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Overview

Overview

This talk presents several recent results in quantum chaos, including

lower bounds on mass of eigenfunctions and semiclassical measures
observability for Schrödinger equations
spectral gaps and exponential wave decay for open systems

The proofs are based on the following ideas:

Use the classical/quantum correspondence to its limit
Apply the fractal uncertainty principle (FUP):

No function can be localized in both position
and frequency near a fractal set

General FUP is only known in dimension 1, and most (but not all)
results are in the setting of negatively curved surfaces
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Overview
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Compact case

Control of eigenfunctions

(M, g) compact negatively curved surface
Geodesic flow on M is a standard model
of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

‖u‖L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

Constant curvature: D–Jin ’18, using D–Zahl ’16 and Bourgain–D ’18
Variable curvature: D–Jin–Nonnenmacher ’22, using Bourgain–D ’18
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Control of eigenfunctions

(M, g) compact negatively curved surface
Geodesic flow on M is a standard model
of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

‖u‖L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

For bounded λ the estimate follows from unique continuation principle
The new result is in the high frequency limit λ→∞
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Compact case

An illustration

Picture on the right courtesy of Alex Strohmaier, using Strohmaier–Uski ’12

Disk (Dirichlet b.c.) Hyperbolic surface
Whitespace in the middle No whitespace

Semyon Dyatlov FUP and Quantum Chaos July 12, 2022 5 / 17



Compact case

Applications to PDE

Theorem 2 [Jin ’18, D–Jin–Nonnenmacher ’22]

Let (M, g) be a compact negatively curved surface and Ω ⊂ M nonempty
open. Then ∀T > 0 ∃C > 0: any u(t, x) solving the Schrödinger equation

(i∂t + ∆g )u(t, x) = 0, u(0, x) = u0(x)

satisfies the observability estimate

‖u0‖2L2(M) ≤ C

∫ T

0

∫
Ω
|u(t, x)|2 d volg (x) dt.

Previously known only for flat tori: Jaffard ’90, Haraux ’89, Komornik ’92,
Anantharaman–Macià ’10, Burq–Zworski ’12,’17, Bourgain–B–Z ’13

Another application is to exponential energy decay for solutions to the
damped wave equation: Jin ’20, D–Jin–Nonnnenmacher ’22
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Compact case

Semiclassical measures I

Stronger version of Theorem 1: localization in position and frequency
Use semiclassical quantization Oph(a) = a(x ,−ih∂x) where
a(x , ξ) ∈ C∞c (T ∗M) and h = λ−1 (here (−∆g − λ2)u = 0)
If (−∆g − λ2j )uj = 0 and λj →∞, we say uj converges semiclassically
to a measure µ on the cotangent bundle T ∗M if

〈Ophj (a)uj , uj〉L2(M) →
∫
T∗M

a dµ for all a ∈ C∞c (T ∗M)

The pushforward π∗µ, π : T ∗M → M, is the weak limit of the
probability measures |uj |2 d volg

Properties of semiclassical measures
µ is a probability measure
suppµ ⊂ S∗M = {(x , ξ) ∈ T ∗M : |ξ|g = 1}
µ is invariant under the geodesic flow ϕt : S∗M → S∗M
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Compact case

Semiclassical measures II

Theorem 3 [D–Jin ’18, D–Jin–Nonnenmacher ’22]

Let (M, g) be a compact negatively curved surface and µ be a semiclassical
measure associated to a sequence of eigenfunctions. Then suppµ = S∗M.

Previous results
Quantum Ergodicity (QE): if ϕt is ergodic then a density 1 sequence
of uj ’s converges to the Liouville measure µL. [ Shnirelman ’74,
Zelditch ’87, Colin de Verdière ’85, Zelditch–Zworski ’96 ]
CdV ’85: conjecture that in K < 0 (negative sectional curvature),
µ cannot be the delta measure on a closed geodesic
Rudnick–Sarnak ’94: QUE conjecture that in K < 0, µ = µL

Lindenstrauss ’06: proved QUE for arithmetic hyperbolic surfaces
Anantharaman ’08, Anantharaman–Nonnenmacher ’07: proved CdV
conjecture by showing lower entropy bounds on µ
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FUP and proofs

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency
near a fractal set

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous on scales 0 to 1

Theorem 4 [Bourgain–D ’18]

Assume that X ,Y ⊂ R are ν-porous up to scale h� 1. Then ∃β,C > 0
depending only on ν such that for all f ∈ L2(R)

supp f̂ ⊂ h−1Y =⇒ ‖f ‖L2(X ) ≤ Chβ‖f ‖L2(R).

Semyon Dyatlov FUP and Quantum Chaos July 12, 2022 9 / 17



FUP and proofs

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency
near a fractal set

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous on scales 0 to 1

Theorem 4 [Bourgain–D ’18]

Assume that X ,Y ⊂ R are ν-porous up to scale h� 1. Then ∃β,C > 0
depending only on ν such that for all f ∈ L2(R)

supp f̂ ⊂ h−1Y =⇒ ‖f ‖L2(X ) ≤ Chβ‖f ‖L2(R).

Semyon Dyatlov FUP and Quantum Chaos July 12, 2022 9 / 17



FUP and proofs

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency
near a fractal set

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous on scales 0 to 1

Theorem 4 [Bourgain–D ’18]

Assume that X ,Y ⊂ R are ν-porous up to scale h� 1. Then ∃β,C > 0
depending only on ν such that for all f ∈ L2(R)

supp f̂ ⊂ h−1Y =⇒ ‖f ‖L2(X ) ≤ Chβ‖f ‖L2(R).

