Minicourse on fractal uncertainty principle Lecture 3-4: FUP and transfer operators

Semyon Dyatlov (MIT)

March 22-25, 2021

Review

- $\Gamma \subset \operatorname{SL}(2, \mathbb{R})$ Schottky group, $\Lambda_{\Gamma} \subset \mathbb{R}$ limit set, $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- $\mathcal{L}_{s}: \mathcal{H}(D) \rightarrow \mathcal{H}(D)$ transfer operator, $Z_{M}(s)=\operatorname{det}\left(I-\mathcal{L}_{s}\right)$
- $\mathcal{B}_{\chi, h}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ defined by

$$
\mathcal{B}_{\chi, h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) f(y) d y
$$

where $\chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$, supp $\chi \cap\{x=y\}=\emptyset$

Assume that for some fixed β and all χ

Review

- $\Gamma \subset \operatorname{SL}(2, \mathbb{R})$ Schottky group, $\Lambda_{\Gamma} \subset \mathbb{R}$ limit set, $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- $\mathcal{L}_{s}: \mathcal{H}(D) \rightarrow \mathcal{H}(D)$ transfer operator, $Z_{M}(s)=\operatorname{det}\left(I-\mathcal{L}_{s}\right)$
- $\mathcal{B}_{\chi, h}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ defined by

$$
\mathcal{B}_{\chi, h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) f(y) d y
$$

where $\chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$, supp $\chi \cap\{x=y\}=\emptyset$

Theorem

Assume that for some fixed β and all χ

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } \quad h \rightarrow 0
$$

Then for each $\alpha>\frac{1}{2}-\beta, Z_{M}(s)$ has finitely many zeroes with $\operatorname{Re} s \geq \alpha$.
This lecture will present a proof of this theorem, due to D-Zworski '20

Outline of the proof

- Since resonances form a discrete set and there are none with $\operatorname{Re} s>\delta$, enough to show there are no resonances with $\operatorname{Re} s \geq \alpha,|\operatorname{lm} s| \gg 1$
- Take $s=\alpha+\frac{i}{h}$ where $\alpha>\frac{1}{2}-\beta$ and $0<h \ll 1$
- Recall that s is a resonance iff $I-\mathcal{L}_{s}$ is not invertible. Assume that $\mathcal{L}_{s} u=u$ for some $u \in \mathcal{H}(D)$; we will show that $u=0$
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $\left.u\right|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- Step 3: use FUP to get $\left\|\left.u\right|_{\wedge_{-}(h)}\right\|_{L^{2}} \leq C h^{\alpha-\frac{1}{2}+\beta}\left\|\left.u\right|_{\Lambda_{-}(h)}\right\|_{L^{2}}$ which gives $u=0$
- Note: some notation is different from D-Zworski '20

Outline of the proof

- Since resonances form a discrete set and there are none with $\operatorname{Re} s>\delta$, enough to show there are no resonances with $\operatorname{Re} s \geq \alpha,|\operatorname{lm} s| \gg 1$
- Take $s=\alpha+\frac{i}{h}$ where $\alpha>\frac{1}{2}-\beta$ and $0<h \ll 1$
- Recall that s is a resonance iff $I-\mathcal{L}_{s}$ is not invertible. Assume that $\mathcal{L}_{s} u=u$ for some $u \in \mathcal{H}(D)$; we will show that $u=0$
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $\left.u\right|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- Step 3: use FUP t
which gives $u=0$
- Note: some notation is different from D-Zworski '20

Outline of the proof

- Since resonances form a discrete set and there are none with $\operatorname{Re} s>\delta$, enough to show there are no resonances with $\operatorname{Re} s \geq \alpha,|\operatorname{lm} s| \gg 1$
- Take $s=\alpha+\frac{i}{h}$ where $\alpha>\frac{1}{2}-\beta$ and $0<h \ll 1$
- Recall that s is a resonance iff $I-\mathcal{L}_{s}$ is not invertible. Assume that $\mathcal{L}_{s} u=u$ for some $u \in \mathcal{H}(D)$; we will show that $u=0$
- Step 1: get a rough bound on how fast u oscillates

Outline of the proof

- Since resonances form a discrete set and there are none with $\operatorname{Re} s>\delta$, enough to show there are no resonances with $\operatorname{Re} s \geq \alpha,|\operatorname{lm} s| \gg 1$
- Take $s=\alpha+\frac{i}{h}$ where $\alpha>\frac{1}{2}-\beta$ and $0<h \ll 1$
- Recall that s is a resonance iff $I-\mathcal{L}_{s}$ is not invertible. Assume that $\mathcal{L}_{s} u=u$ for some $u \in \mathcal{H}(D)$; we will show that $u=0$
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $\left.u\right|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- Step 3: use FUP to
which gives $u=0$
- Note: some notation is different from D-Zworski '20

Outline of the proof

- Since resonances form a discrete set and there are none with $\operatorname{Re} s>\delta$, enough to show there are no resonances with $\operatorname{Re} s \geq \alpha,|\operatorname{lm} s| \gg 1$
- Take $s=\alpha+\frac{i}{h}$ where $\alpha>\frac{1}{2}-\beta$ and $0<h \ll 1$
- Recall that s is a resonance iff $I-\mathcal{L}_{s}$ is not invertible. Assume that $\mathcal{L}_{s} u=u$ for some $u \in \mathcal{H}(D)$; we will show that $u=0$
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $\left.u\right|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- Step 3: use FUP to get $\left\|\left.u\right|_{\Lambda_{\Gamma}(h)}\right\|_{L^{2}} \leq C h^{\alpha-\frac{1}{2}+\beta}\left\|\left.u\right|_{\Lambda_{\Gamma}(h)}\right\|_{L^{2}}$ which gives $u=0$
- Note: some notation is different from D-Zworski '20

Outline of the proof

- Since resonances form a discrete set and there are none with $\operatorname{Re} s>\delta$, enough to show there are no resonances with $\operatorname{Re} s \geq \alpha,|\operatorname{lm} s| \gg 1$
- Take $s=\alpha+\frac{i}{h}$ where $\alpha>\frac{1}{2}-\beta$ and $0<h \ll 1$
- Recall that s is a resonance iff $I-\mathcal{L}_{s}$ is not invertible. Assume that $\mathcal{L}_{s} u=u$ for some $u \in \mathcal{H}(D)$; we will show that $u=0$
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $\left.u\right|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h)=\Lambda_{\Gamma}+[-h, h]$
- Step 3: use FUP to get $\left\|\left.u\right|_{\Lambda_{\Gamma}(h)}\right\|_{L^{2}} \leq C h^{\alpha-\frac{1}{2}+\beta}\left\|\left.u\right|_{\Lambda_{\Gamma}(h)}\right\|_{L^{2}}$ which gives $u=0$
- Note: some notation is different from D-Zworski '20

How fast does the solution $u=\mathcal{L}_{s} u$ oscillate?
Recall from Lecture 1 the picture for $\mathcal{L}_{0} f(x)=\sum_{a \neq \bar{b}} f\left(\gamma_{a}(x)\right), x \in I_{b}$:

- $\mathcal{L}_{s} f$ oscillates less than f when s is bounded
- Thus for $u=\mathcal{L}_{s} u$ and s bounded, u should be very smooth

Now let us plot $\mathcal{L}_{s} f$ with $s=\alpha+\frac{i}{h}, h$ small:

$$
\mathcal{L}_{s} f(x)=\sum_{a \neq \bar{b}}\left(\gamma_{a}^{\prime}(x)\right)^{s} f\left(\gamma_{a}(x)\right), \quad x \in I_{b}
$$

Now let us plot $\mathcal{L}_{s} f$ with $s=\alpha+\frac{i}{h}, h$ small:

$$
\mathcal{L}_{s} f(x)=\sum_{a \neq \bar{b}}\left(\gamma_{a}^{\prime}(x)\right)^{s} f\left(\gamma_{a}(x)\right), \quad x \in I_{b}
$$

Now let us plot $\mathcal{L}_{s} f$ with $s=\alpha+\frac{i}{h}, h$ small:

$$
\mathcal{L}_{s} f(x)=\sum_{a \neq \bar{b}}\left(\gamma_{a}^{\prime}(x)\right)^{s} f\left(\gamma_{a}(x)\right), \quad x \in I_{b}
$$

$u=\mathcal{L}_{s} u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h} \log \gamma_{a}^{\prime}(x)}$

Now let us plot $\mathcal{L}_{s} f$ with $s=\alpha+\frac{i}{h}, h$ small:

$$
\mathcal{L}_{s} f(x)=\sum_{a \neq \bar{b}}\left(\gamma_{a}^{\prime}(x)\right)^{s} f\left(\gamma_{a}(x)\right), \quad x \in I_{b}
$$

$u=\mathcal{L}_{s} u$ oscillates at frequencies

Now let us plot $\mathcal{L}_{s} f$ with $s=\alpha+\frac{i}{h}, h$ small:

$$
\mathcal{L}_{s} f(x)=\sum_{a \neq \bar{b}}\left(\gamma_{a}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \log \gamma_{a}^{\prime}(x)} f\left(\gamma_{a}(x)\right), \quad x \in I_{b}
$$

und

MWM-
munh
WW manh

\qquad \approx
wh~
and

M M

$u=\mathcal{L}_{s} u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h} \log \gamma_{a}^{\prime}(x)}$

Getting a frequency bound

We prove that u oscillates at frequencies $\lesssim h^{-1}$, starting with

Lemma (Interpolated bound)

Let $D:=\bigsqcup_{a \in \mathcal{A}} D_{\mathrm{a}} \subset \mathbb{C}, \quad I:=D \cap \mathbb{R}, \quad \widetilde{D}:=\bigsqcup_{\mathrm{a} \in \mathcal{W}^{2}} D_{\mathrm{a}} \Subset D$, $D_{ \pm}:=D \cap\{ \pm \operatorname{Im} z>0\}, \quad \widetilde{D}_{ \pm}:=\widetilde{D} \cap\{ \pm \operatorname{Im} z>0\}$. Then $\exists c>0$:

$$
\sup _{\widetilde{D}_{ \pm}}|f| \leq\left(\sup _{l}|f|\right)^{c}\left(\sup _{D_{ \pm}}|f|\right)^{1-c} \quad \text { for all } \quad f \in \mathcal{H}\left(D_{ \pm}\right) \text {. }
$$

- Let $F_{ \pm}: D_{ \pm} \rightarrow[0,1]$ be harmonic with $\left.F_{ \pm}\right|_{\iota} \equiv 1,\left.F_{ \pm}\right|_{\partial D_{+} \backslash I} \equiv 0$
- $\log |f|<\left(\log \sup _{,}|f|\right) F_{+}+\left(\log \sup _{D} .|f|\right)\left(1-F_{+}\right)$since this is true on $\partial D_{ \pm}$and $\log |f|$ is subharmonic. Put $c:=\min _{\tilde{D}_{+}} F_{ \pm}>0$.

Getting a frequency bound

We prove that u oscillates at frequencies $\lesssim h^{-1}$, starting with

Lemma (Interpolated bound)

Let $D:=\bigsqcup_{a \in \mathcal{A}} D_{\mathrm{a}} \subset \mathbb{C}, \quad I:=D \cap \mathbb{R}, \quad \widetilde{D}:=\bigsqcup_{\mathrm{a} \in \mathcal{W}^{2}} D_{\mathrm{a}} \Subset D$, $D_{ \pm}:=D \cap\{ \pm \operatorname{Im} z>0\}, \quad \widetilde{D}_{ \pm}:=\widetilde{D} \cap\{ \pm \operatorname{Im} z>0\}$. Then $\exists c>0$:

$$
\sup _{\widetilde{D}_{ \pm}}|f| \leq\left(\sup _{l}|f|\right)^{c}\left(\sup _{D_{ \pm}}|f|\right)^{1-c} \quad \text { for all } \quad f \in \mathcal{H}\left(D_{ \pm}\right) \text {. }
$$

Proof

- Let $F_{ \pm}: D_{ \pm} \rightarrow[0,1]$ be harmonic with $\left.F_{ \pm}\right|_{\prime} \equiv 1,\left.F_{ \pm}\right|_{\partial D_{ \pm} \backslash I} \equiv 0$.
- $\log |f| \leq\left(\log \sup _{I}|f|\right) F_{ \pm}+\left(\log \sup _{D_{ \pm}}|f|\right)\left(1-F_{ \pm}\right)$since this is true on $\partial D_{ \pm}$and $\log |f|$ is subharmonic. Put $c:=\min _{\widetilde{D}_{ \pm}} F_{ \pm}>0$.

For holomorphic functions, oscillating at frequencies $\leq L$ on \mathbb{R} is roughly equivalent to being bounded by $e^{L|\operatorname{Im} z|}$ in \mathbb{C}. Define the weight

$$
w_{K}(z):=e^{-K|\operatorname{lm} z| / h} \quad \text { where } \quad K=K(\Gamma) \gg 1 .
$$

Lemma (A priori bound in the complex)
Let $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u, s=\alpha+\frac{i}{h}$. Then $\sup _{D}\left|w_{K} u\right| \leq C \sup ,|u|$.

