Minicourse on fractal uncertainty principle Lecture 1: Schottky groups and spectral gaps

Semyon Dyatlov (MIT)

March 22-25, 2021

Preview of results

Theorem 1 [Spectral gap]

Let M be a convex co-compact hyperbolic surface. Let \mathscr{L}_M be the set of lengths of primitive closed geodesics on M with multiplicity. Define the Selberg zeta function as the holomorphic extension to $s \in \mathbb{C}$ of

$$Z_M(s) = \prod_{\ell \in \mathscr{L}_M} \prod_{k=0}^{\infty} (1 - e^{-(s+k)\ell}), \quad \operatorname{Re} s \gg 1.$$

Then $\exists \beta > 0$: Z has only finitely many zeroes in $\{ \text{Re } s \geq \frac{1}{2} - \beta \}$.

Theorem 2 [Fractal Uncertainty Principle / FUP

Assume that $X, Y \subset \mathbb{R}$ are ν -porous on scales $\geq h$, i.e. for every interval $I \subset \mathbb{R}$ with $h \leq |I| \leq 1$, $I \setminus X$ and $I \setminus Y$ contain intervals of length $\nu|I|$.

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp} \hat{f} \subset h^{-1}Y \quad \Longrightarrow \quad \|\mathbb{1}_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}.$$

Preview of results

Theorem 1 [Spectral gap]

Let M be a convex co-compact hyperbolic surface. Let \mathscr{L}_M be the set of lengths of primitive closed geodesics on M with multiplicity. Define the Selberg zeta function as the holomorphic extension to $s \in \mathbb{C}$ of

$$Z_M(s) = \prod_{\ell \in \mathscr{L}_M} \prod_{k=0}^{\infty} (1 - e^{-(s+k)\ell}), \quad \operatorname{\mathsf{Re}} s \gg 1.$$

Then $\exists \beta > 0$: Z has only finitely many zeroes in $\{ \text{Re } s \geq \frac{1}{2} - \beta \}$.

Theorem 2 [Fractal Uncertainty Principle / FUP]

Assume that $X,Y\subset\mathbb{R}$ are ν -porous on scales $\geq h$, i.e. for every interval $I\subset\mathbb{R}$ with $h\leq |I|\leq 1$, $I\setminus X$ and $I\setminus Y$ contain intervals of length $\nu|I|$.

Here
$$\nu > 0$$
 is fixed, $h \to 0$. Then $\exists \beta = \beta(\nu) > 0$, $C : \forall h > 0$, $f \in L^2(\mathbb{R})$

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp} \hat{f} \subset h^{-1}Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}.$$

Plan of the minicourse

- Lecture 1: Schottky groups, convex co-compact surfaces, transfer operators, the spectral gap problem, overview of history
- Lecture 2: Statement of FUP, known results on FUP, and a proof of FUP in the model case of Cantor sets following D-Jin '16 [arXiv:1608.02238]
- Lecture 3-4: How FUP implies a spectral gap following D-Zworski '20 [arXiv:1710.05430]
- + two tutorials led by Malo Jézéquel

Möbius maps

- ullet $\overline{\mathbb{R}}:=\mathbb{R}\cup\{\infty\}$ identified with \mathbb{S}^1
- The group $SL(2,\mathbb{R})$ acts on $\overline{\mathbb{R}}$ by Möbius maps:

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}(2,\mathbb{R}) \quad \Longrightarrow \quad \gamma(x) = \frac{ax+b}{cx+d}$$

• For any closed intervals $I_1, I_2 \subset \mathbb{R}$ with $I_1 \cap I_2 = \emptyset$ there exists

$$\gamma \in \mathsf{SL}(2,\mathbb{R})$$
 such that $\gamma(\overline{\mathbb{R}} \setminus I_2^\circ) = I_1$

Note that
$$\gamma^{-1}(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2$$

Möbius maps

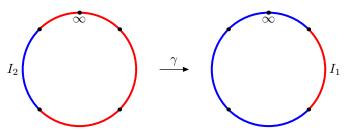
- ullet $\overline{\mathbb{R}}:=\mathbb{R}\cup\{\infty\}$ identified with \mathbb{S}^1
- The group $SL(2,\mathbb{R})$ acts on $\overline{\mathbb{R}}$ by Möbius maps:

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}(2,\mathbb{R}) \quad \Longrightarrow \quad \gamma(x) = \frac{ax+b}{cx+d}$$

• For any closed intervals $I_1, I_2 \subset \mathbb{R}$ with $I_1 \cap I_2 = \emptyset$ there exists

$$\gamma \in \mathsf{SL}(2,\mathbb{R})$$
 such that $\gamma(\overline{\mathbb{R}} \setminus I_2^\circ) = I_1$

Note that $\gamma^{-1}(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2$



Schottky subgroups of $SL(2, \mathbb{R})$

To define a Schottky group:

