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General FUP

An uncertainty principle

Unitary semiclassical Fourier transform Fh : L2(R)→ L2(R)

Fhf (x) = (2πh)−
1
2 f̂
(x
h

)
= (2πh)−

1
2

∫
R
e−

i
h
xy f (y) dy

Here 0 < h� 1 is called the semiclassical parameter
For X ⊂ R, denote by 1lX : L2(R)→ L2(R) the multiplication operator
by the indicator function of X
We say that two h-dependent sets X = X (h),Y = Y (h) ⊂ R
satisfy the uncertainty principle with exponent β if

‖1lX Fh 1lY ‖L2(R)→L2(R) = O(hβ) as h→ 0

This is equivalent to the following estimate for all f ∈ L2(R):

supp f̂ ⊂ h−1Y =⇒ ‖1lX f ‖L2(R) ≤ Chβ‖f ‖L2(R)
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General FUP

Basic uncertainty principles

Looking for

‖ 1lX Fh 1lY ‖L2(R)→L2(R) = O(hβ) as h→ 0

Trivial bound: β = 0 as ‖ 1lX Fh 1lY ‖L2→L2 ≤ 1
Volume bound: if |X |, |Y | = O(h1−δ) then get β = 1

2 − δ:

‖ 1lX Fh 1lY ‖L2→L2 ≤ ‖ 1lX ‖L∞→L2‖Fh‖L1→L∞‖ 1lY ‖L2→L1

≤
√
|X | · |Y |
2πh

= O(h
1
2−δ)

Cannot be improved if we only know the volume, e.g.

X = Y = [−
√
h,
√
h] =⇒ cannot get β > 0

So we need to know more about the structure of X and Y
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General FUP

Ahlfors–David regular sets

Definition
We call a set X ⊂ R δ-regular up to scale h with constant C if there exists
a finite measure µ on X such that

C−1|I |δ ≤ µ(I ) ≤ C |I |δ

for every interval I ⊂ R with h ≤ |I | ≤ 1 whose center lies in X .

Example: the mid-third Cantor set is log3 2-regular up to scale 0
The limit set ΛΓ of a Schottky group is δ-regular up to scale 0,
taking µ = Patterson–Sullivan measure
If X is δ-regular up to scale 0, then its h-neighborhood
X (h) = X + [−h, h] is δ-regular up to scale h

Relation to porous sets mentioned in Lecture 1: X is porous ⇐⇒
X ⊂ X̃ for some δ-regular X̃ with δ < 1
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General FUP

Fractal uncertainty principle for the Fourier transform

Theorem
Assume that X ,Y ⊂ [0, 1] are δ-regular with constant CR up to scale h
where 0 < δ < 1. Then there exist β = β(δ,CR) > max(0, 1

2 − δ) and
C = C (δ,CR) such that

‖ 1lX Fh 1lY ‖L2(R)→L2(R) ≤ Chβ.

β > 0 proved by Bourgain–D ’18 using methods of harmonic analysis.
Jin–Zhang ’20 got for some universal constant K

β = exp
[
− exp

(
K (CRδ

−1(1− δ)−1)K(1−δ)−2
)]

β > 1
2 − δ proved by D–Jin ’18, inspired by Dolgopyat’s method. Get

β = 1
2 − δ + (5CR)−160δ−1(1−δ)−1

See also D–Zahl ’16, Cladek–Tao ’20 which use additive combinatorics
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General FUP

Hyperbolic FUP

For applications to hyperbolic surfaces, we replace the phase xy in Fh by
2 log |x − y | and introduce a cutoff χ ∈ C∞c (R2), suppχ ∩ {x = y} = ∅:

Bχ,hf (x) = (2πh)−
1
2

∫
R
|x − y |−

2i
h χ(x , y)f (y) dy

For χ ≡ 1, B is equivariant under all γ ∈ SL(2,R):

(B1,hf ) ◦ γ = (γ′)−
i
hB1,h

(
(γ′)1− i

h (f ◦ γ)
)

For Bχ,h we have the same FUP:

Theorem
Assume that X ,Y ⊂ [0, 1] are δ-regular with constant CR up to scale h
where 0 < δ < 1. Then there exist β = β(δ,CR) > max(0, 1

2 − δ) and
C = C (δ,CR , χ) such that

‖ 1lX Bχ,h 1lY ‖L2(R)→L2(R) ≤ Chβ.
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General FUP

FUP and spectral gaps

Let Γ ⊂ SL(2,R) be a Schottky group, M = Γ\H2

ΛΓ ⊂ R the limit set, ΛΓ(h) := ΛΓ + [−h, h] its h-neighborhood

Theorem [D–Zahl ’16, D–Zworski ’17], explained in Lecture 3–4

Assume that the sets X = Y = ΛΓ(h) satisfy hyperbolic FUP:

∀χ ‖ 1lΛΓ(h) Bχ,h 1lΛΓ(h) ‖L2→L2 ≤ Chβ, C = C (χ)

Then for any α > 1
2 − β, M has finitely many resonances with Re s ≥ α.