- Assume that $\sup _{D_{b}}\left|\gamma_{a}^{\prime}\right| \leq \frac{1}{2}$ for all $a \neq \bar{b}$. (If not, use $\mathcal{L}_{s}^{n} u=u$ and
- For $z \in D_{b}$ and $a \neq \bar{b}$ we have $\left|\operatorname{Im} \gamma_{a}(z)\right| \leq \frac{1}{2}|\operatorname{lm} z|$. Now write

$$
\left(w_{K} u\right)(z)=\sum_{a \neq \bar{b}} \frac{w_{K}(z)}{w_{K}\left(\gamma_{a}(z)\right)}\left(\gamma_{a}^{\prime}(z)\right)^{s}\left(w_{K} u\right)\left(\gamma_{a}(z)\right)
$$

- So $\sup _{D}\left|w_{K} u\right| \leq C \sup _{\tilde{D}}\left|w_{K} u\right| \leq C\left(\sup _{I}|u|\right)^{c}\left(\sup _{D}\left|w_{K} u\right|\right)^{1-c}$ where the second inequality follows from the interpolation bound

For holomorphic functions, oscillating at frequencies $\leq L$ on \mathbb{R} is roughly equivalent to being bounded by $e^{L|\operatorname{Im} z|}$ in \mathbb{C}. Define the weight

$$
w_{K}(z):=e^{-K|\operatorname{lm} z| / h} \quad \text { where } \quad K=K(\Gamma) \gg 1 .
$$

Lemma (A priori bound in the complex)
Let $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u, s=\alpha+\frac{i}{h}$. Then $\sup _{D}\left|w_{K} u\right| \leq C \sup ,|u|$.

Proof

- Assume that $\sup _{D_{b}}\left|\gamma_{a}^{\prime}\right| \leq \frac{1}{2}$ for all $a \neq \bar{b}$. (If not, use $\mathcal{L}_{s}^{n} u=u$ and that $\left|\gamma_{\mathbf{a}}^{\prime}\right| \leq C e^{-\theta n}$ for all $\mathbf{a} \in \mathcal{W}^{n}$.)
- For $z \in D_{b}$ and $a \neq \bar{b}$ we have $\left|\operatorname{Im} \gamma_{a}(z)\right| \leq \frac{1}{2}|\operatorname{Im} z|$. Now write
 where the second inequality follows from the interpolation bound

For holomorphic functions, oscillating at frequencies $\leq L$ on \mathbb{R} is roughly equivalent to being bounded by $e^{L|\operatorname{lm} z|}$ in \mathbb{C}. Define the weight

$$
w_{K}(z):=e^{-K|\operatorname{lm} z| / h} \quad \text { where } \quad K=K(\Gamma) \gg 1
$$

Lemma (A priori bound in the complex)
Let $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u, s=\alpha+\frac{i}{h}$. Then $\sup _{D}\left|w_{K} u\right| \leq C \sup _{l}|u|$.

Proof

- Assume that $\sup _{D_{b}}\left|\gamma_{a}^{\prime}\right| \leq \frac{1}{2}$ for all $a \neq \bar{b}$. (If not, use $\mathcal{L}_{s}^{n} u=u$ and that $\left|\gamma_{\mathbf{a}}^{\prime}\right| \leq C e^{-\theta n}$ for all $\mathbf{a} \in \mathcal{W}^{n}$.)
- For $z \in D_{b}$ and $a \neq \bar{b}$ we have $\left|\operatorname{Im} \gamma_{a}(z)\right| \leq \frac{1}{2}|\operatorname{Im} z|$. Now write

$$
\left(w_{K} u\right)(z)=\sum_{a \neq \bar{b}} \frac{w_{K}(z)}{w_{K}\left(\gamma_{a}(z)\right)}\left(\gamma_{a}^{\prime}(z)\right)^{s}\left(w_{K} u\right)\left(\gamma_{a}(z)\right)
$$

For $K \gg 1$ get $\frac{w_{K}(z)}{w_{K}\left(\gamma_{a}(z)\right)}\left|\left(\gamma_{a}^{\prime}(z)\right)^{s}\right| \leq C e^{-\frac{K|\ln z|}{2 h}} e^{-\frac{\arg \gamma_{a}^{\prime}(z)}{h}} \leq C$ where the second inequality follows from the interpolation bound

For holomorphic functions, oscillating at frequencies $\leq L$ on \mathbb{R} is roughly equivalent to being bounded by $e^{L|\operatorname{lm} z|}$ in \mathbb{C}. Define the weight

$$
w_{K}(z):=e^{-K|\operatorname{lm} z| / h} \quad \text { where } \quad K=K(\Gamma) \gg 1 .
$$

Lemma (A priori bound in the complex)
Let $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u, s=\alpha+\frac{i}{h}$. Then $\sup _{D}\left|w_{K} u\right| \leq C \sup ,|u|$.

Proof

- Assume that $\sup _{D_{b}}\left|\gamma_{a}^{\prime}\right| \leq \frac{1}{2}$ for all $a \neq \bar{b}$. (If not, use $\mathcal{L}_{s}^{n} u=u$ and that $\left|\gamma_{\mathbf{a}}^{\prime}\right| \leq C e^{-\theta n}$ for all $\mathbf{a} \in \mathcal{W}^{n}$.)
- For $z \in D_{b}$ and $a \neq \bar{b}$ we have $\left|\operatorname{Im} \gamma_{a}(z)\right| \leq \frac{1}{2}|\operatorname{Im} z|$. Now write

$$
\left(w_{K} u\right)(z)=\sum_{a \neq \bar{b}} \frac{w_{K}(z)}{w_{K}\left(\gamma_{a}(z)\right)}\left(\gamma_{a}^{\prime}(z)\right)^{s}\left(w_{K} u\right)\left(\gamma_{a}(z)\right) .
$$

For $K \gg 1$ get $\frac{w_{K}(z)}{w_{K}\left(\gamma_{a}(z)\right)}\left|\left(\gamma_{a}^{\prime}(z)\right)^{s}\right| \leq C e^{-\frac{K|\ln z|}{2 h}} e^{-\frac{\arg \gamma_{a}^{\prime}(z)}{h}} \leq C$

- So $\sup _{D}\left|w_{K} u\right| \leq C \sup _{\tilde{D}}\left|w_{K} u\right| \leq C\left(\sup _{I}|u|\right)^{c}\left(\sup _{D}\left|w_{K} u\right|\right)^{1-c}$ where the second inequality follows from the interpolation bound
- Recall: $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u$, and $\sup _{D}\left|e^{-K|\operatorname{lm} z| / h} u\right| \leq C \sup _{I}|u|$
- Semiclassical Fourier transform: $\mathcal{F}_{h} f(\xi)=(2 \pi h)^{-\frac{1}{2}} \widehat{f}(\xi / h)$

Lemma (Fourier localization to frequencies $\leq 2 K / h$)
Fix $\chi \in C_{\mathrm{c}}^{\infty}(I)$. Then $\forall N,\left|\mathcal{F}_{h}(\chi u)(\xi)\right| \leq C_{N} h^{N}|\xi|^{-N}$ sup $_{I}|u|$ for $|\xi| \geq 2 K$.
In particular this implies sup $|\chi u| \leq C h^{-1 / 2}\|\chi u\|_{L^{2}}+C_{N} h^{N} \sup ^{\prime}|u|$

