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Overview

Preview of results

Theorem 1 [Spectral gap]

Let M be a convex co-compact hyperbolic surface. Let LM be the set of
lengths of primitive closed geodesics on M with multiplicity. Define the
Selberg zeta function as the holomorphic extension to s ∈ C of

ZM(s) =
∏
`∈LM

∞∏
k=0

(1− e−(s+k)`), Re s � 1.

Then ∃β > 0 : Z has only finitely many zeroes in {Re s ≥ 1
2 − β}.

Theorem 2 [Fractal Uncertainty Principle / FUP]

Assume that X ,Y ⊂ R are ν-porous on scales ≥ h, i.e. for every interval
I ⊂ R with h ≤ |I | ≤ 1, I \ X and I \ Y contain intervals of length ν|I |.
Here ν > 0 is fixed, h→ 0. Then ∃β = β(ν) > 0,C : ∀h > 0, f ∈ L2(R)

f ∈ L2(R), supp f̂ ⊂ h−1Y =⇒ ‖1lX f ‖L2(R) ≤ Chβ‖f ‖L2(R).
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Overview

Plan of the minicourse

Lecture 1: Schottky groups, convex co-compact surfaces,
transfer operators, the spectral gap problem, overview of history
Lecture 2: Statement of FUP, known results on FUP, and a proof of
FUP in the model case of Cantor sets following D–Jin ’16
[arXiv:1608.02238]
Lecture 3–4: How FUP implies a spectral gap following D–Zworski ’20
[arXiv:1710.05430]
+ two tutorials led by Malo Jézéquel
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Schottky groups

Möbius maps

R := R ∪ {∞} identified with S1

The group SL(2,R) acts on R by Möbius maps:

γ =

(
a b
c d

)
∈ SL(2,R) =⇒ γ(x) =

ax + b

cx + d

For any closed intervals I1, I2 ⊂ R with I1 ∩ I2 = ∅ there exists

γ ∈ SL(2,R) such that γ(R \ I ◦2 ) = I1

Note that γ−1(R \ I ◦1 ) = I2

∞ ∞

I2 I1
γ
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Schottky groups

Schottky subgroups of SL(2,R)
To define a Schottky group:

Fix r ≥ 1 and put A := {1, . . . , 2r}; ā := (a + r) mod 2r , a ∈ A
Fix 2r nonintersecting intervals Ia ⊂ R, a ∈ A
Fix the generators γa ∈ SL(2,R), a ∈ A:

γa(R \ I ◦ā ) = Ia, γā = γ−1
a

Define the Schottky group Γ ⊂ SL(2,R) generated by γ1, . . . , γr

Define the sets of admissible words

Wn := {a1 . . . an ∈ An | ∀j : aj+1 6= aj}, W :=
⋃
n≥0

Wn

We have Γ = {γa | a ∈ W} where

γa1...an = γa1 · · · γan ∈ Γ
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Schottky groups

The limit set

If a, b ∈ A, ā 6= b, then γa(Ib) b γa(R \ I ◦a ) = Ia

For a ∈ W◦ :=W \ {∅} define the closed interval

Ia = γa′(Ian) where a = a1 . . . an, a′ := a1 . . . an−1

These intervals form a tree: Ia ⊂ Ia′ and

a,b ∈ Wn, a 6= b =⇒ Ia ∩ Ib = ∅

They are also exponentially small: ∃θ > 0 : maxa∈Wn |Ia| = O(e−θn)

The limit set of Γ is given by a Cantor-like procedure:

ΛΓ =
⋂
n

⊔
a∈Wn

Ia

and is a compact subset of R
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Schottky groups

