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1 Overview, KAM theory

These notes record and slightly modify my 5 lectures from the CIME conference on “Calculus
of variations and nonlinear partial differential equations”, held in Cetraro during the week of
June 27 - July 2, 2005, organized by Bernard Dacorogna and Paolo Marcellini. I am proud
to brag that this was the third CIME course I have given during the past ten years, the
others at the meetings on “Viscosity solutions and applications” (Montecatini Terme, 1995)
and on “Optimal transportation and applications” (Martina Franca, 2001).

My intention was (and is) to introduce some new PDE methods developed over the past
6 years in so-called “weak KAM theory”, a subject pioneered by J. Mather and A. Fathi.
Succinctly put, the goal of this subject is the employing of dynamical systems, variational
and PDE methods to find “integrable structures” within general Hamiltonian dynamics.

My main references for most of these lectures are Fathi’s forthcoming book [F5] (as well
as his sequence of short notes [F1]–[F4]) and my paper [E-G1] with Diogo Gomes. A nice
recent survey is Kaloshin [K]; and see also the survey paper [E6].

1.1 Classical theory

I begin with a quick recounting of classical Lagrangian and Hamiltonian dynamics, and
a brief discussion of the standard KAM theorem. A good elementary text is Percival and
Richards [P-R], and Goldstein [G] is a standard reference.

1.1.1 The Lagrangian viewpoint

DEFINITION. We are given a function L : Rn × Rn → R called the Lagrangian, L =
L(v, x). We regard x ∈ Rn, x = (x1, . . . , xn), as the position variable and v ∈ Rn, v =
(v1, . . . , vn), as the velocity.

HYPOTHESES. We hereafter assume that

1



(i) there exist constants 0 < γ ≤ Γ such that

(1.1) Γ|ξ|2 ≥
n∑

i,j=1

Lvivj
(v, x)ξiξj ≥ γ|ξ|2 (uniform convexity)

for all ξ, v, x; and
(ii) the mapping

(1.2) x 7→ L(v, x) is Tn-periodic (periodicity)

for all x, where Tn = [0, 1]n denotes the unit cube in Rn, with opposite faces identified.

DEFINITION. Given a curve x : [0, T ] → R, we define its action to be

AT [x(·)] :=

∫ T

0

L(ẋ(t),x(t)) dt

where · = d
dt

.

THEOREM 1.1 (Euler–Lagrange equation) Suppose that x0, xT ∈ Rn are given, and
define the admissible class of curves

A := {y ∈ C2([0, T ]; Rn) | y(0) = x0, y(T ) = xT}.

Suppose x(·) ∈ A and
AT [x(·)] = min

y∈A
AT [y(·)].

Then the curve x(·) solves the Euler–Lagrange equations

(E-L) − d

dt
(DvL(ẋ,x)) + DxL(ẋ,x) = 0 (0 ≤ t ≤ T ).

A basic example. The Lagrangian L = |v|2
2
−W (x) is the difference between the kinetic

energy |v|2
2

and the potential energy W (x). In this case the Euler-Lagrange equations read

ẍ = −DW (x).

�

1.1.2 The Hamiltonian viewpoint. In view of the uniform convexity of v 7→ L(v, x), we
can uniquely and smoothly solve the equation

p = DvL(v, x)
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for
v = v(p, x).

DEFINITION. We define the Hamiltonian

(1.3) H(p, x) := p · v(p, x)− L(v(p, x), x).

Equivalently,

(1.4) H(p.x) = max
v∈Rn

(p · v − L(v, x)).

THEOREM 1.2 (Hamiltonian dynamics) Suppose x(·) solves the Euler-Lagrange equa-
tions (E-L). Define

p(t) := DvL(x(t), ẋ(t)).

Then the pair (x(·),p(·)) solves Hamilton’s equations

(H)

{
ẋ = DP H(p,x)

ṗ = −DxH(p,x).

Also,
d

dt
H(p,x) = 0;

this is conservation of energy.

Basic example again. For the Lagrangian L = |v|2
2
−W (x), the corresponding Hamiltonian

is H(p, x) = |p|2
2

+ W (x), the sum of the kinetic and potential energies. The Hamiltonian
dynamics (H) then read {

ẋ = p

ṗ = −DW (x);

and the total energy is conserved. �

1.1.3 Canonical changes of variables, generating functions. Let u : Rn × Rn → R,
u = u(P, x), be a given smooth function, called a generating function. Consider the formulas

(1.5)

{
p := Dxu(P, x)

X := DP u(P, x).
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Assume we can solve (1.5) globally for X, P as smooth functions of x, p, and vice versa:

(1.6)
X = X(p, x)
P = P(p, x)

⇔ x = x(P, X)
p = p(P, X).

We next study the Hamiltonian dynamics in the new variables:

THEOREM 1.3 (Change of variables) Let (x(·),p(·)) solve Hamilton’s equations (H).
Define

X(t) := X(p(t),x(t))
P(t) := P(p(t),x(t)).

Then

(K)

{
Ẋ = DP K(P,X)

Ṗ = −DXK(P,X)

for the new Hamiltonian

K(P, X) := H(p(P, X),x(P, X)).

DEFINITION. A transformation Ψ : Rn × Rn → Rn × Rn,

Ψ(p, x) = (P, X)

is called canonical if it preserves the Hamiltonian structure. This means

(DΨ)T J DΨ = J

for

J =

(
0 I
−I 0

)
See any good classical mechanics textbook, such as Goldstein [G], for more explanation.
The change of variables (p, x) 7→ (P, X) induced by the generating function u = u(P, x) is
canonical.

1.1.4 Hamilton–Jacobi PDE. Suppose now our generating function u = u(P, x) solves
the stationary Hamilton-Jacobi equation

(1.7) H(Dxu, x) = H̄(P ),
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where the right hand side at this point of the exposition just denotes some function of P
alone. Then

K(P, X) = H(p, x) = H(Dxu, x) = H̄(P );

and so (K) becomes

(1.8)

{
Ẋ = DH̄(P)

Ṗ = 0.