Let $\tilde{\chi} \in C_{c}^{\infty}(D)$ be an almost analytic extension of $\chi:\left.\widetilde{\chi}\right|_{\mathbb{R}}=\chi$,
$\left|\bar{\partial}_{z} \widetilde{\chi}(z)\right| \leq C_{N}|\operatorname{Im} z|^{N}$. By Green's Theorem on $D_{-}=D \cap\{\operatorname{lm} z<0\}$
$\widehat{\chi u}(\xi / h)=\int_{\partial D_{-}} u(z) e^{-\frac{i}{h} z \xi} \widetilde{\chi}(z) d z=\int_{\operatorname{Im} z<0} u(z) e^{-\frac{i}{h} z \xi} \bar{\partial}_{z} \widetilde{\chi}(z) d z \wedge d \bar{z}$

- For $\xi \geq 2 K$, bound $\left|u(z) e^{-\frac{1}{h} z \xi} \bar{\partial}_{z} \widetilde{\chi}(z)\right| \leq C_{N} e^{-\frac{\varepsilon!!m z 1}{h}}|\operatorname{lm} z|^{N} \sup ,|u|$
and integrate. For $\xi \leq-2 K$, integrate instead over $\{\operatorname{Im} z>0\}$
- Recall: $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u$, and $\sup _{D}\left|e^{-K|\operatorname{lm} z| / h} u\right| \leq C \sup _{I}|u|$
- Semiclassical Fourier transform: $\mathcal{F}_{h} f(\xi)=(2 \pi h)^{-\frac{1}{2}} \widehat{f}(\xi / h)$

Lemma (Fourier localization to frequencies $\leq 2 K / h$)

Fix $\chi \in C_{\mathrm{c}}^{\infty}(I)$. Then $\forall N,\left|\mathcal{F}_{h}(\chi u)(\xi)\right| \leq C_{N} h^{N}|\xi|^{-N}$ sup $_{I}|u|$ for $|\xi| \geq 2 K$.
In particular this implies sup $|\chi u| \leq C h^{-1 / 2}\|\chi u\|_{L^{2}}+C_{N} h^{N} \sup _{I}|u|$

Proof

- Let $\tilde{\chi} \in C_{\mathrm{c}}^{\infty}(D)$ be an almost analytic extension of $\chi:\left.\widetilde{\chi}\right|_{\mathbb{R}}=\chi$, $\left|\bar{\partial}_{z} \widetilde{\chi}(z)\right| \leq C_{N}|\operatorname{lm} z|^{N}$.

- Recall: $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u$, and $\sup _{D}\left|e^{-K|\operatorname{Im} z| / h} u\right| \leq C \sup _{I}|u|$
- Semiclassical Fourier transform: $\mathcal{F}_{h} f(\xi)=(2 \pi h)^{-\frac{1}{2}} \widehat{f}(\xi / h)$

Lemma (Fourier localization to frequencies $\leq 2 K / h$)

Fix $\chi \in C_{\mathrm{c}}^{\infty}(I)$. Then $\forall N,\left|\mathcal{F}_{h}(\chi u)(\xi)\right| \leq C_{N} h^{N}|\xi|^{-N}$ sup $_{I}|u|$ for $|\xi| \geq 2 K$.
In particular this implies sup $|\chi u| \leq C h^{-1 / 2}\|\chi u\|_{L^{2}}+C_{N} h^{N} \sup _{l}|u|$

Proof

- Let $\tilde{\chi} \in C_{c}^{\infty}(D)$ be an almost analytic extension of $\chi: \tilde{\chi}_{\mathbb{R}}=\chi$, $\left|\bar{\partial}_{z} \widetilde{\chi}(z)\right| \leq C_{N}|\operatorname{lm} z|^{N}$. By Green's Theorem on $D_{-}=D \cap\{\operatorname{lm} z<0\}$ $\widehat{\chi u}(\xi / h)=\int_{\partial D_{-}} u(z) e^{-\frac{i}{h} z \xi} \widetilde{\chi}(z) d z=\int_{\operatorname{Im} z<0} u(z) e^{-\frac{i}{h} z \xi} \bar{\partial}_{z} \widetilde{\chi}(z) d z \wedge d \bar{z}$
- For $\xi \geq 2 K$, bound $\left|u(z) e^{-\frac{i}{h} z \xi} \bar{\partial}_{z} \widetilde{\chi}(z)\right| \leq C_{N} e^{-\frac{\xi|\operatorname{lm} z|}{h}}|\operatorname{Im} z|^{N} \sup _{I}|u|$ and integrate. For $\xi \leq-2 K$, integrate instead over $\{\operatorname{lm} z>0\}$.

Large powers of transfer operators

Henceforth we only study u on $I=D \cap \mathbb{R}$.
Since $\mathcal{L}_{s} u=u$ we also have $\mathcal{L}_{s}^{n} u=u$ for all n, where

$$
\mathcal{L}_{s}^{n} f(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{s} f\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

and $\mathbf{a} \rightarrow b$ means $b \neq \overline{a_{n}}$ where $\mathbf{a}=a_{1} \ldots a_{n}$.
Recalling that $s=\alpha+\frac{i}{h}$, rewrite this as

where the phase functions $\varphi_{\mathbf{a}}(x)$ are defined by

Large powers of transfer operators

Henceforth we only study u on $I=D \cap \mathbb{R}$.
Since $\mathcal{L}_{s} u=u$ we also have $\mathcal{L}_{s}^{n} u=u$ for all n, where

$$
\mathcal{L}_{s}^{n} f(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{s} f\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

and $\mathbf{a} \rightarrow b$ means $b \neq \overline{a_{n}}$ where $\mathbf{a}=a_{1} \ldots a_{n}$.
Recalling that $s=\alpha+\frac{i}{h}$, rewrite this as

$$
\mathcal{L}_{s}^{n} f(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} f\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

where the phase functions $\varphi_{\mathbf{a}}(x)$ are defined by

$$
\varphi_{\mathbf{a}}(x)=\log \gamma_{\mathbf{a}}^{\prime}(x), \quad x \in I_{b}
$$

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

Each term in the sum is obtained by the following three operations:

- Composition $u \mapsto \gamma_{\mathrm{a}}^{*} u$, where $\gamma_{\mathrm{a}}^{\prime}(x) \sim\left|I_{\mathrm{a}}\right| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}, \gamma_{\mathrm{a}}^{*} u$ oscillates at frequencies $\lesssim h^{-1}\left|l_{\mathrm{a}}\right|$.
- Multiplication by weight $v \mapsto\left(\gamma_{a}^{\prime}\right)^{\alpha} v$ where $\left(\gamma_{a}^{\prime}\right)^{\alpha} \sim\left|I_{a}\right|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- Phase shift $v \mapsto e^{\frac{1}{h} \varphi_{\mathrm{a}}} v$, with the result oscillating at frequencies $\lesssim \frac{1}{h}$ We fix $p<1$ close to 1 and choose n so that $\left|l_{a}\right| \sim h^{\rho} \quad$ for all $\quad a \in \mathcal{W}^{n}$
(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $\left(\gamma_{\mathrm{a}}^{\prime}\right)^{\alpha}$ by h^{c}

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

Each term in the sum is obtained by the following three operations:

