Minicourse on fractal uncertainty principle Lecture 3: Fractal Uncertainty Principle

Semyon Dyatlov (MIT)

June 4, 2021

Definition

Fix $\nu>0$. A set $X \subset \mathbb{R}$ is ν-porous up to scale h if for each interval $I \subset R$ of length $h \leq|I| \leq 1$, there is an interval $J \subset I,|J|=\nu|I|, J \cap X=\emptyset$

Theorem 2 (Fractal Uncertainty Principle)
Assume that $X, Y \subset \mathbb{R}$ are ν-porous up to scale h. Then $\exists \beta=\beta(\nu)>0$:

$$
\left\|\mathbb{1}_{X}\left(\frac{h}{i} \partial_{X}\right) \mathbb{1}_{Y}(x)\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } h \rightarrow 0
$$

We can rewrite this uncertainty principle as
where $\mathcal{F}_{h}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the unitary semiclassical Fourier transform:

Definition

Fix $\nu>0$. A set $X \subset \mathbb{R}$ is ν-porous up to scale h if for each interval $I \subset R$ of length $h \leq|I| \leq 1$, there is an interval $J \subset I,|J|=\nu|I|, J \cap X=\emptyset$

Theorem 2 (Fractal Uncertainty Principle)

Assume that $X, Y \subset \mathbb{R}$ are ν-porous up to scale h. Then $\exists \beta=\beta(\nu)>0$:

$$
\left\|\mathbb{1}_{X}\left(\frac{h}{i} \partial_{X}\right) \mathbb{1}_{Y}(x)\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } h \rightarrow 0
$$

We can rewrite this uncertainty principle as

$$
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } \quad h \rightarrow 0
$$

where $\mathcal{F}_{h}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the unitary semiclassical Fourier transform:

$$
\mathcal{F}_{h} f(x)=(2 \pi h)^{-\frac{1}{2}} \widehat{f}\left(\frac{x}{h}\right)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h} x y} f(y) d y
$$

and $\mathbb{1}_{X}$ is the multiplication operator by the indicator function of X etc.

Basic uncertainty principles

- Looking for

$$
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } \quad h \rightarrow 0
$$

- Trivial bound: $\beta=0$ as $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{2}} \leq 1$
- Volume bound: if $|X|,|Y|=\mathcal{O}\left(h^{1-\delta}\right)$ then get $\beta=\frac{1}{2}-\delta$:

- Cannot be improved if we only know the volume, e.g.

$$
X=Y=[-\sqrt{h}, \sqrt{h}] \Longrightarrow \text { cannot get } \beta>0
$$

Basic uncertainty principles

- Looking for

$$
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } \quad h \rightarrow 0
$$

- Trivial bound: $\beta=0$ as $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{2}} \leq 1$
- Volume bound: if $|X|,|Y|=\mathcal{O}\left(h^{1-\delta}\right)$ then get $\beta=\frac{1}{2}-\delta$:

$$
\begin{aligned}
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{2}} & \leq\left\|\mathbb{1}_{X}\right\|_{L^{\infty} \rightarrow L^{2}}\left\|\mathcal{F}_{h}\right\|_{L^{1} \rightarrow L^{\infty}}\left\|\mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{1}} \\
& \leq \sqrt{\frac{|X| \cdot|Y|}{2 \pi h}}=\mathcal{O}\left(h^{\frac{1}{2}-\delta}\right)
\end{aligned}
$$

- Cannot be improved if we only know the volume, e.g.

$$
X=Y=[-\sqrt{h}, \sqrt{h}] \quad \Longrightarrow \quad \text { cannot get } \beta>0
$$

Basic uncertainty principles

- Looking for

$$
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } \quad h \rightarrow 0
$$

- Trivial bound: $\beta=0$ as $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{2}} \leq 1$
- Volume bound: if $|X|,|Y|=\mathcal{O}\left(h^{1-\delta}\right)$ then get $\beta=\frac{1}{2}-\delta$:

$$
\begin{aligned}
\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{2}} & \leq\left\|\mathbb{1}_{X}\right\|_{L^{\infty} \rightarrow L^{2}}\left\|\mathcal{F}_{h}\right\|_{L^{1} \rightarrow L^{\infty}}\left\|\mathbb{1}_{Y}\right\|_{L^{2} \rightarrow L^{1}} \\
& \leq \sqrt{\frac{|X| \cdot|Y|}{2 \pi h}}=\mathcal{O}\left(h^{\frac{1}{2}-\delta}\right)
\end{aligned}
$$

- Cannot be improved if we only know the volume, e.g.

$$
X=Y=[-\sqrt{h}, \sqrt{h}] \quad \Longrightarrow \quad \text { cannot get } \quad \beta>0
$$

So we need to know more about the structure of X, Y (e.g. porosity)