The point is that these dynamics are trivial. In other words, if we can canonically change
variables (p, x) 7→ (P, X) using a generating function u that solves a PDE of the form (1.7),
we can easily solve the dynamics in the new variables.

DEFINITION. We call the Hamiltonian H integrable if there exists a canonical mapping

Φ : Rn × Rn → Rn × Rn, Φ(P, X) = (p, x),

such that
(H ◦ Φ)(P, X) =: H̄(P )

is a function only of P .
We call P = (P1, . . . , Pn) the action variables and X = (X1, . . . , Xn) the angle variables.

1.2 KAM Theory

A key question is whether we can in fact construct a canonical mapping Φ as above,
converting to action-angle variables. This is in general impossible, since our PDE (1.7) will
not usually have a solution u smooth in x and P ; and, even if it does, it is usually not
possible globally to change variables according to (1.5) and (1.6).

But KAM (Kolmogorov-Arnold-Moser) theory tells us that we can in fact carry out this
procedure for a Hamiltonian that is an appropriate small perturbation of a Hamiltonian
depending only on p. To be more specific, suppose our Hamiltonian H has the form

(1.9) H(p, x) = H0(p) + K0
ε (p, x),

where we regard the term K0
ε as a small perturbation to the integrable Hamiltonian H0.

Assume also that x 7→ K0
ε (p, x) is Tn-periodic.

1.2.1 Generating functions, linearization. We propose to find a generating function
having the form

u(P, x) = P · x + v(P, x),
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where v is small and periodic in x. Owing to (1.5) we would then change variable through
the implicit formulas

(1.10)

{
p = Dxu = P + Dxv

X = DP u = x + DP v.

We consequently must build v so that

(1.11) H(Dxu, x) = H̄(P ),

the expression on the right to be determined.

Now according to (1.9), (1.10) and (1.11), we want

(1.12) H0(P + Dxv) + K0
ε (P + Dxv, x) = H̄(P ).

We now make the informal assumption that K0
ε , v, and their derivatives are O(ε) as ε → 0.

Then

(1.13) H0(P ) + DH0(P ) ·Dxv + K0
ε (P, x) = H̄(P ) + O(ε2).

Drop O(ε2) term and write
ω(P ) := DH0(P ).

Then

(1.14) ω(P ) ·Dxv + K0
ε (P, x) = H̄(P )−H0(P );

this is the formal linearization of our nonlinear PDE (1.12).

1.2.2 Fourier series. Next we use Fourier series to try to build a solution v of (1.14). To
simplify a bit, suppose for this section that Tn = [0, 2π]n (and not [0, 1]n). We can then
write

K0
ε (P, x) =

∑
k∈Zn

k̂(P, k)eik·x

for the Fourier coefficients

k̂(P, k) :=
1

(2π)n

∫
Tn

K0
ε (P, x)e−ik·x dx.

Let us seek a solution of (1.14) having the form

(1.15) v(P, x) =
∑
k∈Zn

v̂(P, k)eik·x,
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the Fourier coefficients v̂(P, k) to be selected. Plug (1.15) into (1.14):

i
∑
k∈Zn

(ω(P ) · k)v̂(P, x)eik·x +
∑
k∈Zn

k̂(P, k)eik·x = H̄(P )−H0(P ).

The various terms agree if we define

H̄(P ) := H0(P ) + k̂(P, 0)

and set

v̂(P, x) :=
ik̂(P, k)

ω(P ) · k
(k 6= 0).

We have therefore derived the approximate solution

(1.16) v(P, x) = i
∑
k 6=0

k̂(P, k)

ω(P ) · k
eik·x,

assuming both that ω(P ) · k 6= 0 for all nonzero k ∈ Zn and that the series (1.16) converges.

1.2.3 Small divisors. To make rigorous use the foregoing calculations, we need first to
ensure that ω(P ) · k 6= 0, with some quantitative control:

DEFINITION. A vector ω ∈ Rn is of type (L, γ) if

(1.17) |k · ω| ≥ L

|k|γ
for all k ∈ Zn, k 6= 0,

This is a “nonresonance condition”. It turns out that most ω satisfy this condition for
appropriate L, γ. Indeed, if γ > n− 1, then

|{ω ∈ B(0, R) | |k · ω| ≤ L

|k|γ
for some k ∈ Zn}| → 0 as L → 0.

1.2.4 Statement of KAM Theorem. We now explicitly put

K0
ε (p, x) = εK0(p, x)

in (1.9), so that
H(p, x) = H0(p) + εK0(p, x),

and assume

(H1)


there exists p∗ ∈ Rn such that

ω∗ = DH0(p∗)

is type (L, γ) for some L, γ > 0;
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(H2) D2H0(p∗) is invertible;

(H3) H0, K0 are real analytic.

THEOREM 1.4 (KAM) Under hypotheses (H1)–(H3), there exists ε0 > 0 such that for
each 0 < ε ≤ ε0, there exists P ∗ (close to p∗) and a smooth mapping

Φ(P ∗, ·) : Rn → Rn × Rn

such that for each x0 ∈ Rn

Φ(P ∗, x0 + tω∗) =: (x(t),p(t))

solves the Hamiltonian dynamics (H).

The idea of the proof is for k = 0, 1, . . . , iteratively to construct Φk, Pk, H
k, εk so that

P0 = p∗,
ω∗ = DH̄k(Pk) for all k;

Hk+1 := Hk ◦ Φk;

and
Hk(p, x) = H̄k(p) + Kk(p, x),

where ‖Kk‖ ≤ εk and the error estimates εk converge to 0 very rapidly. Then

Pk → P ∗, H̄k(Pk) → H̄(P ∗);

and
Φ := lim

k→∞
Φk ◦ Φk−1 ◦ · · · ◦ Φ1

is the required change of variables.
The full details of this procedure are very complicated. See Wayne’s discussion [W] for

much more explanation and for references to the vast literature on KAM.