- Fix $r \ge 1$ and put $\mathcal{A} := \{1, \dots, 2r\}$; $\bar{a} := (a+r) \mod 2r$, $a \in \mathcal{A}$
- Fix 2r nonintersecting intervals $I_a \subset \mathbb{R}$, $a \in \mathcal{A}$
- Fix the generators $\gamma_a \in SL(2,\mathbb{R})$, $a \in \mathcal{A}$:

$$\gamma_{\mathsf{a}}(\overline{\mathbb{R}}\setminus I_{\bar{\mathsf{a}}}^{\circ})=I_{\mathsf{a}}, \quad \gamma_{\bar{\mathsf{a}}}=\gamma_{\mathsf{a}}^{-1}$$

- Define the Schottky group $\Gamma \subset SL(2,\mathbb{R})$ generated by γ_1,\ldots,γ_r
- Define the sets of admissible words

$$\mathcal{W}^n := \{a_1 \dots a_n \in \mathcal{A}^n \mid \forall j : a_{j+1} \neq \overline{a_j}\}, \quad \mathcal{W} := \bigcup_{n \geq 0} \mathcal{W}^n$$

• We have $\Gamma = \{ \gamma_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{W} \}$ where

$$\gamma_{a_1...a_n} = \gamma_{a_1} \cdots \gamma_{a_n} \in \Gamma$$

Schottky subgroups of $SL(2, \mathbb{R})$

To define a Schottky group:

- Fix $r \ge 1$ and put $\mathcal{A} := \{1, \dots, 2r\}$; $\bar{a} := (a+r) \mod 2r$, $a \in \mathcal{A}$
- Fix 2r nonintersecting intervals $I_a \subset \mathbb{R}$, $a \in \mathcal{A}$
- Fix the generators $\gamma_a \in SL(2,\mathbb{R})$, $a \in \mathcal{A}$:

$$\gamma_{\mathsf{a}}(\overline{\mathbb{R}}\setminus I_{\bar{\mathsf{a}}}^{\circ})=I_{\mathsf{a}}, \quad \gamma_{\bar{\mathsf{a}}}=\gamma_{\mathsf{a}}^{-1}$$

- Define the Schottky group $\Gamma \subset SL(2,\mathbb{R})$ generated by γ_1,\ldots,γ_r
- Define the sets of admissible words

$$\mathcal{W}^n := \{a_1 \dots a_n \in \mathcal{A}^n \mid \forall j : a_{j+1} \neq \overline{a_j}\}, \quad \mathcal{W} := \bigcup_{n \geq 0} \mathcal{W}^n$$

• We have $\Gamma = \{ \gamma_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{W} \}$ where

$$\gamma_{a_1...a_n} = \gamma_{a_1} \cdots \gamma_{a_n} \in \Gamma$$

The limit set

- If $a,b\in\mathcal{A}$, $\bar{a}\neq b$, then $\gamma_a(I_b)\Subset\gamma_a(\overline{\mathbb{R}}\setminus I_{\bar{a}}^\circ)=I_a$
- \bullet For $\mathbf{a} \in \mathcal{W}^\circ := \mathcal{W} \setminus \{\emptyset\}$ define the closed interval

$$I_{\mathbf{a}} = \gamma_{\mathbf{a}'}(I_{a_n})$$
 where $\mathbf{a} = a_1 \dots a_n$, $\mathbf{a}' := a_1 \dots a_{n-1}$

ullet These intervals form a tree: $I_{\mathbf{a}} \subset I_{\mathbf{a}'}$ and

$$\mathsf{a},\mathsf{b}\in\mathcal{W}^n,\quad\mathsf{a}\neq\mathsf{b}\quad\Longrightarrow\quad\mathit{I}_\mathsf{a}\cap\mathit{I}_\mathsf{b}=\emptyset$$

- They are also exponentially small: $\exists \theta > 0$: $\max_{\mathbf{a} \in \mathcal{W}^n} |I_{\mathbf{a}}| = \mathcal{O}(e^{-\theta n})$
- The limit set of Γ is given by a Cantor-like procedure:

$$\Lambda_{\Gamma} = \bigcap_{n} \bigsqcup_{\mathbf{a} \in \mathcal{W}^n} I_{\mathbf{a}}$$

and is a compact subset of $\mathbb R$

The limit set

- If $a,b\in\mathcal{A}$, $\bar{a}\neq b$, then $\gamma_a(I_b)\Subset\gamma_a(\overline{\mathbb{R}}\setminus I_{\bar{a}}^\circ)=I_a$
- ullet For $\mathbf{a}\in\mathcal{W}^\circ:=\mathcal{W}\setminus\{\emptyset\}$ define the closed interval

$$l_{\mathbf{a}} = \gamma_{\mathbf{a}'}(l_{a_n})$$
 where $\mathbf{a} = a_1 \dots a_n$, $\mathbf{a}' := a_1 \dots a_{n-1}$

ullet These intervals form a tree: $I_{oldsymbol{a}}\subset I_{oldsymbol{a}'}$ and

$$\mathsf{a},\mathsf{b}\in\mathcal{W}^{\textit{n}},\quad\mathsf{a}\neq\mathsf{b}\quad\Longrightarrow\quad\textit{I}_{\mathsf{a}}\cap\textit{I}_{\mathsf{b}}=\emptyset$$

