EXERCISES FOR THE MINICOURSE ON FRACTAL UNCERTAINTY PRINCIPLE (WITH SOLUTIONS)

SEMYON DYATLOV

Abstract

These are companion exercises to the minicourse given at the Spring School on Transfer Operators, organized by the Bernoulli Center, Lausanne, in March 2021.

1. Describe all the elements $\gamma \in \operatorname{SL}(2, \mathbb{R})$ such that

$$
\gamma\left(\overline{\mathbb{R}} \backslash I_{2}^{\circ}\right)=I_{1} \quad \text { where } \quad I_{1}:=[1,2], \quad I_{2}:=[-1,0] .
$$

Note that these γ are all hyperbolic, i.e. $|\operatorname{tr} \gamma|>2$, which implies that γ has two fixed points on \mathbb{R}, one attractive and one repulsive. Find these fixed points. Show that any point in I_{1}° is the attractive point of some γ and similarly for repulsive points and I_{2}°.

Solution: We need

$$
\gamma(-1)=2, \quad \gamma(0)=1
$$

Writing

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a d-b c=1
$$

we get the equations

$$
\frac{b-a}{d-c}=2, \quad \frac{b}{d}=1 .
$$

Writing out in terms of a, b, we get

$$
c=\frac{a+b}{2}, \quad d=b
$$

and using the equation $a d-b c=1$ we get

$$
(a-b) b=2 .
$$

So it makes sense to parametrize by $b \neq 0$, obtaining

$$
\gamma=\left(\begin{array}{ll}
b+\frac{2}{b} & b \\
b+\frac{1}{b} & b
\end{array}\right), \quad \gamma(x)=1+\frac{x}{\left(b^{2}+1\right) x+b^{2}}
$$

The fixed point equation is $\gamma(x)=x$, which can be written as the quadratic equation

$$
c x^{2}+(d-a) x-b=0
$$

which has solutions

$$
x_{ \pm}=\frac{a-d \pm \sqrt{(a+d)^{2}-4}}{2 c}=\frac{1 \pm \sqrt{b^{4}+b^{2}+1}}{b^{2}+1} .
$$

To see which one is attractive and which one is repulsive, compute

$$
\gamma^{\prime}\left(x_{ \pm}\right)=\frac{1}{\left(c x_{ \pm}+d\right)^{2}} \quad \text { where } \quad c x_{ \pm}+d=\frac{a+b \pm \sqrt{(a+d)^{2}-4}}{2}
$$

We see that $\gamma^{\prime}\left(x_{+}\right)<1<\gamma^{\prime}\left(x_{-}\right)$, so x_{+}is the attractive point and x_{-}is the repulsive one. From the mapping properties of γ, or by direct computation, we see that $x_{+} \in I_{1}$ and $x_{-} \in I_{2}$. Moreover, as $b \rightarrow 0$ we have

$$
x_{+} \rightarrow 2, \quad x_{-} \rightarrow 0
$$

and as $b \rightarrow \infty$ we have

$$
x_{+} \rightarrow 1, \quad x_{-} \rightarrow-1
$$

which gives the last statement.
2. Let $\Gamma \subset \operatorname{SL}(2, \mathbb{R})$ be a Schottky group, with generators $\gamma_{1}, \ldots, \gamma_{r}$. Show that it is a free group with these generators, i.e. for any word $\mathbf{a} \in \mathcal{W}$, if $\gamma_{\mathbf{a}}=I$ then $\mathbf{a}=\emptyset$.

Solution: Assume that $\mathbf{a}=a_{1} \ldots a_{n}$ is a nonempty word. Since ∞ is contained in the complement of $I_{\overline{a_{n}}}$, we have $\gamma_{a_{n}}(\infty) \in I_{a_{n}}$. Since $a_{n} \neq \overline{a_{n-1}}, \gamma_{a_{n}}(\infty)$ is in the complement of $I_{\overline{a_{n-1}}}$, thus $\gamma_{a_{n-1} a_{n}}(\infty) \in I_{a_{n-1}}$. Repeating this argument, we get $\gamma_{\mathbf{a}}(\infty) \in I_{a_{1}}$. In particular, $\gamma_{\mathbf{a}}(\infty) \neq \infty$, so $\gamma_{\mathbf{a}}$ cannot be the identity.
3. This exercise explains why elements of Schottky groups have bounded distortion.
(a) We first discuss the way that a general element $\gamma \in \operatorname{SL}(2, \mathbb{R})$ can map an interval to another interval. Assume that $I, J \subset \mathbb{R}$ are intervals such that $\gamma(I)=J$. Define the distortion factor of γ on I by

$$
\alpha(\gamma, I):=\log \frac{\gamma^{-1}(\infty)-x_{1}}{\gamma^{-1}(\infty)-x_{0}} \in \mathbb{R} \quad \text { where } \quad I=\left[x_{0}, x_{1}\right]
$$

