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He began then, bewilderingly, to talk about something called entropy . . . She did gather
that there were two distinct kinds of this entropy. One having to do with heat engines, the
other with communication. . . “Entropy is a figure of speech then”. . . “a metaphor”.

–T. Pynchon, The Crying of Lot 49

1. INTRODUCTION.

These notes provide for PDE theory a survey of various “entropy methods”, by which I
mean quantitative and qualitative techniques for understanding irreversibility and dissipation
phenomena.

Motivation, ODE examples. I will start slowly, and so introduce the main issues with
two simple ODE:

ẋ = −DΦ(x) (t > 0)(1)

and

ẋ = JDΦ(x) (t > 0).(2)

Here Φ : Rn → R is a given nonnegative potential function and DΦ denotes the gradient of
Φ, DΦ = (Φx1 , . . . , Φxn). In (2), J denotes some linear operator on Rn satisfying

(Jx) · x = 0 (x ∈ Rn);

think of J as a rotation through a right angle. Hamiltonian systems in particular have the
form (2).
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We are interested in computing for both dynamics (1) and (2) how Φ(x(t)) evolves in
time. We may calculate for (1)

d

dt
Φ(x) = DΦ(x) · ẋ = −|DΦ(x)|2;(3)

and for (2),

d

dt
Φ(x) = DΦ(x) · ẋ = DΦ(x) · (JDΦ(x)) = 0.(4)

So for the evolution (2) the dynamics remain on the level surface {Φ = Φ(x(0))}; whereas
for (1), the mapping t �→ Φ(x(0)) is nonincreasing. For both cases, we therefore have the
simple bound

max
0≤t<∞

Φ(x(t)) = Φ(x(0)).

But for problem (1) we have more, since integrating (3) provides us with the additional
estimate ∫ ∞

0

|DΦ(x(t))|2 dt ≤ Φ(x(0)).(5)

We interpret the term on the left as recording the total “dissipation” or “irreversibility” of
the ODE (1) on the time interval [0,∞). No similar bound is available for the “conservative”
dynamics (2).

So here is a sort-of paradox. Geometrically, we may regard the evolution (2) as simpler
than (1), since the latter moves somehow within the full region {Φ ≤ Φ(x(0))}, and not
just on the shell {Φ = Φ(x(0))}. But the dynamics (1) are far better analytically, since the
dissipation estimate (5) holds.

PDE examples. This advantage is more clearly seen in a few (much harder) PDE, which
are in a sense generalizations of (1).

Navier-Stokes equations. Let u = (u1, u2, u3) denote the velocity field and p the
pressure in a three–dimensional flow of an incompressible, viscous fluid. These read{

ui
t + ujui

xj
= ν∆ui − pxi

(i = 1, 2, 3)

ui
xi

= 0.
(6)

(In this and subsequent formulas, repeated indices are to be summed.) The constant ν > 0
is the inverse of the Reynolds number. Somewhat as in (3), we can calculate

d

dt

(∫
R3

|u|2
2

dx

)
= −ν

∫
R3

|Du|2 dx,
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the term within the parentheses denoting the kinetic energy. The integrated form of this
calculation provides the bound∫ ∞

0

∫
R3

|Du|2 dxdt ≤ 1

2ν

∫
R3

|u0|2 dx;(7)

and the expression on the left is very useful, since it controls the gradient Du of the velocity
field. In the right hands, those of Scheffer [S], Caffarelli–Kohn–Nirenberg [C-K-N], Lin [Li]
and others, this is the key to extremely deep and subtle partial regularity assertions for
appropriate weak solutions of the Navier–Stokes equations (6). The Euler equations for
inviscid, incompressible flow, had by setting ν = 0 above, are much harder analytically since
the dissipation estimate (7) is not available. ✷

Mean curvature flow. A geometric problem illustrating the same heuristics is the flow
of hypersurfaces by mean curvature. Consider a family of smooth surfaces {Γt}t≥0 evolving
in Rn according to the law of motion that

V = H,

where V denotes the normal velocity to the surfaces and H is the mean curvature vector.
Then

d

dt

(
Hn−1(Γt)

)
= −

∫
Γt

V ·H dHn−1 = −
∫

Γt

H2 dHn−1(8)

and H denotes n − 1 times the mean curvature, Hn−1 means n − 1 dimensional surface
measure. The analogue of (5) is then∫ ∞

0

∫
Γt

H2 dHn−1dt ≤ Hn−1(Γ0).(9)

This geometric “dissipation” estimate, providing an L2 bound on the mean curvature of the
evolving surface, lies at the heart of Brakke’s magnificent work [B] on the structure and
partial regularity of generalized solutions to mean curvature motion flow. See Ecker’s new
book [Ec] for more. ✷

First–order PDE. In fact, the dissipation effects I have been discussing are so strong
that “even when they are not there” they still control the solutions of certain nonlinear
first–order PDE. What I mean by this odd pronouncement is that the limits of solutions
to approximating equations with small dissipation are usually profoundly affected as the
dissipation rate goes to zero. This means in practice that for “weak solutions” of the first–
order PDE so constructed certain types of singularities can be ruled out as nonadmissible.
The examples discussed below in sections 6–10 will illustrate more precisely what I mean.
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Overview. My rationale for these notes is that the foregoing calculations suggest the pos-
sibility of some kind of a unified analytic approach to various nonlinear PDE displaying
irreversibilty. I have made a really quite idiosyncratic and eclectic selection of the illus-
trative topics below. I will argue that the procedures above can, heuristically at least, be
profitably understood as “entropy” methods, and in particular that dissipation inequalities
of the type (5), (7), (9), etc. are variants of the Second Law of thermodynamics and in
particular the classical Clausius inequality. I will therefore regard “entropy” sometimes as a
physical quantity, but more often as a metaphor.

This paper is a much belated revision of notes I provided for the Colloquium Lectures
I gave at the Joint Mathematics Meetings in San Diego, January, 2002. Readers interested
in details missing here can download from my website at the UC Berkeley Mathematics
Department lecture notes for a semester course I taught on some of this material.

2. REVIEW OF CLASSICAL THERMODYNAMICS (Callen [C], Wightman [W],
Dittman–Zemansky [D-Z]).

This section provides a rushed overview of thermodynamics, primarily the axiomatic
development. I intend both to sketch in background for subsequent PDE discussions and
also to advertise some fascinating mathematical issues.

2.1 A model for a thermal system in equilibrium.

Notation: (X0, X1, . . . , Xm) ∈ Σ ⊂ Rm+1, E = X0. Σ is the state space and E is the
internal energy.

Assume we are given S : Σ→ R such that

S is concave,
∂S

∂E
> 0, and S is positively homogeneous of degree 1.(10)

We call S the entropy of our system: S = S(E, X1, . . . , Xm). Now solve for E = E(S, X1, . . . , Xm)
and define {

T = ∂E
∂S

= temperature

Pk = − ∂E
∂Xk

= kth generalized force (or pressure).

Then
∂S

∂E
=

1

T
,

∂S

∂Xk

=
Pk

T
(k = 1, . . . , m).

