, such as PGL,).

Let s;,i = 1,...,£, be the linear operator (reflection) on h* defined by the
formula

si(h) = A — (A, ai)es.

These operators generate an action of the Weyl group W, associated to g, on h*.

A.4. Central extensions

By a central extension of a Lie algebra g by an abelian Lie algebra a we understand
a Lie algebra g that fits into an exact sequence of Lie algebras

0—a—>g—g—0. (A4-1)



384 APPENDIX

Here a is a Lie subalgebra of g, which is central in @, i.e., [¢,x] = 0 for all
aca,xeg.

Suppose that a ~ C1 is one-dimensional with a generator 1. Choose a splitting
of g as a vector space, g >~ C1 @ g. Then the Lie bracket on g gives rise to a Lie
bracket on C1 & g such that C1 is central and

[x» y]new = [X, J}]Old + C(x’ y)l’

where x, y € gand ¢ : g ® g — C is a linear map. The above formula defines a Lie
bracket on g if and only if ¢ satisfies:

o c(x,y) =—c(y,x).

o c(x,[y,z]) +c(y,[z,x]) + ¢z, [x, y]) = 0.
Such expressions are called two-cocycles on g.

Now suppose that we are given two extensions g, and g, of the form (A.4-1)
with a = C1 and a Lie algebra isomorphism ¢ between them which preserves their
subspaces C1. Choosing splittings 7 : C1® g — g, and 1 : C1® g — g, for these
extensions, we obtain the two-cocycles ¢y and ¢,. Define a linear map f :g — C
as the composition of 71, ¢ and the projection g, — C1 induced by 1,. Then it is
easy to see that

ca(x,y) = c1(x, y) + f([x, yD.

Therefore the set (actually, a vector space) of isomorphism classes of one-dimen-
sional central extensions of g is isomorphic to the quotient of the vector space of
the two-cocycles on g by the subspace of those two-cocycles ¢ for which

c(x,y)=f(x.yD.  Vx.yeg,

for some f : g — C (such cocycles are called coboundaries). This quotient space is
the second Lie algebra cohomology group of g, denoted by H?(g, C).

A.5. Affine Kac-Moody algebras

If we have a complex Lie algebra g and a commutative and associative algebra A4,
then g ® A is a Lie algebra if we use the bracket
C

[e®a,h®b]=g, h]®ab.

What exactly is A? One can usually think of commutative, associative algebras as
functions on some manifold M . Note that

g % Fun(M') = Map(M, g)
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is just the Lie algebra of maps from M to g. This is naturally a Lie algebra with
respect to the pointwise Lie bracket (it coincides with the Lie bracket given by the
above formula).

Let us choose our manifold to be the circle, so we are thinking about maps from
the circle into the Lie algebra. We then have to decide what type of maps we want
to deal with. Using smooth maps would require some analysis, whereas we would
like to stay in the realm of algebra — so we use algebraic (polynomial) maps. We
consider the unit circle embedded into the complex plane with the coordinate z, so
that on the circle 7 = ¢'?, 6 being the angle. Polynomial functions on this circle
are the same as Laurent polynomials in . They form a vector space denoted by
C[t,t~!]. Using this space of functions, we obtain the polynomial loop algebra

Lg=g®C[t,17"]

with the bracket given as above.

It turns out that there is much more structure and theory about the centrally
extended loop algebras. As we saw above, these are classified by the second
cohomology group H?(Lg, C), and for a simple Lie algebra g this is known to be
one-dimensional. The corresponding cocycles are given by formula (1.3-3). They
depend on the invariant inner product on g denoted by «. We will denote the central
extension by ’g\ﬁ(’l.

