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1. Introduction.

This paper is an expanded version of the Courant Lectures I gave at NYU during
March, 2002, and provides a idiosyncratic overview of some partial differential equations
methods recently developed for “weak KAM theory”. I am pushing here the viewpoint that
useful information can be extracted from (i) examining two coupled PDE, a generalized
“eikonal” equation and a related “continuity” equation, and (ii) exploiting elementary
convexity arguments.

I adopt throughout an expository, heuristic style, with the particular aim of emphasizing
these two principles: Consult the original papers for precise assertions and full proofs. I
discuss mostly my own work (much joint with D. Gomes) and leave out details about the
discoveries of Mather, Fathi, and many others. This omission is entirely due to my lack of
expertise. While it is currently not so certain that really new dynamical information can
be extracted from these arguments, this PDE approach seems to me interesting, at the
very least pouring old wine into new bottles.

I thank everyone at the Courant Institute for their kindness and hospitality during my
visit. My thanks also to the referee for his/her comments, all of which I have carefully
considered, if not fully implemented.

1.1 Lagrangian and Hamiltonian dynamics. We start with a quick and absolutely
low-tech review of Lagrangian and Hamiltonian dynamics.

Lagrangian. We begin with a smooth Lagrangian L : Rn×Tn → R, L = L(v, x), where
v in Rn denotes velocity∗, and x in Tn, the flat torus in n dimensions, denotes position.
Our primary hypotheses will be that

(1.1) the mapping x �→ L(v, x) is Tn periodic

for each v ∈ Rn, and

(1.2) the mapping v �→ L(v, x) is uniformly convex

for each x ∈ Tn.

Given a time T > 0 and a Lipschitz continuous curve x(·) : [0, T ]→ R
n, the correspond-

ing classical action is

AT [x(·)] :=
∫ T

0

L(ẋ,x) dt.

We call x(·) a critical point of the action if it solves the Euler-Lagrange system of ODE
− d

dt (DvL(ẋ,x)) + DxL(ẋ,x) = 0. In this formula and below, Dx := ( ∂
∂x1

, . . . , ∂
∂xn

), Dv :=
( ∂

∂v1
, . . . , ∂

∂vn
), etc.

Hamiltonian. We next define the momentum p := DvL(ẋ,x) and the Hamiltonian
H : Rn × Rn → R, H = H(p, x), by the formula

(1.3) H(p, x) := max
v
{p · v − L(v, x)}.

∗See the Appendix for a translation between our notation and that more customary in physics and in

dynamics.
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Under reasonable assumptions, H is uniformly convex in the variable p.
The pair x,p solves Hamilton’s equations

(1.4)

{
ẋ = DpH(p,x)

ṗ = −DxH(p,x).

Generating function, canonical change of variables. To attempt to integrate
these Hamiltonian ODE, we introduce a generating function u : Rn×Rn → R, u = u(P, x).
We propose a change of variables (p, x)→ (P, X), implicitly defined by the formulas

(1.5)

{
p = Dxu(P, x)

X = DP u(P, x).

Hamilton–Jacobi equations. Assume next u solves the stationary Hamilton–Jacobi
type PDE

(1.6) H(Dxu(P, x), x) = H̄(P ) in Rn,

where at this point in the exposition the right hand side simply denotes some function of
the variable P alone. Suppose as well that we can invert the relationships (1.5) to solve
for P, X as smooth function of p, x. A calculation shows that we thereby transform (1.4)
into the trivial dynamics

(1.7)

{
Ẋ = DH̄(P)

Ṗ = 0.

In the language of mechanics, P is an “action” and X an “angle” or “rotation” variable.
See Goldstein [Gd] or Arnold–Kozlov–Neishtadt [A-K-N] for more.

Integrability and weak KAM theory. But we cannot carry out this classical proce-
dure in general, since the PDE (1.6) does not usually admit a smooth solution and, even if
it does, the canonical transformation (p, x)→ (P, X) is not usually globally defined. Only
very special Hamiltonians are integrable in this sense: see for instance Deift [D].

What remains is the possibility of coming up with some sort of weak interpretation of
the classical program outlined above. Indeed Aubry[Au], Mather [Mt1-4], Fathi [F1-4], E
[EW] and others have shown that certain solutions of (1.4), those arising from appropriate
minimizers of the action, correspond to sorts of “integrable” structures within the full
dynamics, generalizing the classical notion of invariant tori. Weak KAM theory (so named
by A. Fathi) is the attempt to bring to bear global PDE techniques to continue this analysis,
with particular emphasis upon problems with many degrees of freedom.

Let me emphasize also that, unlike conventional KAM theory, weak KAM theory is
not perturbative. PDE and measure theory together provide us with solutions of the
cell equation (C) and the transport equation (T ), explained later, in the large. The
fundamental technical issue is rather that these generalized solutions are not necessarily
smooth, and so the classical calculations above are not obviously justified.
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Some references. Good introductory lecture notes on Mather’s variational principle
in dynamics have been written by Contreras–Iturriaga [C-I] and by Fathi [F5]; and Forni–
Mather [Fo-M] is another nice reference. See as well Mañé [Mn1-3], Fathi–Mather [Fa-M]
and also Bernard [Be]. Different sorts of PDE methods are discussed in Jauslin–Kreiss–
Moser [J-K-M] and E [EW].

Other recent developments of the PDE methods include these papers: Alvarez–Bardi
[A-B], Barles–Souganidis [B-S], Concordel [C1,C2], [E-G2], Fathi–Maderna [F-Ma], Fathi–
Siconolfi [F-S1,2], Gomes [G1-4], etc. See also Lions–Souganidis [L-S] for probabilistic
methods and interpretations. One omission in this survey is any discussion of Fathi’s PDE
methods for “Peierls barriers” [F1-4].

1.2 An action minimization principle. Suppose that we have at hand a curve x :
[0,∞)→ R

n that minimizes for each time T > 0 the action AT [·], among Lipschitz curves
y(·) with x(0) = y(0), x(T ) = y(T ). We call such a curve an absolute minimizer, and are
interested in absolute minimizers which satisfy for a given vector V ∈ Rn the asymptotic
growth condition

(1.8) lim
t→∞

x(t)
t

= V.

However in general absolute minimizing curves with these given asymptotics will not exist.
This is shown by a famous example of Hedlund, discussed for instance in reference [EW].

A relaxed problem. As suggested by Mather, we can however “relax” the problem
and look instead for a measure µ on the configuration space Rn × Tn that minimizes the
generalized action

(1.9) A[µ] :=
∫
Rn

∫
Tn

L(v, x) dµ,

subject to the constraints that

(1.10)
∫
Rn

∫
Tn

v ·Dφ dµ = 0 for all φ ∈ C1(Tn),

(1.11) µ(Rn × Tn) = 1, µ ≥ 0,

and

(1.12)
∫
Rn

∫
Tn

v dµ = V.

Condition (1.11) says of course that µ is a probability measure and (1.12) generalizes (1.8).
Requirement (1.10), a “weak” flow invariance condition on µ, generalizes the classical
idea that the action be computed along a curve. We will later reexamine this particular
formulation of flow invariance, and will show that for a minimizer it implies an apparently
stronger notion.

4



Mather has shown that in general there exist minimizing measures in this sense. We
want to study their properties, in hopes of discovering some sort of “integrable structure”
consistent with the foregoing classical formulation in terms of action-angle variables. For
later reference, we define

(1.13) L̄(V ) := min
µ
{A[µ] | conditions (1.10)− (1.12) hold}.