REMARK. We have

(1.18)

{
X(t) = x0 + tω∗

P(t) ≡ P ∗

for
ω∗ = DH̄(P ∗)

But note that, in spite of my notation, Φ is really only defined for P = P ∗. �
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2 Weak KAM Theory: Lagrangian Methods

Our goal in this and the subsequent sections is extending the foregoing classical picture into
the large. The resulting, so-called “weak KAM theory” is a global and nonperturbative
theory (but is in truth pretty weak, at least as compared with the assertions from the
previous section). There are two approaches to these issues: the Lagrangian, dynamical
systems methods (discussed in this section) and the nonlinear PDE methods (explained in
the next section).

The following discussion follows Albert Fathi’s new book [F5], which the interested reader
should consult for full details of the proofs. Related expositions are Forni–Mather [Fo-M]
and Mañé [Mn].

2.1 Minimizing trajectories

NOTATION. If x : [0, T ] → Rn and

AT [x(·)] ≤ AT [y(·)]

for all y(0) = x(0), y(T ) = x(t), we call x(·) a minimizer of the action AT [·] on the time
interval [0, T ].

THEOREM 2.1 (Velocity estimate) For each T > 0, there exists a constant CT such
that

(2.1) max
0≤t≤T

|ẋ(t)| ≤ CT

for each minimizer x(·) on [0, T ].

Idea of Proof. This is a fairly standard derivative estimate for solutions of the Euler–
Lagrange equation (E-L). �

2.2 Lax–Oleinik semigroup

DEFINITION. Let v ∈ C(Tn) and set

T−
t v(x) := inf{v(x(0)) +

∫ t

0

L(ẋ,x) ds | x(t) = x}

We call the family of nonlinear operators {T−
t }t≥0 the Lax–Oleinik semigroup.
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REMARK. The infimum above is attained. So in fact there exists a curve x(·) such that
x(t) = x and

T−
t v(x) = v(x(0)) +

∫ t

0

L(ẋ,x) dt.

�

THEOREM 2.2 (Regularization) For each time t > 0 there exists a constant Ct such
that

(2.2) [T−
t v]Lip ≤ Ct

for all v ∈ C(Tn).

Idea of Proof. Exploit the strict convexity of v 7→ L(v, x), as in similar arguments in
Chapter 3 on my PDE text [E1]. �

We record below some properties of the Lax–Oleinik semigroup acting on the space C(Tn),
with max norm ‖ ‖.

THEOREM 2.3 (Properties of Lax–Oleinik semigroup)

(i) T−
t ◦ T−

s = T−
t+s (semigroup property).

(ii) v ≤ v̂ implies T−
t v ≤ T−

t v̂.

(iii) T−
t (v + c) = T−

t v + c.

(iv) ‖T−
t v − T−

t v̂‖ ≤ ‖v − v̂‖ (nonexpansiveness).

(v) For all v ∈ C(Tn), limt→0 T−
t v = v uniformly.

(vi) For all v, t 7→ T−
t v is uniformly continuous.

2.3 The Weak KAM Theorem

We begin with an abstract theorem about nonlinear mappings on a Banach space X:

THEOREM 2.4 (Common fixed points) Suppose {φt}t≥0 is a semigroup of nonexpan-
sive mappings of X into itself. Assume also for all t > 0 that φt(X) is precompact in X and
for all x ∈ X that t 7→ φt(x) is continuous.

Then there exists a point x∗ such that

φt(x
∗) = x∗ for all times t ≥ 0.
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Idea of Proof. Fix a time t0 > 0. We will first show that φt0 has a fixed point.
Let 0 < λ < 1. Then there exists according to the Contraction Mapping Theorem a

unique element xλ satisfying
λφt0(xλ) = xλ.

By hypothesis {φt0(xλ) | 0 < λ < 1} is precompact. So there exist λj → 1 for which xλj
→ x

and
φt0(x) = x.

Now let xn be fixed point of φ1/2n . Then xn is fixed point also of φk/2n for k = 1, 2, . . . .
Using compactness, we show that xnj

→ x∗ and that φt(x
∗) = x∗ for all t ≥ 0. �

Next is an important result of Albert Fathi [F1]:

THEOREM 2.5 (Weak KAM Theorem) There exists a function v− ∈ C(Tn) and a
constant c ∈ R such that

(2.3) T−
t v− + ct = v− for all t ≥ 0.

Idea of proof. We apply Theorem 2.4 above. For this, let us write for functions v, v̂ ∈ C(Tn)

v ∼ v̂

if v − v̂ ≡ constant; and define also the equivalence class

[v] := {v̂ | v ∼ v̂}.

Set
X := {[v] | v ∈ C(Tn)}

with the norm
‖[v]‖ := min

a∈R
‖v + a11‖,

where 11 denotes is the constant function identically equal to 1.
We have Tt : X → X, according to property (iii) of Theorem 2.3. Hence there exists a

common fixed point
Tt[v]∗ = [v]∗ (t ≥ 0).

Selecting any representative v− ∈ [v]∗, we see that

Ttv− = v− + c(t)

for some c(t). The semigroup property implies c(t + s) = c(t) + c(s), and consequently
c(t) = ct for some constant c. �
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2.4 Domination

NOTATION. Let w ∈ C(Tn). We write

w ≺ L + c (“w is dominated by L + c”)

if

(2.4) w(x(b))− w(x(a)) ≤
∫ b

a

L(ẋ,x)ds + c(b− a)

for all times a < b and for all Lipschitz continuous curves x : [a, b] → Rn.

REMARK.
w ≺ L + c if and only if w ≤ ct + T−

t w for all t ≥ 0.

