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Preview of results

Theorem 1 [Spectral gap]

Let M be a convex co-compact hyperbolic surface. Let £, be the set of
lengths of primitive closed geodesics on M with multiplicity. Define the
Selberg zeta function as the holomorphic extension to s € C of

Zu(s)= [ JJ@-e "), Res>1.
Le Ly k=0

Then 35 > 0: Z has only finitely many zeroes in {Res > % — B}
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Preview of results

Theorem 1 [Spectral gap]

Let M be a convex co-compact hyperbolic surface. Let £, be the set of
lengths of primitive closed geodesics on M with multiplicity. Define the
Selberg zeta function as the hoIomorphic extension to s € C of

H H e (Hhf - Res > 1.

Le Ly k=0
Then 35 > 0: Z has only finitely many zeroes in {Res > % — B}

Theorem 2 [Fractal Uncertainty Principle / FUP]

Assume that X, Y C R are v-porous on scales > h, i.e. for every interval
I c Rwith h<|I| <1,/\ X and/\Y contain intervals of length v|/|.

Here v > 0 is fixed, h — 0. Then 33 = B(v) > 0,C: Yh>0,f € [*(R)
fel’(R), suppfCh 'Y = |Ixfllizr) < Ch|If]li2(m)-
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Plan of the minicourse

@ Lecture 1: Schottky groups, convex co-compact surfaces,
transfer operators, the spectral gap problem, overview of history

@ Lecture 2: Statement of FUP, known results on FUP, and a proof of
FUP in the model case of Cantor sets following D—Jin '16
[arXiv:1608.02238]

@ Lecture 3-4: How FUP implies a spectral gap following D—Zworski '20
[arXiv:1710.05430]

@ + two tutorials led by Malo Jézéquel
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http://arxiv.org/abs/1608.02238
http://arxiv.org/abs/1710.05430

Mé&bius maps

o R :=RU{oo} identified with S!
@ The group SL(2,R) acts on R by Mdbius maps:

7:(i 3)eSL(2,R) — y(x):a”b

cx +d
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Schottky groups

Mé&bius maps

o R:=R U {oo} identified with S!
@ The group SL(2,R) acts on R by Mdbius maps:

)= (i Z) ESLRR) = A(x)=
@ For any closed intervals 1, b C R with ; N/, = () there exists
v € SL(2,R) suchthat ~(R\ /) =1
Note that v~ 1(R\ /) = h

ax+b
cx +d
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Schottky subgroups of SL(2, R)

To define a Schottky group:
o Fixr>1landput A:={1,...,2r}; a:=(a+r)mod2r,ac A
e Fix 2r nonintersecting intervals [, C R, a € A
o Fix the generators 7, € SL(2,R), a € A:

'Ya(ﬁ\l;) = Iy, 75:73_1

@ Define the Schottky group I' C SL(2,R) generated by 71,...,7,
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Schottky groups

Schottky subgroups of SL(2, R)

To define a Schottky group:

Fix r>1and put A:={1,...,2r}; 3a:=(a+r)mod2r,ac A
Fix 2r nonintersecting intervals I, C R, a € A

Fix the generators 7, € SL(2,R), a € A:

%(E\/a?) = I,, 75:73_1

Define the Schottky group I' C SL(2,R) generated by 71,...,7r
Define the sets of admissible words

Whi={a1...anc A" |Vj 1 aj1 #3}, W= UW”

n>0

We have I' = {7, | a € W} where

Yay...an = Yay ' VYan € r
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The limit set

o Ifa,be A 3+# b, then v,(lp) € 7.(R\ 12) = I,
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The limit set

o Ifa,be A 3+ b, then va(lp) € V.(R\ ) =1,
e Fora e W° := W\ {0} define the closed interval
la ="ar(ls,) where a=aj...a,, a:=aj...ap1