(If $\gamma^{-1}(\infty)=\infty$, that is γ is an affine map, then we put $\alpha(\gamma, I):=0$.) Show that γ can be factorized as

$$
\gamma=\gamma_{J} \gamma_{\alpha(\gamma, I)} \gamma_{I}^{-1}, \quad \gamma_{\alpha}:=\left(\begin{array}{cc}
e^{\alpha / 2} & 0 \\
e^{\alpha / 2}-e^{-\alpha / 2} & e^{-\alpha / 2}
\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})
$$

where $\gamma_{I}, \gamma_{J} \in \operatorname{SL}(2, \mathbb{R})$ are the affine maps such that $\gamma_{I}([0,1])=I, \gamma_{J}([0,1])=J$.
(b) Show that for each R there exists C such that in the notation of part (a)

$$
|\alpha(\gamma, I)| \leq R \quad \Longrightarrow \quad C^{-1} \frac{|J|}{|I|} \leq \gamma^{\prime}(x) \leq C \frac{|J|}{|I|} \quad \text { for all } \quad x \in I .
$$

(c) Let Γ be a Schottky group generated by $\gamma_{1}, \ldots, \gamma_{r} \in \operatorname{SL}(2, \mathbb{R})$. Show that there exists C_{Γ} such that for all nonempty $\mathbf{a}=a_{1} \ldots a_{n} \in \mathcal{W}$ we have

$$
C_{\Gamma}^{-1}\left|I_{\mathbf{a}}\right| \leq \gamma_{\mathbf{a}^{\prime}}^{\prime}(x) \leq C_{\Gamma}\left|I_{\mathbf{a}}\right| \quad \text { for all } \quad x \in I_{a_{n}}
$$

That is, the derivatives of the map $\gamma_{\mathbf{a}^{\prime}}$ are of comparable size at different points of $I_{a_{n}}$.
(d) Using the following special case of Γ-equivariance of the Patterson-Sullivan measure μ :

$$
\mu\left(I_{\mathbf{a}}\right)=\int_{I_{a_{n}}}\left(\gamma_{\mathbf{a}^{\prime}}^{\prime}(x)\right)^{\delta} d \mu(x)
$$

and the fact that $\mu\left(I_{a}\right)>0$ for every $a \in \mathcal{A}$, show that for some constant C_{Γ} depending only on Γ

$$
C_{\Gamma}^{-1}\left|I_{\mathbf{a}}\right|^{\delta} \leq \mu\left(I_{\mathbf{a}}\right) \leq C_{\Gamma}\left|I_{\mathbf{a}}\right|^{\delta} .
$$

Using this, show that Λ_{Γ} is δ-regular up to scale 0 with some constant depending only on Γ.

Solution: See $\S 2$ in arXiv:1704.02909.
4. This exercise explains why the transfer operator is of trace class on $\mathcal{H}(D)$. (See for instance Dyatlov-Zworski, Mathematical Theory of Scattering Resonances, Appendix B.4, for an introduction to trace class operators.) We consider the following simpler setting: $D \subset \mathbb{C}$ is the unit disk, $\mathcal{H}(D)$ is the space of holomorphic functions in $L^{2}(D)$ (it is a closed subspace of L^{2} and thus a Hilbert space), and we consider the operator

$$
L: \mathcal{H}(D) \rightarrow \mathcal{H}(D), \quad L f(z)=f(z / 2)
$$

Show that L is trace class using one or both of the following methods:
(a) the fact that $\left\{z^{k}\right\}_{k \in \mathbb{N}_{0}}$ is an orthogonal basis in $\mathcal{H}(D)$;