�

THEOREM 2.6 (Domination and PDE)
(i) If w ≺ L + c and the gradient Dw(x) exists at a point x ∈ Tn, then

(2.5) H(Dw(x), x) ≤ c.

(ii) Conversely, if w is Lipschitz continuous and H(Dw, x) ≤ c a.e., then

w ≺ L + c.

Idea of proof. (i) Select any curve x with x(0) = x, ẋ(0) = v. Then

w(x(t))− w(x)

t
≤ 1

t

∫ t

0

L(ẋ,x) ds + c.

Let t → 0, to discover
v ·Dw ≤ L(v, x) + c;

and therefore
H(Dw(x), x) = max

v
(v ·Dw − L(v, x)) ≤ c.

(ii) If w is smooth, we can compute

w(x(b))− w(x(a)) =

∫ b

a

d

dt
w(x(t)) ds

=

∫ b

a

Dw(x) · ẋ dt

≤
∫ b

a

L(ẋ,x) + H(Dw(x),x) dt

≤
∫ b

a

L(ẋ,x) dt + c(b− a).
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See Fathi’s book [F5] for what to do when w is only Lipschitz. �

2.5 Flow invariance, characterization of the constant c

NOTATION. (i) We will hereafter write

T (Tn) := Rn × Tn = {(v, x) | v ∈ Rn, x ∈ Tn}

for the tangent bundle over Tn, and

T ∗(Tn) := Rn × Tn = {(p, x) | p ∈ Rn, x ∈ Tn}

for the cotangent bundle. We work in the tangent bundle for the Lagrangian viewpoint, and
in the cotangent bundle for the Hamiltonian viewpoint.

(ii) Consider this initial-value problem for the Euler-Lagrange equation:

(2.6)

{
− d

dt
(DvL(ẋ,x)) + DxL(ẋ,x) = 0

x(0) = x, ẋ(0) = v.

We define the flow map {φt}t∈R on T (Tn) by the formula

(2.7) φt(v, x) := (v(t),x(t)),

where v(t) = ẋ(t).

DEFINITION. A probability measure µ on the tangent bundle T (Tn) is flow invariant if∫
T (Tn)

Φ(φt(v, x)) dµ =

∫
T (Tn)

Φ(v, x) dµ

for each bounded continuous function Φ.

Following is an elegant interpretation of the constant c from the Weak KAM Theorem
2.5, in terms of action minimizing flow invariant measures:

THEOREM 2.7 (Characterization of c) The constant from Theorem 2.5 is given by
the formula

(2.8) c = − inf{
∫

T (Tn)

L(v, x) dµ | µ flow invariant, probability measure}.
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DEFINITIONS. (i) The action of a flow-invariant measure µ is

A[µ] :=

∫
T (Tn)

L(v, x) dµ.

(ii) We call µ a minimizing (or Mather) measure if

(2.9) −c = A[µ].

Idea of proof. 1. Recall that

T−
t v− = v− + ct and v− ≺ L + c.

Let us write
φs(v, x) = (ẋ(s),x(s))

for (v, x) ∈ T (Tn), and put
π(v, x) := x

for the projection of T (Tn) onto Tn.
Then

(2.10) v−(πφ1(v, x))− v−(π(v, x)) ≤
∫ 1

0

L(φs(v, x)) ds + c.

Integrate with respect to a flow-invariant probability measure µ:

0 =

∫
T (Tn)

v−(πφ1(v, x))− v−(π(v, x)) dµ

≤
∫ 1

0

∫
T (Tn)

L(φs(v, x)) dµds + c

=

∫
T(Tn)

L(v, x) dµ + c.

Therefore

−c ≤
∫

T (Tn)

L(v, x) dµ for all flow-invariant µ.

2. We must now manufacture a measure giving equality above. Fix x ∈ Tn. Find a curve
x : (−∞, 0] → Rn such that x(0) = x, ẋ(0) = v; and for all times t ≤ 0:

v−(x(0))− v−(x(t)) =

∫ 0

t

L(φs(v, x)) ds− ct.
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Define for t ≥ 0 the measure µt by the rule

µt(Φ) =
1

t

∫ 0

−t

Φ(φs(v, x)) ds

for each continuous function Φ. Then

v−(x)− v−(x(−t))

t
=

∫
T (Tn)

L dµt + c.

Sending tk → −∞, we deduce that

dµtk ⇀ dµ

weakly as measures, for some flow invariant probability measure µ that satisfies

−c =

∫
T (Tn)

L dµ.

�

2.6 Time-reversal, Mather set

It is sometimes convenient to redo our theory with time reversed, by introducing the
backwards Lax–Oleinik semigroup:

DEFINITION.

T+
t v(s) := sup{v(x(t))−

∫ t

0

L(ẋ,x)ds | x(0) = x}.

As above, there exists a function v+ ∈ C(Tn) such that

T+
t v+ − ct = v+ for all t ≥ 0

for the same constant c described in Theorem 2.7.

DEFINITION. We define the Mather set.

M̃0 :=
⋃
µ

spt(µ),

the union over all minimizing measures µ as above. The projected Mather set is

M0 := π(M̃0).

One goal of weak KAM theory is studying the structure of the Mather set (and the related
Aubry set), in terms of the underlying Hamiltonian dynamics. See Fathi [F5] for much more.
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3 Weak KAM Theory: Hamiltonian and PDE methods

3.1 Hamilton–Jacobi PDE

In this section, we reinterpret the foregoing ideas in terms of the theory of viscosity
solutions of nonlinear PDE:

THEOREM 3.1 (Viscosity solutions)
(i) We have

H(Dv±, x) = c a.e.

(ii) In fact

(3.1)

{
H(Dv−, x) = c

−H(Dv+, x) = −c

in sense of viscosity solutions.