@ These intervals form a tree: I, C /,» and

abecW" a#b = LNk=10
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The limit set

o Ifa,be A 3+ b, then va(lp) € V.(R\ ) =1,
e Fora e W° := W\ {0} define the closed interval

la ="ar(ls,) where a=aj...a,, a:=aj...ap1

These intervals form a tree: I, C Iy and

abecW" a#b = LNk=10

The limit set of I' is given by a Cantor-like procedure:
A= L h
n acWwn

and is a compact subset of R
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Schottky groups

A minimal example: 2 initial intervals

@ Assume r =1, i.e. there are only 2 initial intervals /, /> and

NR\B)=h, 2R\E)=h, mn=9"
@ Then W" consists of only 2 words, 1...1and 2...2
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Schottky groups

A minimal example: 2 initial intervals

@ Assume r =1, i.e. there are only 2 initial intervals /, /> and
1R\ B)=h, 2R\E)=h, ~v=7"

@ Then W" consists of only 2 words, 1...1and 2...2

@ The limit set consists of only 2 points: Ar = {x1, x2}, where
x1 € h, xo € h are the fixed points of 71 (and thus of )

@ xp is attractive (v1(x1) < 1) and xz is repulsive (v;(x2) > 1)
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Schottky groups

A more interesting example

o If r > 2, then W" has 2r(2r — 1)"~! words
@ The limit set Ar has fractal structure

@ Here is an example with 4 initial intervals:
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Schottky groups

Connection to hyperbolic surfaces

@ Mbbius transformations act on C = C U {oc} by the same formula
@ In particular they act by isometries on the hyperbolic upper half-plane

B |dz|2

HZZ{ZG(C“mZ>O}, _W

o The quotient MN\H? is a convex co-compact hyperbolic surface

Semyon Dyatlov Minicourse on FUP, Lecture 1 March 22-25, 2021 9/21



Schottky groups

Connection to hyperbolic surfaces

M&bius transformations act on C = C U {00} by the same formula

In particular they act by isometries on the hyperbolic upper half-plane

B \dz|2

HZZ{ZG(C“mZ>O}, _W

The quotient IMN\H? is a convex co-compact hyperbolic surface

Our generators v,, a € A, satisfy
72(C\ D§) = D,

where D, C C is the disk centered on R such that D,NR =/,
Can define the tree of disks D, := 74/(D,,), a € W°, with D,NR = 1,
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Schottky groups

A picture of the tree of half-disks (4 initial intervals)
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Schottky groups

A picture of a convex co-compact hyperbolic surface

Here is how to glue a three-funnel surface from the fundamental domain
H? \ |_|2:1 D, in the Poincaré disk model (old picture, replace v; by fyj_l)
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Schottky groups

Limit set and geodesics

e Each geodesic on a surface M = IN\H? lifts to a geodesic on H?,
which is a half-circle with endpoints x_, x; € R

Ty xXr_
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Schottky groups

Limit set and geodesics

o Each geodesic on a surface M = N\H? lifts to a geodesic on H?,
which is a half-circle with endpoints x_, x; € R
@ The geodesic is trapped (i.e. stays in some compact set in M)

if and only if x_, x, € Ar

Semyon Dyatlov Minicourse on FUP, Lecture 1 March 22-25, 2021 12 /21



Schottky groups

Limit set and geodesics

o Each geodesic on a surface M = N\H? lifts to a geodesic on H?,
which is a half-circle with endpoints x_,x, € R

@ The geodesic is trapped (i.e. stays in some compact set in M)
if and only if x_, x; € Ar

@ Here is a picture using the Poincaré disk model instead:
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Transfer operators

Patterson—Sullivan measure

@ Denote by ¢ the Hausdorff dimension of the limit set Ar
o If r =1 (2 initial intervals) then § =0. If r >2then 0 <6 <1
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Transfer operators

Patterson—Sullivan measure

@ Denote by ¢ the Hausdorff dimension of the limit set Ar
o If r =1 (2 initial intervals) then § =0. If r >2then 0 <6 <1

e Patterson—Sullivan measure: a probability measure 1 on Ar such that

/ F(x) du(x) = / F()) (2 (%)) ()
Ar

Ar

forall f € C(Ar)andallyeT
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Transfer operators