Solution: We have $L\left(z^{k}\right)=2^{-k} z^{k}$, so L is self-adjoint on $\mathcal{H}(D)$ and has eigenvalues $2^{-k}, k \in \mathbb{N}_{0}$. The series $\sum_{k=0}^{\infty} 2^{-k}$ converges, so L is trace class.
(b) the Cauchy integral formula, where $\gamma \subset D$ is a contour surrounding the disk $\{|z| \leq$ $\left.\frac{1}{2}\right\}$

$$
L f(z)=\frac{1}{2 \pi i} \oint_{\gamma} L_{w} f(z) d w, \quad L_{w} f(z)=\frac{f(w)}{w-z / 2}
$$

together with the fact that each L_{w} is a rank 1 operator. (This solution easily adapts to the transfer operators that we study, where the key fact is that $\gamma_{a}\left(D_{b}\right) \Subset D_{a}$ when $a \neq \bar{b}$.)

Solution: Each L_{w} is a rank 1 operator, in fact $L_{w}=u_{w} \otimes \delta_{w}$ where $\delta_{w}: \mathcal{H}(D) \rightarrow \mathbb{C}$ is the delta function at $w, \delta_{w}(f)=f(w)$, and $u_{w}(z)=\frac{1}{w-z / 2} \in \mathcal{H}(D)$. Thus in particular L_{w} is trace class. Since both δ_{w} and u_{w} depend continuously on w (the first one as a functional on $\mathcal{H}(D)$ with operator norm, the second one as an element of $\mathcal{H}(D)), L_{w}$ depends continuously on w in the Banach space of trace class operators
on $\mathcal{H}(D)$. So the integral above converges in that Banach space, which shows that L is trace class.
5. Assume that Γ is a Schottky group generated by just two intervals I_{1}, I_{2}. (The corresponding convex co-compact hyperbolic surface is a hyperbolic cylinder.) Let $x_{1} \in I_{1}, x_{2} \in I_{2}$ be the fixed points of γ_{1} (and thus of $\gamma_{2}=\gamma_{1}^{-1}$). Let $\mathcal{L}_{s}: \mathcal{H}(D) \rightarrow$ $\mathcal{H}(D)$ be the transfer operator where $D=D_{1} \sqcup D_{2} \subset \mathbb{C}$.

Show that the resonances (i.e. the values $s \in \mathbb{C}$ for which the equation $\mathcal{L}_{s} u=u$ has a nonzero solution $u \in \mathcal{H}(D))$ are given by

$$
s=-j+\frac{2 \pi i}{\ell} k, \quad j \in \mathbb{N}_{0}, \quad k \in \mathbb{Z}, \quad \ell:=-\log \gamma_{1}^{\prime}\left(x_{1}\right)=-\log \gamma_{2}^{\prime}\left(x_{2}\right)>0
$$

(In fact, ℓ is the length of the closed geodesic on the cylinder $\Gamma \backslash \mathbb{H}^{2}$.)
Hint: if $\mathcal{L}_{s} u=u$, then let j be the vanishing order of u at x_{1} and expand the equation at $z=x_{1}$.

Solution: First of all, putting $x:=x_{1}, y:=x_{2}$ in the identity $\left|\gamma_{1}(x)-\gamma_{1}(y)\right|^{2}=$ $\gamma_{1}^{\prime}(x) \gamma_{1}^{\prime}(y)|x-y|^{2}$ we get $\gamma_{1}^{\prime}\left(x_{1}\right) \gamma_{1}^{\prime}\left(x_{2}\right)=1$. Thus the definition of ℓ makes sense.

We have for $u \in \mathcal{H}(D)$

$$
\mathcal{L}_{s} u(z)= \begin{cases}\left(\gamma_{1}^{\prime}(z)\right)^{s} u\left(\gamma_{1}(z)\right), & z \in D_{1} \\ \left(\gamma_{2}^{\prime}(z)\right)^{s} u\left(\gamma_{2}(z)\right), & z \in D_{2}\end{cases}
$$

The disks D_{1}, D_{2} do not interact so we can consider u separately on these two. Let us focus on D_{1}.