2.2 Thermodynamic potentials.
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A. Legendre transform. Assume that H : Rn → (−∞, +∞] is a convex, lower semi-
continuous function, which is proper (i.e. ≡ +∞). The Legendre transform of L is

L(q) := sup
p∈Rn

(p · q −H(p)).(11)

We write L = H∗. Then L is likewise convex, lower semicontinuous and proper, and L∗ = H.
If H is also C2 and strictly convex, then L(q) = p · q −H(p), for the unique point p = p(q)
solving q = DH(p).

B. Definitions. We hereafter write E = E(S, V, X2, . . . , Xm) = E(S, V ).
The Helmholtz free energy F is

F (T, V ) = inf
S

(E(S, V )− TS).

The enthalpy H is
H(S, P ) = inf

V
(E(S, V ) + PV ).

The Gibbs potential is

G(T, P ) = inf
S,V

(E(S, V ) + PV − ST ).

These definitions are variants of the standard Legendre transform for convex functions. We
call E, F, G, H thermodynamic potentials.

C. Formulas for partial derivatives:

∂E

∂S
= T,

∂E

∂V
= −P,

∂F

∂T
= −S,

∂F

∂V
= −P,

∂G

∂T
= −S,

∂G

∂P
= V

∂H

∂S
= T,

∂H

∂P
= V.

(12)

D. Capacities.

CP = T

(
∂S

∂T

)
P

= heat capacity at constant pressure

CV = T

(
∂S

∂T

)
V

= heat capacity at constant volume
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ΛV = T

(
∂S

∂V

)
T

= latent heat with respect to volume

2.3 Thermodynamic processes (Owen [O], Bharatha–Truesdell [B-T]).

The next sections are to publicize some mathematical models within which we can for-
mulate forms of the First and Second Laws of Thermodynamics, and deduce as consequences
the existence of the energy E and entropy S.

A. A model for a homogeneous fluid body without dissipation. We are given
functions P = P (T, V ), ΛV = ΛV (T, V ) and CV = CV (T, V ), satisfying

∂P

∂V
< 0, ΛV = 0, CV > 0.

Let Γ = {(T (t), V (t)) | a ≤ t ≤ b} be a path, connecting the state A = (T (a), V (a)) to the
state B = (T (b), V (b)). Call Γ a cycle if A = B. Let us also write

W(Γ) :=

∫
Γ

PdV = work done by the fluid

and

Q(Γ) :=

∫
Γ

CV dT + ΛV dV = heat gained by the fluid.

We hypothesize:

First Law of Thermodynamics: For every cycle Γ, we have W(Γ) = Q(Γ).

As is shown in the cited references, from this axiom follows the existence of an internal
energy function:

Theorem 1 There exists a function E = E(T, V ) such that

∂E

∂V
= ΛV − P,

∂E

∂T
= CV .

We next define a Carnot cycle Γ to be a cycle as drawn, consisting of two adiabatic paths
Γb, Γd (along which there is no heating) and two isothermal paths Γa, Γc.
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T

V

T1 T2 

Γa 

Γd 

Γc 

Γb 

Define Q+(Γ) to be the heat gained along the isothermal path Γa, at the higher temper-
ature T2.

Second Law of Thermodynamics: For each Carnot heat engine Γ as above, we have

0 <W(Γ) =

(
1− T1

T2

)
Q+(Γ).(13)

The references explain how formula (13) in fact “follows physically” from this more
familiar statement that “there is no thermodynamic process the sole result of which is that
heat is transmitted from a body to a hotter body”. A consequence is the existence of an
entropy function:

Theorem 2 There exists a function S : Σ→ R such that

∂S

∂V
=

ΛV

T
,

∂S

∂T
=

CV

T
.

Please see the cited references Owen [O] and Bharatha–Truesdell [B-T] for full discussions
of these and related mathematical models.

B. A model with dissipation. The previous model is elegant mathematically, but
does not admit the notion of “irreversibility”. Following Serrin [S1], let us now redefine

W(Γ) =

∫ b

a

P (T, V )V̇ + R1(T, V, Ṫ , V̇ ) dt

and

Q(Γ) =

∫ b

a

CV (T, V )Ṫ + ΛV (T, V )V̇ + R2(T, V, Ṫ , V̇ ) dt.
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Here R1, R2 are new dissipation terms, which are assumed to be quadratic in Ṫ , V̇ . The
First and Second Laws imply the existence of E and S, as before, since our new model
approximates a dissipationless model if we reparameterize on slower and slower time scales.
Thus also R1 ≡ R2.

Finally, we assume R1(T, V, Ṫ , V̇ ) = R2(T, V, Ṫ , V̇ ) ≤ 0. Then for any cyclic process Γ,
we can define

Q(T, V, Ṫ , V̇ ) := CV (T, V )Ṫ + ΛV (T, V )V̇ + R2(T, V, Ṫ , V̇ )

and compute∫ b

0

Q(T, V, Ṫ , V̇ )

T
dt =

∫ b

a

d

dt
S(T, V ) dt +

∫ b

a

R2(T, V, Ṫ , V̇ )

T
dt ≤ 0.

We introduce new notation and rewrite:∫
Γ

d−Q

T
≤ 0 (Γ a cyclic process).(14)

This is a form of Clausius’ inequality. If we take a process connecting a state A to a state
B, we similarly deduce∫

Γ

d−Q

T
≤ S(B)− S(A) (Γ a process from A to B).

One of our goals in these notes is identifying for various PDE dissipation inequalities that
can be seen as variants of Clausius’ inequality.

See also Day–Šilhavý [D-S], Serrin [S1], [S2], Coleman–Owen–Serrin [C-O-S] and Feinberg–
Lavine [F-L] for general derivations based upon different mathematical interpretations of the
Second Law. A novel approach has been introduced by Lieb and Yngvason [L-Y].

The December, 1999 theme issue of the American Journal of Physics on thermal and
statistical physics [AJP] is filled with interesting articles, accessible to mathematicians.

3. CONTINUUM THERMODYNAMICS (Coleman–Noll [C-N], Ericksen [Er], Gurtin–
Williams [G-W])

The foregoing models do not admit any spatial dependence in the relevant variables.
Since the intention is later to discuss dissipation effects in partial differential equations,
we must introduce dependence of physical variables upon position x and time t. Mostly
following Coleman–Noll [C-N], we hypothesize a local form of the Clausius’ inequality, and
this combined with basic physical conservation laws and constitutive rules lets us deduce
certain local forms of the thermodynamic principles mentioned in §2. As before, to save
space we leave out all the interesting details of the derivations.
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3.1 Physical principles.

• Physical quantities:

e(x, t) = internal energy/unit mass, v(x, t) = velocity, b(x, t) = body force/unit mass

ρ(x, t) = mass density, q(x, t) = heat flux vector, s(x, t) = entropy/unit mass

r(x, t) = heat supply/unit mass, θ(x, t) = local temperature, T(x, t) = stress tensor.

• Basic physical laws:

∂ρ

∂t
+ div(ρv) = 0 (conservation of mass).

ρ
Dv

Dt
= ρb + div T (balance of momentum).

ρ
De

Dt
= ρr − div q + T : Dv (energy balance).