Patterson—Sullivan measure

@ Denote by ¢ the Hausdorff dimension of the limit set Ar
o If r =1 (2 initial intervals) then § =0. If r >2then 0 <6 <1

e Patterson—Sullivan measure: a probability measure 1 on Ar such that

/ F(x) du(x) = / F1()) (7' () du(x)
Ar

Ar

forall f € C(Ar)andallyeT

@ u is d-regular: for any interval | of size |/| < 1 centered at a point
in /\r
w(l) ~111°

where the constants in ~ stay fixed as |/| — 0
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Transfer operators

Transfer operators

@ For s € C define the transfer operator Ls by

Lsf(x)= Y (L)) F(ra(x), x€lp

acA, a#b

e Ls maps C(I) — C(/) and also H(D) — #H(D) where

l=|]hL c R, D=|]|D,ccC
acA acA

and H(D) is the space of holomorphic functions in L?(D)

z ) Y2 () Ya()
I, I3 I 1,
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Transfer operators

Transfer operators

@ For s € C define the transfer operator Ls by

Lf(x) = Y (1)) F(ra(x)), x € lb

acA, a#b

e L maps C(/) — C(I) and also H(D) — H(D) where

l=|]hL c R, D:=||D, cC
acA acA

and H(D) is the space of holomorphic functions in L?(D)
e For s = 0, the Patterson—-Sullivan measure is in the kernel of | — L}:

/fd,u:/ (Lsf)du forall e C(Ar)
Ar Ar
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Here is a picture for Lof(x) = >_, .5 f(7a(X)), x € Ip:
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Here is a picture for Lof(x) = >_, .5 f(7a(x)),

x
m
o

(==
) (=
V=
\[H=
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Here is a picture for Lof(x) = >_, .5 f(7a(x)),

x
m
o

L=

O )=

V==
Y=
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Here is a picture for Lof(x) = >_, .5 f(7a(x)),

x
m
o

L=

O )=

V==
Y=

e L f depends only on the values of f on | |, 2 /a €/
o L.f oscillates less than f when s is bounded
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Spectral gaps

Transfer operator and the Selberg zeta function
e [ C SL(2,R) Schottky group
e M = IN\H? convex co-compact hyperbolic surface

@ Selberg zeta function: a product over the lengths of
primitive closed geodesics on M

Zu(s) =[] JIa-e ™), Res>1
Le %y k=0
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Spectral gaps

Transfer operator and the Selberg zeta function

I C SL(2,R) Schottky group

M = I'\H? convex co-compact hyperbolic surface

@ Selberg zeta function: a product over the lengths of
primitive closed geodesics on M

Zu(s) =[] JIa-e ™), Res>1
Le %y k=0

e Transfer operator L5 : H(D) — H(D), s € C, D =|],. 4 D, C C:
Lsf(z)= > (35(2)°f(1(2), z €Dy

acA, a#b
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Spectral gaps

Transfer operator and the Selberg zeta function

I C SL(2,R) Schottky group

M = I'\H? convex co-compact hyperbolic surface
Selberg zeta function: a product over the lengths of
primitive closed geodesics on M

Zu(s) =[] JIa-e ™), Res>1
Le %y k=0

LA = Y (WP Fa(). 2Dy
acA, a#b
@ One can show that £ : H(D) — #H(D) is trace class and
Zpm(s) = det(l — Ls)
which gives a way to continue Zy(s) to an entire function of s
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Spectral gaps

Resonances

We call s € C a resonance of M if Zy(s) =0, i.e. | — Ls is not invertible
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Spectral gaps

Resonances

We call s € C a resonance of M if Zy(s) =0, i.e. | — Ls is not invertible

Ruelle-Perron—Frobenius/Patterson—Sullivan theory

@ J is a resonance: L5/ = p where p is the Patterson—Sullivan measure
@ No resonances with Res > §
@ If § > 0, then § is the only resonance on the line Res = §

@ If § =0, there is actually a lattice of resonances
s=—j+ick, je€Ng, keZ, c=c(l)>0
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Spectral gaps

