Recent Developments in Weak Convergence Methods for Nonlinear PDE

Lawrence Craig Evans evans@math.berkeley.edu

July 15 2006

[E] LCE, Weak Convergence Methods for Nonlinear PDE, AMS (1991)

- 1. Weak convergence
- 2. Convexity 3. Quarianiaity
- 4. Concentrated Compactness
- 5. Compensated compactness
- 6. Maximum principle methods

Today:

- 1. Converty methods
- 2. Oscillations out Cancellation
- 3. Concentration

Emphasis is not so much on poweful, new estimates, but rather what to do without such estimates.

I. CONVEXITY METHODS

A. Hidden Convox structures

B. Quasi convexity

C. Convex integration

OSCILLATIONS & CANCELLATION

A. Homogenization

13. Jacobians C. Harby space methods D. Null forms

E. Commutators

III. CONCENTRATION

A. Defect measures

13. Semi classical defect measures C. Microlocal defect measures D. Other concentration phenomena

Today's topics

Major omission - Compensatel compander methods for Conservation laws -See sorong by GQ Ohm [CD, etc

TOPIC I: CONVEXITY METHODS

A. Hidden Convex structures)

· A first example - interacting sandcones

Aronsson [Ar]

ODE for heights:

What is "hillen" convex structure ??

I[u] = { 0 if 17u1 & 1 a.e. 4 System of ODE for cone heights (f-nfegilla) for f = 2 + 16 2 Interesting sand comes = gratical flow in L2

governal by DIFT [A-E-W], Prigoshin [Pr] · Monotonicity and Converity Notation H = (real) Hilbert space Def A: DIA) -> H is monotone $(x-\hat{x}, A[\hat{x}] - A[\hat{x}]) \ge 0$ Yx, x & D(A)

The periodic in v

Qchion of a cone: Ωtion of a cone: ΩT [x] = [T (x(t), x(t)) εt

Original problem: Find y: [0,2) -> 1127

AT [X] = AT EX]

for all T>0 on all \(\frac{3}{2}(1) = \frac{3}{2}(1) = \f

New Section of the Se

(a) = 8(a)

· Cost C [] = { c(x, s(x)) ftex

Original problem: FIRE 5:117 -> Mr

SUL that (CES) & CES)

among all maps that rearmy & that into fidy

Relaxed problem: Fire a nonnegation menone of on illux illu to minimize

CLA) = [" ("C(xia) 9A

subject to

projy8 = f-dy 4 20

This is (an infinite dimension) linear programy problem. Study dual publim, etc.

See [E2], Villani [7]

Application 3: Control of traffic flow

(+ controls on boundary conditions) density

a Graph of F

• Relaxation: $\begin{cases} v_4 + q_x = 0 \\ q \leq F(u) \end{cases}$

G. Gomes + 12. Horovitz, "Optimal freezy ramp metering using asymmetric cell transmission model", to appear.

Mc Cann Emc · Displacement Convexity A non convex minimi sution problem: B= ¿6:115, → 115/650' ("65x=7) E[6] = [Les ex + [les les) V(x-s) exp not Convex Assu VZO, V comex c (xx) = 1x-x12 Mass transfer 5 = optimal transfer plan Em 60+067 6 A = [(1-1)] = (1) (D = + = 1) Theoun the E[e(t)] is

E[] is Convex along this path

Cf: Villani [V], Jordan-Kindenlehar-OHO [J-K-O], Otto [Of], etc

B. Quasianvailty

2 different

· Level set community

Def F: Mm > IT is level set convex

the set 5x/FX) ECT is convex

Level set convexity is called "quasi convexity" in math econ literature

Application

UE [M] = DE (AM) DE (AM) NXIX; =0

"Aronsson's equation"

Barron-Jenson-Wany [B-J-W]:

Boundary value problems for AF are well-posed (=>) F is level set convex

· Morray quasi convexity

Det F: Mmm -> IT is quasi comex in the sense of Money if

FIA) < (F(A+ \psi) dx

AHE WWW, 4 \$ 6 6 (B(0'1))