Assume that $\mathcal{L}_{s} u=u$ for some $s \in \mathbb{C}$ and $u \in \mathcal{H}\left(D_{1}\right) \backslash\{0\}$. Let $j \in \mathbb{N}_{0}$ be the vanishing order of u at $z=x_{1}$. Multiplying u by a constant we may assume that

$$
u(z)=\left(z-x_{1}\right)^{j}+\mathcal{O}\left(\left|z-x_{1}\right|^{j+1}\right) \quad \text { as } \quad z \rightarrow x_{1} .
$$

Expanding the identity $u(z)=\mathcal{L}_{s} u(z)$ at $z=x_{1}$ and using that

$$
\gamma_{1}(z)-x_{1}=e^{-\ell}\left(z-x_{1}\right)+\mathcal{O}\left(\left|z-x_{1}\right|^{2}\right)
$$

we get

$$
\left(z-x_{1}\right)^{j}+\mathcal{O}\left(\left|z-x_{1}\right|^{j+1}\right)=e^{-\ell(s+j)}\left(z-x_{1}\right)^{j}+\mathcal{O}\left(\left|z-x_{1}\right|^{j+1}\right)
$$

which implies that $e^{-\ell(s+j)}=1$ and thus

$$
\begin{equation*}
s=-j+\frac{2 \pi i}{\ell} k \quad \text { for some } \quad k \in \mathbb{Z} \tag{0.1}
\end{equation*}
$$

Now, assume that s has the form (0.1) for some $j \in \mathbb{N}_{0}, k \in \mathbb{Z}$. We construct a nonzero $u \in \mathcal{H}(D)$ such that $\mathcal{L}_{s} u=u$. Let us write

$$
\gamma_{1}^{\prime}(z)=e^{-\varphi(z)}, \quad \gamma_{1}(z)-x_{1}=\left(z-x_{1}\right) e^{-\psi(z)}, \quad z \in D_{1}
$$

where φ, ψ are holomorphic and bounded on D_{1} and $\varphi\left(x_{1}\right)=\psi\left(x_{1}\right)=\ell$. We look for u in the form

$$
u(z)=\left(z-x_{1}\right)^{j} e^{v(z)}
$$

where v is some bounded holomorphic function on D_{1}. Then $\mathcal{L}_{s} u=u$ is equivalent to the following equation for v :

$$
e^{v(z)}=e^{-s \varphi(z)-j \psi(z)+v\left(\gamma_{1}(z)\right)}, \quad z \in D_{1} .
$$

To satisfy the latter it suffices to construct v such that

$$
\begin{equation*}
v(z)=v\left(\gamma_{1}(z)\right)+\theta(z), \quad z \in D_{1} \tag{0.2}
\end{equation*}
$$

where $\theta(z):=-s \varphi(z)-j \psi(z)+2 \pi i k$ is holomorphic and bounded on D_{1} and $\theta\left(x_{1}\right)=0$. Now, to solve (0.2) we put

$$
v(z):=\sum_{n=0}^{\infty} \theta\left(\gamma_{1}^{n}(z)\right), \quad z \in D_{1}
$$

where the terms of the series are holomorphic in D_{1} and the series converges uniformly in D_{1} since $\gamma_{1}^{n}(z) \rightarrow x_{1}$ exponentially fast as $n \rightarrow \infty$.
6. Show the following version of the 'Patterson-Sullivan' gap: if $\operatorname{Re} s>\delta$ then the equation $\mathcal{L}_{s} u=u$ has no nonzero solution $u \in \mathcal{H}(D)$. To do this, show that a sufficiently large power \mathcal{L}_{s}^{n} is a contracting operator on $C(I)$ with the supremum norm, by writing out \mathcal{L}_{s}^{n} as a sum over words in \mathcal{W}^{n} and using the results of Exercise 3.

Solution: Put $\alpha:=\operatorname{Re} s>\delta$. Take large n. Then for any $f \in C(I)$ we have

$$
\mathcal{L}_{s}^{n} f(x)=\sum_{\substack{\mathbf{a} \in \mathcal{W}^{n} \\ \mathbf{a} \rightarrow b}}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{s} f\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

where $\mathbf{a} \rightarrow b$ means that $a_{n} \neq \bar{b}$ where $\mathbf{a}=a_{1} \ldots a_{n}$.
By Exercise 3(c) we have $\left|\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{s}\right|=\left|\gamma_{\mathbf{a}}^{\prime}(x)\right|^{\alpha} \leq C\left|I_{\mathbf{a}}\right|^{\alpha}$ for $x \in I_{b}, \mathbf{a} \rightarrow b$. Here C is a constant independent of n. Therefore

$$
\sup _{I}\left|\mathcal{L}_{s}^{n} f\right| \leq r_{n} \sup _{I}|f|, \quad r_{n}:=C \sum_{\mathbf{a} \in \mathcal{W}^{n}}\left|I_{\mathbf{a}}\right|^{\alpha}
$$