Idea of Proof. 1. There exists a minimizing curve x : (∞, 0] → Rn such that x(0) = x,
ẋ(0) = v, and

v−(x) = v−(x(−t)) +

∫ 0

−t

L(ẋ,x) ds + ct (t ≥ 0).

If v is differentiable at x, then we deduce as before that

v ·Dv−(x) = L(v, x) + c,

and this implies H(Dv−, x) ≥ c. But always H(Dv−, x) ≤ 0.

2. The assertions about v± being viscosity solutions follow as in Chapter 10 of my PDE
book [E1]. �

3.2 Adding P dependence

Motivated by the discussion in Section 1 about the classical theory of canonical transfor-
mation to action-angle variables, we next explicitly add dependence on a vector P .

So select P ∈ Rn and define the shifted Lagrangian

(3.2) L̂(v, x) := L(v, x)− P · v.

The corresponding Hamiltonian is

Ĥ(p, x) = max
v

(p · v − L̂(v, x)) = max
v

((p + P ) · v − L(v, x)),
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and so

(3.3) Ĥ(p, x) = H(P + p, x).

As above, we find a constant c(P ) and periodic functions v± = v±(P, x) so that{
H(P + Dv−, x) = Ĥ(Dv−, x) = c(P )

−H(P + Dv+, x) = −Ĥ(Dv+, x) = −c(P )

in the viscosity sense.

NOTATION. We write

H̄(P ) := c(P ), u− := P · x + v−, u+ := P · x + v+.

Then

(3.4)

{
H(Du−, x) = H̄(P )

−H(Du+, x) = −H̄(P )

in the sense of viscosity solutions.

3.3 Lions–Papanicolaou–Varadhan Theory

3.3.1 A PDE construction of H̄. We next explain an alternative, purely PDE technique,
due to Lions–Papanicolaou–Varadhan [L-P-V], for finding the constant c(P ) as above and
v = v−.

THEOREM 3.2 (More on viscosity solutions) For each vector P ∈ Rn, there exists a
unique real number c(P ) for which we can find a viscosity solution of

(3.5)

{
H(P + Dxv, x) = c(P )

v is Tn-periodic.

REMARK. In addition v is semiconcave, meaning that D2v ≤ CI for some constant C.
�

Idea of proof. 1. Existence. Routine viscosity solution methods assert the existence of a
unique solution vε of

εvε + H(P + Dxv
ε, x) = 0.
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Since H is periodic in x, uniqueness implies vε is also periodic.
It is now not very difficult to derive the uniform estimates

max |Dxv
ε|, |εvε| ≤ C.

Hence we may extract subsequences for which

vεj → v uniformly, εjv
εj → −c(P ).

It is straightforward to confirm that v is a viscosity solution of H(P + Dxv, x) = c(P ).

2. Uniqueness of c(P ). Suppose also

H(P + Dxv̂, x) = ĉ(P ).

We may assume that ĉ(P ) > c(P ) and that v̂ < v, upon adding a constant to v, if necessary.
Then

δv̂ + H(P + Dxv̂, x) > δv + H(P + Dxv, x)

in viscosity sense, if δ > 0 is small. The viscosity solution comparison principle then implies
the contradiction v̂ ≥ v. �

NOTATION. In agreement with our previous notation, we write

(3.6) H̄(P ) := c(P ), u = P · x + v,

and call H̄ the effective Hamiltonian. Then

(E) H(Dxu, x) = H̄(P ).

We call (E) the generalized eikonal equation.

3.3.2 Effective Lagrangian. Dual to the effective Hamiltonian is the effective Lagrangian:

(3.7) L̄(V ) := max
P

(P · V − H̄(P ))

for V ∈ Rn.
We sometime write L̄ = H̄∗ to record this Legendre transform. Then

(3.8) P ∈ ∂L̄(V ) ⇔ V ∈ ∂H̄(P ) ⇔ P · V = L̄(V ) + H̄(P ),

∂ denoting the (possibly multivalued) subdifferential of a convex function.
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THEOREM 3.3 (Characterization of effective Lagrangian) We have the formula

(3.9) L̄(V ) = inf{
∫

T (Tn)

L(v, x) dµ | µ flow invariant,

∫
T (Tn)

v dµ = V }.

Compare this with Theorem 2.7.

Proof. Denote by L̃(V ) the right hand side of (3.9). Then

−H̄(P ) = inf
µ
{
∫

T (Tn)

L(v, x)− P · v dµ}

= inf
µ,V
{
∫

T (Tn)

L(v, x) dµ− P · V |
∫

T (Tn)

v dµ = V }

= inf
V
{L̃(V )− P · V }

= − sup
V
{P · V − L̃(V )}.

So L̃ = H̄∗ = L̄. �

3.3.3 Application: homogenization of nonlinear PDE

THEOREM 3.4 (Homogenization) Suppose g is bounded and uniformly continous, and
uε is the unique bounded, uniformly continuous viscosity solution of the initial-value problem{

uε
t + H(Duε, x

ε
) = 0 (t > 0)

uε = g (t = 0).

Then uε → u locally uniformly, where u solves the homogenized equation{
ut + H̄(Du) = 0 (t > 0)

u = g (t = 0).

Idea of Proof. Let φ be a smooth function and suppose that u− φ has a strict maximum
at the point (x0, t0). Define the perturbed test function

φε(x, t) := φ(x, t) + εv
(x

ε

)
,

where v is a periodic viscosity solution of

H(P + Dv, x) = H̄(P )
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for P = Dφ(x0, t0).

Assume for the rest of the discussion that v is smooth. Then φε is smooth and uε − φε

attains a max at a point (xε, tε) near (x0, t0). Consequently

φε
t + H

(
Dφε,

xε

ε

)
≤ 0.

And then
φt + H

(
Dφ(xε, tε) + Dv

(xε

ε

)
,
xε

ε

)
≈ φt + H̄(Dφ(x0, t0)) ≤ 0.