New examples, counterexamples - Sierak

• If M: M"→ M", its encryy is

I [M] = (E(DW) 9X

DalMaso-Francfint-Toaden [DM-F-T]

Frenm (i) If Ux - u in H4, then

I [N] = liming I [NK]

(ii) If Uk - M or I [in] -> IE)

fr DELDIN -> DELDIN

Interesty new observation

Gulf ANDO / ELDMA)- E(DM (, DE(Drr):] So PTOW: \$ lim PTOWN: IT

Replace I by - I C. Convex integration Diffendial indusing KcMmxn, Uclin 9: U -> Rm

16 BASIC PROBLEM: Find M: U > 112 m such that TUEK a.e. in U NEW BIN Many PDE can be put into this form? Methol of Convex integration (Gromon, (1) Built approxime solutions uk (ii) Show Mr + M strongly in Will (Que > Que ac.) { Vye G ac. In U

Approximation: Given G > K on 2 & solvey (UE on DO) modify y to boild un solithing

Principle: " Contalled La convergence of Juk"

Kinchheim [Kr] lectur notes, Zhang [ZZ]

Chr.

Bot

Vul -> Vu ac.

·e

Mine- all to swall compared to Duk

Theorem Suppose & is piecevia affine, Toge Gae. in U.

Then I is such that GRK

JUNEK a.e. in U

I = g m > U

Proof We will brill like as above, with Like > Le strongly in W'll

of Like :

Given Like, brill Like :

Opply Approximation hypothesis on Ti. 29 UKH = UL + dik mTi, when \$i is piecewise office, # 1 5:1+ (Dun+Dir, K) = 2 Fort Cherk ILL-> 11 Uniformy

The ye = { 12 on vertices of The affine inside The MMr - Arll To (Li) is emall => 11 Dir Dir Dir (Lin) is small, Non Tyle & Tu

20
Applications (deep): Miller-Sverak Em-st Than exists Lipschitz in solvy
Then exists Lipschitz u solum
7. (7F(7=1) =0),
F strictly goasicmex
but u & C2(V) for any opin setV.
COUNTEREXAMPLE TO PARTIAL
REGULARITY for critical points
COUNTEREXAMPLE TO PARTIAL REGULARITY for critical points (bad) J. I.J.
· Baire category methods
Dacorogni-Marcellini [D-MI]
Take a second and the
Wogol buggin
SF(Tw) = 0 are. inv
5 m 50 m 50

Assu: Fis Churx, lim F(P) =00, 9= ax, F(a) <0 affine boundary nother stilling Lipschitz solution Brook X= Ene Coil n=2 m 30 F(Vw) EO a.e.] with sup-nown togology. Nr:= 2005/ (LL(20)9x>-73 Claim#4 Vuis open Prod let uje I-Ve, uj -> u unifuly Du; =1 Dr FIRM) = liminf (F(Vui) = 1

	-
	23
-	_ ~
	-

So WE X-VK.	2
Claim# 2 Vu is dence	(Sec [D-M1])
Since I is Complete me	dricspur,

The book [D-M] has many other

· See references for recont work on gradint flow Lager Jen

Topic II: OSCILLATIONS AND CANCELLATION

A. Homogenization

Nguetsung [Ng], Allain [A], Tartur

Def A segune [(E; ? two-scale converges to u=u(x,y) if

= lolus, = lolus, = lolus, jim o los, (x) \$ (x'x') 9x

He write re; 37 m

34

or If Eners's bounded in Lz, I and subsymmetry (neis) that 2-scale conveyer

E most in Hi working of the Line (IMIL) the CO 12 (O) Subthat

マルところいナマダで

Application: standal homogenisadion

- (a; (x) n; x; x; = f Perx Miles Multiply by (p(x) + e b (x, x) xox de x Miles Andrew Miles (dx; + dy; + e dx;) dx

= [f (p + e &) qx

let 2 = C; ->0

35

() ((dex; + ve;) (dex; + ve;) dedy = () & de

This holls 4 \$ \$

- · (ai; 18) (ux; + uy;) 4; =0
- · ([= ay (y) (ux+ uy;) dy) ky = f

Solve these to get usual formulas, etc.