ρ
Ds

Dt
≥ rρ

θ
− div

(q

θ

)
(Clausius–Duhem inequality).(15)

In these formulas, D is the gradient ( ∂
∂x1

, . . . , ∂
∂xn

), and Df
Dt

= ∂f
∂t

+ v · Df is the material
derivative. The local production of entropy per unit mass is

γ :=
Ds

Dt
− r

θ
+

1

ρ
div

(q

θ

)
≥ 0.

3.2 Constitutive relations. A particular material is defined by adding to the foregoing
additional constitutive relations.

•Example: fluids (Coleman–Noll [C-N]). We introduce the specific volume v = 1
ρ
, and

call our body a perfect fluid with heat conduction if there exist four functions ê, θ̂, T̂ , q̂ such
that {

e = ê(s, v), θ = θ̂(s, v)

T = T̂(s, v), q = q̂(s, v, Dθ).

After various substitutions using the physical laws above, we can derive the inequality

0 ≤ ρ

(
θ̂ − ∂ê

∂s

)
Ds

Dt
+

(
T̂ − ∂ê

∂v
I

)
: Dv − 1

θ
q̂ ·Dθ.

This inequality must hold for all admissible thermodynamic processes. Taking various choices
and dropping the circumflex in our notation, we can conclude

∂e

∂s
= θ (temperature formula),(16)
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T = −pI, for
∂e

∂v
= −p (pressure formula),(17)

q(s, v, p) · p ≤ 0 (heat conduction inequality).(18)

See Coleman–Noll [C-N] for the specifics of all this. Also, compare (16) and (17) with (12).

•Example: heat conduction in a rigid body (Gurtin [Gu]). Now assume v ≡ 0, b ≡
0, ρ ≡ 1. We introduce the constitutive relations

e = ê(θ, Dθ), s = ŝ(θ, Dθ), q = q̂(θ, Dθ).

It turns out then that e = e(θ), s = s(θ). We derive from this the general heat conduction
equation

cv(θ)
∂θ

∂t
+ div(q(θ, Dθ)) = r.(19)

The heat capacity/unit mass is cv(θ) := e′(θ), and if r ≡ 0, local entropy production is

γ =
−q(θ, Dθ) ·Dθ

θ2
.

Our first model in §2.3 corresponds to dissipationless work, and this model entails workless
dissipation.

Remark. The heat conduction inequality (18) holds here as well. It is however dis-
turbing that the Clausius-Duhem inequality (15) apparently does not imply the stronger
monotonicity condition

(q(θ, p1)− q(θ, p2)) · (p1 − p2) ≤ 0(20)

for all p1, p2. Condition (20) would say that the PDE (19) is parabolic and thus well–posed
forward in time.

4. THE HEAT EQUATION

Turning at last to PDE theory proper, we first examine the implications of the foregoing
for the linear heat equation.

4.1 Entropy increase. A special case of (19) is the nonhomogeneous heat equation

ut −∆u = f in U × [0,∞)(21)
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where ∆u :=
∑n

i=1 uxixi
is the Laplacian of u, U is a bounded, smooth region, and ∂u

∂ν
= 0

on ∂U . We think of (21) as a heat conduction PDE, with


u = temperature, u > 0

q = −Du = heat flux,

f = heat supply/unit mass, f ≥ 0,

and the heat capacity is cv ≡ 1. Also, up to additive constants, we have


u = internal energy/unit mass

log u = entropy/unit mass.
|Du|2

u2 = γ = local production of entropy.

Define

S(t) :=

∫
U

log u(x, t) dx = entropy at time t,

F (t) :=

∫
U

f(x, t)

u(x, t)
dx = entropy supply,

G(t) :=

∫
U

γ(x, t) dx = rate of internal entropy generation.

A simple calculation establishes

Theorem 3 Assume u solves (21). Then

dS

dt
= F + G ≥ 0.(22)

This is a statement of entropy increase, the sort of thermodynamic–like assertion we are
looking for. But this is really not so impressive, since in fact

t �→
∫

U

Φ(u(x, t)) dx

is nonincreasing, if Φ is any smooth function satisfying Φ′ ≤ 0, Φ′′ ≥ 0:

d

dt

∫
U

Φ(u) dx =

∫
U

Φ′(u)ut dx =

∫
U

Φ′(u)(∆u + f) dx ≤ −
∫

U

Φ′′(u)|Du|2 dx ≤ 0.

4.2 A differential form of Harnack’s inequality. (Li-Yau [L-Y]) Is there really
anything special about the particular choice of Φ(u) = − log u? Let us again consider
positive solutions u of the heat equation, for f ≡ 0. We further assume U is convex.

11



Theorem 4 (i) We have

ut

u
+

n

2t
≥ |Du|2

u2
.(23)

(ii) Furthermore, for each x1, x2 ∈ Ū and 0 < t1 < t2, this estimate holds:

u(x1, t1) ≤
(

t2
t1

)n/2

e
|x2−x1|2
4(t2−t1) u(x2, t2).(24)

Note that we can rewrite (23) as the pointwise thermodynamic bound

st +
n

2t
≥ γ.

The estimate (24) is a form of Harnack’s inequality for the heat equation.

Idea of proof. 1. Write v = log u; so that the heat equation transforms into

vt −∆v = |Dv|2.(25)

Set w = ∆v and w̃ := tw + n
2
. Then an estimate exploiting the good term on the right hand

side of (25) shows that

w̃t −∆w̃ − 2Dv ·Dw̃ ≥ −1

t
w̃.

It turns out that furthermore ∂w̃
∂ν
≥ 0 on ∂U × [0,∞). The maximum principle therefore

implies

w̃ = tw +
n

2
≥ 0.

But w = ∆v = vt − |Dv|2 = ut

u
− |Du|2

u2 , and estimate (23) follows.

2. We may further compute

v(x2, t2)− v(x1, t1) =
∫ 1

0
Dv · (x2 − x1) + vt(t2 − t1) ds

≥
∫ 1

0
−|Dv| |x2 − x1|+

(
|Dv|2 − n

2(st2+(1−s)t1)

)
(t2 − t1) ds

≥ −n
2

log
(

t2
t1

)
− |x2−x1|2

4(t2−t1)
.

Exponentiate. ✷

4.3 Clausius’ inequality for the heat equation. Day’s very interesting book [D] is
filled with assertions for the heat equation that have close analogies in thermodynamics. We
present next a sample such calculation.
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We hereafter assume u > 0 is a smooth solution of the heat equation, with

u(·, t) = τ(t) on ∂U,

where τ is a given nonnegative function. Let us assume that τ is T -periodic: τ(t+T ) = τ(t)
for all t ≥ 0, and call a T -periodic solution u a cycle.

Theorem 5 Corresponding to each smooth T -periodic function τ as above, there exists a
unique cycle u.

Idea of proof. Given a smooth function g, we denote by u the unique smooth solution of


ut −∆u = 0 in U × (0, T ]

u = τ on ∂U × [0, T ]

u = g on U × {t = 0}.