- Composition $u \mapsto \gamma_{\mathbf{a}}^{*} u$, where $\gamma_{\mathbf{a}}^{\prime}(x) \sim| |_{\mathbf{a}} \mid \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}, \gamma_{\mathbf{a}}^{*} u$ oscillates at frequencies $\lesssim h^{-1}\left|l_{\mathbf{a}}\right|$.
- Multiplication by weight $v \mapsto\left(\gamma_{a}^{\prime}\right)^{\alpha} v$ where $\left(\gamma_{a}^{\prime}\right)^{\alpha} \sim\left|l_{a}\right|^{\alpha}$. Does not change frequency localization much but changes the magnitude. - Phase shift $v \mapsto e^{\frac{1}{h} \varphi_{\mathrm{a}}} v$, with the result oscillating at frequencies $<\frac{1}{h}$
\square
We fix $\rho<1$ close to 1 and choose n so that

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

Each term in the sum is obtained by the following three operations:

- Composition $u \mapsto \gamma_{\mathbf{a}}^{*} u$, where $\gamma_{\mathbf{a}}^{\prime}(x) \sim\left|l_{\mathbf{a}}\right| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}, \gamma_{\mathbf{a}}^{*} u$ oscillates at frequencies $\lesssim h^{-1}\left|l_{\mathbf{a}}\right|$.
- Multiplication by weight $v \mapsto\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} v$ where $\left.\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} \sim| |_{\mathbf{a}}\right|^{\alpha}$. Does not change frequency localization much but changes the magnitude.

We fix $\rho<1$ close to 1 and choose n so that

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

Each term in the sum is obtained by the following three operations:

- Composition $u \mapsto \gamma_{\mathbf{a}}^{*} u$, where $\gamma_{\mathbf{a}}^{\prime}(x) \sim| |_{\mathbf{a}} \mid \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}, \gamma_{\mathbf{a}}^{*} u$ oscillates at frequencies $\lesssim h^{-1}\left|I_{\mathbf{a}}\right|$.
- Multiplication by weight $v \mapsto\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} v$ where $\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} \sim\left|I_{\mathbf{a}}\right|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- Phase shift $v \mapsto e^{\frac{i}{h} \varphi_{\mathrm{a}}} v$, with the result oscillating at frequencies $\lesssim \frac{1}{h}$

We fix $\rho<1$ close to 1 and choose n so that

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=\sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left(\gamma_{\mathbf{a}}^{\prime}(x)\right)^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

Each term in the sum is obtained by the following three operations:

- Composition $u \mapsto \gamma_{\mathbf{a}}^{*} u$, where $\gamma_{\mathbf{a}}^{\prime}(x) \sim| |_{\mathbf{a}} \mid \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}, \gamma_{\mathbf{a}}^{*} u$ oscillates at frequencies $\lesssim h^{-1}\left|l_{\mathbf{a}}\right|$.
- Multiplication by weight $v \mapsto\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} v$ where $\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} \sim\left|I_{\mathbf{a}}\right|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- Phase shift $v \mapsto e^{\frac{i}{h} \varphi_{\mathrm{a}}} v$, with the result oscillating at frequencies $\lesssim \frac{1}{h}$

We fix $\rho<1$ close to 1 and choose n so that

$$
\left|I_{\mathbf{a}}\right| \sim h^{\rho} \quad \text { for all } \quad \mathbf{a} \in \mathcal{W}^{n}
$$

(Typically impossible, will discuss how to fix this at the end of the lecture.)

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

Each term in the sum is obtained by the following three operations:

- Composition $u \mapsto \gamma_{\mathbf{a}}^{*} u$, where $\gamma_{\mathbf{a}}^{\prime}(x) \sim| |_{\mathbf{a}} \mid \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}, \gamma_{\mathbf{a}}^{*} u$ oscillates at frequencies $\lesssim h^{-1}\left|l_{\mathbf{a}}\right|$.
- Multiplication by weight $v \mapsto\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} v$ where $\left.\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha} \sim| |_{\mathbf{a}}\right|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- Phase shift $v \mapsto e^{\frac{i}{h} \varphi_{\mathrm{a}}} v$, with the result oscillating at frequencies $\lesssim \frac{1}{h}$

We fix $\rho<1$ close to 1 and choose n so that

$$
\left|I_{\mathbf{a}}\right| \sim h^{\rho} \quad \text { for all } \quad \mathbf{a} \in \mathcal{W}^{n}
$$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $\left(\gamma_{\mathbf{a}}^{\prime}\right)^{\alpha}$ by h^{α}

What does the phase do?

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} e^{\frac{i}{\hbar} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

- We know that each $\gamma_{\mathbf{a}}^{*} u$ oscillates at low frequencies $\lesssim h^{-1}\left|l_{\mathbf{a}}\right| \sim 1$
- What does the phase $\varphi_{\mathrm{a}}(x)=\log \gamma_{\mathrm{a}}^{\prime}(x)$ look like?
- An elementary computation shows that up to an additive constant

$$
\begin{aligned}
& \varphi_{\mathrm{a}}(x)=-2 \log ^{\prime}\left(x-x_{\mathrm{a}}\right) \text { where } x_{\mathrm{a}}:=\gamma_{\mathrm{a}}^{-1}(\infty) \in \rho_{\mathrm{a}}, \\
& \overline{\mathrm{a}}:=\bar{a}_{n} \ldots \bar{a}_{1} \in \mathcal{W}^{n} \quad \text { is the inverse of } \mathrm{a}=a_{1} \ldots a_{n}
\end{aligned}
$$

We plug in the formula for φ_{a} (ignoring the constant)

What does the phase do?

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} e^{\frac{i}{\hbar} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

- We know that each $\gamma_{\mathbf{a}}^{*} u$ oscillates at low frequencies $\lesssim h^{-1}\left|I_{\mathbf{a}}\right| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x)=\log \gamma_{\mathbf{a}}^{\prime}(x)$ look like?
- An elementary computation shows that up to an additive constant

We plug in the formula for φ_{a} (ignoring the constant)

What does the phase do?

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} e^{\frac{i}{\hbar} \varphi_{\mathbf{a}}(x)} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

- We know that each $\gamma_{\mathbf{a}}^{*} u$ oscillates at low frequencies $\lesssim h^{-1}\left|I_{\mathbf{a}}\right| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x)=\log \gamma_{\mathbf{a}}^{\prime}(x)$ look like?
- An elementary computation shows that up to an additive constant

$$
\begin{aligned}
& \varphi_{\mathbf{a}}(x)=-2 \log \left(x-x_{\overline{\mathbf{a}}}\right) \quad \text { where } \quad x_{\overline{\mathbf{a}}}:=\gamma_{\mathbf{a}}^{-1}(\infty) \in l_{\overline{\mathbf{a}}} \\
& \overline{\mathbf{a}}:=\overline{a_{n}} \ldots \overline{a_{1}} \in \mathcal{W}^{n} \quad \text { is the inverse of } \quad \mathbf{a}=a_{1} \ldots a_{n}
\end{aligned}
$$

We plug in the formula for φ_{a} (ignoring the constant)

What does the phase do?

