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Overview

Review

Γ ⊂ SL(2,R) Schottky group, ΛΓ ⊂ R limit set, ΛΓ(h) = ΛΓ + [−h, h]

Ls : H(D)→ H(D) transfer operator, ZM(s) = det(I − Ls)

Bχ,h : L2(R)→ L2(R) defined by

Bχ,hf (x) = (2πh)−
1
2

∫
R
|x − y |−

2i
h χ(x , y)f (y) dy

where χ ∈ C∞c (R2), suppχ ∩ {x = y} = ∅

Theorem
Assume that for some fixed β and all χ

‖ 1lΛΓ(h) Bχ,h 1lΛΓ(h) ‖L2(R)→L2(R) = O(hβ) as h→ 0.

Then for each α > 1
2 − β, ZM(s) has finitely many zeroes with Re s ≥ α.

This lecture will present a proof of this theorem, due to D–Zworski ’20
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Overview

Outline of the proof

Since resonances form a discrete set and there are none with Re s > δ,
enough to show there are no resonances with Re s ≥ α, | Im s| � 1
Take s = α + i

h where α > 1
2 − β and 0 < h� 1

Recall that s is a resonance iff I − Ls is not invertible. Assume that
Lsu = u for some u ∈ H(D); we will show that u = 0
Step 1: get a rough bound on how fast u oscillates
Step 2: get finer information on the frequency localization of u
and write it in terms of u|ΛΓ(h) where ΛΓ(h) = ΛΓ + [−h, h]

Step 3: use FUP to get ‖u|ΛΓ(h)‖L2 ≤ Chα−
1
2+β‖u|ΛΓ(h)‖L2

which gives u = 0
Note: some notation is different from D–Zworski ’20
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Step 1: a priori bounds

How fast does the solution u = Lsu oscillate?

Recall from Lecture 1 the picture for L0f (x) =
∑

a 6=b̄ f (γa(x)), x ∈ Ib:

Ls f oscillates less than f when s is bounded
Thus for u = Lsu and s bounded, u should be very smooth
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Step 1: a priori bounds

Now let us plot Ls f with s = α + i
h , h small:

Ls f (x) =
∑
a 6=b̄

(γ′a(x))s f (γa(x)), x ∈ Ib

u = Lsu oscillates at frequencies . h−1, owing to the factor e
i
h

log γ′a(x)
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Step 1: a priori bounds

Getting a frequency bound

We prove that u oscillates at frequencies . h−1, starting with

Lemma (Interpolated bound)

Let D :=
⊔

a∈ADa ⊂ C, I := D ∩ R, D̃ :=
⊔

a∈W2 Da b D,
D± := D ∩ {± Im z > 0}, D̃± := D̃ ∩ {± Im z > 0}. Then ∃c > 0:

sup
D̃±

|f | ≤
(
sup
I
|f |
)c(

sup
D±

|f |
)1−c

for all f ∈ H(D±).

Proof
Let F± : D± → [0, 1] be harmonic with F±|I ≡ 1, F±|∂D±\I ≡ 0.
log |f | ≤ (log supI |f |)F± + (log supD± |f |)(1− F±) since this is true
on ∂D± and log |f | is subharmonic. Put c := min

D̃±
F± > 0.
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Step 1: a priori bounds

For holomorphic functions, oscillating at frequencies ≤ L on R is roughly
equivalent to being bounded by eL| Im z| in C. Define the weight

wK (z) := e−K | Im z|/h where K = K (Γ)� 1.

Lemma (A priori bound in the complex)

Let u ∈ H(D), u = Lsu, s = α + i
h . Then supD |wKu| ≤ C supI |u|.

Proof

Assume that supDb
|γ′a| ≤ 1

2 for all a 6= b. (If not, use Lns u = u and
that |γ′a| ≤ Ce−θn for all a ∈ Wn.)
For z ∈ Db and a 6= b̄ we have | Im γa(z)| ≤ 1

2 | Im z |. Now write

(wKu)(z) =
∑

a 6=b̄

wK (z)
wK (γa(z)) (γ′a(z))s(wKu)(γa(z)).

For K � 1 get wK (z)
wK (γa(z)) |(γ

′
a(z))s | ≤ Ce−

K | Im z|
2h e−

arg γ′a(z)

h ≤ C

So supD |wKu| ≤ C sup
D̃
|wKu| ≤ C (supI |u|)c(supD |wKu|)1−c

where the second inequality follows from the interpolation bound
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Step 1: a priori bounds

Recall: u ∈ H(D), u = Lsu, and supD |e−K | Im z|/hu| ≤ C supI |u|
Semiclassical Fourier transform: Fhf (ξ) = (2πh)−

1
2 f̂ (ξ/h)

Lemma (Fourier localization to frequencies ≤ 2K/h)

Fix χ ∈ C∞c (I ). Then ∀N, |Fh(χu)(ξ)| ≤ CNh
N |ξ|−N supI |u| for |ξ| ≥ 2K .