- They are also exponentially small: $\exists \theta > 0$: $\max_{\mathbf{a} \in \mathcal{W}^n} |I_{\mathbf{a}}| = \mathcal{O}(e^{-\theta n})$
- The limit set of Γ is given by a Cantor-like procedure:

$$\Lambda_{\Gamma} = \bigcap_{n \ \mathbf{a} \in \mathcal{W}^n} I_{\mathbf{a}}$$

and is a compact subset of $\mathbb R$

The limit set

- If $a,b\in\mathcal{A}$, $\bar{a}\neq b$, then $\gamma_a(I_b)\Subset\gamma_a(\overline{\mathbb{R}}\setminus I_{\bar{a}}^\circ)=I_a$
- \bullet For $\mathbf{a} \in \mathcal{W}^{\circ} := \mathcal{W} \setminus \{\emptyset\}$ define the closed interval

$$l_{\mathbf{a}} = \gamma_{\mathbf{a}'}(l_{a_n})$$
 where $\mathbf{a} = a_1 \dots a_n$, $\mathbf{a}' := a_1 \dots a_{n-1}$

• These intervals form a tree: $I_{\mathbf{a}} \subset I_{\mathbf{a}'}$ and

$$\mathsf{a},\mathsf{b}\in\mathcal{W}^{\textit{n}},\quad\mathsf{a}\neq\mathsf{b}\quad\Longrightarrow\quad\textit{I}_{\mathsf{a}}\cap\textit{I}_{\mathsf{b}}=\emptyset$$

- They are also exponentially small: $\exists \theta > 0 : \max_{\mathbf{a} \in \mathcal{W}^n} |I_{\mathbf{a}}| = \mathcal{O}(e^{-\theta n})$
- The limit set of Γ is given by a Cantor-like procedure:

$$\Lambda_{\Gamma} = \bigcap_{n} \bigsqcup_{\mathbf{a} \in \mathcal{W}^{n}} I_{\mathbf{a}}$$

and is a compact subset of $\mathbb R$

$$\gamma_1(\overline{\mathbb{R}}\setminus I_2^\circ)=I_1, \quad \gamma_2(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2, \quad \gamma_2=\gamma_1^{-1}$$

- Then \mathcal{W}^n consists of only 2 words, $1 \dots 1$ and $2 \dots 2$
- The limit set consists of only 2 points: $\Lambda_{\Gamma} = \{x_1, x_2\}$, where $x_1 \in I_1$, $x_2 \in I_2$ are the fixed points of γ_1 (and thus of γ_2)
- x_1 is attractive $(\gamma_1'(x_1) < 1)$ and x_2 is repulsive $(\gamma_1'(x_2) > 1)$

$$\gamma_1(\overline{\mathbb{R}}\setminus I_2^\circ)=I_1, \quad \gamma_2(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2, \quad \gamma_2=\gamma_1^{-1}$$

- Then \mathcal{W}^n consists of only 2 words, $1 \dots 1$ and $2 \dots 2$
- The limit set consists of only 2 points: $\Lambda_{\Gamma} = \{x_1, x_2\}$, where $x_1 \in I_1$, $x_2 \in I_2$ are the fixed points of γ_1 (and thus of γ_2)
- x_1 is attractive $(\gamma_1'(x_1) < 1)$ and x_2 is repulsive $(\gamma_1'(x_2) > 1)$

$$\gamma_1(\overline{\mathbb{R}}\setminus I_2^\circ)=I_1, \quad \gamma_2(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2, \quad \gamma_2=\gamma_1^{-1}$$

- Then \mathcal{W}^n consists of only 2 words, 1...1 and 2...2
- The limit set consists of only 2 points: $\Lambda_{\Gamma} = \{x_1, x_2\}$, where $x_1 \in I_1$, $x_2 \in I_2$ are the fixed points of γ_1 (and thus of γ_2)
- x_1 is attractive $(\gamma'_1(x_1) < 1)$ and x_2 is repulsive $(\gamma'_1(x_2) > 1)$

$$\gamma_1(\overline{\mathbb{R}}\setminus I_2^\circ)=I_1, \quad \gamma_2(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2, \quad \gamma_2=\gamma_1^{-1}$$

- Then \mathcal{W}^n consists of only 2 words, 1...1 and 2...2
- The limit set consists of only 2 points: $\Lambda_{\Gamma} = \{x_1, x_2\}$, where $x_1 \in I_1$, $x_2 \in I_2$ are the fixed points of γ_1 (and thus of γ_2)
- x_1 is attractive $(\gamma_1'(x_1) < 1)$ and x_2 is repulsive $(\gamma_1'(x_2) > 1)$

$$\gamma_1(\overline{\mathbb{R}}\setminus I_2^\circ)=I_1, \quad \gamma_2(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2, \quad \gamma_2=\gamma_1^{-1}$$