A bit on the proof of FUP for Fourier transform

Theorem 2' (a restatement of Theorem 2)
Let X, Y be ν-porous up to scale h. Then there exists $\beta=\beta(\nu)>0$:

$$
f \in L^{2}(\mathbb{R}), \quad \text { supp } \hat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad\left\|\mathbf{1}_{X} f\right\|_{L^{2}(\mathbb{R})} \leq C h^{\beta}\|f\|_{L^{2}(\mathbb{R})}
$$

- Write $X \subset \bigcap_{j} X_{j}$ where each $X_{j} \subset X_{j-1}$ has holes on scale $2^{-j} \geq h$
- Will show: for each $j,\left\|\mathbf{1}_{X_{j}} f\right\|_{L^{2}} \leq(1-\epsilon)\left\|1_{X_{j-1}} f\right\|_{L^{2}}$
- This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R} \backslash X_{j}$
- Such bounds exist if we know about decay of \hat{f}, e.g.

where

- To pass from supp $\hat{f} \subset h^{-1} \cdot Y$ to Fourier decay bounds, take the convolution $f * g, \widehat{f * g}=\hat{f} \hat{g}$, where g is compactly supported and \hat{g} - Existence of g follows from Beurling-Malliavin theorem, porosity of Y

A bit on the proof of FUP for Fourier transform

Theorem 2' (a restatement of Theorem 2)
Let X, Y be ν-porous up to scale h. Then there exists $\beta=\beta(\nu)>0$:

$$
f \in L^{2}(\mathbb{R}), \quad \text { supp } \hat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad\left\|\mathbf{1}_{X} f\right\|_{L^{2}(\mathbb{R})} \leq C h^{\beta}\|f\|_{L^{2}(\mathbb{R})}
$$

- Write $X \subset \bigcap_{j} X_{j}$ where each $X_{j} \subset X_{j-1}$ has holes on scale $2^{-j} \geq h$
- Will show: for each $j,\left\|\mathbf{1}_{X_{j}} f\right\|_{L^{2}} \leq(1-\epsilon)\left\|1_{X_{j-1}} f\right\|_{L^{2}}$
- This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R} \backslash X_{j}$
- Such bounds exist if we know about decay of \hat{f}, e.g.

$$
|\hat{f}(\xi)| \leq C e^{-w(\xi)} \quad \text { where } \quad \int_{\mathbb{R}} \frac{w(\xi)}{1+\xi^{2}} d \xi=\infty
$$

- To pass from supp $\hat{f} \subset h^{-1} \cdot Y$ to Fourier decay bounds, take the convolution $f * g, \widehat{f * g}=\hat{f} \hat{g}$, where g is compactly supported and \hat{g} - Existence of g follows from Beurling-Malliavin theorem, porosity of Y

A bit on the proof of FUP for Fourier transform

Theorem 2' (a restatement of Theorem 2)

Let X, Y be ν-porous up to scale h. Then there exists $\beta=\beta(\nu)>0$:

$$
f \in L^{2}(\mathbb{R}), \quad \operatorname{supp} \hat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad\left\|\mathbf{1}_{X} f\right\|_{L^{2}(\mathbb{R})} \leq C h^{\beta}\|f\|_{L^{2}(\mathbb{R})}
$$

- Write $X \subset \bigcap_{j} X_{j}$ where each $X_{j} \subset X_{j-1}$ has holes on scale $2^{-j} \geq h$
- Will show: for each $j,\left\|\mathbf{1}_{X_{j}} f\right\|_{L^{2}} \leq(1-\epsilon)\left\|1_{X_{j-1}} f\right\|_{L^{2}}$
- This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R} \backslash X_{j}$
- Such bounds exist if we know about decay of \hat{f}, e.g.

$$
|\hat{f}(\xi)| \leq C e^{-w(\xi)} \quad \text { where } \quad \int_{\mathbb{R}} \frac{w(\xi)}{1+\xi^{2}} d \xi=\infty
$$

- To pass from supp $\hat{f} \subset h^{-1} \cdot Y$ to Fourier decay bounds, take the convolution $f * g, \widehat{f * g}=\hat{f} \hat{g}$, where g is compactly supported and \hat{g} has the right decay but only on $h^{-1} \cdot Y$
- Existence of g follows from Beurling-Malliavin theorem, porosity of Y

Hyperbolic FUP

For applications to hyperbolic surfaces, we replace the phase $x y$ in \mathcal{F}_{h} by $2 \log |x-y|$ and introduce a cutoff $\chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$, supp $\chi \cap\{x=y\}=\emptyset$:

$$
\mathcal{B}_{\chi, h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) f(y) d y
$$

The operator $\mathcal{B}_{\chi, h}$ appears naturally in the composition $B_{-}^{-1} B_{+}$where $B_{ \pm}: L^{2}(M) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ are FIOs straightening out L_{s}, L_{u} locally One can deduce from FUP for \mathcal{F}_{h} a similar statement for $\mathcal{B}_{\chi, h}$: Assume that $X, Y \subset \mathbb{R}$ are ν-porous up to scale h. Then there exist