In particular this implies sup |χu| ≤ Ch−1/2‖χu‖L2 + CNh
N supI |u|

Proof
Let χ̃ ∈ C∞c (D) be an almost analytic extension of χ: χ̃|R = χ,
|∂̄z χ̃(z)| ≤ CN | Im z |N . By Green’s Theorem on D− = D ∩ {Im z < 0}

χ̂u(ξ/h) =

∫
∂D−

u(z)e−
i
h
zξχ̃(z) dz =

∫
Im z<0

u(z)e−
i
h
zξ∂̄z χ̃(z) dz∧dz̄

For ξ ≥ 2K , bound |u(z)e−
i
h
zξ∂̄z χ̃(z)| ≤ CNe

− ξ| Im z|
h | Im z |N supI |u|

and integrate. For ξ ≤ −2K , integrate instead over {Im z > 0}.
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Step 2: fine frequency localization

Large powers of transfer operators

Henceforth we only study u on I = D ∩ R.
Since Lsu = u we also have Lns u = u for all n, where

Lns f (x) =
∑

a∈Wn, a→b

(γ′a(x))s f (γa(x)), x ∈ Ib

and a→ b means b 6= an where a = a1 . . . an.
Recalling that s = α + i

h , rewrite this as

Lns f (x) =
∑

a∈Wn, a→b

(γ′a(x))αe
i
h
ϕa(x)f (γa(x)), x ∈ Ib

where the phase functions ϕa(x) are defined by

ϕa(x) = log γ′a(x), x ∈ Ib
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Step 2: fine frequency localization

u(x) = Lns u(x) =
∑

a∈Wn, a→b

(γ′a(x))αe
i
h
ϕa(x)u(γa(x)), x ∈ Ib

Each term in the sum is obtained by the following three operations:
Composition u 7→ γ∗au, where γ

′
a(x) ∼ |Ia| � 1 when n� 1. Since u

oscillates at frequencies . h−1, γ∗au oscillates at frequencies . h−1|Ia|.
Multiplication by weight v 7→ (γ′a)αv where (γ′a)α ∼ |Ia|α. Does not
change frequency localization much but changes the magnitude.

Phase shift v 7→ e
i
h
ϕav , with the result oscillating at frequencies . 1

h

We fix ρ < 1 close to 1 and choose n so that

|Ia| ∼ hρ for all a ∈ Wn

(Typically impossible, will discuss how to fix this at the end of the lecture.)
To simplify, we put ρ := 1 and replace the weight (γ′a)α by hα

Semyon Dyatlov Minicourse on FUP, Lecture 3–4 March 22–25, 2021 10 / 16



Step 2: fine frequency localization

u(x) = Lns u(x) =
∑

a∈Wn, a→b

(γ′a(x))αe
i
h
ϕa(x)u(γa(x)), x ∈ Ib

Each term in the sum is obtained by the following three operations:
Composition u 7→ γ∗au, where γ

′
a(x) ∼ |Ia| � 1 when n� 1. Since u

oscillates at frequencies . h−1, γ∗au oscillates at frequencies . h−1|Ia|.
Multiplication by weight v 7→ (γ′a)αv where (γ′a)α ∼ |Ia|α. Does not
change frequency localization much but changes the magnitude.

Phase shift v 7→ e
i
h
ϕav , with the result oscillating at frequencies . 1

h

We fix ρ < 1 close to 1 and choose n so that

|Ia| ∼ hρ for all a ∈ Wn

(Typically impossible, will discuss how to fix this at the end of the lecture.)
To simplify, we put ρ := 1 and replace the weight (γ′a)α by hα

Semyon Dyatlov Minicourse on FUP, Lecture 3–4 March 22–25, 2021 10 / 16



Step 2: fine frequency localization

u(x) = Lns u(x) =
∑

a∈Wn, a→b

(γ′a(x))αe
i
h
ϕa(x)u(γa(x)), x ∈ Ib

Each term in the sum is obtained by the following three operations:
Composition u 7→ γ∗au, where γ

′
a(x) ∼ |Ia| � 1 when n� 1. Since u

oscillates at frequencies . h−1, γ∗au oscillates at frequencies . h−1|Ia|.
Multiplication by weight v 7→ (γ′a)αv where (γ′a)α ∼ |Ia|α. Does not
change frequency localization much but changes the magnitude.