- Then \mathcal{W}^n consists of only 2 words, 1...1 and 2...2
- The limit set consists of only 2 points: $\Lambda_{\Gamma} = \{x_1, x_2\}$, where $x_1 \in I_1$, $x_2 \in I_2$ are the fixed points of γ_1 (and thus of γ_2)
- x_1 is attractive $(\gamma'_1(x_1) < 1)$ and x_2 is repulsive $(\gamma'_1(x_2) > 1)$

$$\gamma_1(\overline{\mathbb{R}}\setminus I_2^\circ)=I_1, \quad \gamma_2(\overline{\mathbb{R}}\setminus I_1^\circ)=I_2, \quad \gamma_2=\gamma_1^{-1}$$

- Then \mathcal{W}^n consists of only 2 words, $1 \dots 1$ and $2 \dots 2$
- The limit set consists of only 2 points: $\Lambda_{\Gamma} = \{x_1, x_2\}$, where $x_1 \in I_1$, $x_2 \in I_2$ are the fixed points of γ_1 (and thus of γ_2)
- x_1 is attractive $(\gamma'_1(x_1) < 1)$ and x_2 is repulsive $(\gamma'_1(x_2) > 1)$



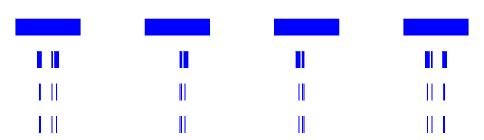
- If $r \ge 2$, then \mathcal{W}^n has $2r(2r-1)^{n-1}$ words
- ullet The limit set Λ_{Γ} has fractal structure
- Here is an example with 4 initial intervals:

- If $r \geq 2$, then W^n has $2r(2r-1)^{n-1}$ words
- The limit set Λ_{Γ} has fractal structure
- Here is an example with 4 initial intervals:

- If $r \ge 2$, then \mathcal{W}^n has $2r(2r-1)^{n-1}$ words
- The limit set Λ_{Γ} has fractal structure
- Here is an example with 4 initial intervals:

- If $r \ge 2$, then \mathcal{W}^n has $2r(2r-1)^{n-1}$ words
- ullet The limit set Λ_{Γ} has fractal structure
- Here is an example with 4 initial intervals:

- If $r \ge 2$, then \mathcal{W}^n has $2r(2r-1)^{n-1}$ words
- ullet The limit set Λ_{Γ} has fractal structure
- Here is an example with 4 initial intervals:



Connection to hyperbolic surfaces

- Möbius transformations act on $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ by the same formula
- In particular they act by isometries on the hyperbolic upper half-plane

$$\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im } z > 0 \}, \quad g = \frac{|dz|^2}{(\text{Im } z)^2}$$

- The quotient $\Gamma \backslash \mathbb{H}^2$ is a convex co-compact hyperbolic surface
- Our generators γ_a , $a \in \mathcal{A}$, satisfy

$$\gamma_a(\overline{\mathbb{C}}\setminus D_{\overline{a}}^\circ)=D_a$$

where $D_a \subset \mathbb{C}$ is the disk centered on \mathbb{R} such that $D_a \cap \mathbb{R} = I_a$

• Can define the tree of disks $D_{\mathbf{a}} := \gamma_{\mathbf{a}'}(D_{\mathbf{a}_n})$, $\mathbf{a} \in \mathcal{W}^{\circ}$, with $D_{\mathbf{a}} \cap \mathbb{R} = I_{\mathbf{a}}$

Connection to hyperbolic surfaces

- ullet Möbius transformations act on $\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ by the same formula
- In particular they act by isometries on the hyperbolic upper half-plane

$$\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im } z > 0 \}, \quad g = \frac{|dz|^2}{(\text{Im } z)^2}$$

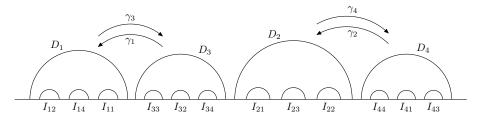
- The quotient $\Gamma \backslash \mathbb{H}^2$ is a convex co-compact hyperbolic surface
- Our generators γ_a , $a \in \mathcal{A}$, satisfy

$$\gamma_{\mathsf{a}}(\overline{\mathbb{C}}\setminus D_{\overline{\mathsf{a}}}^{\circ})=D_{\mathsf{a}}$$

where $D_a \subset \mathbb{C}$ is the disk centered on \mathbb{R} such that $D_a \cap \mathbb{R} = I_a$

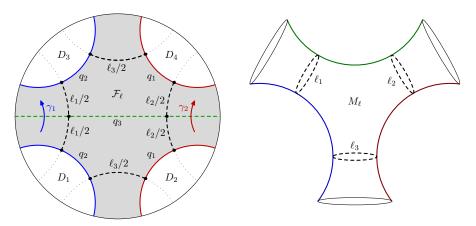
• Can define the tree of disks $D_{\mathbf{a}} := \gamma_{\mathbf{a}'}(D_{\mathbf{a}_n})$, $\mathbf{a} \in \mathcal{W}^{\circ}$, with $D_{\mathbf{a}} \cap \mathbb{R} = I_{\mathbf{a}}$

A picture of the tree of half-disks (4 initial intervals)