A minimal example: 2 initial intervals

Assume r = 1, i.e. there are only 2 initial intervals I1, I2 and

γ1(R \ I ◦2 ) = I1, γ2(R \ I ◦1 ) = I2, γ2 = γ−1
1

Then Wn consists of only 2 words, 1 . . . 1 and 2 . . . 2
The limit set consists of only 2 points: ΛΓ = {x1, x2}, where
x1 ∈ I1, x2 ∈ I2 are the fixed points of γ1 (and thus of γ2)
x1 is attractive (γ′1(x1) < 1) and x2 is repulsive (γ′1(x2) > 1)
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Schottky groups

A more interesting example

If r ≥ 2, then Wn has 2r(2r − 1)n−1 words
The limit set ΛΓ has fractal structure
Here is an example with 4 initial intervals:
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Schottky groups

Connection to hyperbolic surfaces

Möbius transformations act on C = C ∪ {∞} by the same formula
In particular they act by isometries on the hyperbolic upper half-plane

H2 = {z ∈ C | Im z > 0}, g =
|dz |2

(Im z)2

The quotient Γ\H2 is a convex co-compact hyperbolic surface
Our generators γa, a ∈ A, satisfy

γa(C \ D◦ā ) = Da

where Da ⊂ C is the disk centered on R such that Da ∩ R = Ia

Can define the tree of disks Da := γa′(Dan), a ∈ W◦, with Da ∩R = Ia
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Schottky groups

A picture of the tree of half-disks (4 initial intervals)

D1 D3

D2

D4

γ3
γ4

γ1
γ2

I12 I14 I11 I33 I32 I34 I21 I23 I22 I44 I41 I43
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Schottky groups

A picture of a convex co-compact hyperbolic surface

Here is how to glue a three-funnel surface from the fundamental domain
H2 \

⊔4
a=1 Da in the Poincaré disk model (old picture, replace γj by γ−1

j )

F`

`3/2

`1/2

`1/2

`3/2

`2/2

`2/2

q3

q1q2

q2 q1

D1 D2

D3 D4

γ1 γ2

`1 `2

`3

M`
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Schottky groups

Limit set and geodesics

Each geodesic on a surface M = Γ\H2 lifts to a geodesic on H2,
which is a half-circle with endpoints x−, x+ ∈ R

x−x+
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Limit set and geodesics

Each geodesic on a surface M = Γ\H2 lifts to a geodesic on H2,
which is a half-circle with endpoints x−, x+ ∈ R
The geodesic is trapped (i.e. stays in some compact set in M)
if and only if x−, x+ ∈ ΛΓ

Here is a picture using the Poincaré disk model instead:
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Transfer operators

Patterson–Sullivan measure

Denote by δ the Hausdorff dimension of the limit set ΛΓ

If r = 1 (2 initial intervals) then δ = 0. If r ≥ 2 then 0 < δ < 1
Patterson–Sullivan measure: a probability measure µ on ΛΓ such that∫

ΛΓ

f (x) dµ(x) =

∫
ΛΓ

f (γ(x))(γ′(x))δ dµ(x)

for all f ∈ C (ΛΓ) and all γ ∈ Γ

µ is δ-regular: for any interval I of size |I | ≤ 1 centered at a point
in ΛΓ

µ(I ) ∼ |I |δ

where the constants in ∼ stay fixed as |I | → 0
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Transfer operators

Transfer operators

For s ∈ C define the transfer operator Ls by

Ls f (x) =
∑

a∈A, a 6=b̄

(γ′a(x))s f (γa(x)), x ∈ Ib

Ls maps C (I )→ C (I ) and also H(D)→ H(D) where

I :=
⊔
a∈A

Ia ⊂ R, D :=
⊔
a∈A

Da ⊂ C

and H(D) is the space of holomorphic functions in L2(D)

I1 I3 I2 I4

x γ1(x) γ2(x) γ4(x)
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Transfer operators

Here is a picture for L0f (x) =
∑

a 6=b̄ f (γa(x)), x ∈ Ib:

Ls f depends only on the values of f on
⊔

a∈W2 Ia b I

Ls f oscillates less than f when s is bounded
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Spectral gaps