The function L̄ : Rn → R so defined is the effective Lagrangian, and will reappear in
another context later.

2. Linear programming insights.

Mather’s variational interpretation in effect “linearizes” our problem: we are asked to
minimize the linear functional (1.9), given the linear equality and inequality constraints
(1.10)− (1.12). This is a linear programming problem in infinite dimensions, for which, as
we show in this section, following [E-G3], a remarkable amount of useful information can
be formally extracted from duality theory.

2.1 Review.
Finite dimensional linear programming. (Bertsimas–Tsitsiklis [B-T], Lax [L]) If

x ∈ RN is a vector, x = (x1, x2, . . . , xN ), we write x ≥ 0 to mean xi ≥ 0 for i = 1, . . . , N .
We are given vectors c ∈ RN , b ∈ RM and an M ×N matrix A. The primal problem is

finding x̂ ∈ RN to

(P) minimize c · x, subject to Ax = b, x ≥ 0;

and the corresponding dual problem is finding ŷ ∈ RM to

(D) maximize y · b, subject to AT y ≤ c.

Suppose that problem (P) has a solution x̂ and (D) has a solution ŷ. A basic theorem
of finite dimensional linear programming asserts that

(2.1) c · x̂ = ŷ · b

or, equivalently,

(2.2) x̂ · (AT ŷ − c) = 0.

This last equality expresses the complementary slackness condition, and implies for each
i = 1, . . . , N , that either x̂i = 0 or (AT ŷ− c)i = 0, or both. Think of this as saying that if
a constraint is inactive, the corresponding Lagrange multiplier is zero.

Infinite dimensional linear programming. (Anderson–Nash [A-N]) For our ap-
plication to (1.9) − (1.12), we move to a more general setting. So suppose X, Y denote
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real vector spaces, and assume X is endowed with a partial ordering, inducing a partial
ordering on its dual space X∗. The pairing between a space and its dual is denoted 〈 , 〉.

Fix c∗ ∈ X∗, b ∈ Y and suppose A : X → Y is a bounded linear operator, with adjoint
A∗ : Y ∗ → X∗. The primal problem is to find x̂ ∈ X to

(P) minimize 〈c∗, x〉, subject to Ax = b, x ≥ 0;

and the dual problem is to find ŷ∗ ∈ Y ∗ to

(D) maximize 〈y∗, b〉, subject to A∗y∗ ≤ c∗.

Suppose that x̂ is optimal for (P) and ŷ∗ is optimal for (D). If it happens that

(2.3) 〈ŷ∗, b〉 = 〈c∗, x̂〉,

then

(2.4) 〈A∗ŷ∗ − c∗, x̂〉 = 0;

and the identity (2.4) is another form of the complementary slackness condition.

2.2 Application to Mather’s variational problem. Next we cast our variational
problem into the foregoing framework and see in particular what complementary slackness
implies. So let us take X =M(Rn × Tn), the space of Radon measures on Rn × Tn, and
Y = C1(Tn)∗ × R × Rn. Let c∗ = L ∈ X∗, b = (0∗, 1, V ) ∈ Y , where 0∗ denotes the zero
functional. If µ ∈ X, we write

(2.5) Aµ :=
(

Lµ, µ(Rn × Tn),
∫
Rn

∫
Tn

v dµ

)
.

In this expression Lµ denotes the linear functional defined for each φ ∈ C1(Tn) by the
formula Lµφ :=

∫
Rn

∫
Tn v ·Dφ(x) dµ.

Primal problem. The primal problem (P) is therefore to find a measure µ to

(2.6) minimize 〈c∗, µ〉 =
∫
Rn

∫
Tn

L dµ,

subject to the requirements that

(2.7) µ ≥ 0, Aµ = b.

Dual problem. Let y∗ = (v(·), w0, w) ∈ Y ∗ = C1(Tn)∗∗ × R × Rn. We will vastly
simplify this heuristic discussion, by just assuming hereafter that in fact v(·) is a C1

function. (There is a notational pitfall here, since v also denotes the velocity variable; and
I will therefore carefully distinguish below between the variable v ∈ Rn and the function
v(·) ∈ C1(Tn). Accepting this for the moment resolves many notational problems later.)
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We compute A∗y∗ by calculating for x = µ that

〈A∗y∗, x〉 = 〈y∗, Ax〉 =
∫
Rn

∫
Tn

v ·Dv(x) + w0 + w · v dµ,

and deduce

(2.8) A∗y∗ = w0 + v · (w + Dv(x)).

So the dual problem is to find y∗ = (v(·), w0, w), to

(2.9) maximize 〈y∗, b〉 = w0 + V · w,

subject to the pointwise constraints that

(2.10) w0 + v · (w + Dv(x)) ≤ L(v, x) in Rn × Tn.

2.3 Interpretations of complementary slackness. We now assume that x̂ = µ and
ŷ∗ = (v(·), w0, w) are optimal. We continue simply to suppose that v(·) ∈ C1, and also for
heuristic purposes hypothesize that the complementary slackness condition is valid. This
says

(2.11) w0 + v · (w + Dv(x)) = L(v, x) on spt(µ).

I write “spt” for support.
Geometry of the support of µ. For each fixed x ∈ Tn, define the function

ψ(v) := L(v, x)− v · (w + Dv(x))− w0 (v ∈ Rn).

Then

(2.12) ψ ≥ 0 on Rn and ψ = 0 on spt(µ).

Since L and therefore ψ are uniformly convex in the variable v, it follows for each x ∈ Tn

that the support of µ in Rn×{x} consists of at most one point v ∈ Rn. Since the gradient
of ψ vanishes at its minimum, we in fact have DvL(v, x) = w + Dv(x). Consequently, the
support of the measure µ lies on the n-dimensional graph v = (DvL(·, x))−1(w + Dv(x))
over Tn. This is a sort of regularity assertion for the structure of the minimizing measure
µ.

Solutions of a generalized eikonal PDE. Owing to (2.10), we have

(2.13) H(w + Dv(x), x) = max
v∈Rn

{v · (w + Dv(x))− L(v, x)} ≤ −w0 on Tn,

with equality on the support of σ := projx µ, the projection of µ onto the x-variables. We
change notation, now to write

(2.14) P := w, H̄(P ) := −w0.
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Now writing Dv = Dv(x), we have

(2.15) H(P + Dv, x) ≤ H̄(P ) on Tn,

with

(2.16) H(P + Dv, x) = H̄(P ) on spt(σ).

The support of our measure consequently lies within the graph v = DpH(P + Dv(x), x) =
DpH(Du(x), x), for

(2.17) u := P · x + v.

Weak flow invariance implies flow invariance. Next we show that the weak flow
invariance condition (1.10) implies actual flow invariance for our minimizer µ. To do so,
it is most convenient to switch to the Hamiltonian formulation. We consequently use the
mapping p = DvL(v, x) to push forward µ from the configuration space with variables
(v, x) to a measure ν on the phase space with variables (p, x). Since v = DpH(p, x), (1.10)
says for φ ∈ C1(Tn), φ = φ(x), that

0 =
∫
Rn

∫
Tn

v ·Dφ dµ =
∫
Rn

∫
Tn

DpH(Du, x) ·Dφ dν.