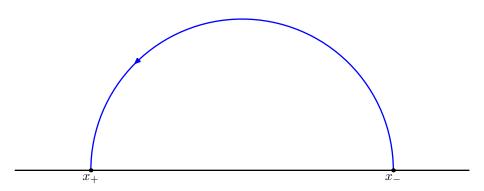
A picture of a convex co-compact hyperbolic surface

Here is how to glue a three-funnel surface from the fundamental domain $\mathbb{H}^2 \setminus \bigsqcup_{a=1}^4 D_a$ in the Poincaré disk model (old picture, replace γ_j by γ_j^{-1})



Limit set and geodesics

• Each geodesic on a surface $M = \Gamma \backslash \mathbb{H}^2$ lifts to a geodesic on \mathbb{H}^2 , which is a half-circle with endpoints $x_-, x_+ \in \overline{\mathbb{R}}$

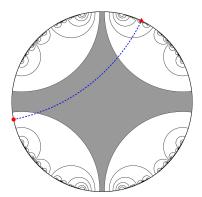


Limit set and geodesics

- Each geodesic on a surface $M = \Gamma \backslash \mathbb{H}^2$ lifts to a geodesic on \mathbb{H}^2 , which is a half-circle with endpoints $x_-, x_+ \in \overline{\mathbb{R}}$
- The geodesic is trapped (i.e. stays in some compact set in M) if and only if $x_-, x_+ \in \Lambda_{\Gamma}$

Limit set and geodesics

- Each geodesic on a surface $M = \Gamma \backslash \mathbb{H}^2$ lifts to a geodesic on \mathbb{H}^2 , which is a half-circle with endpoints $x_-, x_+ \in \overline{\mathbb{R}}$
- The geodesic is trapped (i.e. stays in some compact set in M) if and only if $x_-, x_+ \in \Lambda_{\Gamma}$
- Here is a picture using the Poincaré disk model instead:



Patterson-Sullivan measure

- Denote by δ the Hausdorff dimension of the limit set Λ_{Γ}
- If r=1 (2 initial intervals) then $\delta=0$. If $r\geq 2$ then $0<\delta<1$
- Patterson–Sullivan measure: a probability measure μ on Λ_{Γ} such that

$$\int_{\Lambda_{\Gamma}} f(x) d\mu(x) = \int_{\Lambda_{\Gamma}} f(\gamma(x)) (\gamma'(x))^{\delta} d\mu(x)$$

for all $f \in C(\Lambda_{\Gamma})$ and all $\gamma \in \Gamma$

• μ is δ -regular: for any interval I of size $|I| \leq 1$ centered at a point in Λ_{Γ}

$$\mu(I) \sim |I|^{\epsilon}$$

where the constants in \sim stay fixed as $|I| \rightarrow 0$

Patterson-Sullivan measure

- Denote by δ the Hausdorff dimension of the limit set Λ_{Γ}
- If r = 1 (2 initial intervals) then $\delta = 0$. If $r \ge 2$ then $0 < \delta < 1$
- Patterson–Sullivan measure: a probability measure μ on Λ_{Γ} such that

$$\int_{\Lambda_{\Gamma}} f(x) d\mu(x) = \int_{\Lambda_{\Gamma}} f(\gamma(x)) (\gamma'(x))^{\delta} d\mu(x)$$

for all $f \in C(\Lambda_{\Gamma})$ and all $\gamma \in \Gamma$

• μ is δ -regular: for any interval I of size $|I| \leq 1$ centered at a point in Λ_{Γ}

$$\mu(I) \sim |I|^{\epsilon}$$

where the constants in \sim stay fixed as $|I| \rightarrow 0$

Patterson-Sullivan measure

- Denote by δ the Hausdorff dimension of the limit set Λ_{Γ}
- If r=1 (2 initial intervals) then $\delta=0$. If $r\geq 2$ then $0<\delta<1$
- Patterson–Sullivan measure: a probability measure μ on Λ_{Γ} such that

$$\int_{\Lambda_{\Gamma}} f(x) d\mu(x) = \int_{\Lambda_{\Gamma}} f(\gamma(x)) (\gamma'(x))^{\delta} d\mu(x)$$

for all $f \in C(\Lambda_{\Gamma})$ and all $\gamma \in \Gamma$

• μ is δ -regular: for any interval I of size $|I| \leq 1$ centered at a point in Λ_{Γ}

$$\mu(I) \sim |I|^{\delta}$$

where the constants in \sim stay fixed as $|I| \rightarrow 0$

Transfer operators

• For $s \in \mathbb{C}$ define the transfer operator \mathcal{L}_s by

$$\mathcal{L}_{s}f(x) = \sum_{a \in \mathcal{A}, a \neq \bar{b}} (\gamma'_{a}(x))^{s} f(\gamma_{a}(x)), \quad x \in I_{b}$$

• \mathcal{L}_s maps $C(I) \to C(I)$ and also $\mathcal{H}(D) \to \mathcal{H}(D)$ where

$$I := \bigsqcup_{a \in \mathcal{A}} I_a \subset \mathbb{R}, \qquad D := \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$$

and $\mathcal{H}(D)$ is the space of holomorphic functions in $L^2(D)$

$$\begin{array}{c|cccc} \underline{x} & \gamma_1(x) & & \gamma_2(x) & \gamma_4(x) \\ \hline I_1 & & I_3 & & I_2 & & I_4 \end{array}$$