- See Allain [A] for homogenization of I∈ [v] = ∫ F(∇v, ∠) ex
- Sec Cioranescu Dambuniam et al [C-D-G][C-D-DA] for Periodic unfoldy method.

- 9		
7	1	
-		•
	ಾ	×

•	Large	oscillations

Cap Echosog [Cp], Allaire - Caybebosog - Pratnitshi - Siers-Vaninathan [A-C-P-S-V]

(*) { - = 2 Due + V(*) ue = 20 ue + e2 f

Ergunvalor prolum:

$$\phi \in (x) = \phi(x) + \phi(x) = \lambda_0 \phi$$
 in The $\phi = \phi(x) + \phi(x) = \phi(x) =$

- 2- 1 pc+1 (x) pe= x0pc

Try LC(x) = \(\frac{1}{2} \) vc(x)

Open quertin: folly nonlinear versions?
Stochastic homogenization - many introday
aprilime quertine quertine?
What to the effective equetions "mean"?

13. Jacobians

Key identities:

· AT cof A = (det A) I

· 9:11 (cot 1 1) = 0

Use these to undertul

effects of oscillation | concellation

Reference: book by Iwaniec & Martin [I-M2]

· Mappings with gradients in SO(n)

AAT = I, det A = 1

Reshetnyak's Thm Suppose u: M->118,

Tue SO(M). Thun

u(x) = Ax+a

Groot (DM)_ cot DM = (get DN) I = I 30 1001 DN=I Vu = cof Vu .. 0 = 9:11 (cot 12) = 9:1 (2") = 97 V ((d~15-~) = 30 ~ · D Vr + 3105 ~ 15 Sas 1 Dr. 1 = fr (Dr. Dr.) = N (1D2 M1 5 30) U. Plate theories (= [- limit of 3-D elasticity models) Friesecke-James-Müller [F- 2-M]

Key estimate:

11 Dr - 1511 5 5 C11 51st (Dr, 50(n))(1)

For som RE SO(n)

C. Hardy Space methods

Reforme: Stein's book [St], Chyphre 3 \$4

· Definitions, theory

Let & ∈ Co (B(0,11), \ \$ \$ x = 1

· 3x (2) = 206 1 & 2(2) \$ (2-x) 70/

· Il gll all = Ilg*Il Li
Hardy space

(944) # = BMO (C. Feffunni)
OH 1 is a "replaced" for L1
BMO - 11 - La

· Div - corl methods

Coiffran - Lims-Meyon-Semmes [C-L-M-S]

Them Suppose a E LZ, WE HE

V. a = 0.

you a. DME Sty

Obviously & L1

Proof: pr= p(x=x) (average

(B(x10) pred =- (M-(M)x1) 2. Dop

33 20 1 to or. Am de gal & Continuentia < c (t 1201254) (t) < c [m(1944) + m(1914) 24]

maximi function) Application 1 : Wente's Lemma \[
 \frac{\frac{1}{2}}{\frac{1}{2}} \\
 \frac{\frac{1}{2}}{\frac{1}{2}} \\
 \frac{\frac{1}{2}}{\frac{1}{2}} \\
 \frac{1}{2} \\
 \f (N=2) unu = c (u+11 +11911) 8x9y-ty9x = Q. VW E- W - f, a = (97, -9x) V. a = 0

fx9y-ty9x € 91. ₫ = logr & BMO > u = [* (fx9y-fy9x) € La Application : Harmonic maps into spheres 2- DM = 12M2 M $(n \ge a)$ WE HA Themm (104124 E A) Prod INIZER -> Wing = 0 (Vule ui = with with wi = hix (hix hi - hi hix) = wix ak _

(a = (Du' w' - Du' w') = - 10012 (0,0, -0,0) =0 Conseques: (NED) pontial regularly for stating [ES], Methon [Be], Helein's book [H] (n23) biharmanic maps Chang-Wany-Yang [C-W-Y] * Riviere [Ru), Nivin - Straw [RV-5]: 77 = V: 47 anti-symmetic