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b}\left|x-x_{\overline{\mathbf{a}}}\right|^{-\frac{2 i}{h}} u\left(\gamma_{\mathbf{a}}(x)\right), \quad x \in I_{b}
$$

- We know that each $\gamma_{\mathbf{a}}^{*} u$ oscillates at low frequencies $\lesssim h^{-1}\left|I_{\mathbf{a}}\right| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x)=\log \gamma_{\mathbf{a}}^{\prime}(x)$ look like?
- An elementary computation shows that up to an additive constant

$$
\begin{aligned}
& \varphi_{\mathbf{a}}(x)=-2 \log \left(x-x_{\overline{\mathbf{a}}}\right) \quad \text { where } \quad x_{\overline{\mathbf{a}}}:=\gamma_{\mathbf{a}}^{-1}(\infty) \in l_{\overline{\mathbf{a}}}, \\
& \overline{\mathbf{a}}:=\overline{a_{n}} \ldots \overline{a_{1}} \in \mathcal{W}^{n} \quad \text { is the inverse of } \quad \mathbf{a}=a_{1} \ldots a_{n}
\end{aligned}
$$

We plug in the formula for $\varphi_{\mathbf{a}}$ (ignoring the constant)

$$
\begin{aligned}
& u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} v_{\mathbf{a}}(x), \quad x \in I_{b} \\
& \text { where } \quad v_{\mathbf{a}}(x):=\left|x-x_{\overline{\mathbf{a}}}\right|^{-\frac{2 i}{h}} \gamma_{\mathbf{a}}^{*} u(x), \quad x \in I \backslash I_{\overline{a_{n}}}
\end{aligned}
$$ and $\gamma_{\mathbf{a}}^{*} u$ oscillates at bounded frequencies. Define the operator \mathcal{B}_{h} by

then 'similarly' to $\mathcal{F}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h} x y} f(y) d y$ we write

$$
v_{a}=\mathcal{B}_{h} W_{a} \quad \text { on } \quad 八 l_{a_{n}}
$$

for some $w_{\bar{a}}$ supported in $⿳_{\bar{a}}(C h)=I_{\bar{a}}+[-C h, C h]$ and having L^{2} norm

$$
\left\|w_{\mathrm{a}}\right\|_{L^{2}} \sim\left\|v_{\mathrm{a}}\right\|_{L^{2}}=\left\|\gamma_{\mathrm{a}}^{*} u\right\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(l_{\mathrm{a}}\right)}
$$

where in the last estimate we recall that $\gamma_{\mathrm{a}}^{\prime} \sim\left|l_{\mathbf{a}}\right| \sim h$ on $I \backslash l_{\overline{a_{n}}}$

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} v_{\mathbf{a}}(x), \quad x \in I_{b}
$$

$$
\text { where } \quad v_{\mathbf{a}}(x):=\left|x-x_{\overline{\mathbf{a}}}\right|^{-\frac{2 i}{h}} \gamma_{\mathbf{a}}^{*} u(x), \quad x \in I \backslash l_{\overline{a_{n}}}
$$

and $\gamma_{\mathbf{a}}^{*} u$ oscillates at bounded frequencies. Define the operator \mathcal{B}_{h} by

$$
\mathcal{B}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} f(y) d y
$$

then 'similarly' to $\mathcal{F}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h} x y} f(y) d y$ we write

$$
v_{\mathbf{a}}=\mathcal{B}_{h} w_{\overline{\mathbf{a}}} \quad \text { on } \quad l \backslash I_{\overline{a_{n}}}
$$

for some $w_{\mathbf{a}}$ supported in $l_{\mathbf{a}}(C h)=l_{\bar{a}}+[-C h, C h]$ and having L^{2} norm

$$
\left\|w_{\overline{\mathbf{a}}}\right\|_{L^{2}} \sim\left\|v_{\mathbf{a}}\right\|_{L^{2}}=\left\|\gamma_{\mathbf{a}}^{*} u\right\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(l_{\mathbf{a}}\right)}
$$

where in the last estimate we recall that $\gamma_{\mathbf{a}}^{\prime} \sim\left|I_{\mathbf{a}}\right| \sim h$ on $I \backslash I_{\overline{a_{n}}}$

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} v_{\mathbf{a}}(x), \quad x \in I_{b}
$$

$$
\text { where } \quad v_{\mathbf{a}}(x):=\left|x-x_{\overline{\mathbf{a}}}\right|^{-\frac{2 i}{h}} \gamma_{\mathbf{a}}^{*} u(x), \quad x \in I \backslash l_{\overline{a_{n}}}
$$

and $\gamma_{\mathbf{a}}^{*} u$ oscillates at bounded frequencies. Define the operator \mathcal{B}_{h} by

$$
\mathcal{B}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} f(y) d y
$$

then 'similarly' to $\mathcal{F}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h} x y} f(y) d y$ we write

$$
v_{\mathbf{a}}=\mathcal{B}_{h} w_{\overline{\mathbf{a}}} \quad \text { on } \quad l \backslash l_{\overline{a_{n}}}
$$

for some $w_{\overline{\mathbf{a}}}$ supported in $⿳_{\overline{\mathbf{a}}}(C h)=l_{\overline{\mathbf{a}}}+[-C h, C h]$ and having L^{2} norm

$$
\left\|w_{\overline{\mathbf{a}}}\right\|_{L^{2}} \sim\left\|v_{\mathbf{a}}\right\|_{L^{2}}=\left\|\gamma_{\mathbf{a}}^{*} u\right\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(l_{\mathbf{a}}\right)}
$$

where in the last estimate we recall that $\gamma_{\mathbf{a}}^{\prime} \sim\left|I_{\mathbf{a}}\right| \sim h$ on $I \backslash l_{\overline{a_{n}}}$
(Cheating here, in reality would need $\rho<1$ and $\mathcal{O}\left(h^{\infty}\right)$ remainder. ..)