Now by Exercise 3(d) we have

$$
\sum_{\mathbf{a} \in \mathcal{W}^{n}}\left|I_{\mathbf{a}}\right|^{\delta} \leq C \sum_{\mathbf{a} \in \mathcal{W}^{n}} \mu\left(I_{\mathbf{a}}\right) \leq C
$$

Since $\alpha>\delta$ and $\max _{\mathbf{a} \in \mathcal{W}^{n}}\left|I_{\mathbf{a}}\right| \rightarrow 0$ as $n \rightarrow \infty$, we get $r_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus for n large enough, \mathcal{L}_{s}^{n} is a contraction on $C(I)$ with the uniform norm. If $u \in \mathcal{H}(D)$ and $\mathcal{L}_{s} u=u$, then it is easy to see that $f:=\left.u\right|_{I} \in C(I)$ and $\mathcal{L}_{s}^{n} f=f$, which implies that $\left.u\right|_{I}=0$ and thus (by analytic continuation for instance) $u=0$.
7. Fix $\delta \in[0,1]$ and define the h-dependent intervals

$$
X=Y=\left[-h^{1-\delta}, h^{1-\delta}\right]
$$

Show that there exists a constant $c>0$ such that

$$
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \geq c h^{\max \left(0, \frac{1}{2}-\delta\right)}
$$

(Hint: apply this operator to a dilated cutoff function supported in Y.)
Solution: Fix $\chi \in C_{\mathrm{c}}^{\infty}((-1,1))$ such that $\|\chi\|_{L^{2}}=1$ and $\widehat{\chi}(0) \neq 0$ and define

$$
u(y ; h)=h^{\frac{\delta-1}{2}} \chi\left(h^{\delta-1} y\right), \quad\|u\|_{L^{2}}=1, \quad \operatorname{supp} u \subset Y
$$

Then

$$
\mathcal{F}_{h} u(x)=\frac{h^{-\delta / 2}}{\sqrt{2 \pi}} \widehat{\chi}\left(h^{-\delta} x\right)
$$

so we compute

$$
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y} u\right\|_{L^{2}(\mathbb{R})}=\frac{1}{\sqrt{2 \pi}}\|\widehat{\chi}\|_{L^{2}\left(\left[-h^{1-2 \delta}, h^{1-2 \delta}\right]\right)} \geq c h^{\max \left(0, \frac{1}{2}-\delta\right)}
$$

8. Let $Z \subset \mathcal{W}$ be a partition, i.e. a finite set of nonempty words such that

$$
\Lambda_{\Gamma}=\bigsqcup_{\mathbf{a} \in Z}\left(\Lambda_{\Gamma} \cap I_{\mathbf{a}}\right)
$$

Let $\bar{Z}:=\{\overline{\mathbf{a}} \mid \mathbf{a} \in Z\}$ where $\overline{a_{1} \ldots a_{n}}:=\overline{a_{n}} \ldots \overline{a_{1}}$. Define the transfer operator $\mathcal{L}_{\bar{Z}, s}$ by

$$
\mathcal{L}_{\bar{Z}, s} f(z)=\sum_{\mathbf{a} \in \bar{Z}, \mathbf{a} \rightsquigarrow b}\left(\gamma_{\mathbf{a}^{\prime}}(z)\right)^{s} f\left(\gamma_{\mathbf{a}^{\prime}}(z)\right), \quad z \in D_{b}
$$

where for $\mathbf{a}=a_{1} \ldots a_{n}$ we put $\mathbf{a}^{\prime}:=a_{1} \ldots a_{n-1}$ and say $\mathbf{a} \rightsquigarrow b$ if $a_{n}=b$. Assume that $u \in \mathcal{H}(D)$ satisfies $\mathcal{L}_{s} u=u$. Show that $\mathcal{L}_{\bar{Z}, s} u=u$.

Solution: See Lemma 2.4 in arXiv:1704.02909.