Transfer operators

• For $s \in \mathbb{C}$ define the transfer operator \mathcal{L}_s by

$$\mathcal{L}_s f(x) = \sum_{a \in \mathcal{A}, \ a \neq \bar{b}} (\gamma_a'(x))^s f(\gamma_a(x)), \quad x \in I_b$$

ullet \mathcal{L}_s maps $\mathcal{C}(I) o \mathcal{C}(I)$ and also $\mathcal{H}(D) o \mathcal{H}(D)$ where

$$I := \bigsqcup_{a \in \mathcal{A}} I_a \subset \mathbb{R}, \qquad D := \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$$

and $\mathcal{H}(D)$ is the space of holomorphic functions in $L^2(D)$

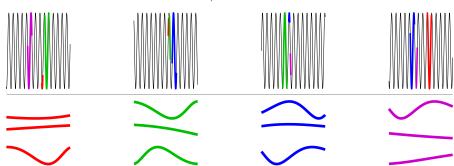
• For $s = \delta$, the Patterson–Sullivan measure is in the kernel of $I - \mathcal{L}_s^*$:

$$\int_{\Lambda_{\Gamma}} f \, d\mu = \int_{\Lambda_{\Gamma}} (L_{\delta} f) \, d\mu \quad \text{for all} \quad f \in C(\Lambda_{\Gamma})$$

Here is a picture for $\mathcal{L}_0 f(x) = \sum_{a \neq \bar{b}} f(\gamma_a(x)), x \in I_b$:

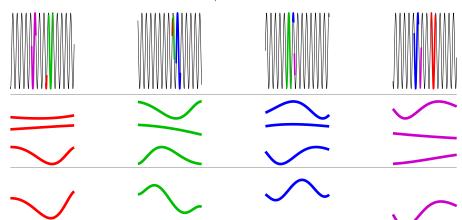
- $\mathcal{L}_s f$ depends only on the values of f on $| |_{\mathbf{a} \in \mathcal{W}^2} |_{\mathbf{a}} \in I$
- $\mathcal{L}_s f$ oscillates less than f when s is bounded

Here is a picture for $\mathcal{L}_0 f(x) = \sum_{a \neq \bar{b}} f(\gamma_a(x)), x \in I_b$:



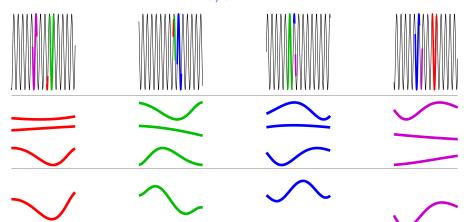
- $\mathcal{L}_s f$ depends only on the values of f on $| |_{\mathbf{a} \in \mathcal{W}^2} |_{\mathbf{a}} \in I$
- $\mathcal{L}_s f$ oscillates less than f when s is bounded

Here is a picture for $\mathcal{L}_0 f(x) = \sum_{a \neq \bar{b}} f(\gamma_a(x)), x \in I_b$:



- $\mathcal{L}_s f$ depends only on the values of f on $| |_{\mathbf{a} \in \mathcal{W}^2} |_{\mathbf{a}} \in I$
- $\mathcal{L}_s f$ oscillates less than f when s is bounded

Here is a picture for $\mathcal{L}_0 f(x) = \sum_{a \neq \bar{b}} f(\gamma_a(x)), x \in I_b$:



- $\mathcal{L}_s f$ depends only on the values of f on $\bigsqcup_{\mathbf{a} \in \mathcal{W}^2} I_{\mathbf{a}} \in I$
- $\mathcal{L}_s f$ oscillates less than f when s is bounded

Transfer operator and the Selberg zeta function

- $\Gamma \subset SL(2,\mathbb{R})$ Schottky group
- $M = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface
- Selberg zeta function: a product over the lengths of primitive closed geodesics on M

$$Z_M(s) = \prod_{\ell \in \mathscr{L}_M} \prod_{k=0}^{\infty} (1 - e^{-(s+k)\ell}), \quad \operatorname{Re} s \gg 1$$

• Transfer operator $\mathcal{L}_s: \mathcal{H}(D) \to \mathcal{H}(D), \ s \in \mathbb{C}, \ D = \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$:

$$\mathcal{L}_s f(z) = \sum_{a \in \mathcal{A}, \ a \neq \bar{b}} (\gamma_a'(z))^s f(\gamma_a(z)), \quad z \in D_b$$

ullet One can show that $\mathcal{L}_s: \mathcal{H}(D) o \mathcal{H}(D)$ is trace class and $Z_M(s) = \det(I - \mathcal{L}_s)$

which gives a way to continue $Z_M(s)$ to an entire function of s

Transfer operator and the Selberg zeta function

- $\Gamma \subset SL(2,\mathbb{R})$ Schottky group
- $M = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface
- Selberg zeta function: a product over the lengths of primitive closed geodesics on M

$$Z_M(s) = \prod_{\ell \in \mathscr{L}_M} \prod_{k=0}^{\infty} (1 - e^{-(s+k)\ell}), \quad \operatorname{Re} s \gg 1$$