End of the proof: applying FUP

$$
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} v_{\mathbf{a}}(x), \quad x \in I_{b}
$$

$v_{\mathbf{a}}=\left|x-x_{\overline{\mathbf{a}}}\right|^{-\frac{2 i}{h}} \gamma_{\mathbf{a}}^{*} u=\mathcal{B}_{h} W_{\overline{\mathbf{a}}}, \quad \operatorname{supp} w_{\overline{\mathbf{a}}} \subset I_{\overline{\mathbf{a}}}(C h), \quad\left\|w_{\overline{\mathbf{a}}}\right\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(l_{\mathbf{a}}\right)}$

$$
\mathcal{B}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} f(y) d y
$$

Define $w:=\sum_{a \in \mathcal{W}^{n}} w_{\bar{a}}$, then $u=h^{\alpha} \mathcal{B}_{\chi, h} w$ on I where

Since $\left|I_{\mathbf{a}}\right| \sim\left|I_{\mathbf{a}}\right| \sim h$, get supp $w \subset \Lambda_{\Gamma}(C h)$ and $\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}$

End of the proof: applying FUP

$$
\begin{gathered}
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} v_{\mathbf{a}}(x), \quad x \in I_{b} \\
v_{\mathbf{a}}=\left|x-x_{\overline{\mathbf{a}}}\right|^{-\frac{2 i}{h} \gamma_{\mathbf{a}}^{*} u=\mathcal{B}_{h} w_{\overline{\mathbf{a}}}, \quad \operatorname{supp} w_{\overline{\mathbf{a}}} \subset l_{\overline{\mathbf{a}}}(C h), \quad\left\|w_{\overline{\mathbf{a}}}\right\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(l_{\mathbf{a}}\right)}} \\
\mathcal{B}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} f(y) d y
\end{gathered}
$$

Define $w:=\sum_{\mathbf{a} \in \mathcal{W}^{n}} w_{\overline{\mathbf{a}}}$, then $u=h^{\alpha} \mathcal{B}_{\chi, h} w$ on I where

$$
\mathcal{B}_{\chi, h} w(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
$$

$$
\chi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right), \quad \operatorname{supp} \chi \cap\left(\bigsqcup_{a \in \mathcal{A}} I_{a} \times I_{a}\right)=\emptyset, \quad \chi=1 \quad \text { on } \quad \bigsqcup_{a \neq b} I_{a} \times I_{b}
$$

Since $\left|I_{\mathbf{a}}\right| \sim\left|I_{\mathbf{a}}\right|$

End of the proof: applying FUP

$$
\begin{gathered}
u(x)=\mathcal{L}_{s}^{n} u(x)=h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \mathbf{a} \rightarrow b} v_{\mathbf{a}}(x), \quad x \in I_{b}, \\
v_{\mathbf{a}}=\left|x-x_{\mathbf{a}}\right|^{-\frac{2 i}{h} \gamma_{\mathbf{a}}^{*} u=\mathcal{B}_{h} w_{\overline{\mathbf{a}}}, \quad \operatorname{supp} w_{\overline{\mathbf{a}}} \subset l_{\overline{\mathbf{a}}}(C h), \quad\left\|w_{\mathbf{a}}\right\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(l_{\mathbf{a}}\right)}} \\
\mathcal{B}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} f(y) d y
\end{gathered}
$$

Define $w:=\sum_{\mathbf{a} \in \mathcal{W}^{n}} w_{\overline{\mathbf{a}}}$, then $u=h^{\alpha} \mathcal{B}_{\chi, h} w$ on I where

$$
\mathcal{B}_{\chi, h} w(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
$$

$$
\chi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right), \quad \operatorname{supp} \chi \cap\left(\bigsqcup_{a \in \mathcal{A}} I_{a} \times I_{a}\right)=\emptyset, \quad \chi=1 \quad \text { on } \quad \bigsqcup_{a \neq b} I_{a} \times I_{b}
$$

Since $\left|I_{\mathbf{a}}\right| \sim\left|I_{\mathbf{a}}\right| \sim h$, get supp $w \subset \Lambda_{\Gamma}(C h)$ and $\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}$

To recap, we started with $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u=\mathcal{L}_{s}^{n} u, s=\alpha+\frac{i}{h}$ and got

$$
\begin{aligned}
& u=h^{\alpha} \mathcal{B}_{\chi, h} w \text { on } I, \quad \text { supp } w \subset \Lambda_{\Gamma}(C h), \quad\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}, \\
& \Lambda_{\Gamma}(C h):=\Lambda_{\Gamma}+[-C h, C h] \\
& \mathcal{B}_{\chi, h} w(x):=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
\end{aligned}
$$

Now the Fractal Uncertainty Principle gives

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

so we estimate

$$
\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}=\left\|h^{\alpha} \mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)} w\right\|_{L^{2}(\mathbb{R})}
$$

To recap, we started with $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u=\mathcal{L}_{s}^{n} u, s=\alpha+\frac{i}{h}$ and got

$$
\begin{aligned}
& u=h^{\alpha} \mathcal{B}_{\chi, h} w \text { on } I, \quad \text { supp } w \subset \Lambda_{\Gamma}(C h), \quad\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}, \\
& \Lambda_{\Gamma}(C h):=\Lambda_{\Gamma}+[-C h, C h], \\
& \mathcal{B}_{\chi, h} w(x):=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
\end{aligned}
$$

Now the Fractal Uncertainty Principle gives

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

so we estimate

$$
\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}=\left\|h^{\alpha} \mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)} w\right\|_{L^{2}(\mathbb{R})}
$$

To recap, we started with $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u=\mathcal{L}_{s}^{n} u, s=\alpha+\frac{i}{h}$ and got

$$
\begin{aligned}
u=h^{\alpha} \mathcal{B}_{\chi, h} w \text { on } I, \quad & \operatorname{supp} w \subset \Lambda_{\Gamma}(C h), \quad\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}, \\
& \Lambda_{\Gamma}(C h):=\Lambda_{\Gamma}+[-C h, C h], \\
\mathcal{B}_{\chi, h} w(x):= & (2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
\end{aligned}
$$

Now the Fractal Uncertainty Principle gives

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

so we estimate

$$
\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}=\left\|h^{\alpha} \mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)} w\right\|_{L^{2}(\mathbb{R})}
$$

where we use that $\alpha>\frac{1}{2}-\beta$ and $h \ll 1$. This gives $\left.u\right|_{\Lambda_{\Gamma}(C h)}=0$ and thus $u=0$, finishing the proof.

To recap, we started with $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u=\mathcal{L}_{s}^{n} u, s=\alpha+\frac{i}{h}$ and got

$$
\begin{aligned}
u=h^{\alpha} \mathcal{B}_{\chi, h} w \text { on } I, \quad & \operatorname{supp} w \subset \Lambda_{\Gamma}(C h), \quad\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}, \\
& \Lambda_{\Gamma}(C h):=\Lambda_{\Gamma}+[-C h, C h], \\
\mathcal{B}_{\chi, h} w(x):= & (2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
\end{aligned}
$$

Now the Fractal Uncertainty Principle gives

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

so we estimate

$$
\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}=\left\|h^{\alpha} \mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)} w\right\|_{L^{2}(\mathbb{R})} \leq C h^{\alpha+\beta}\|w\|_{L^{2}(\mathbb{R})}
$$

where we use that $\alpha>\frac{1}{2}-\beta$ and $h \ll 1$.
This gives $\left.u\right|_{\Lambda_{\Gamma}(C h)}=0$ and thus $u=0$, finishing the proof

To recap, we started with $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u=\mathcal{L}_{s}^{n} u, s=\alpha+\frac{i}{h}$ and got

$$
\begin{aligned}
u=h^{\alpha} \mathcal{B}_{\chi, h} w \text { on } I, \quad & \text { supp } w \subset \Lambda_{\Gamma}(C h), \quad\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}, \\
& \Lambda_{\Gamma}(C h):=\Lambda_{\Gamma}+[-C h, C h], \\
\mathcal{B}_{\chi, h} w(x):= & (2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
\end{aligned}
$$