Now take Φ ∈ C1(Rn × Tn), Φ = Φ(p, x), and write φ(x) := Φ(Du(x), x). Then Dφ =
DxΦ + DpΦD2u. Furthermore (2.15), (2.16) imply that DxH + DpHD2u = 0 on the
support of σ. Therefore, letting {·} denotes the Poisson bracket, we deduce

∫
Rn

∫
Tn

{H, Φ} dν =
∫
Rn

∫
Tn

DpH(Du(x), x) ·DxΦ−DxH(Du(x), x) ·DpΦ dν

=
∫
Rn

∫
Tn

DpH(Du(x), x) ·DxΦ + DpH(Du(x), x)D2u ·DpΦ dν

=
∫
Rn

∫
Tn

DpH(Du(x), x) ·Dφ dν = 0.

This identity says that ν is invariant under the full Hamiltonian flow (1.4). This is a
variant of an observation due originally to Mañé.

What is linear programming telling us? The foregoing formalism suggests strongly
that we focus attention on the generalized eikonal equation (2.16), the right hand side of
which is an unknown function of the variable P alone. Recalling (2.17), we note that this
is formally the same as (1.6).

For future reference, we restate the eikonal equation:

(2.18) H(Du, x) = H̄(P ) on spt(σ),
8



the right hand side of which will turn out to be the effective Hamiltonian (about which
more later) evaluated at P ∈ Rn. Furthermore, we can check that σ = projx µ = projx ν
solves the transport (or continuity) equation

(2.19) div(σDpH(Du, x)) = 0.

The point is that the formalism of linear programming has identitified these PDE as being
somehow relevant. It suggests also these interpretations:

(i) The vector P is the Lagrange multiplier for the constraint (1.12) that the measure
µ have the rotation, or average velocity, vector V .

(ii) The number H̄(P ) is the Lagrange multiplier for the constraint (1.11) that µ be a
probability measure.

(iii) The function u, solving the generalized eikonal equation, is the Lagrange multiplier
for the constraint (1.10) that µ be weakly flow invariant.

We emphasize that all the calculations and conclusions of this section are purely formal:
our goal now is extracting some rigorous theory. But it is interesting, and I think surprising,
that the “soft” principles of linear programming predict such detailed structure.

3. The effective Hamiltonian.

3.1 How to construct H̄. We can rigorously build appropriate weak solutions of
(2.18), as shown in the unpublished, but classic, paper Lions–Papanicolaou–Varadhan [L-
P-V] . Consider for fixed P ∈ Rn the cell problem

{
H(P + Dv, x) = λ in Rn,

x �→ v is Tn-periodic.

As proved in [L-P-V] (and recounted in [E1]), there exists a unique real number λ for which
there exists a viscosity solution v = v(x), in the sense of Crandall–Lions. We may then
define H̄(P ) := λ and set

(3.1) u := P · x + v,

to recast the foregoing as

(C) H(Du, x) = H̄(P ) in Rn.

The label “C” stands for either “cell problem” or “corrector problem”. This PDE is of
course a rigorously derived form of (2.18).

We understand v to solve (C) in the sense of viscosity solutions, but actually will
mostly need only that v is differentiable a.e. and that v solves the PDE at any point of
differentiability. It turns out that the function u is semiconcave, meaning that uξξ ≤ α in
the sense of distributions, for all unit vectors ξ and some constant α. We will sometimes
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think of u, v as depending only upon x, with P fixed, and will sometimes instead imagine
u, v as depending upon both x and P .

Let us call the function H̄ : Rn → R so defined the effective Hamiltonian. Given H̄ as
above, we define also the effective Lagrangian

(3.2) L̄(V ) := sup
P

(P · V − H̄(P ))

for V ∈ Rn. Later we will show that this agrees with our previous definition (1.13). The
mappings H̄ and L̄ are convex, real-valued and superlinear.

Numerical computations. As we will see in following sections, the idea is that the
effective Hamiltonian H̄ “encodes” information about certain dynamics: it is consequently
important to understand the structure of this function of P . It has however proved difficult
to obtain explicit formulas in dimensions n ≥ 2, and hence numerical calculations seem
useful.

Gomes and Oberman [G-O] and Qian [Q] have numerically computed H̄ for n = 2 in
several interesting cases, including H(p, x) = 1

2 |p|2 + W (x). See also Bourlioux–Khouider
[B-K], Oberman [O], etc.

3.2 Minimizing measures. ([E-G1]) Having now at hand a weak solution of the
eikonal equation, we want to use it to study the minimizing measure µ. To do so, it is
most convenient to switch as in §2 to the Hamiltonian formulation. We therefore assume
we have a compactly supported Radon probability measure ν on phase space Rn×Tn, for
which

(3.3) V =
∫
Rn

∫
Tn

DpH(p, x) dν

and

(3.4)
∫
Rn

∫
Tn

{H, Φ} dν = 0

for each C1 function Φ that is Tn-periodic, where {·} again is the Poisson bracket. We
also suppose

(3.5) L̄(V ) =
∫
Rn

∫
Tn

L(DpH(p, x), x) dν.

We assume afterwards that the Hamiltonian H = H(p, x) is Tn-periodic in x and uniformly
convex in p, meaning that D2

pH ≥ γI as symmetric matrices for some constant γ > 0. Note
that H(p, x) + L(v, x) ≥ p · v, with equality if and only if p = DvL(v, x), v = DpH(p, x).
The projection of ν onto the x–variables is denoted σ.

Take now any P ∈ ∂L̄(V ) and let u = P · x + v be any viscosity solution of the
corresponding cell problem (C).
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Theorem 3.1. (i) The function u is differentiable in the variable x σ-a.e., and σ-a.e.
point is a Lebesgue point for Dxu.

(ii) We have

(3.6) p = Dxu(P, x) ν-a.e.

(iii) Furthermore,

(3.7)
∫
Rn

∫
Tn

H(p, x) dν =
∫
Tn

H(Dxu, x) dσ = H̄(P );

and if H̄ is differentiable at P ,

(3.8)
∫
Rn

∫
Tn

DpH(p, x) dν =
∫
Tn

DpH(Dxu, x) dσ = DH̄(P ).

Thus ν is supported on the graph p = Dxu(P, x) = P + Dxv(P, x), which is single-valued
σ-a.e. Also, the corrector PDE (C) holds pointwise, σ-a.e. Compare assertion (ii) with
the classical canonical change of variables (1.5). Also,

(T ) div(σDpH(Dxu, x)) = 0 in Tn,

the label “T” standing for “transport equation”; and this is identical with the PDE (2.19)
formally derived earlier.

Idea of proof. We do not display the dependence of u on the variable P , and also write
Du for Dxu.

Take ηε to be a smooth, nonnegative, radial convolution kernel, supported in the ball
B(0, ε), and set uε := ηε∗u. Using the uniform convexity of H in p and Jensen’s inequality,
we find that

(3.9) βε(x) + H(Duε(x), x) ≤ H̄(P ) + Cε

for each x ∈ Tn, where

(3.10) βε(x) :=
γ

2

∫
Rn

ηε(x− y)|Du(y)−Duε(x)|2 dy

for some constant γ > 0. Recalling again the strict convexity of H, we have

(3.11)

γ

2

∫
Rn

∫
Tn

|Duε(x)− p|2 dν

≤
∫
Rn

∫
Tn

H(Duε(x), x)−H(p, x)−DpH(p, x) · (Duε(x)− p) dν.
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Now Duε = P +Dvε, where vε = ηε∗v is periodic. Consequently
∫
Rn

∫
Tn DpH ·Dvε dν = 0,

according to (3.4). Then

(3.12)

γ

2

∫
Rn

∫
Tn

|Duε − p|2 dν +
∫
Tn

βε dσ

≤ H̄(P )−
∫
Rn

∫
Tn

H + DpH · (P − p) dν + Cε.