The reverse inequality similarly holds if u− φ has a strict minimum at the point (x0, t0).
See my old paper [E2] for what to do when v is not smooth. �

3.4 More PDE methods

In this section we apply some variational and nonlinear PDE methods to study further
the structure of the Mather minimizing measures µ and viscosity solutions u = P · x + v of
the eikonal equation (E).

Hereafter µ denotes a Mather minimizing measure in T (Tn). It will be more convenient to
work with Hamiltonian variables, and so we define ν to be the pushforward of µ onto the
contangent bundle T ∗(Tn) under the change of variables p = DvL(v, x).

For reference later, we record these properties of ν, inherited from µ:

(A) V =

∫
T ∗(Tn)

DpH(v, x) dν

(B) L̄(V ) =

∫
T ∗(Tn)

L(DpH(p, x), x) dν

(C)

∫
T ∗(Tn)

{H, Φ} dν = 0 for all C1 functions Φ,

where
{H, Φ} := DpH ·DxΦ−DxH ·DP Φ.

is the Poisson bracket. Statement (A) is the definition of V , whereas statement (C) is a
differential form of the flow-invariance, in the Hamiltonian variables.

NOTATION. We will write
σ = π#ν
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for the push-forward of ν onto Tn.

Now select any P ∈ ∂L̄(V ). Then as above construct a viscosity solution of the general-
ized eikonal PDE

(E) H(Dxu, x) = H̄(P )

for
u = P · x + v, v periodic.

We now study properties of u in relation to the measures σ and ν, following the paper
[E-G1].

THEOREM 3.5 (Regularity properties)
(i) The function u is differentiable for σ a.-e. point x ∈ Tn.
(ii) We have

(3.10) p = Dxu ν − a.e.

(iii) Furthermore,

(3.11) H̄(P ) =

∫
T ∗(Tn)

H(p, x) dν.

REMARK. Compare assertion (ii) with the first of the classical formulas (1.5) �
.

Idea of proof. 1. Since p 7→ H(p, x) is uniformly convex, meaning D2
pH ≥ γI for some

positive γ, we have

(3.12) βε(x) + H(Duε, x) ≤ H̄(P ) + O(ε)

for the mollified function uε := ηε ∗ u and

βε(x) =
γ

2

∫
Tn

ηε(x− y)|Du(y)−Duε(x)|2dy

≈ γ

2

∫
−

B(x,ε)

|Du− (Du)x,ε|2dy.

In this formula (Du)x,ε denotes the average of Du over the ball B(x, ε).
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2. Uniform convexity also implies

γ

2

∫
T ∗(Tn)

|Duε − p|2dν ≤
∫

T ∗(Tn)

H(Duε, x)−H(p, x)−DpH(p, x) · (Duε − p) dν.

Now Duε = P + Dvε and∫
T ∗(Tn)

DpH ·Dvεdν = 0 by property (C).

So (3.12) implies

γ

2

∫
T ∗(Tn)

|Duε − p|2dν ≤
∫

T ∗(Tn)

H̄(P )−H(p, x)−DpH(p, x) · (P − p)− βε(x) dν

+O(ε)

≤ H̄(P )− V · P −
∫

T ∗(Tn)

H̄(p, x)−DpH(p, x) · p− βε(x) dν

+O(ε)

= L̄(V )−
∫

T ∗(Tn)

L(DpH, x)− βε(x) dν + O(ε),

according to (3.8). Consequently

(3.13)

∫
T ∗(Tn)

|Duε − p|2 dν +

∫
Tn

βε(x) dσ ≤ O(ε).

Recall also that u is semiconcave. Therefore (3.13) implies σ-a.e. point is Lebesgue point
of Du, and so Du exists σ-a.e. It then follows from (3.13) that Duε → Du ν-a.e.

2. We have
∫

T ∗(Tn)
H(p, x) dν =

∫
Tn H(Du, x) dσ = H̄(P ). �

REMARK. In view of (3.10), the flow invariance condition (C) implies∫
Tn

DpH(Du, x) ·Dφdσ = 0

for all φ ∈ C1(Tn); and so the measure σ is a weak solution of the generalized transport (or
continuity) equation

(T) div(σDpH(Dxu, x)) = 0.

�
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3.5 Estimates.

Now we illustrate how our two key PDE, the generalized eikonal equation (E) for u and
the generalized transport equation (T) for σ and u, together yield more information about
the smoothness of u.

To simplify the presentation, we take the standard example

H(p, x) =
1

2
|p|2 + W (x)

for this section. Then our eikonal and transport equations become

(E)
1

2
|Du|2 + W (x) = H̄(P )

(T) div(σDu) = 0.

If u is smooth, we could differentiate (E) twice with respect to xk:

n∑
i=1

uxi
uxixkxk

+ uxixk
uxixk

+ Wxkxk
= 0,

sum on k, and then integrate with respect to σ over Tn:∫
Tn

Dxu ·Dx(∆u) dσ +

∫
Tn

|D2
xu|2dσ = −

∫
Tn

∆W dσ.

According to (T) the first term equals zero.
This establishes the formal estimate

(3.14)

∫
Tn

|D2
xu|2 dσ ≤ C;

and a related rigorous estimate involving difference quotients holds if u is not smooth: see
[E-G1].

Reworking the proof using appropriate cutoff functions, we can derive as well the formal
bound

(3.15) |D2
xu|2 ≤ C σ a.e.;

and a related rigorous estimate involving difference quotients is valid if u is not smooth.
Again, see [E-G1] for the details. We thereby establish the inequality

(3.16) |Du(y)−Du(x)| ≤ C|x− y| for x ∈ spt(σ), a.e. y ∈ Tn.
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In particular, even though Du may be multivalued, we can bound

diam(Du(y)) ≤ C dist(y, spt(σ))

for some constant C. This is a sort of quantitative estimate on how far the support of σ lies
from the “shocks” of the gradient of u.