Transfer operator and the Selberg zeta function

Γ ⊂ SL(2,R) Schottky group
M = Γ\H2 convex co-compact hyperbolic surface
Selberg zeta function: a product over the lengths of
primitive closed geodesics on M

ZM(s) =
∏
`∈LM

∞∏
k=0

(1− e−(s+k)`), Re s � 1

Transfer operator Ls : H(D)→ H(D), s ∈ C, D =
⊔

a∈ADa ⊂ C:

Ls f (z) =
∑

a∈A, a 6=b̄

(γ′a(z))s f (γa(z)), z ∈ Db

One can show that Ls : H(D)→ H(D) is trace class and

ZM(s) = det(I − Ls)

which gives a way to continue ZM(s) to an entire function of s
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Spectral gaps

Resonances

We call s ∈ C a resonance of M if ZM(s) = 0, i.e. I − Ls is not invertible

Ruelle–Perron–Frobenius/Patterson–Sullivan theory

δ is a resonance: L∗δµ = µ where µ is the Patterson–Sullivan measure
No resonances with Re s > δ

If δ > 0, then δ is the only resonance on the line Re s = δ

If δ = 0, there is actually a lattice of resonances
s = −j + ick , j ∈ N0, k ∈ Z, c = c(Γ) > 0

Lax–Phillips theory + Patterson–Perry ’01

There are only finitely many resonances with Re s ≥ 1
2 , and they all lie

on the interval [1
2 , 1]

If s is such a resonance, then s(1− s) is an L2 eigenvalue of the
Laplacian −∆ ≥ 0 on the surface M = Γ\H2
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s = −j + ick , j ∈ N0, k ∈ Z, c = c(Γ) > 0

Lax–Phillips theory + Patterson–Perry ’01

There are only finitely many resonances with Re s ≥ 1
2 , and they all lie

on the interval [1
2 , 1]

If s is such a resonance, then s(1− s) is an L2 eigenvalue of the
Laplacian −∆ ≥ 0 on the surface M = Γ\H2
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Schematic picture of resonances

δ

δ = 0 0 < δ < 1
2

δ

Re s = δ?
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Spectral gaps

Numerical plots of resonances

Pictures by David Borthwick, see Borthwick ’14, Borthwick–Weich ’16
David Borthwick, Spectral Theory of Infinite-Area Hyperbolic Surfaces,
Second Edition, Birkhäuser, 2016, Chapter 16
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Spectral gaps

The main question we will study now is

The spectral gap question
Given a Schottky group Γ, for which α can we show that there are
only finitely many resonances in {Re s > α}?

Applications: geodesic counting, Diophantine problems, wave decay. . .
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Given a Schottky group Γ, for which α can we show that there are
only finitely many resonances in {Re s > α}?

Applications: geodesic counting, Diophantine problems, wave decay. . .

Previous results

Patterson–Sullivan + Lax–Phillips: α = min(δ, 1
2)

δ = 0 =⇒ best possible is α = 0
Naud ’05: δ > 0 =⇒ α = δ− ε for some ε = ε(Γ) > 0
Inspired by Dolgopyat ’98
Jakobson–Naud conjecture: α = δ

2

Guillopé–Zworski ’99, Jakobson–Naud ’12: lower bounds on α
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Spectral gaps

The main question we will study now is

The spectral gap question
Given a Schottky group Γ, for which α can we show that there are
only finitely many resonances in {Re s > α}?

Applications: geodesic counting, Diophantine problems, wave decay. . .

New results

Bourgain–D ’18: α = 1
2 − ε for some ε = ε(Γ) > 0

Bourgain–D ’17: δ > 0 =⇒ α = δ − ε for some ε = ε(δ) > 0
Both of these prove a fractal uncertainty principle (FUP).
The fact that FUP implies a spectral gap is proved in D–Zahl ’16.
In this course we will give another proof, from D–Zworski ’20

Next lecture: FUP and how to prove it (for Cantor sets)
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Thank you for your attention!
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