Next, P ∈ ∂L̄(V ) implies L̄(V ) + H̄(P ) = P · V . Furthermore L(DpH(p, x), x) +
H(p, x) = DpH(p, x) · p. Recalling that V =

∫
Rn

∫
Tn DpH dν and substituting into (3.12),

we find

(3.13)

γ

2

∫
Rn

∫
Tn

|Duε − p|2 dν +
∫
Tn

βε dσ

≤ −L̄(V ) +
∫
Rn

∫
Tn

L(DpH, x) dν + Cε = Cε.

Now send ε→ 0. Passing as necessary to a subsequence, we deduce first that βε → 0 σ-
a.e. Thus σ-a.e. point x is a point of approximate continuity of Du. Since u is semiconcave
as a function of x, it follows that u is differentiable in x, σ-a.e. Hence Duε → Du pointwise,
σ-a.e., and so (3.13) also forces p = Du(x) = P + Dv(x) ν-a.e. �

3.3 A minimax formula. The following characterization of the effective Hamiltonian
will be useful later:

Theorem 3.2. We have

(3.14) H̄(P ) = inf
v∈C1(Tn)

max
x∈Tn

H(P + Dv, x).

Proof. Let u be a viscosity solution of H(Du, x) = H̄(P ) and let σ be a corresponding
measure; so that div(σDpH(Du, x)) = 0. As before, we think of u as depending only on
x. Take û = P · x + v̂, where v̂ any Tn-periodic, C1 function. Then convexity implies
H(Du, x) + DpH(Du, x) · (Dû−Du) ≤ H(Dû, x). We integrate with respect to σ:

H̄(P ) =
∫
Tn

H(Du, x) dσ ≤
∫
Tn

H(Dû, x) dσ ≤ max
x∈Tn

H(Dû, x).

Thus H̄(P ) ≤ inf v̂∈C1 maxx∈Tn H(P + Dv̂, x).
On the other hand, the smoothed function uε := ηε ∗ u = P · x + vε satisfies as above

H(Duε, x) ≤ H̄(P ) + O(ε) uniformly. And so inf v̂∈C1 maxx∈Tn H(P + Dv̂, x) ≤ H̄(P ).
�

This quick proof is due to A. Fathi. Several authors, among them Mañé, Contreras–
Iturriaga–Paternain and Gomes, have independently derived this identity. Fathi and
Siconolfi [F-S] have recently shown that there exists a C1 subsolution of (C).
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3.4 Homogenization. The effective Hamiltonian first arose in the PDE literature
in consideration of periodic homogenization problems for Hamilton–Jacobi equations, as
introduced by Lions–Papanicolaou–Varadhan [L-P-V]. (See also [E-1].) These authors look
at the initial value problem:

(3.15)
{

uε
t + H

(
Duε, x

ε

)
= 0 in Rn × (0,∞)

uε = g on Rn × {t = 0},

under the primary assumption that the mapping x �→ H(p, x) is Tn-periodic. Consequently
as ε→ 0 the nonlinearity in (3.15) is rapidly oscillating; and the problem is to understand
the limiting behavior of the solutions uε. Lions, Papanicolaou and Varadhan show that
uε → u, the limit function u solving the intial value problem{

ut + H̄(Du) = 0 in Rn × (0,∞)
u = g on Rn × {t = 0}.

Majda and Souganidis [M-S] discuss an interesting application of these ideas to turbulent
premixed flames: see also Bourlioux–Khouider [B-K] for numerical studies.

Convexity of H. It is worth remarking that Lions et al. do not need to assume that
p �→ H(p, x) be convex, and indeed their solution of the cell problem (C) requires only the
coercivity condition that H(p, x)→∞ as p→∞. It is a major open problem to interpret
what H̄ means for dynamics, should H be nonconvex in the momenta.

4. Partial regularity theory.

We devote this section to showing as in [E-G1] that our solution u of the cell problem
is “smoother” on the support of σ than it may be elsewhere in Tn.

4.1 Derivative estimates in the variable x. We provide first some purely formal
L2 and L∞ estimates for D2

xu on the support of σ.

L2-inequalities. We assume that u is smooth, differentiate the cell PDE (C) twice
with respect to xi, and add:

Hpkpl
(Dxu, x)uxkxiuxlxi + Hpk

(Dxu, x)uxkxixi

+ 2Hpkxi(Dxu, x)uxkxi + Hxixi(Dxu, x) = 0.

By uniform convexity, the first term on the left is greater than or equal to γ|D2
xu|2. Thus

γ

∫
Tn

|D2
xu|2 dσ +

∫
Tn

DpH ·Dx(∆xu) dσ ≤ C + C

∫
Tn

|D2
xu| dσ.

Since ∆xu = ∆xv is periodic, the second term on the left equals zero, according to (T ).
We consequently conclude

(4.1)
∫
Tn

|D2
xu|2 dσ ≤ C,

13



for some constant C depending only on H and P . �
L∞-inequalities. We can similarly differentiate the cell PDE twice in any unit direc-

tion ξ, to find

Hpkpl
(Dxu, x)uxkξuxlξ + Hpk

(Dxu, x)uxkξξ

+ 2Hpkξ(Dxu, x)uxkξ + Hξξ(Dxu, x) = 0,

for uξξ :=
∑n

i,j=1 uxixj ξiξj . Take a nondecreasing, function Φ : R → R, and write φ :=
Φ′ ≥ 0. Multiply the above identity by φ(uξξ), and integrate with respect to σ. After some
simplifications, we find

γ

2

∫
Tn

|Dxuξ|2φ(uξξ) dσ +
∫
Tn

DpH ·Dx(Φ(uξξ)) dσ ≤ C

∫
Tn

φ(uξξ) dσ.

Since uξξ = vξξ is periodic, the second term on the left is zero. We select φ(z) = 1 if
z ≤ −β and φ(z) = 0 if z > −β, for a constant β > 0. Since |Dxuξ|2 ≥ u2

ξξ, we conclude
that σ({uξξ ≤ −β}) = 0 if µ is large enough. Because semiconcavity provides the opposite
estimate uξξ ≤ α, we thereby derive the formal bound

(4.2) |uξξ| ≤ C σ-a.e.,

the constant C depending only upon known quantities. �
We next state a rigorous analog of estimates (4.1), (4.2), with difference quotients re-

placing some of the derivatives.

Theorem 4.1. (i) There exists a constant C, depending only on H and P , such that

(4.3)
∫
Tn

|Dxu(P, x + h)−Dxu(P, x)|2 dσ ≤ C|h|2

for h ∈ Rn.
(ii) In addition, there exists a constant C such that

(4.4) |u(P, x + h)− 2u(P, x) + u(P, x− h)| ≤ C|h|2

for all h ∈ Rn and each point x ∈ spt(σ).

If Dxu(P, x + h) is multivalued, we interpret (4.3) to mean

(4.5)
∫
Tn

|ξ −Dxu|2 dσ ≤ C|h|2

for some σ-measurable selection ξ ∈ Dxu(P, ·+ h).

Application: Lipschitz estimates for the support of ν. We next note that spt(ν)
lies on a Lipschitz continuous graph.

14



Theorem 4.2. There exists a constant C such that

(4.6) |u(P, y)− u(P, x)−Dxu(P, x) · (y − x)| ≤ C|x− y|2

for all y ∈ Tn and σ-a.e. point x ∈ Tn. Furthermore,

(4.7) |Dxu(P, y)−Dxu(P, x)| ≤ C|x− y|

for all y ∈ Tn and for σ-a.e. point x ∈ Tn.