Semyon Dyatlov FUP and Quantum Chaos July 12, 2022 9 / 17



FUP and proofs

A bit about proof of Theorem 1

Assume that (−∆g − λ2)u = 0, ‖u‖L2(M) = 1, λ� 1, and
‖u‖L2(Ω) � 1 for some fixed nonempty open Ω ⊂ M

Using semiclassical quantization, can study ‘localization’ of u in the
position-frequency space T ∗M (up to a limit given by uncertainty principle)

Using microlocal analysis, we see that this ‘localization’ is invariant
under the geodesic flow ϕt

(again, up to a certain point)

From here we see that u is localized close to each of the two sets

Γ± := {(x , ξ) ∈ S∗M | ∀t ≥ 0, ϕ∓t(x , ξ) /∈ Ω}

of geodesics which do not pass Ω in past/future time
The sets Γ± have porous structure in certain directions (see next slide)
Fractal uncertainty principle (Theorem 4) implies that no function u
can be localized close to both Γ+ and Γ−, giving a contradiction
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FUP and proofs

Illustration: Arnold cat map

Simpler model than the geodesic flow: an Arnold cat map on T2 = R2/Z2

ϕ : T2 → T2, ϕ(x1, x2) = (2x1 + x2, x1 + x2) mod Z2

Define Γ±(N) = {x ∈ T2 | ∀j = 0, . . . ,N, ϕ∓j(x) /∈ Ω}

Γ−(N), N = 0 Ω (in white) Γ+(N), N = 0

We see that Γ±(N) have porous structure in the stable/unstable directions

Schwartz ’21: analog of Theorem 3 for quantum cat maps
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Open case

Open quantum chaos and resonances

(M, g) noncompact convex co-compact hyperbolic (K = −1) surface

F`

`3/2

`1/2

`1/2

`3/2

`2/2

`2/2

q3

q1q2

q2 q1

D1 D2

D3 D4

γ1 γ2

`1 `2

`3

M`

Resonances: poles of the scattering resolvent

R(λ) =
(
−∆g − 1

4 − λ
2
)−1

:

{
L2(M)→ L2(M), Imλ > 0
L2comp(M)→ L2loc(M), Imλ ≤ 0

Existence of meromorphic continuation: Patterson ’75,’76, Perry ’87,’89,
Mazzeo–Melrose ’87, Guillopé–Zworski ’95, Guillarmou ’05, Vasy ’13
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Resonances: poles of the scattering resolvent

R(λ) =
(
−∆g − 1

4 − λ
2
)−1

:

{
L2(M)→ L2(M), Imλ > 0
L2comp(M)→ L2loc(M), Imλ ≤ 0

Existence of meromorphic continuation: Patterson ’75,’76, Perry ’87,’89,
Mazzeo–Melrose ’87, Guillopé–Zworski ’95, Guillarmou ’05, Vasy ’13
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Resonances: poles of the scattering resolvent

Also correspond to zeroes of the Selberg zeta function

ZM(s) =
∏

T∈LM

∏
k≥0

(1− e−(s+k)T ), s = 1
2 − iλ

where LM consists of lengths of primitive closed geodesics
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Open case

Resonances: poles of the scattering resolvent R(λ)

Featured in resonance expansions of waves:

Reλ = rate of oscillation, − Imλ = rate of decay

Borthwick ’13, Borthwick–Weich ’14: numerics for resonances
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Open case

Spectral gap

Theorem 5 [D–Zahl ’16, Bourgain–D ’18, D–Zworski ’20]

Let (M, g) be a convex co-compact hyperbolic surface. Then it has an
essential spectral gap: there exists β > 0 such that there are only finitely
many resonances λ with Imλ > −β.

Gives O(e−βt) local energy decay for linear waves (at high frequency)
Also implies Strichartz estimates: Wang ’19
Follows a long history of study of spectral gaps in this and other
similar settings (e.g. obstacle scattering):
Lax–Phillips ’67, Patterson ’76, Sullivan ’79, Ikawa ’88,
Gaspard–Rice ’89, Naud ’05, Nonnenmacher–Zworski ’09,
Petkov–Stoyanov ’10, Stoyanov ’11 . . .
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Open case

A physically relevant setting: scattering by several convex obstacles in Rn

Resonances: poles of the meromorphic continuation of (−∆g − λ2)−1

Theorem 5 [Vacossin ’22, using Bourgain–D ’18]

Let M be the exterior of several convex obstacles in R2, which satisfy the
no-eclipse condition (no line intersects 3 obstacles). Then there exists
β > 0 such that there are only finitely many resonances in {Imλ > −β}.

Observed experimentally: Barkhofen–Weich–Potzuweit–Stöckmann–Kuhl–Zworski ’13
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Higher dimensions

Higher dimensional FUP?

The results above applied to surfaces (dim = 2)
To make them work for general manifolds of dim > 2, we need
a fractal uncertainty principle for subsets of Rn, n ≥ 2
Counterexample: X ,Y ⊂ R2 are two orthogonal lines. Then
δ̂X = 2πδY and FUP fails

Here is what is known to date:
Han–Schlag ’20: FUP if X is a product of porous subsets of R
D–Jézéquel ’21: Theorem 1 for certain higher dimensional
quantum cat maps, still using 1D FUP
D–Zhang ’22?: FUP in 2D if X is a curve
Cohen ’22?: FUP for arithmetic Cantor sets that don’t contain
orthogonal lines
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Thank you for your attention!
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