The mapping g �→ u(·, T ) extends to a strict contraction on L2, and so has a unique fixed
point. ✷

Let u be the unique cycle corresponding to τ and define

Q(t) :=

∫
∂U

∂u

∂ν
dS,

the total heat flux into U from its exterior, at time t ≥ 0.

Theorem 6 We have ∫ T

0

Q

τ
dt ≤ 0,(26)

with strict inequality unless τ is constant.

This of course is a version of Clausius’ inequality (14).

Idea of proof. Write v = log u; so that as before vt −∆v = |Dv|2 = γ ≥ 0. Then

d

dt

(∫
U

v dx

)
=

∫
∂U

∂v

∂ν
dS +

∫
U

γ dx ≥
∫

∂U

1

u

∂u

∂ν
dS =

Q(t)

τ(t)
,

since u(·, t) = τ(t) on ∂U . Since v is periodic in time, we deduce (26) upon integrating.
✷
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5. SOME PHYSICAL PARTIAL DIFFERENTIAL EQUATIONS.

For later reference, we recount the structure of several important nonlinear PDE in
continuum physics.

5.1 Compressible Euler equations. These are the PDE for inviscid, isentropic fluid
flow: {

Dρ
Dt

+ ρ div v = 0

ρDv
Dt

= −Dp.

We can rewrite these in conservation form{
ρt + div(ρv) = 0

(ρv)t + div(ρv ⊗ v + pI) = 0,
(27)

where v ⊗ v = ((vivj)) and p = p(ρ).

5.2 Boltzmann’s equation. Boltzmann’s equation is the integro/differential equation

ft + v ·Dxf = Q(f, f)

for a certain quadratic collision operator Q. This term models the rate of collisions which
start with velocity pairs v, v∗ and result in velocity pairs v′, v′∗. The unknown is f = f(x, v, t),
the density of the number of particles at time t and position x, with velocity v.

Assume f > 0 is a smooth solution, and define Boltzmann’s H-function

H(t) :=

∫
R3

∫
R3

f log f dvdx.

Then

dH

dt
≤ 0.(28)

A physical argument suggests the interpretation

S = −kH,

where k is Boltzmann’s constant. So (28) is another variant of Clausius’ inequality. A
function f = f(v) is called a Maxwellian if Q(f, f) ≡ 0, in which case f has the form:
f(v) = ae−b|v−c|2 for constants a, b, c. The proof of (28) shows that we have d

dt
H(t) < 0

unless v �→ f(x, v, t) is a Maxwellian.

6. CONSERVATION LAWS
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6.1 Terminology, integral and entropy solutions. (Lax [Lx1]) A PDE of the form

ut + div F(u) = 0 in Rn × (0,∞)(29)

is called a conservation law. The unknown is u and we are given the flux function F =
(F 1, . . . , F n). We will sometimes rewrite (29) into nondivergence form

ut + b(u) ·Du = 0,(30)

for b = F′.

We will in particular study the initial value problem{
ut + div F(u) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0},(31)

where g ∈ L1

loc is the initial density.

Definition. We say u ∈ L1

loc is an integral solution of (31) provided∫ ∞

0

∫
Rn

uvt + F(u) ·Dv dxdt +

∫
Rn

gv(·, 0) dx = 0

for all v ∈ C1
c .

Definition. We call (Φ,ΨΨΨ) an entropy/entropy flux pair for the conservation law (29) pro-
vided Φ : R→ R is convex, and ΨΨΨ : R→ Rn, ΨΨΨ = (Ψ1, . . . , Ψn) satisfies

ΨΨΨ′ = bΦ′.

Motivation. Introduce for ε > 0 the regularized PDE

uε
t + div F(uε) = ε∆uε.

Take a smooth entropy/entropy flux pair Φ,ΨΨΨ and compute:

Φ(uε)t + div ΨΨΨ(uε) = Φ′(uε)(−b(uε) ·Duε + ε∆uε) + ΨΨΨ′(uε) ·Duε

= εΦ′(uε)∆uε

= ε div(Φ′(uε)Duε)− εΦ′′(uε)|Duε|2
≤ ε div(Φ′(uε)Duε).

Definition. We say that u is an entropy solution provided

Φ(u)t + div ΨΨΨ(u) ≤ 0(32)
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in the distribution sense for each entropy/entropy flux pair (Φ,ΨΨΨ).

6.2 Jump conditions across shocks. Assume that n = 1 and that some region V is
subdivided into regions Vl, Vr by a curve C.

Vl Vr 

x

t

C={x=s(t)}  

Assume that u is smooth in V̄l, V̄r, and also satisfies the entropy condition (32). Take
Φ(z) = ±z, Ψ(z) = ±F (z), to conclude

ut + F (u)x = 0 in Vl, Vr.

Next take v ∈ C1
c , v ≥ 0. Then (32) implies∫∫

Vt

Φ(u)vt + Ψ(u)vx dxdt +

∫∫
Vr

Φ(u)vt + Ψ(u)vx dxdt ≥ 0.

Integrate by parts, to deduce∫
C

v[(Φ(ul)− Φ(ur))ν
2 + (Ψ(ul)−Ψ(ur))ν

1] dH1 ≥ 0

where ννν = (ν1, ν2) is the outer unit normal to Vl along C. We conclude that

ṡ(Φ(ur)− Φ(ul)) ≥ Ψ(ur)−Ψ(ul) along C.(33)

Taking Φ(z) = ±z, Ψ(z) = ±F (z), we derive the Rankine–Hugoniot jump condition

ṡ[u] = [F (u)],(34)

for [u] := ur − ul, [F (u)] := F (ur)− F (ul).

16



Suppose ul < ur. Fix ul < u < ur and define the entropy/entropy flux pair{
Φ(z) := (z − u)+

Ψ(z) :=
∫ z

ul
sgn+(v − u)F ′(v) dv.

Then {
Φ(ur)− Φ(ul) = ur − u

Ψ(ur)−Ψ(ul) = F (ur)− F (u).

Consequently (33) implies

ṡ(u− ur) ≤ F (u)− F (ur).(35)

Combine (34), (35):

F (u) ≥
[
F (ur)− F (ul)

ur − ul

]
(u− ur) + F (ur) (ul ≤ u ≤ ur).(36)

Likewise, if ul > ur, then

F (u) ≤
[
F (ur)− F (ul)

ur − ul

]
(u− ur) + F (ur) (ur ≤ u ≤ ul)(37)

The inequalities (36), (37) are Oleinik’s condition E.

6.3 Systems of conservation laws. A system of conservation laws is written

ut + div F(u) = 0 in Rn × (0,∞),(38)

for which the unknown is u = (u1, . . . , um) and the flux function

F =




F 1
1 . . . F 1

n

...
...

Fm
1 . . . Fm

n




m×n

is given.

We are interested in properly formulating the initial value problem{
ut + div F(u) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0},(39)

17



for given g. Let us say u ∈ L1

loc is an integral solution of (39) provided∫ ∞

0

∫
Rn

u · vt + F(u) : Dv dxdt +

∫
Rn

g · v(·, 0) dx = 0

for each v ∈ C1
c .

We call (Φ,ΨΨΨ) an entropy/entropy flux pair for the conservation law (38) provided Φ :
Rm → R is convex and ΨΨΨ : Rm → Rn, ΨΨΨ = (Ψ1, . . . , Ψn), satisfies

DΨΨΨ = BDΦ,

for B = DF.