In fact, u is differentiable at each point x ∈ spt(σ), and estimates (4.6), (4.7) hold for all
y ∈ Tn, x ∈ spt(σ). When Dxu(P, y) is multivalued, (4.7) asserts |ξ−Dxu(P, x)| ≤ C|x−y|
for all ξ ∈ Dxu(P, y). In particular, for multivalued Dxu(P, y) we have the estimate
diam(Dxu(P, y)) ≤ C dist(y, spt(σ)), providing a quantitative justification to the informal
assertion that “the support of σ misses the shocks in Du”.

As an application of these bounds, we observe next that the setM = spt(ν) lies on an
n-dimensional Lipschitz continuous graph. This important theorem (in position-velocity
variables) is due to Mather.

Theorem 4.3. ([Mt2]) There exists a constant C for which

(4.8) |Dxu(P, x1)−Dxu(P, x2)| ≤ C|x1 − x2|

for σ-a.e. pair of points x1, x2.

4.2 Derivative estimates in the variable P . We turn next to some bounds involving
variations in P , and as before begin with a heuristic calculation. So for the moment suppose
u and H̄ are smooth, differentiate the cell PDE (C) twice with respect to Pi, and sum:

Hpkpl
(Dxu, x)uxkPiuxlPi + Hpk

(Dxu, x)uxkPiPi = H̄PiPi(P ).

The first term is greater than or equal to γ|D2
xP u|2. Consequently

γ

∫
Tn

|D2
xP u|2 dσ +

∫
Tn

DpH ·Dx(∆
P
u) dσ ≤ ∆H̄(P ),

where ∆H̄ is the Laplacian of H̄ in P . Since ∆
P
u = ∆

P
v is periodic, (T ) implies the

second term on the left equals zero. Therefore

(4.9)
∫
Tn

|D2
xP u|2 dσ ≤ C∆H̄(P ) ≤ C,

if D2H̄(P ) exists and is bounded. (I do not know how even formally to derive a sup-norm
bound for |D2

xP u| on the support of σ.)

We next state a rigorous version of this calculation, which replaces derivatives by dif-
ference quotients.

15



Theorem 4.4. There exists a positive constant C such that

(4.10)
∫
Tn

|Dxu(P̃ , x)−Dxu(P, x)|2 dσ ≤ C(H̄(P̃ )− H̄(P )− V · (P̃ − P ))

for all P̃ ∈ Rn.

If Dxu(P̃ , x) is multivalued, we interpret (4.10) to mean∫
Tn

|ξ̃ −Dxu(P, x)|2 dσ ≤ C(H̄(P̃ )− H̄(P )− V · (P̃ − P ))

for some σ-measurable selection ξ̃ ∈ Dxu(P̃ , ·).
Application: strict convexity of H̄ in certain directions. The next estimate

allows us to deduce certain strict convexity properties of H̄.

Theorem 4.5. There exists a positive constant C such that if H̄ is twice differentiable at
P , then

(4.11) |DH̄(P ) ·R| ≤ C(R ·D2H̄(P )R)1/2

for each R ∈ Rn.

So if D2H̄(P ) exists, the effective Hamiltonian is strictly convex in any direction R
which is not tangent to its level set {H̄ = H̄(P )}.
Idea of proof. We provide only the relevant formal calculations here. Differentiating the
cell problem with respect to P gives DpHDxP u = DH̄. Therefore

|DH̄(P ) ·R| ≤ C

∫
Tn

|DxP u ·R| dσ ≤ C

(∫
Tn

|DxP u ·R|2 dσ

) 1
2

≤ C(R ·D2H̄(P )R)1/2,

the last inequality following from calculations as above. See [E-G1] for details. �

5. A new variational principle.

5.1 Calculus of variations in the sup–norm. The minimax formula (3.14) suggests
that we can compute H̄(P ) by trying to minimize the sup–norm of H(P +Dv, x) over Tn.
This viewpoint is strongly reminiscent of “Aronsson’s variational principle” in the calculus
of variations: see Barron [B] for more about this. The idea is that we should not just try
to minimize the sup–norm of H(P + Dv, x) over Tn, but should rather look for a function
v which minimizes

||H(P + Dv, x)||L∞(U),

relative to its boundary values, for each open subdomain U ⊂ T
n. We then call v an

absolute minimizer.
16



In this section we take inspiration from these ideas, to construct a new approximation
using an exponential expression, as in [E3]. An advantage is that this technique will
simultaneously build a (sub)solution u of the eikonal equation (C) and a measure solution
σ of the transport equation (T ). So given a positive integer k, we look for vk ∈ C1(Tn) to
minimizing the functional

(5.1) Ik[v] :=
∫
Tn

ekH(P+Dvk,x) dx.

Under usual assumptions on H, there exists a minimizer vk ∈ C∞(Tn), which is unique
once we require

∫
Tn vk dx = 0.

PDE interpretations. The Euler–Lagrange equation for our minimizer of Ik[·] is

(5.2) div(ekH(Duk,x)DpH(Duk, x)) = 0,

where we have as usual set uk := P · x + vk. Define

(5.3) σk :=
ekH(Duk,x)∫

Tn ekH(Duk,x)dx
= ek(H(Duk,x)−H̄k(P )),

for

(5.4) H̄k(P ) :=
1
k

log
(∫

Tn

ekH(Duk,x)dx

)
.

Then σk ≥ 0 and
∫
Tn dσk = 1, where dσk := σk dx. Observe that the Euler–Lagrange

equation (5.2) now reads

(5.5) div(σkDpH(Duk, x)) = 0.

This is a form of our transport equation (T ).

5.2 Convergence, approximating the effective Hamiltonian. Passing if necessary
to a subsequence, we have uk → u = P ·x+v uniformly, and Duk ⇀ Du = P +Dv weakly
in Lv(Tn;Rn), where v ∈ W 1,∞(Tn). In addition, we may also suppose that σk ⇀ σ
weakly as measures, where σ is a Radon probability measure on Tn.

Theorem 5.1. (i) We have

(5.6) H̄(P ) = lim
k→∞

H̄k(P ) = lim
k→∞

1
k

log
(∫

Tn

ekH(Duk,x)dx

)
.

(ii) The function u is a viscosity solution of Aronsson’s equation

(5.7) −Hpi(Du, x)Hpj (Du, x)uxixj = Hxi(Du, x)Hpi(Du, x).
17



(iii) Furthermore,

(5.8) H(Du, x) ≤ H̄(P ) a.e. in Tn.

The mysterious PDE (5.7) is in effect the Euler-Lagrange equation for our limit “varia-
tional problem in the sup-norm”. Several authors have proposed so naming this equation
to honor G. Aronsson’s pioneering contributions.

Idea of proof. We will only prove (i). Take u = P · x + v solving (C). Then∫
Tn

ekH(P+Dvk,x)dx ≤
∫
Tn

ekH(P+Dv,x)dx = ekH̄(P ),

and consequently

lim sup
k→∞

1
k

log
(∫

Tn

ekH(Duk,x)dx

)
≤ H̄(P ).

Suppose next that

lim inf
k→∞

1
k

log
(∫

Tn

ekH(Duk,x)dx

)
< H̄(P )− ε

for some ε > 0. Let Lε,k :=
{
x ∈ Tn | H(Duk, x) > H̄(P )− ε

2

}
. Then for some sequence

kj → ∞, we have 1
kj

log |Lε,kj | + H̄(P ) − ε
2 ≤ H̄(P ) − ε. This implies |Lε,kj | ≤ e−kj

ε
2 .