There is a formal version of the above construction where we replace the algebra
C[t, '] of Laurent polynomials by the algebra C((¢)) of formal Laurent series.
This gives is the formal loop algebra g ® C((¢)) = g((z)). Its central extensions
are parametrized by its second cohomology group, which, with the appropriate
continuity condition, is also a one-dimensional vector space if g is a simple Lie
algebra. The central extensions are again given by specifying an invariant inner
product k on g. The Lie bracket is given by the same formula as before — note that
the residue is still well defined. We denote the corresponding Lie algebra g,.. This
is the affine Kac-Moody algebra associated to g (and «).
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adele, 6

admissible representation, 312

affine flag variety, 358

affine Grassmannian, 21, 306, 327, 329, 352

affine Hecke algebra, see also Hecke algebra,
affine

affine Kac—-Moody algebra, 28, 384

annihilation operator, 142

associated graded algebra, 78, 381

automorphic function, 367

automorphic representation, 7, 366, 371

big cell, 130

Cartan decomposition, 108, 382
Cartan matrix, 382
Cartan subalgebra, 382
Casimir element, 32
center
at the critical level, 77, 117, 242
of a vertex algebra, 76
of the enveloping algebra, 120, 124
central character, 308
central charge, 68
central extension, 27, 383
conformal dimension, 40
conformal vector, 68
congruence subgroup, 2, 19, 312
connection, 12, 109
flat, 11, 109
constructible sheaf, 23
{-adic, 22
contragredient representation, 21
convolution, 312
coweight, 383
creation operator, 142
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critical level, see also level, critical

9-module, 24, 314, 328, 329, 359, 368
DG scheme, 346
disc, 68, 81, 90, 93
punctured, 17, 93
Drinfeld-Sokolov reduction, 246
dual Coxeter number, 64

equivariant module, 313
exponent of a Lie algebra, 112

field, 40

flag variety, 130

flat G-bundle, see also G-bundle, flat

flat connection, see also connection, flat

flat vector bundle, see also vector bundle, flat

formal coordinate, 91

formal delta-function, 39

formal loop group, see also loop group

Frobenius automorphism, 3, 329, 338, 351,
367

fundamental group, 9

G-bundle, 14
flat, 15
Galois group, 3,9
gauge transformation, 15, 109
Grothendieck alteration, 200, 346

Harish-Chandra category, 313
Harish-Chandra module, 313
Harish-Chandra pair, 313
Hecke algebra, 312

affine, 341

affine, categorical, 358, 373
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categorical, 314

spherical, 316, 351

spherical, categorical, 328
Hecke eigenfunction, 367
Hecke eigenmodule, 328, 331, 352
Hecke eigensheaf, 368, 373
Hecke eigenvector, 317, 367
highest weight vector, 189
holomorphic vector bundle, see also vector

bundle, holomorphic

horizontal section, 13

integrable representation, 19
intertwining operator, 202
invariant inner product, 28
Iwahori subgroup, 312, 338

jet scheme, 84, 296

Kac—Kazhdan conjecture, 195
Killing form, 28, 63

L-packet, 6, 339, 366
Langlands correspondence
global, 6, 8, 366
global geometric, tamely ramified, 376
global geometric, unramified, 368
global, tamely ramified, 371
global, unramified, 368
local, 1, 4, 6, 366
local geometric, 30
local geometric, tamely ramified, 342, 349
local geometric, unramified, 317, 321, 333
local, tamely ramified, 339
local, unramified, 316
Langlands dual group, 6, 100, 108, 117, 306,
316, 330
Langlands dual Lie algebra, 117, 228
level, 28
critical, 30, 37, 64, 99, 141, 165, 166, 170
lexicographically ordered monomial, 381
Lie algebra, 379
simple, 382
local field, 1
local system, 18, 307
{-adic, 22
tamely ramified, 344, 353, 372
trivial, 318, 353
locality, 41

localization functor, 369, 373, 376, 378
loop algebra

formal, 26, 385

polynomial, 385
loop group, 9, 19, 20, 23, 26, 30, 305

maximal compact subgroup, 21, 312, 316
Miura oper, 198, 233

generic, 234

nilpotent, 267
Miura transformation, 236, 248, 362
module over a Lie algebra, 379
monodromic module, 345
monodromy, 13, 17, 338, 343, 344, 351, 377