Unlike for scalar conservation laws, it may be difficult or impossible to find any en-
tropy/entropy flux pairs for a given system.

•Example: compressible Euler equations. We consider now the compressible Euler
equations in one space dimension. These have the form ut + F(u)x = 0 for m = 2 and{

u = (ρ, ρv)

F = (z2, z
2
2/z1 + p(z1)).

We look for entropy/entropy flux pairs, and to simplify subsequent calculations take Φ, Ψ
to be functions of (ρ, v). First, rewrite Euler’s equations into nondivergence form:{

ρt + ρxv + ρvx = 0

vt + vvx = −1
ρ
px = −p′ ρx

ρ
,

and compute

Φt + Ψx = Φρρt + Φvvt + Ψρρx + Ψvvx

= Φρ(−ρxv − ρvx) + Φv

(
−vvx − p′ ρx

ρ

)
+ Ψρρx + Ψvvx

= ρx

[
Ψρ − vΦρ − p′

ρ
Φv

]
+ vx[Ψv − ρΦρ − vΦv].

Consequently, Φt + Ψx ≡ 0 for all smooth solutions (ρ, v) if and only if{
Ψρ = vΦρ + p′

ρ
Φv

Ψv = ρΦρ + vΦv.
(40)

We proceed further by noting Ψρv = Ψvρ, and so
(
vΦρ + p′

ρ
Φv

)
v

= (ρΦρ + vΦv)ρ. Conse-

quently

Φρρ =
p′(ρ)

ρ2
Φvv(41)

18



In summary, Φ should solve the nonlinear wave equation (41), and we can then determine
Ψ from (40). We will return to these calculations in the next section.

Remark. There are many other viewpoints as to the proper “entropy formulation”
for systems of conservation laws, due to Liu, to Dafermos and to others. Some of these
characterize shocks as singular limits of traveling waves as a dissipative mechanism goes to
zero, but even here instabilities sometimes arise. For instance, see Bertozzi–Münch–Shearer
[B-M-S] for a physical theory of undercompressive shocks, which do not satisfy entropy
conditions as above.

See also the interesting calculations in Liu–Yang [L-Y] for an entropy functional involving
two different solutions of a scalar conservation law. The presentation in §6 of Lax [Lx2] is
very much in the spirit of these notes.

7. KINETIC FORMULATIONS (Perthame–Tadmor [P-T], Lions–Perthame–Tadmor
[L-P-T1], [L-P-T2], Lions–Perthame–Souganidis [L-P-S])

7.1 A transport equation. We will next study the kinetic equation

wt + b(y) ·Dxw = my in Rn × R× (0,∞),(42)

where w = w(x, y, t) is the unknown, b = F′, and m is a nonnegative Radon measure on
Rn × R× (0,∞). The derivative my = ∂

∂y
m is understood in the distribution sense.

We also introduce, in vague analogy with Boltzmann’s equation, the pseudo-Maxwellian

χa(y) :=




1 if 0 < y ≤ a

−1 if a ≤ y ≤ 0

0 otherwise

(43)

for each a ∈ R.

Theorem 7 Let w solve (42) for some measure m, as above. Assume also w has the
“Maxwellian” form w = χu(x,t). Then

u(x, t) :=

∫
R

w(x, y, t) dy

is an entropy solution of

ut + div F(u) = 0.(44)
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Idea of proof. Let Φ : R → R be convex, with Φ(0) = 0. Take v ∈ C1 to have compact
support, v ≥ 0. We employ v(x, t)Φ′(y) as a test function in the definition of w as a weak
solution of the transport equation (42):∫ ∞

0

∫
R

∫
Rn

w(vΦ′)t + wb(y) ·Dx(vΦ′) dxdydt =

∫ ∞

0

∫
R

∫
Rn

(vΦ′)y dm.(45)

Note first of all that∫ ∞

0

∫
R

∫
Rn

w(vΦ′)t dxdydt =

∫ ∞

0

∫
Rn

vt

(∫
R

wΦ′dy

)
dxdt.

By hypothesis w = χu(x,t), and therefore if u(x, t) ≥ 0:∫
R

w(x, y, t)Φ′(y) dy =

∫
R

χu(x,t)(y)Φ′(y) dy =

∫ u(x,t)

0

Φ′(y) dy = Φ(u(x, t)).

A similar computation is valid if u(x, t) ≤ 0. Hence∫ ∞

0

∫
R

∫
Rn

w(vΦ′)t dxdydt =

∫ ∞

0

∫
Rn

vtΦ(u) dxdt.

Likewise, ∫ ∞

0

∫
R

∫
Rn

wb(y) ·Dx(vΦ′) dxdydt =

∫ ∞

0

∫
Rn

Dv ·ΨΨΨ(u) dxdt.

The term on the right hand side of (45) is∫ ∞

0

∫
R

∫
Rn

(vΦ′)y dm =

∫ ∞

0

∫
Rn

∫
R

vΦ′′ dm ≥ 0,

since Φ′′ ≥ 0, v ≥ 0.

We conclude that ∫ ∞

0

∫
Rn

Φ(u)vt + ΨΨΨ(u) ·Dv dxdt ≥ 0

for all v as above, and consequently u is an entropy solution of (44). ✷

Interpretation: Since Φ(u)t + div ΨΨΨ(u) ≤ 0 in the distribution sense, we can represent

Φ(u)t + div ΨΨΨ(u) = −µΦ

where µΦ is a nonnegative Radon measure, depending on Φ. This measure records the
“change of the entropy Φ(u) across the shocks”. The measure m on the right hand side of
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the kinetic equation (42) somehow records simultaneously the information encoded in µΦ for
each entropy Φ.

Remark: kinetic and level set formulations. We pause here to note that the
foregoing kinetic fomulation of scalar conservation laws is, formally at least, a variant of the
level set method. (Cf. Osher–Sethian [O-S].)

We generalize a bit and consider the quasilinear parabolic equation

ut + bi(u)uxi
− (aij(u)uxi

)xj
= 0 in Rn × (0,∞),(46)

where the symmetric matrix ((aij)) is nonnegative definite.

The level set method investigates (46) by introducing a function w = w(x, y, t) on Rn+1×
(0,∞) and asking that each level set of w, viewed as a graph in the y-direction, solves (46).
What PDE does w then solve?

We have w(x, u, t) ≡ c for some constant c at y = u = u(x, t), and will suppose wy < 0.
Differentiating implicitly, we find{

wt + wyut = 0 , wxi
+ wyuxi

= 0 (i = 1, . . . , n)
wxixj

+ wyxj
uxi

+ wyxi
uxj

+ wyyuxi
uxj

+ wyuxixj
= 0 (i, j = 1, . . . , n)

(47)

Given that u solves (46), we deduce after some calculations using (47) that

0 = wt + biwxi
− aijwxixj

+ 2
aijwyxi

wxj

wy

+−aijwyywxi
wxj

wy2

+
a′ijwxi

wxj

wy

.