• Transfer operator $\mathcal{L}_s: \mathcal{H}(D) \to \mathcal{H}(D)$, $s \in \mathbb{C}$, $D = \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$:

$$\mathcal{L}_s f(z) = \sum_{a \in \mathcal{A}, \ a \neq \bar{b}} (\gamma_a'(z))^s f(\gamma_a(z)), \quad z \in D_b$$

• One can show that $\mathcal{L}_s: \mathcal{H}(D) o \mathcal{H}(D)$ is trace class and $Z_M(s) = \det(I - \mathcal{L}_s)$

which gives a way to continue $Z_M(s)$ to an entire function of s

Transfer operator and the Selberg zeta function

- $\Gamma \subset SL(2,\mathbb{R})$ Schottky group
- $M = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface
- Selberg zeta function: a product over the lengths of primitive closed geodesics on M

$$Z_M(s) = \prod_{\ell \in \mathscr{L}_M} \prod_{k=0}^{\infty} (1 - e^{-(s+k)\ell}), \quad \operatorname{Re} s \gg 1$$

• Transfer operator $\mathcal{L}_s: \mathcal{H}(D) \to \mathcal{H}(D)$, $s \in \mathbb{C}$, $D = \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$:

$$\mathcal{L}_s f(z) = \sum_{a \in \mathcal{A}, \ a \neq \bar{b}} (\gamma_a'(z))^s f(\gamma_a(z)), \quad z \in D_b$$

ullet One can show that $\mathcal{L}_s: \mathcal{H}(D) o \mathcal{H}(D)$ is trace class and $Z_M(s) = \det(I - \mathcal{L}_s)$

which gives a way to continue $Z_M(s)$ to an entire function of s

Resonances

We call $s \in \mathbb{C}$ a resonance of M if $Z_M(s) = 0$, i.e. $I - \mathcal{L}_s$ is not invertible

Ruelle-Perron-Frobenius/Patterson-Sullivan theory

- \bullet δ is a resonance: $\mathcal{L}_{\delta}^*\mu = \mu$ where μ is the Patterson–Sullivan measure
- No resonances with Re $s > \delta$
- If $\delta > 0$, then δ is the only resonance on the line $\operatorname{Re} s = \delta$
- If $\delta = 0$, there is actually a lattice of resonances s = -j + ick, $j \in \mathbb{N}_0$, $k \in \mathbb{Z}$, $c = c(\Gamma) > 0$

Lax-Phillips theory + Patterson-Perry '01

- There are only finitely many resonances with Re $s \ge \frac{1}{2}$, and they all lie on the interval $\left[\frac{1}{2},1\right]$
- If s is such a resonance, then s(1-s) is an L^2 eigenvalue of the Laplacian $-\Delta \geq 0$ on the surface $M = \Gamma \backslash \mathbb{H}^2$

Resonances

We call $s \in \mathbb{C}$ a resonance of M if $Z_M(s) = 0$, i.e. $I - \mathcal{L}_s$ is not invertible

Ruelle-Perron-Frobenius/Patterson-Sullivan theory

- ullet δ is a resonance: $\mathcal{L}^*_{\delta}\mu = \mu$ where μ is the Patterson–Sullivan measure
- No resonances with $\operatorname{Re} s > \delta$
- If $\delta > 0$, then δ is the only resonance on the line $\text{Re } s = \delta$
- If $\delta=0$, there is actually a lattice of resonances $s=-j+ick, \quad j\in\mathbb{N}_0, \quad k\in\mathbb{Z}, \quad c=c(\Gamma)>0$

Lax-Phillips theory + Patterson-Perry '01

- There are only finitely many resonances with Re $s \geq \frac{1}{2}$, and they all lie on the interval $[\frac{1}{2},1]$
- If s is such a resonance, then s(1-s) is an L^2 eigenvalue of the Laplacian $-\Delta \geq 0$ on the surface $M = \Gamma \backslash \mathbb{H}^2$

Resonances

We call $s \in \mathbb{C}$ a resonance of M if $Z_M(s) = 0$, i.e. $I - \mathcal{L}_s$ is not invertible

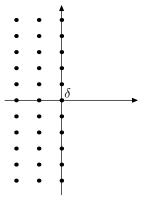
Ruelle-Perron-Frobenius/Patterson-Sullivan theory

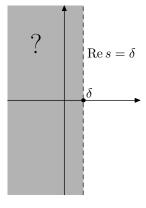
- ullet δ is a resonance: $\mathcal{L}_{\delta}^*\mu = \mu$ where μ is the Patterson–Sullivan measure
- No resonances with $\operatorname{Re} s > \delta$
- If $\delta > 0$, then δ is the only resonance on the line $\text{Re } s = \delta$
- If $\delta=0$, there is actually a lattice of resonances $s=-j+ick, \quad j\in\mathbb{N}_0, \quad k\in\mathbb{Z}, \quad c=c(\Gamma)>0$