An application of these estimates is a new proof of Mather’s regularity theorem for the
support of the minimizing measures:

THEOREM 3.6 (Mather) The support of µ lies on a Lipschitz graph in T (Tn), and the
support of ν lies on a Lipschitz graph in T ∗(Tn).

REMARK. In addition, if u is smooth in x and P , we have the formal bound

(3.17)

∫
Tn

|D2
xP u|2 dσ ≤ C.

A related rigorous estimate involving difference quotients holds if u is not smooth. As an
application, we show in [E-G1] that if H̄ is twice differentiable at P , then

|DH̄(P ) · ξ| ≤ C(ξ ·D2H̄(P )ξ)1/2.

for all vectors ξ and some constant C. �

4 An alternative variational/PDE construction

4.1 A new variational formulation.

This section follows [E3], to discuss an alternate variational/PDE technique for discov-
ering the structure of weak KAM theory.

4.1.1 A minimax formula. Our motivation comes from “the calculus of variations in the
sup-norm”, as presented for instance in Barron [B]. We start with the following observation,
due to several authors:

THEOREM 4.1 (Minimax formula for H̄) We have

(4.1) H̄(P ) = inf
v∈C1(Tn)

max
x∈Tn

H(P + Dv, x).
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Idea of proof. Write u = P · x + v, where u is our viscosity solution of (E), and put
û = P · x + v̂, where v̂ is any C1, periodic function. Then convexity implies

H(Du, x) + DpH(Du, x) · (Dû−Du) ≤ H(Dû, x).

Integrate with respect to σ:

H̄(P ) +

∫
Tn

DpH(Du, x) ·D(v̂ − v) dσ ≤
∫

Tn

H(Dû, x) dσ

≤ max
x

H(P + Dv̂, x).

Therefore (T) implies that

H̄(P ) ≤ inf
v̂

max
x

H(P + Dv̂, x).

Furthermore, if vε := ηε ∗ v, where ηε is a standard mollifier, then

H(P + Dvε, x) ≤ H̄(P ) + O(ε);

and consequently
max

x
H(P + Dvε, x) ≤ H̄(P ) + O(ε).

�

REMARK. See Fathi–Siconolfi [F-S1] for the construction of a C1 subsolution. �

4.1.2 A new variational setting. The minimax formula provided by Theorem 4.1 suggests
that we may be able somehow to approximate the “max” above by an exponential integral
with a large parameter.

To be precise, we fix a large constant k and then introduce the integral functional

Ik[v] :=

∫
Tn

ekH(P+Dv,x) dx.

(My paper [E3] cites some relevant references, and see also Marcellini [M1], [M2] and
Mascolo–Migliorini [M-M] for more about such problems with exponential growth.)

Let vk be the unique minimizer among perodic functions, subject to the normalization
that ∫

Tn

vk dx = 0.

As usual, put uk := P · x + vk. The Euler–Lagrange equation then reads

(4.2) div(ekH(Duk,x)DpH(Duk, x)) = 0.
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4.1.3 Passing to limits. We propose to study the asymptotic limit of the PDE (4.2) as
k →∞. We will discover that the structure of weak KAM theory appears in the limit.

NOTATION. It will be convenient to introduce the normalizations

(4.3) σk :=
ekH(Duk,x)∫

Tn ekH(Duk,x)dx

and

(4.4) H̄k(P ) :=
1

k
log(

∫
Tn

ekH(Duk,x)dx).

Define also
dµk := δ{v=DpH(Duk,x)}σ

k dx.

Passing as necessary to subsequences, we may assume

σkdx ⇀ dσ weakly as measures on Tn,

dµk ⇀ dµ weakly as measures on T (Tn),

uk → u uniformly.

A main question is what PDE (if any) do u and σ satisfy?

THEOREM 4.2 (Weak KAM in the limit)
(i) We have

(4.5) H̄(P ) = lim
k→∞

H̄k(P ).

(ii) The measure µ is a Mather minimizing measure.
(iii) Furthermore

(4.6)

{
H(Du, x) ≤ H̄(P ) a.e.

H(Du, x) = H̄(P ) σ-a.e.

(iv) The measure σ is a weak solution of

(4.7) div(σDpH(Du, x)) = 0.

(v) In addition, u is a viscosity solution of Aronsson’s PDE

(4.8) −AH [u] := −
n∑

i,j=1

Hpi
Hpj

uxixj
−

n∑
i=1

Hxi
Hpi

= 0.
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4.2 Application: nonresonance and averaging.

We illustrate some uses of the approximation (4.2) by noting first that our (unique)
solution uk := P ·x+vk is smooth in both x and P . We can therefore legitimately differentiate
in both variables, and are encouraged to do so by the classical formulas (1.5).

4.2.1 Derivatives of H̄k. We can also calculate the first and second derivatives in P of
the smooth approximate effective Hamiltonian H̄k. Indeed, a direct computation (cf. [E3])
establishes the useful formulas

(4.9) DH̄k(P ) =

∫
Tn

DpH(Duk, x) dσk

and

D2H̄k(P ) = k

∫
Tn

(DpH(Duk, x)D2
xP uk −DH̄k(P ))⊗ (DpHD2

xP uk −DH̄) dσk

+

∫
Tn

D2
pH(Duk, x)D2

xP u⊗D2
xP u dσk,

(4.10)

where for notational convenience we write

dσk := σkdx.

4.2.2 Nonresonance. Next, let us assume H̄ is differentiable at P and that V = DH̄(P )
satisfies the weak nonresonance condition

(4.11) V ·m 6= 0 for all m ∈ Zn, m 6= 0.

What does this imply about the limits as k →∞ of σk and uk??