Resonances

We call s € C a resonance of M if Zy(s) =0, i.e. | — Ls is not invertible

Ruelle-Perron—Frobenius/Patterson—Sullivan theory
@ J is a resonance: L5/ = p where p is the Patterson—Sullivan measure
@ No resonances with Res > 0
@ If § > 0, then § is the only resonance on the line Res = §

e If =0, there is actually a lattice of resonances
s=—j+ick, je€Ng, keZ, c=c(l)>0

Lax—Phillips theory + Patterson—Perry '01

@ There are only finitely many resonances with Res > 1, and they all lie
on the interval [1, 1]

o If s is such a resonance, then s(1 — s) is an L2 eigenvalue of the
Laplacian —A > 0 on the surface M = '\ H?

v
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Spectral gaps

Schematic picture of resonances

A
¢ o Res=14 Res = 3
L] L] 5 . 5

6=0 0<d<3 3<6<1
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Spectral g

Numerical plots of resonances

Pictures by David Borthwick, see Borthwick '14, Borthwick—Weich '16

David Borthwick, Spectral Theory of Infinite-Area Hyperbolic Surfaces,
Second Edition, Birkhauser, 2016, Chapter 16
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Spectral gaps

Spectral gaps

The main question we will study now is

The spectral gap question

Given a Schottky group ', for which o can we show that there are
only finitely many resonances in {Res > «a}?

Applications: geodesic counting, Diophantine problems, wave decay. . .
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Applications: geodesic counting, Diophantine problems, wave decay. ..
Previous results

o Patterson-Sullivan + Lax—Phillips: & = min(J, 1)
@ 0=0 — best possibleis =10
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Spectral gaps

The main question we will study now is

The spectral gap question

Given a Schottky group ', for which o can we show that there are
only finitely many resonances in {Res > «a}?

Applications: geodesic counting, Diophantine problems, wave decay. ..
Previous results
o Patterson-Sullivan + Lax—Phillips: & = min(J, 1)
@ 0=0 — best possibleis =10

@ Naud '05: 6 >0 = a=09d—cforsomeec=¢()>0
Inspired by Dolgopyat '98

@ Jakobson—Naud conjecture: o = g

o Guillopé—Zworski '99, Jakobson—Naud '12: lower bounds on «
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Spectral gaps

The main question we will study now is

The spectral gap question

Given a Schottky group I, for which o can we show that there are
only finitely many resonances in {Res > «a}?

Applications: geodesic counting, Diophantine problems, wave decay. ..
New results
@ Bourgain-D '18: o = L — ¢ for some e = (') > 0

@ Bourgain-D '17: 6 >0 =— a =0 —¢ for some e =¢(d) >0
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Spectral gaps
The main question we will study now is

The spectral gap question

Given a Schottky group I, for which o can we show that there are
only finitely many resonances in {Res > «a}?

Applications: geodesic counting, Diophantine problems, wave decay. ..
New results

@ Bourgain-D '18: o = L — ¢ for some e = (') > 0

@ Bourgain-D '17: § >0 = a =0 —¢ for some e =¢(J) > 0

@ Both of these prove a fractal uncertainty principle (FUP).

The fact that FUP implies a spectral gap is proved in D-Zahl '16.
In this course we will give another proof, from D—Zworski 20

Semyon Dyatlov Minicourse on FUP, Lecture 1 March 22-25, 2021 20 /21



Spectral gaps
The main question we will study now is

The spectral gap question

Given a Schottky group I, for which o can we show that there are
only finitely many resonances in {Res > «a}?

Applications: geodesic counting, Diophantine problems, wave decay. ..

New results

@ Bourgain-D '18: o = L — ¢ for some e = (') > 0

@ Bourgain-D '17: 6 >0 =— a =0 —¢ for some e =¢(d) >0

@ Both of these prove a fractal uncertainty principle (FUP).
The fact that FUP implies a spectral gap is proved in D-Zahl '16.
In this course we will give another proof, from D—Zworski 20

Next lecture: FUP and how to prove it (for Cantor sets)
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Thank you for your attention!
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