Hence, setting u = y in the arguments of bi, aij, we derive the kinetic formulation

wt + bi(y)wxi
− aij(y)wxixj

= my

for

m := −aij(y)wxi
wxj

wy

.

We note finally that m ≥ 0, since wy < 0. ✷

7.2 Application: a hydrodynamical limit. Consider the scaled transport equation

wε
t + b(y) ·Dxw

ε =
1

ε
(χuε − wε),(48)

for

uε(x, t) :=

∫
R

wε(x, y, t)dy.
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Theorem 8 As ε→ 0, we have wε ⇀ w weakly ∗ in L∞, where w = χu and

wt + b(y) ·Dxw = my in Rn × R× (0,∞)

for some nonnegative Radon measure m. Also, u is a unique entropy solution of

ut + div F(u) = 0 on Rn × (0,∞).(49)

Idea of proof. We show that we can write

1

ε
(χuε − wε) = mε

y,

for some nonnegative function mε. We then extract a sequence εr → 0, so that

wt + b(y) ·Dxw = my

in the weak sense, m a measure. Since χuε−wε = εmε
y, χuεr ⇀w weakly ∗ in L∞, and in fact

w = χu. So according to the kinetic formulation, u solves the conservation law (49). ✷

7.3 Kinetic formulation of Euler’s equations. Let us return to the compressible
Euler equations, with the explicit equation of state

p(ρ) = κργ, where κ =
(γ − 1)2

4γ
, γ > 1,

the constant κ so selected to simplify the algebra. We continue from §6.3 some calculations
for entropy functions:

Theorem 9 (i) The solution of (41) with initial condtions Φ = 0, Φρ = δ0, the Dirac mass
at the origin, is

χ(ρ, v) = (ργ−1 − v2)λ
+, λ =

3− γ

2(γ − 1)
.

The general solution of (41) with initial conditions Φ = 0, Φρ = g is

Φ(ρ, v) =

∫
R

g(y)χ(ρ, y − v) dy.

(ii) Furthermore, Φ is convex in (ρ, ρv) if and only if g is convex. The entropy flux Ψ
associated with Φ is

Ψ(ρ, v) =

∫
R

g(y)(θy + (1− θ)v)χ(ρ, y − v) dy

for θ = γ−1
2

.
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See [L-P-T2] for proof. We can regard χ as a sort of pseudo-Maxwellian, parameterized
by the macroscopic parameters ρ, v.

Theorem 10 Suppose ρ ≥ 0 a.e. Then (ρ, ρv) is an entropy solution of Euler’s equations if
and only if there exists a nonpositive measure m on R× R× (0,∞) such that

w := χ(ρ, y − v)(50)

satisfies

wt + [(θy + (1− θ)v)w]x = myy.(51)

We call (50), (51) a kinetic formulation of Euler’s equation.

Idea of proof. Define the distributions

T := wt + [(θy + (1− θ)v)w]x,
∂2M

∂y2
:= T.

Take Φ, Ψ to be an entropy/entropy flux pair as above. Then

Φt + Ψx =

∫
R

g(y)(wt + [(θy + (1− θ)v)w]x) dy.

Suppose now φ(x, y, t) = α(x, t)β(y), where α, β ≥ 0 are smooth, with compact support.
Take g so that g′′ = β. Then

−
∫∞

0

∫
R

Φαt + Φαx dxdt =
∫∞

0

∫
R

∫
R

αg(wt + [(θy + (1− θ)v)w]x) dxdydt

= 〈T, αg〉 = 〈M, αβ〉 = 〈M, φ〉.

Now if (ρ, ρv) is an entropy solution, then∫ ∞

0

∫
R

Φαt + Ψαx dxdt ≥ 0

since α ≥ 0; and consequently 〈M, φ〉 ≤ 0. Thus M is represented by a nonpositive measure.
✷

Perthame’s new book [P] provides a good overview of kinetic formulations of nonlinear
PDE.

8. HYSTERESIS IN PHASE TRANSITIONS (Novick Cohen–Pego [NC-P], Plotnikov
[P], [E-P]).
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This section discusses how some entropy-like calculations let us sometimes understand
the effects of a regularization for an ill–posed diffusion equation.

8.1 An ill-posed problem. We turn next to the nonlinear diffusion equation

ut = ∆φ(u)

where the nonlinearity φ has the cubic-type structure illustrated.

�

�

� �

Our PDE is ill–posed forwards in time whenever u ∈ (b, a). So consider instead this “viscous”
regularization for ε > 0 and U a smooth, bounded domain in Rn:


uε

t = ∆φ(uε) + ε∆uε
t in U × (0,∞)

∂
∂ν

(φ(uε) + εuε
t) = 0 on ∂U × (0,∞)

uε = uε
0 on U × {t = 0}.

(52)

Introduce the new unknown function

vε := φ(uε) + εuε
t ;

then {
uε

t = vε−φ(uε)
ε

,

vε − ε∆vε = φ(uε)
(53)

with Neumann boundary conditions for vε.

8.2 Estimates, weak convergence. We have sup |uε, vε| ≤ C for some constant C.
Next, take g : R→ R to be nondecreasing, and set

G′(z) = g(φ(z)).(54)
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We compute using (53), (54) that

G(uε)t = div(g(vε)Dvε)− g′(vε)|Dvε|2 − (g(vε)− g(φ(uε)))

(
vε − φ(uε)

ε

)
,(55)

the last two terms being nonnegative. The point is that this is somewhat like an en-
tropy/entropy flux calculation for conservation laws, althought the relevant PDE are quite
different.

Take a sequence εj → 0 such that uεj , vεj ⇀ u, v weakly ∗ in L∞. The goal is under-
standing the relationships between u, v, and the equations they satisfy. First, we introduce
the three branches βi (i = 0, 1, 2) of φ−1:

��

�

�

�����	
�	β�

�����	
�	β0

�����	
�	β2

In a very interesting paper [P], Plotnikov has shown

Theorem 11 There exist measurable functions λ0, λ1, λ2 such that
(i) 0 ≤ λi ≤ 1,

∑2
i=0 λi = 1.

(ii) Furthermore,

F (uεj) ⇀ F̄ :=
2∑

i=0

λiF (βi(v))

weakly ∗ in L∞, for each continuous function F .
(iii) We also have vεj , φ(uεj)→ v strongly in L2.

Passing to limits as ε = εj → 0 in (55), we conclude that

Ḡt − div(g(v)Dv) ≤ −g′(v)|Dv|2(56)
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for each nondecreasing g as above. Similarly

ut = ∆v.(57)

8.3 A free boundary problem with hysteresis. Suppose now that λ0 ≡ 0, λ1 ≡ 1
in V1, λ2 ≡ 1 in V2, where V1, V2 are two open regions, with a smooth interface Γ := V̄1 ∩ V̄2.
We assume that u, v are smooth in V̄1, V̄2, and write ui, vi to denote the values along Γ.

We want to understand how Γ moves. Let (ν1, . . . , νn, νn+1) = (ν, νn+1) denote the unit
normal along Γ pointing into V1.