nilpotent cone, 86, 269, 341

nilpotent Miura oper, see also Miura oper,
nilpotent

nilpotent oper, see also oper, nilpotent

normal ordering, 37, 49

oper, 109, 307

nilpotent, 257, 344

regular, 321

with regular singularity, 252
operator product expansion, 57

PBW filtration, see also universal enveloping
algebra, filtration

Poincaré-Birkhoff—Witt theorem, 381

principal G-bundle, see also G-bundle

principal gradation, 112

projective connection, 96, 101, 107

projective structure, 102

punctured disc, see also disc, punctured

reconstruction theorem, 51, 52
reduction of a principal bundle, 104
regular singularity, 16, 252, 372, 376
relative position, 270

generic, 200
representation of a Lie algebra, 379
residue, 28

of a nilpotent oper, 262

of an oper with regular singularity, 252
Riemann-Hilbert correspondence, 24
root, 382

simple, 382
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Schwarzian derivative, 98, 114
screening operator, 197
of W-algebra, 227
of the first kind, 205, 212
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space of states, 40
spherical Hecke algebra, see also Hecke
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Springer fiber, 270, 340, 360
Springer variety, 269
state-field correspondence, 41
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symbol, 381

Tannakian formalism, 15, 328, 352
torsor, 91

transition function, 11

translation operator, 40

universal enveloping algebra, 380
completed, 34
filtration, 380

unramified representation, 316

vacuum vector, 40
vacuum Verma module, see also Verma
module, vacuum
vector bundle, 11
flat, 11
holomorphic, 14
Verma module, 133, 189, 282
contragredient, 134
vacuum, 45
vertex algebra, 40
commutative, 42
conformal, 68
quasi-conformal, 177
vertex algebra homomorphism, 68
vertex operator, 41
vertex Poisson algebra, 229
Virasoro algebra, 66

W-algebra, 228
Wakimoto module, 174

generalized, 188
of critical level, 170, 354, 363
weight, 383
Weil group, 4, 7, 366
Weil-Deligne group, 4, 316, 337, 351
Weyl algebra, 139
Weyl group, 383
Weyl module, 289
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LANGLANDS CORRESPONDENCE FOR LOOP GROUPS

The Langlands Program is quickly emerging as a blueprint for a Grand Unified
Theory of Mathematics. Conceived initially as a bridge between Number Theory
and Automorphic Representations, it has now expanded into such areas as Geom-
etry and Quantum Field Theory, weaving together seemingly unrelated disciplines
into a web of tantalizing conjectures. This book provides a new chapter in this
grand project. It develops the geometric Langlands Correspondence for Loop
Groups, a new theory with a multitude of beautiful connections to the classical
Langlands Program as well as many new elements from Geometry and Conformal
Field Theory.

The backbone of the new approach is the representation theory of affine Kac-
Moody algebras of critical level. The book opens with a detailed account of this
theory, with all necessary concepts defined and all essential results proved along
the way. It introduces such notions as vertex algebras, jet schemes, opers, Miura
opers, Wakimoto modules, screening operators, etc., all of which are illustrated
by detailed examples. This theory is then used to construct the local geometric
Langlands correspondence. It assigns to the local Galois data a category of rep-
resentations of an affine Kac-Moody algebra equipped with an action of the loop
group. This construction leads to many new insights into the Langlands correspon-
dence as well as representation theory. The implications of this approach for the
global Langlands correspondence developed by A. Beilinson and V. Drinfeld are
also discussed.

This book is the first introductory account of the research done in this area in
the last twenty years. It is based on the graduate courses taught by the author
at the University of California at Berkeley. The book provides many open prob-
lems which could form the basis for future research. It is accessible to advanced
undergraduate and beginning graduate students.
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