Now the Fractal Uncertainty Principle gives

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

so we estimate

$$
\begin{aligned}
\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)} & =\left\|h^{\alpha} \mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)} w\right\|_{L^{2}(\mathbb{R})} \leq C h^{\alpha+\beta}\|w\|_{L^{2}(\mathbb{R})} \\
& \leq C h^{\alpha+\beta-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}
\end{aligned}
$$

where we use that $\alpha>\frac{1}{2}-\beta$ and $h \ll 1$.
This gives $\left.u\right|_{\Lambda_{\Gamma}(C h)}=0$ and thus $u=0$, finishing the proof

To recap, we started with $u \in \mathcal{H}(D), u=\mathcal{L}_{s} u=\mathcal{L}_{s}^{n} u, s=\alpha+\frac{i}{h}$ and got

$$
\begin{aligned}
& u=h^{\alpha} \mathcal{B}_{\chi, h} w \text { on } I, \quad \operatorname{supp} w \subset \Lambda_{\Gamma}(C h), \quad\|w\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)} \\
& \Lambda_{\Gamma}(C h):=\Lambda_{\Gamma}+[-C h, C h] \\
& \mathcal{B}_{\chi, h} w(x):=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) w(y) d y
\end{aligned}
$$

Now the Fractal Uncertainty Principle gives

$$
\left\|\mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

so we estimate

$$
\begin{aligned}
\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)} & =\left\|h^{\alpha} \mathbb{1}_{\Lambda_{\Gamma}(C h)} \mathcal{B}_{\chi, h} \mathbb{1}_{\Lambda_{\Gamma}(C h)} w\right\|_{L^{2}(\mathbb{R})} \leq C h^{\alpha+\beta}\|w\|_{L^{2}(\mathbb{R})} \\
& \leq C h^{\alpha+\beta-\frac{1}{2}}\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)} \ll\|u\|_{L^{2}\left(\Lambda_{\Gamma}(C h)\right)}
\end{aligned}
$$

where we use that $\alpha>\frac{1}{2}-\beta$ and $h \ll 1$.
This gives $\left.u\right|_{\Lambda_{\Gamma}(C h)}=0$ and thus $u=0$, finishing the proof.

Adapted transfer operator

- As remarked above, it is typically impossible to fix n such that $\left|I_{\mathbf{a}}\right| \sim h^{\rho}$ for all words a of length n
- So we instead consider the adapted partition

$$
Z=Z\left(h^{\rho}\right):=\left\{\mathbf{a} \in \mathcal{W}^{\circ}:\left|I_{\mathbf{a}}\right| \leq h^{\rho}<\left|\left|I_{\mathbf{a}^{\prime}}\right|\right\}\right.
$$

Note that $\Lambda_{\Gamma}=\bigsqcup_{\mathbf{a} \in Z}\left(\Lambda_{\Gamma} \cap I_{\mathbf{a}}\right)$.

- If $\mathcal{L}_{s} u=u$ then $\mathcal{L}_{\bar{Z}, s} u=u$ where $\bar{Z}:=\{\overline{\mathrm{a}} \mid \mathrm{a} \in Z\}$,

- Run the previous argument for this $\mathcal{L}_{\bar{Z}, s}$, using that Z is an approximate partition (bounded overlap of $l_{\mathbf{a}}, \mathbf{a} \in \bar{Z}$) and $\left|\overline{I_{\mathbf{a}}}\right| \sim \mid I_{\mathbf{a}}$

Adapted transfer operator

- As remarked above, it is typically impossible to fix n such that $\left|I_{\mathrm{a}}\right| \sim h^{\rho}$ for all words a of length n
- So we instead consider the adapted partition

$$
Z=Z\left(h^{\rho}\right):=\left\{\mathbf{a} \in \mathcal{W}^{\circ}:\left|I_{\mathbf{a}}\right| \leq h^{\rho}<\left|I_{\mathbf{a}^{\prime}}\right|\right\}
$$

Note that $\Lambda_{\Gamma}=\bigsqcup_{\mathbf{a} \in Z}\left(\Lambda_{\Gamma} \cap l_{\mathbf{a}}\right)$.

- If $\mathcal{L}_{s} u=u$ then $\mathcal{L}_{\bar{Z}, s} u=u$ where $\bar{Z}:=\{\overline{\mathbf{a}} \mid \mathbf{a} \in Z\}$,

$$
\mathcal{L}_{\bar{Z}, s} f(x)=\sum_{\mathbf{a} \in \bar{Z}, \mathbf{a} \rightsquigarrow b}\left(\gamma_{\mathbf{a}^{\prime}}^{\prime}(x)\right)^{s} f\left(\gamma_{\mathbf{a}^{\prime}}(x)\right), \quad x \in I_{b},
$$

for $\mathbf{a}=a_{1} \ldots a_{n}, \mathbf{a} \rightsquigarrow b$ means $a_{n}=b$, and $\mathbf{a}^{\prime}:=a_{1} \ldots a_{n-1}$

Adapted transfer operator

- As remarked above, it is typically impossible to fix n such that $\left|l_{\mathbf{a}}\right| \sim h^{\rho}$ for all words a of length n
- So we instead consider the adapted partition

$$
Z=Z\left(h^{\rho}\right):=\left\{\mathbf{a} \in \mathcal{W}^{\circ}:\left|I_{\mathbf{a}}\right| \leq h^{\rho}<\left|I_{\mathbf{a}^{\prime}}\right|\right\}
$$

Note that $\Lambda_{\Gamma}=\bigsqcup_{\mathbf{a} \in Z}\left(\Lambda_{\Gamma} \cap I_{\mathbf{a}}\right)$.

- If $\mathcal{L}_{s} u=u$ then $\mathcal{L}_{\bar{Z}, s} u=u$ where $\bar{Z}:=\{\overline{\mathbf{a}} \mid \mathbf{a} \in Z\}$,

$$
\mathcal{L}_{\bar{Z}, s} f(x)=\sum_{\mathbf{a} \in \overline{\bar{Z}}, \mathbf{a} \rightsquigarrow b}\left(\gamma_{\mathbf{a}^{\prime}}^{\prime}(x)\right)^{s} f\left(\gamma_{\mathbf{a}^{\prime}}(x)\right), \quad x \in I_{b},
$$

for $\mathbf{a}=a_{1} \ldots a_{n}, \mathbf{a} \rightsquigarrow b$ means $a_{n}=b$, and $\mathbf{a}^{\prime}:=a_{1} \ldots a_{n-1}$

- Run the previous argument for this $\mathcal{L}_{\bar{Z}, s}$, using that \bar{Z} is an approximate partition (bounded overlap of $l_{\mathbf{a}}, \mathbf{a} \in \bar{Z}$) and $\left|l_{\mathbf{a}}\right| \sim\left|l_{\mathbf{a}}\right|$

Thank you for your attention!