Phase shift v 7→ e
i
h
ϕav , with the result oscillating at frequencies . 1

h

We fix ρ < 1 close to 1 and choose n so that

|Ia| ∼ hρ for all a ∈ Wn

(Typically impossible, will discuss how to fix this at the end of the lecture.)
To simplify, we put ρ := 1 and replace the weight (γ′a)α by hα
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Step 2: fine frequency localization

What does the phase do?

u(x) = Lns u(x) = hα
∑

a∈Wn, a→b

e
i
h
ϕa(x)u(γa(x)), x ∈ Ib

We know that each γ∗au oscillates at low frequencies . h−1|Ia| ∼ 1
What does the phase ϕa(x) = log γ′a(x) look like?
An elementary computation shows that up to an additive constant

ϕa(x) = −2 log(x − xa) where xa := γ−1
a (∞) ∈ Ia,

a := an . . . a1 ∈ Wn is the inverse of a = a1 . . . an

We plug in the formula for ϕa (ignoring the constant)
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Step 2: fine frequency localization

u(x) = Lns u(x) = hα
∑

a∈Wn, a→b

va(x), x ∈ Ib

where va(x) := |x − xa|−
2i
h γ∗au(x), x ∈ I \ Ian

and γ∗au oscillates at bounded frequencies. Define the operator Bh by

Bhf (x) = (2πh)−
1
2

∫
R
|x − y |−

2i
h f (y) dy

then ‘similarly’ to Fhf (x) = (2πh)−
1
2
∫
R e−

i
h
xy f (y) dy we write

va = Bhwa on I \ Ian

for some wa supported in Ia(Ch) = Ia + [−Ch,Ch] and having L2 norm

‖wa‖L2 ∼ ‖va‖L2 = ‖γ∗au‖L2 ∼ h−
1
2 ‖u‖L2(Ia)

where in the last estimate we recall that γ′a ∼ |Ia| ∼ h on I \ Ian
(Cheating here, in reality would need ρ < 1 and O(h∞) remainder. . . )
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Step 3: applying FUP

End of the proof: applying FUP

u(x) = Lns u(x) = hα
∑

a∈Wn, a→b

va(x), x ∈ Ib,

va = |x − xa|−
2i
h γ∗au = Bhwa, suppwa ⊂ Ia(Ch), ‖wa‖L2 ∼ h−

1
2 ‖u‖L2(Ia)

Bhf (x) = (2πh)−
1
2

∫
R
|x − y |−

2i
h f (y) dy

Define w :=
∑

a∈Wn wa, then u = hαBχ,hw on I where

Bχ,hw(x) = (2πh)−
1
2

∫
R
|x − y |−

2i
h χ(x , y)w(y) dy ,

χ ∈ C∞c (R2), suppχ ∩
( ⊔

a∈A
Ia × Ia

)
= ∅, χ = 1 on

⊔
a 6=b

Ia × Ib

Since |Ia| ∼ |Ia| ∼ h, get suppw ⊂ ΛΓ(Ch) and ‖w‖L2 ∼ h−
1
2 ‖u‖L2(ΛΓ(Ch))
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Step 3: applying FUP

To recap, we started with u ∈ H(D), u = Lsu = Lns u, s = α + i
h and got

u = hαBχ,hw on I , suppw ⊂ ΛΓ(Ch), ‖w‖L2 ∼ h−
1
2 ‖u‖L2(ΛΓ(Ch)),

ΛΓ(Ch) := ΛΓ + [−Ch,Ch],

Bχ,hw(x) := (2πh)−
1
2

∫
R
|x − y |−

2i
h χ(x , y)w(y) dy

Now the Fractal Uncertainty Principle gives

‖ 1lΛΓ(Ch) Bχ,h 1lΛΓ(Ch) ‖L2(R)→L2(R) ≤ Chβ

so we estimate

‖u‖L2(ΛΓ(Ch)) = ‖hα1lΛΓ(Ch) Bχ,h 1lΛΓ(Ch)w‖L2(R) ≤ Chα+β‖w‖L2(R)

≤ Chα+β− 1
2 ‖u‖L2(ΛΓ(Ch))� ‖u‖L2(ΛΓ(Ch))

where we use that α > 1
2 − β and h� 1.

This gives u|ΛΓ(Ch) = 0 and thus u = 0, finishing the proof.
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Adapted transfer operator

Adapted transfer operator

As remarked above, it is typically impossible to fix n such that
|Ia| ∼ hρ for all words a of length n

So we instead consider the adapted partition

Z = Z (hρ) := {a ∈ W◦ : |Ia| ≤ hρ < |Ia′ |}

Note that ΛΓ =
⊔

a∈Z (ΛΓ ∩ Ia).
If Lsu = u then LZ ,su = u where Z := {a | a ∈ Z},

LZ ,s f (x) =
∑

a∈Z ,a b

(γ′a′(x))s f (γa′(x)), x ∈ Ib,

for a = a1 . . . an, a b means an = b, and a′ := a1 . . . an−1

Run the previous argument for this LZ ,s , using that Z is an
approximate partition (bounded overlap of Ia, a ∈ Z ) and |Ia| ∼ |Ia|
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Thank you for your attention!
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