Trivial bound β = 0 =⇒ ‘Lax–Phillips’ gap Re s > 1
2+

Volume bound β = 1
2 − δ =⇒ ‘Patterson–Sullivan’ gap Re s > δ+

FUP on previous slide =⇒ gap with some α = α(Γ) < min(1
2 , δ)

Specialized FUP for ΛΓ [Bourgain–D ’17] =⇒ α = α(δ) < δ
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FUP for Cantor sets

Discrete Cantor sets

We now present a proof of FUP in the special setting of Cantor sets.
This is much simpler than the general case but keeps some key features.
We follow D–Jin ’17, with the exposition from [arXiv:1903.02599]

Discrete unitary Fourier transform FN : CN → CN

FNu(j) =
1√
N

N−1∑
`=0

e−
2πij`
N u(`)

Fix M ≥ 3, A ⊂ {0, . . . ,M − 1}. Put N := Mk , k � 1 and define

Ck := {a0 + a1M + · · ·+ ak−1M
k−1 | a0, . . . , ak−1 ∈ A }

Example: if M = 3, A = {0, 2}, then Ck ⊂ {0, . . . ,N − 1}, N = 3k ,
is the discrete mid-3rd Cantor set {0, 2, 6, 8, 18, 20, 24, 26, . . . }
The number of elements of Ck is |Ck | = Nδ where δ = logM |A |
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FUP for Cantor sets

Uncertainty principle for discrete Cantor sets

Theorem
Assume that 0 < δ < 1, i.e. 1 < |A | < M. Then there exists
β = β(M,A ) > max(0, 1

2 − δ) such that as N = Mk →∞,

‖ 1lCk FN 1lCk ‖CN→CN = O(N−β).

Trivial bound β = 0: since FN is unitary, ‖ 1lCk FN 1lCk ‖CN→CN ≤ 1
Volume bound β = 1

2 − δ: defining the Hilbert–Schmidt norm

‖A‖2HS =
∑
j ,k

|ajk |2 where A = (ajk)Nj ,k=1

we have

‖ 1lCk FN 1lCk ‖CN→CN ≤ ‖ 1lCk FN 1lCk ‖HS = Nδ− 1
2 .

Semyon Dyatlov Minicourse on FUP, Lecture 2 March 22–25, 2021 9 / 16



FUP for Cantor sets

Uncertainty principle for discrete Cantor sets

Theorem
Assume that 0 < δ < 1, i.e. 1 < |A | < M. Then there exists
β = β(M,A ) > max(0, 1

2 − δ) such that as N = Mk →∞,

‖ 1lCk FN 1lCk ‖CN→CN = O(N−β).

Trivial bound β = 0: since FN is unitary, ‖ 1lCk FN 1lCk ‖CN→CN ≤ 1
Volume bound β = 1

2 − δ: defining the Hilbert–Schmidt norm

‖A‖2HS =
∑
j ,k

|ajk |2 where A = (ajk)Nj ,k=1

we have

‖ 1lCk FN 1lCk ‖CN→CN ≤ ‖ 1lCk FN 1lCk ‖HS = Nδ− 1
2 .

Semyon Dyatlov Minicourse on FUP, Lecture 2 March 22–25, 2021 9 / 16



FUP for Cantor sets

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define rk := ‖ 1lCk FN 1lCk ‖CN→CN . Then rk1+k2 ≤ rk1 · rk2 for all k1, k2.

To prove it, we employ the following decomposition also used in FFT:
Write k = k1 + k2, N = Mk = N1 · N2, Nj := Mkj

Identify u ∈ CN with an N1 × N2 matrix Uab = u(N1b + a)

Apply the Fourier transform FN2 to each row of U

Multiply the entries of U by the twist factors e−
2πiab
N

Apply the Fourier transform FN1 to each column of U
The resulting matrix V gives v = FNu by Vab = v(N2a + b)

Using that Ck = N1Ck2 + Ck1 = N2Ck1 + Ck2 , we get rk1+k2 ≤ rk1 · rk2
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Using that Ck = N1Ck2 + Ck1 = N2Ck1 + Ck2 , we get rk1+k2 ≤ rk1 · rk2
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FUP for Cantor sets

An example of the ‘Fast Fourier Transform’ decomposition

Let’s say N = 4 = N1N2 where N1 = N2 = 2.