Lax-Phillips theory + Patterson-Perry '01

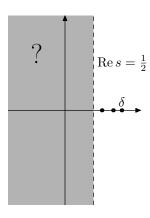
- There are only finitely many resonances with Re $s \ge \frac{1}{2}$, and they all lie on the interval $\left[\frac{1}{2},1\right]$
- If s is such a resonance, then s(1-s) is an L^2 eigenvalue of the Laplacian $-\Delta \geq 0$ on the surface $M = \Gamma \backslash \mathbb{H}^2$

Schematic picture of resonances





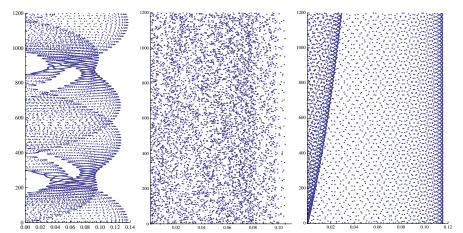
$$0 < \delta < \frac{1}{2}$$



$$\frac{1}{2} < \delta < 1$$

Numerical plots of resonances

Pictures by David Borthwick, see Borthwick '14, Borthwick-Weich '16 David Borthwick, *Spectral Theory of Infinite-Area Hyperbolic Surfaces*, Second Edition, Birkhäuser, 2016, Chapter 16



The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

Previous results

- Patterson–Sullivan + Lax–Phillips: $\alpha = \min(\delta, \frac{1}{2})$
- $\delta = 0$ \Longrightarrow best possible is $\alpha = 0$
- Naud '05: $\delta > 0 \implies \alpha = \delta \varepsilon$ for some $\varepsilon = \varepsilon(\Gamma) > 0$ Inspired by Dolgopyat '98
- Jakobson–Naud conjecture: $\alpha = \frac{\delta}{2}$
- ullet Guillopé-Zworski '99, Jakobson-Naud '12: lower bounds on lpha

The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

Previous results

- Patterson–Sullivan + Lax–Phillips: $\alpha = \min(\delta, \frac{1}{2})$
- $\delta = 0$ \Longrightarrow best possible is $\alpha = 0$
- Naud '05: $\delta > 0 \implies \alpha = \delta \varepsilon$ for some $\varepsilon = \varepsilon(\Gamma) > 0$ Inspired by Dolgopyat '98
- Jakobson–Naud conjecture: $\alpha = \frac{\delta}{2}$
- ullet Guillopé-Zworski '99, Jakobson-Naud '12: lower bounds on lpha

The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

Previous results

- Patterson–Sullivan + Lax–Phillips: $\alpha = \min(\delta, \frac{1}{2})$
- $\delta = 0$ \Longrightarrow best possible is $\alpha = 0$
- Naud '05: $\delta > 0 \implies \alpha = \delta \varepsilon$ for some $\varepsilon = \varepsilon(\Gamma) > 0$ Inspired by Dolgopyat '98
- Jakobson–Naud conjecture: $\alpha = \frac{\delta}{2}$
- ullet Guillopé-Zworski '99, Jakobson-Naud '12: lower bounds on lpha

The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

New results

- Bourgain–D '18: $\alpha = \frac{1}{2} \varepsilon$ for some $\varepsilon = \varepsilon(\Gamma) > 0$
- Bourgain–D '17: $\delta > 0 \implies \alpha = \delta \varepsilon$ for some $\varepsilon = \varepsilon(\delta) > 0$
- Both of these prove a fractal uncertainty principle (FUP).
 The fact that FUP implies a spectral gap is proved in D–Zahl '16.
 In this course we will give another proof, from D–Zworski '20

Next lecture: FUP and how to prove it (for Cantor sets)

The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

New results

- Bourgain–D '18: $\alpha = \frac{1}{2} \varepsilon$ for some $\varepsilon = \varepsilon(\Gamma) > 0$
- Bourgain–D '17: $\delta > 0 \implies \alpha = \delta \varepsilon$ for some $\varepsilon = \varepsilon(\delta) > 0$
- Both of these prove a fractal uncertainty principle (FUP).
 The fact that FUP implies a spectral gap is proved in D–Zahl '16.
 In this course we will give another proof, from D–Zworski '20

Next lecture: FUP and how to prove it (for Cantor sets)

The main question we will study now is

The spectral gap question

Given a Schottky group Γ , for which α can we show that there are only finitely many resonances in $\{\text{Re } s > \alpha\}$?

Applications: geodesic counting, Diophantine problems, wave decay...

New results

- Bourgain–D '18: $\alpha = \frac{1}{2} \varepsilon$ for some $\varepsilon = \varepsilon(\Gamma) > 0$
- Bourgain–D '17: $\delta > 0 \implies \alpha = \delta \varepsilon$ for some $\varepsilon = \varepsilon(\delta) > 0$
- Both of these prove a fractal uncertainty principle (FUP).
 The fact that FUP implies a spectral gap is proved in D–Zahl '16.
 In this course we will give another proof, from D–Zworski '20

Next lecture: FUP and how to prove it (for Cantor sets)

Thank you for your attention!