Theorem 12 (i) We have {
β1(v)t = ∆v in V1

β2(v)t = ∆v in V2.
(58)

(ii) Furthermore,

v1 = v2 and νn+1[u] = ν · [Dxv] along Γ,(59)

where [u] := u1 − u2, [Dxv] := Dxv1 −Dxv2.
(iii) Also, 


νn+1 = 0 if v = A, B

νn+1 ≥ 0 if v = A

νn+1 ≤ 0 if v = B,

(60)

where we write v = v1 = v2 along Γ.

Statement (iii) says that the nonlinearity φ generates a hysteresis loop, which we interpret
as a “supercooled” Stefan problem with phase transition between the temperatures A and
B. See Visintin [Vs] for more about hysteresis effects in PDE.

�

�

� �
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Idea of proof. We have

Ḡ =

{
G(β1(v)) in V1

G(β2(v)) in V2,

for each function G as above. In particular,

u =

{
β1(v) in V1

β2(v) in V2,

and so (58) follows from (57). Also, our integrating by parts using (57) gives the Rankine–
Hugoniot relation (59).

We next multiply (56) by a nonnegative function ζ ∈ C∞c and integrate by parts, to find

0 ≥
∫∫

V1

g(v)(β1(v)t −∆v)ζ dxdt

+

∫∫
V2

g(v)(β2(v)t −∆v)ζ dxdt +

∫
Γ

(νn+1[G(u)]− ν · [Dxv]g(v))ζ dHn.

Consequently νn+1[G(u)] − ν · [Dxv]g(v) ≤ 0 along Γ, and so (59) implies νn+1([G(u)] −
g(v)[u]) ≤ 0 for each nondecreasing function g. Since G′(z) = g(φ(z)), this says

νn+1

(∫ β2(v)

β1(v)

g(φ(s))− g(v) ds

)
≥ 0 along Γ.

If A < v < B, we first take g+ to be zero on (−∞, v], positive and nondecreasing on
(v,∞). Then ∫ β2(v)

β1(v)

g+(φ(s))− g+(v) ds > 0

and so νn+1 ≥ 0. Next select g− to be negative and nondecreasing on (−∞, v), zero on
[v,∞). This forces ∫ β2(v)

β1(v)

g−(φ(s))− g−(v) ds < 0;

whence νn+1 ≤ 0. Consequently νn+1 = 0 if A < v < B. If v = A, we take g+ as above, to
deduce νn+1 ≥ 0. Likewise, νn+1 ≤ 0 if v = B. ✷

9. HAMILTON–JACOBI EQUATIONS (Crandall–Lions [C-L], [C-E-L])
Many first–order PDE are structurally quite different from conservation laws, and yet

these too sometimes admit weak interpretations involving dissipation effects. The trick is to
switch our viewpoint from integral formulas to pointwise ones.
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9.1 Viscosity solutions. A PDE of the form

ut + H(Du) = 0 in Rn × (0,∞)(61)

is called a Hamilton–Jacobi equation. The unknown is u and the Hamiltonian H is given.
As before, Du = (ux1 , . . . , uxn).

Definition. A bounded uniformly continuous function u is called a viscosity solution of (61)
provided for each v ∈ C∞,


if u− v has a local maximum (resp. minimum) at a

point (x0, t0) ∈ Rn × (0,∞),

then vt(x0, t0) + H(Dv(x0, t0)) ≤ 0 (resp. ≥ 0).

(62)

Motivation. As before we can motivate the definition by the vanishing viscosity method,
and this procedure accounts for the name.1 So consider the regularized PDE

uε
t + H(Duε) = ε∆uε.

It is instructive to check that u is a viscosity solution of (61), when uε → u locally uniformly.

9.2 A cautionary example. There are formal mathematical connections at the level
of PDE between thermodynamics and mechanics, as explained for instance in Peterson [Pe].
For instance, the Clausius–Clapeyron condition for phase transitions is just the Rankine-
Hugoniot condition, as before. However, we must be very careful when considering nons-
mooth solutions, as this example, found with D. Ostrov, shows.

The van der Waals equation of state is

F (V, P, T ) := P − RT

V − b
+

a

V 2
= 0.(63)

We seek G = G(T, P ) satisfying this, where ∂G
∂T

= −S, ∂G
∂P

= V according to (12). We can
think of T = T0 as a fixed parameter, and so regard (63) as the implicit ODE

F (
∂G

∂P
, P, T0) = 0.(64)

For certain values of the parameters a, b, T0, the level set {F (·, ·, T0) = 0} has this cubic
shape:

1In fact, Crandall and Lions originally considered the name “entropy solutions”.
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A standard thermodynamic construction yields a concave solution G with a discontinuity
in its derivative occurring at the Maxwell equal area point P0, as illustrated above.

	

�����	
�	�	

�	

�����	
�	�	

However G is not a viscosity solution of (64). To see this, notice that we can touch the
graph of G from above at the point P0 by a smooth function v, with v′(P0) taking any value
between Vl and Vr. If G were a viscosity solution of (64), it would follow that

F (V, P0, T0) ≤ 0 for all Vr ≤ V ≤ Vl.(65)

But this is not so, since F changes sign across the curve.

Remark. The viscosity solution interpretation of the ODE (64) in effect predicts a sort
of hysteresis loop behavior, as drawn:
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Under the assumption that F < 0 to the left of the curve and F > 0 to the right, an
upward pointing corner in G can occur only for P = P1. A downward corner in G can occur
only for P = P2, although on physical grounds the Gibbs potential G should be concave and
thus not have any downward pointing corners. (Cf. Oleinik’s condition (36), (37).)

9.3 A diffusion limit ([E2]). The next example shows how we can sometimes demon-
strate dissipative effects in singular scaling limits. We introduce for each ε > 0 a coupled
linear first-order transport PDE:{

wk,ε
t + 1

ε
bk ·Dwk,ε = 1

ε2

∑m
l=1 cklw

l,ε in Rn × (0,∞)

wk,ε = g on Rn × {t = 0}
(66)

for k = 1, . . . , m. The unknown is wε = (w1,ε, . . . , wm,ε). We are given the matrix C =
((ckl))m×m and the velocity vectors {bk}mk=1 in Rn.

The left hand side of (66) is for each k a linear, constant coefficient transport operator,
and the right hand side of (66) represents linear coupling. What happens as ε→ 0?

Let us assume:

ckl > 0 if k = l,

m∑
l=1

ckl = 0.(67)

Then there exists a unique vector π = (π1, . . . , πm) satisfying

πk > 0 (k = 1, . . . , m),
m∑

k=1

πk = 1,
m∑

k=1

cklπk = 0.(68)
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We make the additional assumption of average velocity balance:

m∑
k=1

πkb
k = 0.(69)

•Construction of diffusion coefficients. Write 11 := (1, . . . , 1) ∈ Rm. Then (67),
(68) and Perron–Frobenius theory assert that 11 spans the nullspace of C and π spans the
nullspace of C∗. In view of (69), for each j ∈ {1, . . . , n} the vector bj := (b1

j , . . . , b
m
j ) ∈ Rm

is perpendicular to the nullspace of C∗ and thus lies in the range of C. There consequently
exists a unique vector dj ∈ Rm solving

Cdj = −bj,(70)

normalized by our requiring dj · 11 = 0. We write dj = (d1
j , . . . , d

m
j ), and then define the

diffusion coefficients

aij :=
m∑

k=1

πkb
k
i d

k
j .