Hence for each measurable set A ⊂ Tn with |A| > 0,∫
−

A

H(Du, x) dx ≤ lim inf
kj→∞

∫
−

A

H(Dukj , x) dx ≤ H̄(P )− ε

2
,

the slash through the integral denoting an average, and so H(Du, x) ≤ H̄(P )− ε
2 a.e.

We now set uδ := ηδ ∗ u, where ηδ denotes a standard mollifier. Then H(Duδ, x) ≤
H̄(P )− ε

4 in Tn for sufficiently small δ > 0. This however contradicts the minimax formula
(3.14), as uδ = P · x + vδ for some smooth, periodic function vδ. �

5.3 Minimizing measures again. To understand more about the structure of the
measure σ, it is convenient to lift into Rn × Tn, as follows. Define

(5.9) µk := δ{v=DpH(Duk,x)}σ
k;

that is,
∫
Rn

∫
Tn Φ(v, x) dµk =

∫
Tn Φ(DpH(Duk, x), x) dσk for each C1 function Φ.

It is not hard to check that the family of probability measures {µk}∞k=1 on Rn × Tn

is tight. Passing to a subsequence if necessary, we may suppose that µk ⇀ µ weakly as
measures, for µ a probability measure on Rn × Tn. Note that σ = projx µ, the projection
of µ into Tn. Define also the vector

(5.10) V :=
∫
Rn

∫
Tn

v dµ.

18



Theorem 5.2. (i) The measure µ is weakly flow invariant; that is,

(5.11)
∫
Rn

∫
Tn

v ·Dφ dµ = 0

for all φ ∈ C1(Tn).
(ii) The limit

(5.12) lim
k→∞

∫
Tn

H(Duk, x) dσk = H̄(P )

holds.
(iii) Furthermore,

(5.13) A[µ] =
∫
Rn

∫
Tn

L(v, x) dµ = L̄(V ), V ∈ ∂H̄(P ).

(iv) The function u is differentiable σ-almost everywhere and

(5.14) v = DpH(Du, x) µ-almost everywhere.

In particular, V :=
∫
Tn DpH(Du, x) dσ.

(v) We have

(5.15) H(Du, x) = H̄(P ) σ-almost everywhere

and

(5.16) div(σDpH) = 0 in Tn.

Note we are only asserting that the eikonal PDE (5.15) holds on the support of σ. This
is the primary difference between our approach and that of §3-4. Equations (5.15) and
(5.16) are forms of our basic PDE (C) and (T ).

Remark: the two definitions of L̄. We can now show that the effective Lagrangian
L̄, defined in (3.12) as the convex dual of H̄, agrees with the earlier definition (1.13) (as
the value of Mather’s variational problem).

For this, let µ̃ be any measure satisfying (1.10) − (1.12) and suppose temporarily that
u = P ·x+ v built above is smooth. Then we calculate upon recalling (1.9) that for any P

A[µ̃] + H̄(P ) =
∫
Rn

∫
Tn

L(v, x) + H(Du, x) dµ̃

≥
∫
Rn

∫
Tn

v · (P + Dv) dµ̃ = P ·
∫
Rn

∫
Tn

v dµ̃ = P · V.

Consequently
A[µ̃] ≥ max

P
{P · V − H̄(P )} = L̄(V ).

By smoothing u as usual with a mollifer, we obtain this inequality in general. But in view
of (5.13) we also have equality for the measure µ built above, and this establishes the
identity (1.13). (The proof of (5.13) as written in [E3] invokes (1.13), but this fact is not
really used.)

5.4 Useful formulas. We compute next the first and second derivatives of H̄k:
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Theorem 5.3. For k = 1, . . . and P ∈ Rn, we have the formulas

(5.17) DH̄k(P ) =
∫
Tn

DpH(Duk, x) dσk

and

(5.18)

D2H̄k(P ) = k

∫
Tn

(DpH(Duk, x)D2
xP uk −DH̄k(P ))

⊗ (DpH(Duk, x)D2
xP uk −DH̄k(P )) dσk

+
∫
Tn

D2
pH(Duk, x)D2

xP uk ⊗D2
xP uk dσk.

In particular, H̄k is a convex function of P .

Proof. We have ekH̄k(P ) =
∫
Tn ekH(Duk,x)dx. Differentiate with respect to Pl:

(5.19)
kekH̄k

H̄k
Pl

=
∫
Tn

ekH(Duk,x)kHpiu
k
Plxi

dx

=
∫
Tn

ekH(Duk,x)kHpi(δl,i + vk
Plxi

) dx =
∫
Tn

ekH(Duk,x)kHpl
dx,

the last equality holding by (5.5). We cancel the k and rearrange, to derive (5.17).
As above, write out the lth component of (5.17), and differentiate with respect to Pm:

ekH̄k

(H̄k
PlPm

+ kH̄k
Pl

H̄k
Pm

) =
∫
Tn

ekH(Duk,x)(Hpiu
k
PmPlxi

+ Hpipj u
k
Plxi

uk
Pmxj

) dx

+ k

∫
Tn

ekH(Duk,x)Hpiu
k
Plxi

Hpj u
k
Pmxj

dx.

The integral of the first term on the right is zero, and we can refashion the remaining
expressions into formula (5.18). �

Application: nonresonance and averaging. Assume that H̄ is differentiable at P
and that V = DH̄(P ) satisfies the nonresonance condition:

(5.20) V ·m �= 0 for each vector m ∈ Zn, m �= 0.

Theorem 5.4. Suppose also that D2H̄k(P ) is bounded as k →∞. Then

(5.21) lim
k→∞

∫
Tn

Φ(DP uk(P, x)) dσk =
∫
Tn

Φ(X) dX

for each continuous, Tn-periodic function Φ.
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Proof. Observe first that the function e2πim·DP uk

= e2πim·xe2πim·DP vk

is Tn-periodic.
Hence we have

0 =
∫
Tn

DpH(Duk, x) ·Dx

(
e2πim·DP uk

)
dσk

= 2πi

∫
Tn

e2πim·DP uk

m ·DpH(Duk, x)D2
xP uk dσk

= 2πi

∫
Tn

e2πim·DP uk

m ·DP H̄k(P ) dσk

+ 2πi

∫
Tn

e2πim·DP uk

m · (DpH(Duk, x)D2
xP uk −DP H̄k(P )) dσk.

Consequently if m �= 0, the identity (5.18) implies

|(m ·DP H̄k(P ))
∫
Tn

e2πim·DP uk

dσk| ≤ |m|
∫
Tn

|DpH(Duk, x)D2
xP uk −DP H̄k(P ))| dσk

≤ |m|(k−1∆H̄k(P ))
1
2 .

Since DH̄k(P )→ DH̄(P ) = V and m·V �= 0, we deduce that limk→∞
∫
Tn e2πim·DP uk

dσk =
0, and so limk→∞

∫
Tn Φ(DP uk(P, x)) dσk =

∫
Tn Φ(X) dX for each periodic function Φ

whose Fourier expansion contains only finitely many nonzero terms. Such functions are
dense in the sup–norm. �

Interpretation. Suppose that we regard u = u(P, x) as a smooth generating func-
tion, inducing as in (1.5) the canonical change of variables (p, x) → (P, X), where p =
Dxu(P, x), X = DP u(P, x). Then the corresponding Hamiltonian dynamics become (1.7)
and consequently X(t) = V t+X0. According to the nonresonance condition, we then have

lim
T→∞

1
T

∫ T

0

Φ(X(t)) dt =
∫
Tn

Φ(X) dX.