THEOREM 4.3 (Nonresonance and averaging) Suppose (4.11) holds and also

|D2H̄k(P )| ≤ C

for all large k.
Then

(4.12) lim
k→∞

∫
Tn

Φ(DP uk)σk dx =

∫
Tn

Φ dX.

for all continuous, periodic functions Φ = Φ(X).
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INTERPRETATION. As discussed in Section 1, if we could really change to the action-
angle variables X, P according to (1.5) and (1.6), we would obtain the linear dynamics

X(t) = X0 + tV = X0 + tDH̄(P ).

In view of the nonresonance condition (4.11), it follows then that that

(4.13) lim
T→∞

1

T

∫ T

0

Φ(X(t)) dt =

∫
Tn

Φ(X) dX

for all continuous, periodic functions Φ.

Observe next from (4.2) that σk is a solution of the transport equation

(4.14) div(σkDpH(Duk, x)) = 0.

Now a direct calculation shows that if u is a smooth solution of (E), then

σ̂ := det D2
xP u

in fact solves the same transport PDE:

div(σ̂DpH(Du, x)) = 0.

This suggests that maybe we somehow have σk ≈ det D2
xP uk in the asymptotic limit k →∞.

Since ∫
Tn

Φ(DP u)σ̂ dx =

∫
Tn

Φ(X) dX

if the mapping X = DP u(P, x) is one-to-one and onto, we might then hope that something
like (4.12) is valid. �

Idea of proof. Recall (4.14) and note also that

w := e2πim·DP uk

= e2πim·(x+DP vk)

is periodic (even though DP uk = x + DP vk is not). Hence

0 =

∫
Tn

DpH(Duk, x) ·Dxwσk dx

= 2πi

∫
Tn

e2πim·DP uk

m ·DpHD2
xP ukσk dx

= 2πi

∫
Tn

e2πim·DP uk

m ·DH̄k(P )σk dx

+2πi

∫
Tn

e2πim·DP uk

m(DpHDxP uk −DH̄k)σk dx

=: A + B.
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Using formula (4.10), we can estimate

|B| ≤ C(
1

k
|D2H̄k(P )|)1/2 = o(1) as k →∞.

Consequently A → 0. Since
m ·DH̄k(P ) → m · V 6= 0,

we deduce that ∫
Tn

e2πim·DP uk

σk dx → 0.

This proves (4.12) for all finite trigonometric polynomials Φ, and then, by the density of
such trig polynomials, for all continuous Φ. �

5 Some other viewpoints and open questions

This concluding section collects together some comments about other work on, and extend-
ing, weak KAM theory and about possible future progress.

• Geometric properties of the effective Hamiltonian.
Concordel in [C1], [C2] initiated the systematic study of the geometric properties of the

effective Hamiltonian H̄, but many questions are still open.

Consider, say, the basic example H(p, x) = |p|2
2

+ W (x) and ask how the geometric
properties of the periodic potential W influence the geometric properties of H̄, and vice
versa. For example, if we know that H̄ has a “flat spot” at its minimum, what does this
imply about W?

It would be interesting to have some more careful numerical studies here, as for instance
in Gomes-Oberman [G-O].

• Nonresonance.
Given the importance of nonresonance assumptions for the perturbative classical KAM

theory, it is a critically important task to understand consequences of this condition for weak
KAM in the large. Theorem 4.3 is a tiny step towards understanding this fundamental issue.
See also Gomes [G1], [G2] for some more developments.

• Aubry and Mather sets.
See Fathi’s book [F5] for a more detailed discussion of the Mather set (only mentioned

above), the larger Aubry set, and their dynamical systems interpretations. One fundamental
question is just how, and if, Mather sets can act as global replacements for the classical KAM
invariant tori.

• Weak KAM and mass transport.
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Bernard and Buffoni [B-B1], [B-B2], [B-B3] have rigorously worked out some of the
fascinating interconnections between weak KAM theory and optimal mass transport theory
(see Ambrosio [Am] and Villani [V]). Some formal relationships are sketched in my expository
paper [E5].

• Stochastic and quantum analogs.
My paper [E4] discusses the prospects of finding some sort of quantum version of weak

KAM, meaning ideally to understand possible connections with solutions of Schrödinger’s
equation in the semiclassical limit h → 0. This all of course sounds good, but it is currently
quite unclear if any nontrivial such connections really exist.

N. Anantharaman’s interesting paper [An] shows that a natural approximation scheme
(independently proposed in [E4]) gives rise to Mather minimizing measures which addition-
ally extremize an entropy functional.

Gomes in [G3] and Iturriaga and Sanchez-Morgado in [I-SM] have discussed stochastic
versions of weak KAM theory, but here too many key questions are open.

• Nonconvex Hamiltonians.
It is, I think, very significant that the theory [L-P-V] of Lions, Papanicolaou and Varad-

han leads to the existence of solutions to the generalized eikonal equation (E) even if the
Hamiltonian H is nonconvex in the momenta p: all that is really needed is the coercivity
condition that lim|p|→∞ H(p, x) = ∞, uniformly for x ∈ Tn. In this case it remains a major
problem to interpret H̄ in terms of dynamics.

Fathi and Siconolfi [F-S2] have made great progress here, constructing much of the previ-
ously discussed theory under the hypothesis that p 7→ H(p, x) be geometrically quasiconvex,
meaning that for for each real number λ and x ∈ Tn, the sublevel set {p | H(p, x) ≤ λ} is
convex.

The case of Hamiltonians which are coercive, but nonconvex and nonquasiconvex in p, is
completely open.

• Aronsson’s PDE.
I mention in closing one final mystery: does Aronsson’s PDE (4.8) have anything what-

soever to do with the Hamiltonian dynamics? This highly degenerate, highly nonlinear
elliptic equation occurs quite naturally from the variational construction in Section 4, but
to my knowledge has no interpretation in terms of dynamical systems. (See Yu [Y] and
Fathi–Siconolfi [F-S3] for more on this strange PDE.)
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