+ gauge transformations

Delicory 3: Navier-Stoker edorum

See PL Lions' books on floid mechanics,

DP & L1 (0,T, 949)

Prod

- DP = ux; hx; e H1

Appliating: Geometre produme (n=2)

Svenk-Müller [M-52]

Stradecki [Sa]

Du = = H(W)(WXXW)

36

More " Liv- corl" methods:

Bourgain-Brezis [B-B] [B-B]
Van Schaftingen [VS] 7.9=0

 $\begin{cases} \Delta \cdot \vec{x} = 0 \\ \Delta \times \vec{y} = \vec{z} \end{cases} = \vec{v} / (4 \times \vec{\xi})$

(v=3) 113/1 = C 11/1/1

■ Nonnegative Vorticity Delort [DR] E-Müller [E-M], Semmer [5]

Them LEHI, WED (N=2)
- Du= W

the uxuy, ux-uz equs

Interpretation w = vorticity y = \(\nabla u^{-} = \text{velocity} \)

1,15, [1,15- (15)5 F SAT

DiPerm- Mijen rework 2-D Even equations in terms of V'V2, M')2-(V2)2

New paper by Tom Hon - Deland

D. Noll forms

Klainumm, Klainumm-Machedm [K-M] Shatah- Strum [S-5], Sogge [Sg]

[= wff - Dn = O(Dn' 2n)

graduatic in Tu,

Tools: Klaimm-Solders, Fourier analysis

· Passing to work limit Wave maps into spheres:

Weak Convergence: Vie - Vin in L2

Pass to weak limits:

· Estimates for null forms

Vectorfield:
Notations
$$\begin{cases}
R_{jk} = x; \frac{1}{2} - x_{ik} \frac{1}{2}x_{jk} \\
R_{j} = x; \frac{1}{2} + t \frac{1}{2}x_{jk}
\end{cases}$$
dilation
$$S = t \frac{1}{2} + x_{k} \frac{1}{2}x_{jk}$$

Conjourn
$$\begin{cases} K_{s}^{2} = (1x_{1s} - f_{s}) \frac{3x_{s}}{3} - 3x_{s} \\ K_{0} = (1x_{1s} - f_{s}) \frac{3x_{s}}{3} - 3x_{s} \\ K_{0} = \frac{3x_{s}}{3} - 3x_{s} \end{cases}$$

 $Q[u,v) = u_{x}v_{y} - \nabla_{x}u \cdot \nabla_{x}v$ $Q_{ke}(u,v) = u_{xk}v_{xe} - u_{xe}v_{xk}$ T = 0 T = 0 U(u,v) = 0 V(u,v) = 0 V(u,v) = 0

[[,Q](u,v) = [Q(u,v) - Q(u, rv) - Q(u, rv)

Study:

[S, Q = -2 Q [S, Q w] = 0 [Ru, Q ij = 0

Soc references for more details ...

Appliatons: Low rell possess of

I is = Q

For less regular hill data,

E. Commutaturs

- · Busic idea

- Gim a fundam of
- Look at

" concel" part of singulary of

Coifman, Coifman-Mayor [C-M]

Application: PL Line [LZ, Vol 2. impressible Navier-Stokes equation 6+40.(67)=0 (6 m)+ 4.(6 m@m) - h pr - 54(1.17)+ A 6x =0 Seyvere of soline Let (ek, uk) be a OSFEL GRITINIS+16K) gx + Por IDMRIS Fret &C 116 Po (12,×104) (3>8)

Weak limits:

- 2 c in L²⁰ (0,7, L³)

- 2 c in L² (0,7, H¹)

- 2 c in L² (0,7, H¹)

- 2 c in L² (0,7, H¹)

GRMR-JN

ا ولا لدلان لدلن ع د ن

one (6 1/2 - 1 b

Them (i) V = rV, V = eV, $e_i = ev_i v_i$ $e_i = ev_i v_i$

P = 68

Main idens of proof:

Outen Lemma Let gle - glin Lot Lox

Combos in (i) 5 gles is bould in La (o,T, Ward)

Combos in cas Myk (i) - he (i+a,+) H of los as a para

Than gleshe - gh in and

· Use Lemma to proc (1):

(6 m) + 4. (6 mon) - ~ yn

Key greeken (Is P= 6x ?)