Assertion (5.21) is consistent with this interpretation.

An important challenge for weak KAM theory is understanding further analytic conse-
quences of (5.20), and stronger Diophantine conditions, beyond conventional application
to small–divisor problems.

6. Quantum analogs.

This final section records a some observations and comments concerning the possible
implications for quantum mechanics of weak KAM theory. I believe that investigating how
to “quantize” weak KAM theory is definitely important, although it is not so clear whether
these particular ideas will prove really useful. (A more honest title for this section would
be “Quantum analogs ???”.)
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We will discuss only the Hamiltonian

(6.1) H(p, x) :=
1
2
|p|2 + W (x),

in which the smooth potential W is Tn-periodic. The corresponding stationary Schrödinger
equation is

(6.2) −h2

2
∆ψ + Wψ = Eψ in Rn,

E denoting the energy level and h Planck’s constant.

6.1 Action minimizers. We propose as a quantum version of Mather’s minimization
principle to find a complex-valued state ψ minimizing the action

(6.3) A[ψ] :=
∫
Tn

h2

2
|Dψ|2 −W |ψ|2dx,

subject to the constraints that

(6.4)
∫
Tn

(ψ̄Dψ − ψDψ̄) ·Dφ dx = 0 for all φ ∈ C1(Tn),

(6.5)
∫
Tn

|ψ|2 dx = 1,

and

(6.6)
h

2i

∫
Tn

ψ̄Dψ − ψDψ̄ dx = V.

If ψ is smooth, condition (6.4) reads div(j) = div(ψ̄Dψ − ψDψ̄) = 0: this is the analog of
the flow invariance.

Let us take the complex-valued state in polar form

(6.7) ψ = aeiu/h,

where the phase u = P ·x+ v for some Tn-periodic function v. Thus ψ has the Bloch wave
form

(6.8) ψ = e
iP ·x

h φ,

for a periodic function φ. The action is then

(6.9) A[ψ] =
∫
Tn

h2

2
|Da|2 +

a2

2
|Du|2 −Wa2 dx,
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and the constraints (6.4)–(6.6) become

(6.10) div(a2Du) = 0,

(6.11)
∫
Tn

a2 dx = 1,

(6.12)
∫
Tn

a2Du dx = V.

Quantum and classical action. We first present from [E2] an inequality between the
effective Lagrangian L̄ and the quantum action of a state ψ satisfying (6.4) − (6.6), for
which a2Du = h

i Dψ ψ̄ is periodic. To do so, we reintroduce our solution of the eikonal
equation:

(C)
|Dû|2

2
+ W = H̄(P ),

where û = P · x + v̂ and v̂ is periodic. To simplify notation later we are now introducing
a circumflex for the solution of (C).

Theorem 6.1. For each P ∈ Rn we have the equality

(6.13) A[ψ]− L̄(V ) + H̄(P ) + L̄(V )− P · V =
h2

2

∫
Tn

|Da|2dx + 1
2

∫
Tn

|Dû−Du|2 a2dx.

In particular, if we take P ∈ ∂L̄(V ), then

(6.14) A[ψ]− L̄(V ) =
h2

2

∫
Tn

|Da|2 dx + 1
2

∫
Tn

|Dû−Du|2 a2dx.

Proof. The left-hand side of (6.13) is

A[ψ] + H̄(P )− P · V =
∫
Tn

h2

2
|Da|2 +

|Du|2
2

a2 −Wa2dx

+
∫
Tn

( |Dû|2
2

+ W )a2dx−
∫
Tn

P ·Du a2dx.

This equals

h2

2

∫
Tn

|Da|2dx + 1
2

∫
Tn

(|Dû|2 + |Du|2)a2dx−
∫
Tn

(P + Dv̂) ·Du a2dx,

since v̂, a2Du are periodic and div(a2Du) = 0. The foregoing simplifies to become the
right hand side of (6.13). �
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Observe that since H̄(P ) + L̄(V ) ≥ P · V , with equality if and only if P ∈ ∂L̄(V ), this
should be our optimal choice for P . Then (6.14) asserts that

L̄(V ) ≤ A[ψ]

for all quantum states ψ satisfying (6.4)− (6.6), for the given average flux. So the classical
minimum of the action is a lower bound for the quantum action. It would be extremely
interesting to understand if and when this lower bound is approached as h→ 0.

The appendix of a recent paper by Gosse and Markowich [G-Mk] considers somewhat
similar issues for the one-dimensional case.

First and second variation. ([E4]) We turn to a more careful analysis of our quantum
action minimization problem. Let {(u(τ), a(τ))}−1≤τ≤1 be a smooth one-parameter family
satisfying (6.10)–(6.12), with (u(0), a(0)) = (u, a). Define

j(τ) :=
∫
Tn

h2

2
|Da(τ)|2 +

a2(τ)
2
|Du(τ)|2 −Wa2(τ) dx

and write ′ = d
dτ .

Theorem 6.2. (i) We have j′(0) = 0 for all variations if and only if

(6.15) −h2

2
∆a = a

( |Du|2
2

+ W − E

)

for some real number E.
(ii) If (6.15) holds and a > 0, then

j′′(0) =
∫
Tn

a2|Du′|2 + a2 |D(a′/a)|2 dx.

Thus j′′(0) > 0, provided a′ �= 0.

We interpret (6.15) as the Euler–Lagrange equation for our minimization problem.

Idea of proof. We will prove only assertion (i). First, compute

j′ =
∫
Tn

h2Da ·Da′ + aa′|Du|2 + a2Du ·Du′ − 2Waa′dx.

Next, differentiate (6.10), (6.12):

(6.16) div(2aa′Du + a2Du′) = 0

(6.17)
∫
Tn

2aa′Du + a2Du′dx = 0.
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Recall that Du = P + Dv. Multiply (6.16) by v, integrate by parts, then take the in-
ner product of (6.17) with P . Adding the resulting expressions gives us the identity∫
Tn 2aa′|Du|2 + a2Du′ ·Du dx = 0. Hence

j′ =
∫
Tn

h2Da ·Da′ − aa′|Du|2 − 2Waa′dx = 2
∫
Tn

a′
(
−h2

2
∆a−

( |Du|2
2

+ W

)
a

)
dx.

Then j′(0) = 0 for all such a′, provided −h2

2 ∆a −
(
|Du|2

2 + W
)

a = −Ea for some real

constant E. This is so since the variation a′ must satisfy the identity
∫
Tn a′a dx = 0, had

upon differentiating (6.11). �

6.2 Quasimodes. Our task now is constructing an explicit state ψ, which will turn
out to be a critical point of A[·], subject to (6.4) − (6.6). Many of our computations are
similar to those in the interesting paper of Anantharaman [A].

Dual eigenfunctions. We start with two linear problems. Consider the dual eigenvalue
problems:

(6.18)

{
−h2

2 ∆w + hP ·Dw −Ww = E0w in Tn

w is Tn-periodic

and

(6.19)

{
−h2

2 ∆w∗ − hP ·Dw∗ −Ww∗ = E0w∗ in Tn

w∗ is Tn-periodic,

where E0 = E0(P ) ∈ R is the principal eigenvalue. We take the real eigenfunctions w, w∗

to be positive in Tn and normalized so that
∫
Tn ww∗dx = 1. Define

v := −h log w, v∗ := h log w∗.