It is an exercise to check that the matrix ((aij)) is nonnegative definite.

Theorem 13 As ε → 0, we have wk,ε → u locally uniformly, where u solves the diffusion
equation

ut −
n∑

i,j=1

aijuxixj
= 0.(71)

Idea of proof. We can find a subsequence εr → 0 such that wεr → w = u11, locally
uniformly, for some scalar function u = u(x, t).

We assert that u is a viscosity solution of (71). This means that if v ∈ C2 and{
u− v has a local maximum (resp. minimum) at

a point (x0, t0) ∈ Rn × (0,∞),

then

vt(x0, t0)−
n∑

i,j=1

aijvxixj
(x0, t0) ≤ 0 (resp. ≥ 0).

To prove this, let us suppose u− v has a strict local maximum at some point (x0, t0). Define
then the perturbed test functions vε := (v1,ε, . . . , vm,ε), where

vk,ε := v − ε

n∑
j=1

dk
j vxj

,
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the constants dk
j satisfying (70). Then wk,ε − vk,ε has a local maximum at a point (xk

ε , t
k
ε),

and (xk
ε , t

k
ε)→ (x0, t0) as ε = εr → 0.

We then employ the transport PDE (66) and various algebraic relations above, to elimi-
nate the terms of order 1

ε
, 1

ε2 and thereby to deduce:

vt(x0, t0)−
n∑

i,j=1

(
n∑

k=1

πkb
k
i d

k
j

)
︸ ︷︷ ︸

aij

vxixj
(x0, t0) ≤ o(1).

See [E2] for details. A similar argument provides the opposite inequality should u− v have
a minimum at (x0, t0). ✷

• See Pinsky [P] for other techniques, based upon interpreting (66) as a random evolution.
The system of PDE (66) is reversible in time and yet the diffusion equation (71) is not.
Exercise for the reader: where did the irreversibility come from?

10. LARGE DEVIATIONS (Varadhan [V], Dembo–Zeitouni [D-Z])

10.1 Background. Let {Pn}∞n=1 is a family of Borel probability measures on a separable,
complete, metric space Σ.

We say that {Pn}∞n=1 satisfies the large deviation principle with rate function I : Σ→ R

provided: {
lim supn→∞

1
n

log Pn(C) ≤ − infC I (C closed)

lim infn→∞
1
n

log Pn(U) ≥ − infU I (U open).

The rate function I is called the entropy function in the book of Ellis [El], which contains
clear explanations of the connections with statistical mechanics and thermodynamics.

10.2 Cramer’s Theorem. Let (Ω,F , π) be a probability space and suppose Yk : Ω→
Rm (k = 1, . . . ) are independent, identically distributed random variables. Write Y := Y1.
We will study the partial sums

Sn :=
Y1 + · · ·+ Yn

n

and their distributions Pn on Σ = Rm.
Define

F (p) := log E(ep·Y) = log

(∫
Ω

ep·Ydπ

)
,

and introduce as in (11) the Legendre transform of F :

L(q) = sup
p∈Rm

(p · q − F (p)).
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Cramer’s Theorem asserts this to be a large deviation rate function:

Theorem 14 The probability measures {Pn}∞n=1 satisfy a large deviation principle with rate
function I(·) = L(·).

Idea of proof. Following ideas of R. Jensen, we will use PDE methods to prove for each
nice function g that

lim
n→∞

1

n
log

(∫
Rm

engdPn

)
= sup

Rm

(g − L).(72)

This implies that L is the rate function.
We fix any point x ∈ Rm and then write tk := k/n. We define also

wn(x, tk) := E

(
hn

(
Y1 + · · ·+ Yk

n
+ x

))
,

where hn := eng. Finally, set

un(x, tk) :=
1

n
log wn(x, tk).

Extend un(x, t) to be linear in t for t ∈ [tk, tk+1]. Then there exists a sequence nr →∞ such
that unr → u locally uniformly.

We assert that u is a viscosity solution of the PDE

ut − F (Du) = 0.(73)

To verify this, we take any v ∈ C2 and suppose u − v has a strict maximum at a point
(x0, t0). We must prove:

vt(x0, t0)− F (Dv(x0, t0)) ≤ 0.(74)

We can find for each index n = nr points (xn, tkn) such that

un(xn, tkn)− v(xn, tkn) = max
x∈Rm,k=0,...

[un(x, tk)− v(x, tk)]

and (xn, tkn)→ (x0, t0) as n = nr →∞. We calculate that

v(xn, tkn)− v(xn, tkn−1)

1/n
≤ log E

(
eDv(xn,tkn−1)·Y+βn

)
,

for a small error term βn. Pass to limits:

vt(x0, t0) ≤ log E
(
eDv(x0,t0)·Y)

= F (Dv(x0, t0)).
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This is (74), and the reverse inequality likewise holds should u−v have a strict local minimum
at a point (x0, t0).

So u is a viscosity solution of (73), and we can invoke the explicit Hopf–Law formula (cf.
[E1]):

u(x, t) = sup
y

{
g(y)− tL

(
y − x

t

)}
.

In particular

u(0, 1) = sup
y
{g(y)− L(y)}.(75)

But
un(0, 1) = 1

n
log wn(0, tn) = 1

n
log E

(
hn

(
Y1+···+Yn

n

))
= 1

n
log E

(
eng(Sn)

)
= 1

n
log

(∫
Rm engdPn

)
.

As un(0, 1)→ u(0, 1), this and (75) confirm the limit (72). ✷

This proof illustrates the vague principle that rate functions, interpreted as functions of
appropriate parameters, are viscosity solutions of Hamilton–Jacobi type PDE. The general
validity of this principle is unclear, but there are certainly many instances in the literature,
for instance Freidlin–Wentzell [F-W].

11. SOME FURTHER TOPICS

11.1 Decay to equilibrium. There has been great recent interest in “entropy” tech-
niques for deriving decay rate estimates as t → ∞ for nonlinear parabolic PDE, having for
instance the form

ut = div(Du + uDV ).

In this case u∞ := e−V is an equilibrium, and the dynamics can be rewritten as

ut = div

(
u∞D

(
u

u∞

))
.

See Carrillo et al [C-J-M] for clever differential inequality calculations. Villani’s survey [Vi]
on Monge–Kantorovich mass transfer methods examines similar issues.

11.2 Equilibria of Euler’s equations. Several authors have introduced statistical
mechanics, maximum entropy principles to derive semilinear elliptic PDE describing equi-
librium states for two–dimensional inviscid fluids. Large deviation arguments provide some
mathematical justification. See, for instance, Boucher–Ellis–Turkington [B-E-T], Lions [L],
Mikelic–Robert [M-R], Turkington [Tu], and also Chapter 7 of the book [M-P] of Marchioro
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and Pulvirenti. DiBattista, Haven, Majda and Turkington [D-H-M-T] provide a related
model of Jupiter’s atmosphere.

Freidlin [F] presents an extremely interesting alternative approach.
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