Rull P = word limit of (60)

· Use Ommitted or smoothing effect to

more

· Obser that

$$\pi \ge pe$$
 $\overline{s} \ge s$

So of 1 ≥ -2 5× ≤0

lahon 5=5 if 5°=5?

Then ex-se strongly

46

Topic III: CONCENTRATION

A. Defect mensons

· Definitions

Suppose We - u worldy in L2

Definden (2) VK(E) := [[K/r-1] dx

iii) If (V — IV) as measure, we call v a defect measure for the walk Convergence we — u

Facts o N=0 (=> We-> u should in L2

· (nrlsqx -> (nlsqx +>)

Pront (Ink-n1 dx = ((nk) 2 - 2 nk n So lim l [rols fx = [rols fx + lim [rolling と同 П Applications to PDE: Study propolices
of when he solve contain PDE Time-depute public : Derive an evolution equation for ~ Or different inequality. (Exmple: 24/ 3-52x) 20) Static problems : Derive an equation (or variable) principle) for a

EXPMPLE Stationy harmonic maps M: U -> N C 172m Station targuit M(x)
o is worth humain it Die I I'm we Ha taught spee
(2.7 12" 15- = px 1x 1x 1x 9x 50
Then Let Uk be stating, Uk-1 is in His
(c) (Dr. p. q. 4. 2. p. 12015- 3 px bxx. n/k

Z' is countably, (n-2) redifich VKC HMZL E Housdorff menne If u is stationy, then () give \$ 9~ =0 See also Lin- Wang [L-W], Li-Tian [レーナン,とせし. on stationy measure. ** B. Semiclarial defeat measure to study concentrations / oscillations with & known small length scale

Notahm < = (1+14/2)62 50= { a (x, 2) | (0x 02 a) = Cxp < 27 -101} Det The Weyl quantization of a is the operator an (x, cD) = 1 [244 [a(x+1)] e aw: L2 -> L2 is bombel The Wigner transform of a is the

Idulity:

[mal maching a skry = [in all x, cd) use

[mal maching a skry = [in all x, cd) use

E' This thund is La St more of a more of the color of the colors

ا سون مالاد: کارد: کیر اس

-> [mu [mu a] h

for all symbols ac 50

We call in a semiclassial defut mensue (or Wigum mensus)

Lims-Paul [L-P], Geral-Markonich - Mausu-Poupaul [G-M-M-P] E-Zucki [E-Z], etc Gods Suppor us solver a linear PDE involing a lunour smill scale cro. in localization and transport bounder of h: · If Ilawly & DINCH, 2= Ola), Unell, 2=1 SYTH = FazoT If Ilaw (4 cD) well, 2 = o(e), Pinzn 20123 gm = 0 En all be Co 50,67= Jxa. 746-744. Vxb See espeally payor by P. Gerant

C. Microboal defeat me	mr. 23
(aka" H-1	mensou")
L. Tarton, P. Geranz	(← sufermen)
to stry concentrations when we do not have some some	r orcillation a lenoum
2002 review paper by G. Fro	uncfut [Fi]
Notation 5 = 5 a & SI Symbols homogenes A degree o.	alx 23) = alx 3) }
Them Sym LC-10:	A STATE OF THE STA

Thom Supper C-10 in L2. Han

BC; -30 and a measure reo on

Cx Sind such that

Cx x Sind such

Goals: Shu loulization at transpot papulous of p - See references ... D. Other Concentration phenomer Solitan dynamics Bronski - Jerral Schrödym eyalm o cheriul Lims-DiPana C. Critical numbinor ware equita Grillakir, Shutah- Strum

anyon " the bayour

E. Landan-Gineburg problems

- Static problems
Brezis-Helein book

E-Som-Sougaidis
Tethur-Orland: - Smets
Jerral-Sona

PLEASE TELL ME ABOUT OTHER INTERESTING WORK