Then

(6.20) w = e−v/h, w∗ = ev∗/h,

and a calculation shows that

(6.21)

{
−h

2 ∆v + 1
2 |P + Dv|2 + W = H̄h(P ) in Tn

v is Tn-periodic,

(6.22)

{
h
2 ∆v∗ + 1

2 |P + Dv∗|2 + W = H̄h(P ) in Tn

v∗ is Tn-periodic,

for

(6.23) H̄h(P ) :=
|P |2
2
− E0(P ).

Transport and eikonal equations. Write

(6.24) σ := ww∗ = e
v∗−v

h , u := x · P +
v + v∗

2
.

Then σ > 0 and
∫
Tn σ dx = 1.
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Theorem 6.3. (i) We have

(6.25) div(σDu) = 0 in Tn.

Furthermore,

(6.26)
1
2
|Du|2 + W − H̄h(P ) =

h

4
∆(v − v∗)− 1

8
|Dv −Dv∗|2 in Tn.

(ii) In addition, these integral identities hold:

(6.27)
∫
Tn

1
2
|Du|2 + W dσ = H̄h(P ) +

1
8

∫
Tn

|Dv −Dv∗|2 dσ

and

(6.28)
∫
Tn

|D2u|2 +
1
4
|D2v −D2v∗|2 dσ = −

∫
Tn

∆W dσ.

(iii) Assume next that û = P · x + v̂ solves (C). Then

(6.29)
1
2

∫
Tn

|1
2
D(v + v∗)−Dv̂|2 dσ +

1
8

∫
Tn

|Dv −Dv∗|2 dσ = H̄(P )− H̄h(P ).

We call (6.25) the transport equation, and regard (6.26) as an eikonal equation with an
error term.

It turns out that H̄(P )→ H̄h(P ) as h→ 0. In addition, the measure σ = σh converges
weakly to a minimizing measure in the sense of §2. Anantharaman [A] provides much more
interesting and detailed information about the limit measure, characterized in her paper
as maximizing an entropy functional.

A quantum state. Now we define

(6.30) ψ := ae
iu
h ,

for

(6.31) a := σ1/2 = e
v∗−v

2h .

We can calculate explicitly that

(6.32)
1
2
|Du|2 + W − H̄h(P ) = −h2

2
∆a

a
in Tn.

According then to Theorem 6.2, our ψ is a critical point of the action A[·]. We can also
introduce L̄h, the Legendre transform of H̄h, and write Vh := DH̄h(P ). It turns out that
the quantum action of ψ is A[ψ] = L̄h(Vh).
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An approximate solution. We study next to what extent our ψ is an approximate
solution of the stationary Schrödinger equation (6.2). Calculate:

(6.33)
−h2

2
∆ψ + Wψ − Eψ =

(
1
2
|Du|2 + W − E

)
ψ − ih

2
div(a2Du)

a2
ψ − h2

2
∆a

a
ψ

=: A + B + C.

In view of (6.25), B ≡ 0. Now take E = H̄h(P ). According to (6.32), A ≡ C; that is,
the formal O(1)–term identically equals the formal O(h2)–term in the expansion (6.33).
Therefore

(6.34) −h2

2
∆ψ + Wψ − Eψ = 2(

1
2
|Du|2 + W − H̄h(P ))ψ

for E = H̄h(P ).

Theorem 6.4. If E = H̄h(P ),

(6.35) −h2

2
∆ψ + Wψ − Eψ = O(h),

the right hand side estimated in L2(Tn).

Idea of proof. Define the remainder term R := 2( 1
2 |Du|2 + W − H̄h(P ))ψ. Then

1
4

∫
Tn

|R|2 dx =
∫
Tn

(
h

4
∆(v − v∗)− 1

8
|D(v − v∗)|2

)2

dσ

=
∫
Tn

h2

16
(∆(v − v∗))2 − h

16
∆(v − v∗)|D(v − v∗)|2 +

1
64
|D(v − v∗)|4 dσ.

Integrating by parts in the middle term on the right leads after some simple estimates to
the inequality

(6.36)
∫
Tn

|R|2 dx +
∫
Tn

|D(v − v∗)|4 dσ ≤ Ch2

∫
Tn

|D2(v − v∗)|2 dσ.

We then deduce from (6.28) that R is of order at most O(h) in L2(Tn). �

The final inequality shows that if E = H̄h(P ) and if

(6.37)
∫
Tn

|D2(v − v∗)|2dσ = o(1),

then −h2

2 ∆ψ + Wψ −Eψ = o(h) in L2(Tn). We may hope that assertion (6.37) is true in
some generality, although it can certainly fail, as has been shown by Y. Yu [Y]. Further
progress for this approach depends upon our indentifying conditions under which estimate
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(6.37) holds, and it is unclear to me what the prospects for this are. The nonresonance
condition (5.20) will possibly be relevant for this.

Comparison with stochastic mechanics. I note in passing that there are striking
formal connections with the Guerra–Morato and Nelson variational principle in stochastic
quantum mechanics, as set forth in Nelson [N], Guerra–Morato [G-M], etc. See [E4] for
some more discussion. I thank A. Majda for these references.

6.3 More homogenization. This section works out some relationships between H̄h and
homogenization theory for divergence–structure, second order elliptic PDE. (Cf. Bensoussan–
Lions–Papanicolaou [B-L-P] and especially Capdeboscq [Cp]).

Let A = ((aij)) be symmetric, positive definite, and Tn-periodic. Consider then this
boundary value problem for an elliptic PDE with rapidly varying coefficients:

{
−

(
aij

(
x
ε

)
uε

xi

)
xj

= f in U

uε = 0 on ∂U,

Then uε ⇀ u weakly in H1
0 (U), u solving the limit problem

{
−āijuxixj = f in U

u = 0 on ∂U.

The effective diffusion coefficient matrix Ā = ((āij)) is determined this way. For j =
1, . . . , n, let χj solve the corrector problem

(6.38)

{
−(aklχ

j
xk

)xl
= (ajl)xl

in Tn

χj is Tn-periodic.

Let us then for i, j = 1, . . . , n, set

(6.39) āij :=
∫
Tn

aij − aklχ
i
xk

χj
xl

dx.

Theorem 6.5. Define Vh = DH̄h(P ). Then

(6.40) ĀP = Vh,

where Ā = ((āij)) is the effective coefficient matrix corresponding to A := a2I = ((a2δij)).

Proof. For the special case of the diagonal matrix A, the corrector PDE (6.38) reads

{
−(a2χj

xk
)xk

= (a2)xj
in Tn

χj is Tn-periodic.
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Now u = x · P + 1
2 (v + v∗) solves div(σDu) = 0, and therefore

−div
(

a2 1
2
D(v + v∗)

)
= div(a2P ) = D(a2) · P.

Hence v+v∗

2 = Piχ
i. Consequently for j = 1, . . . , n:

Vj =
∫
Tn

uxj dσ =
∫
Tn

(χi + xi)xj Pi dσ = Pj −
∫
Tn

χiPiσxj dx

= Pj +
∫
Tn

χiPi(a2χj
xk

)xk
dx = Pj −

∫
Tn

Pia
2χi

xk
χj

xk
dx = (ĀP )j .

�

Appendix: On notation.

This chart translates between some of our notation and that more customary in physics.

this paper meaning typical physics notation

u action function S

x position q

p momentum p

v velocity q̇

X ‘angle’ variable θ

P action variable I

V ‘rotation’ vector ω

W potential V

This paper modifies some of the notation from earlier work, by now using “v, V ” for
variables previously denoted “q, Q” in the papers [E-G1-3, E2-3]. Our effective Hamiltonian
H̄ corresponds to Mather’s function α and our L̄ corresponds to his β.
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