Take u = (u0, u1, u2, u3) ∈ C4. Follow the instructions on the last slide:

Take U =

(
u0 u2
u1 u3

)
, F2 each row to get 1√

2

(
u0 + u2 u0 − u2
u1 + u3 u1 − u3

)
Multiply by twist factors e−

πiab
2 to get 1√

2

(
u0 + u2 u0 − u2
u1 + u3 i(u3 − u1)

)
F2 each column to get

V =
1
2

(
u0 + u1 + u2 + u3 u0 − iu1 − u2 + iu3
u0 − u1 + u2 − u3 u0 + iu1 − u2 − iu3

)

V gives the Fourier transform F4u:

V =

(
F4u(0) F4u(1)
F4u(2) F4u(3)

)
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FUP for Cantor sets

FUP with β > 0

rk1+k2 ≤ rk1 · rk2 where rk := ‖ 1lCk FN 1lCk ‖CN→CN , N = Mk

We want rk ≤ CN−β for large k and some β > 0, so
enough to show that ∃k : rk < 1
Since FN is unitary, we always have rk ≤ 1. Assume rk = 1, then

∃u ∈ CN \ {0} : u = 1lCk u, FNu = 1lCk FNu

Define the polynomial P(z) =
∑

`∈Ck u(`)z`, then

FNu(j) = N−1/2P(ωj), ω := e−
2πi
N

Assume for simplicity that M − 1 /∈ A , then the degree of P satisfies

degP ≤ max Ck ≤ Mk(1− 1
M )

On the other hand, P(ωj) = 0 for all j ∈ {0, . . . ,N − 1} \ Ck , so
P has at least N − |Ck | ≥ Mk(1− (1− 1

M )k) roots

For k large, Mk(1− (1− 1
M )k) > Mk(1− 1

M ), so rk < 1 as needed
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FUP for Cantor sets

FUP with β > 1
2 − δ (‘baby Dolgopyat’)

Similarly to the previous slide, enough to show that ∃k : rk < Nδ− 1
2

where rk := ‖ 1lCk FN 1lCk ‖CN→CN , N = Mk

We always have rk ≤ ‖ 1lCk FN 1lCk ‖HS = Nδ− 1
2

Assume rk = Nδ− 1
2 , then 1lCk FN 1lCk has the same operator norm

(= max singular value σj) and H–S norm
(

=
√
σ2

1 + · · ·+ σ2
N

)
This can only happen if 1lCk FN 1lCk is a rank 1 matrix, i.e. each of its
2× 2 minors is equal to 0. This gives

(j − j ′)(`− `′) ∈ NZ for all j , j ′, `, `′ ∈ Ck

This cannot happen already when k = 2 (and |A | > 1): just take two
different a, b ∈ A and put

j = ` = Ma + a, j ′ = `′ = Ma + b
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FUP for Cantor sets

A picture of FUP exponents for all alphabets with M ≤ 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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M = 3
M = 4
M = 5
M = 6
M = 7
M = 8
M = 9
M = 10

Horizontal axis: δ, vertical axis: β, solid line: β = max(0, 1
2 − δ), dashed

line: β = 1−δ
2 (corresponding to the gap conjectured by Jakobson–Naud)
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An open problem

A higher dimensional FUP?

Open problem: get FUP with β > 0 on Rn, n > 1. Let’s take n = 2
Fhf (x) = (2πh)−1f̂ ( xh ) semiclassical Fourier transform
Want ‖ 1lX Fh 1lY ‖L2(R2)→L2(R2) = O(hβ) where X ,Y ⊂ R2 are
δ-regular up to scale h and δ < 2
This is false: take δ = 1, X = [0, h]× [0, 1], Y = [0, 1]× [0, h]

Han–Schlag ’20: FUP holds with β > 0 if one of X ,Y is contained in
the product of 2 fractal sets

It could be that the hyperbolic FUP (with e−
i
h
〈x ,y〉 replaced by

|x − y |−
2i
h ) still holds.

Partial result by D–Zhang WIP, when one of X ,Y is a curve
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Thank you for your attention!
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