Hyperbolic FUP

For applications to hyperbolic surfaces, we replace the phase $x y$ in \mathcal{F}_{h} by $2 \log |x-y|$ and introduce a cutoff $\chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$, supp $\chi \cap\{x=y\}=\emptyset$:

$$
\mathcal{B}_{\chi, h} f(x)=(2 \pi h)^{-\frac{1}{2}} \int_{\mathbb{R}}|x-y|^{-\frac{2 i}{h}} \chi(x, y) f(y) d y
$$

The operator $\mathcal{B}_{\chi, h}$ appears naturally in the composition $B_{-}^{-1} B_{+}$where $B_{ \pm}: L^{2}(M) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ are FIOs straightening out L_{s}, L_{u} locally

One can deduce from FUP for \mathcal{F}_{h} a similar statement for $\mathcal{B}_{\chi, h}$:

Theorem 2" (Hyperbolic FUP)

Assume that $X, Y \subset \mathbb{R}$ are ν-porous up to scale h. Then there exist $\beta=\beta(\nu)>0$ and $C=C(\nu, \chi)$ such that

$$
\left\|\mathbb{1}_{X} \mathcal{B}_{\chi, h} \mathbb{1}_{Y}\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})} \leq C h^{\beta}
$$

A bit on reducing hyperbolic FUP to Fourier FUP

- Replace Y by its $h^{1 / 2-}$-neighborhood $\widetilde{Y}:\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{Y}\right\| \leq\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{\tilde{Y}}\right\|$
- Split $X=\bigsqcup_{j} X_{j}$, each X_{j} lies in an $h^{1 / 2}$-sized interval $\left[x_{j}, x_{j}+h^{1 / 2}\right]$
- Show $B_{j}:=\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\tilde{\gamma}}$ almost orthogonal: for $|j-\ell| \gg 1$

$$
\left\|B_{j}^{*} B_{\ell}\right\|=\mathcal{O}\left(h^{\infty}\right), \quad\left\|B_{j} B_{\ell}^{*}\right\|=\mathcal{O}\left(h^{\infty}\right)
$$

so by Cotlar-Stein $\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{\tilde{\gamma}}\right\| \lesssim \max _{j}\left\|\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\tilde{\gamma}}\right\|$

- Use a change of variables to bound $\left\|\mathbb{1}_{X_{i}} \mathcal{B}_{h} \mathbb{1}_{\tilde{V}}\right\|$ using the Fourier FUP if $\Phi(x, y)=-2 \log |x-y|$ and $\left|x-x_{j}\right| \leq h^{1 / 2}$ then on supp χ
- The β for hyperbolic FUP is $\frac{1}{2}$ of the β for the Fourier FUP

A bit on reducing hyperbolic FUP to Fourier FUP

- Replace Y by its $h^{1 / 2-}$-neighborhood $\widetilde{Y}:\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{Y}\right\| \leq\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{\widetilde{Y}}\right\|$
- Split $X=\bigsqcup_{j} X_{j}$, each X_{j} lies in an $h^{1 / 2}$-sized interval $\left[x_{j}, x_{j}+h^{1 / 2}\right]$
- Show $B_{j}:=\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\widetilde{Y}}$ almost orthogonal: for $|j-\ell| \gg 1$

$$
\left\|B_{j}^{*} B_{\ell}\right\|=\mathcal{O}\left(h^{\infty}\right), \quad\left\|B_{j} B_{\ell}^{*}\right\|=\mathcal{O}\left(h^{\infty}\right)
$$

so by Cotlar-Stein $\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{\widetilde{Y}}\right\| \lesssim \max _{j}\left\|\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\widetilde{\gamma}}\right\|$

A bit on reducing hyperbolic FUP to Fourier FUP

- Replace Y by its $h^{1 / 2-}$-neighborhood $\widetilde{Y}:\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{Y}\right\| \leq\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{\tilde{Y}}\right\|$
- Split $X=\bigsqcup_{j} X_{j}$, each X_{j} lies in an $h^{1 / 2}$-sized interval $\left[x_{j}, x_{j}+h^{1 / 2}\right]$
- Show $B_{j}:=\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\tilde{Y}}$ almost orthogonal: for $|j-\ell| \gg 1$

$$
\left\|B_{j}^{*} B_{\ell}\right\|=\mathcal{O}\left(h^{\infty}\right), \quad\left\|B_{j} B_{\ell}^{*}\right\|=\mathcal{O}\left(h^{\infty}\right)
$$

so by Cotlar-Stein $\left\|\mathbb{1}_{X} \mathcal{B}_{h} \mathbb{1}_{\widetilde{\gamma}}\right\| \lesssim \max _{j}\left\|\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\widetilde{\gamma}}\right\|$

- Use a change of variables to bound $\left\|\mathbb{1}_{X_{j}} \mathcal{B}_{h} \mathbb{1}_{\tilde{Y}}\right\|$ using the Fourier FUP:
if $\Phi(x, y)=-2 \log |x-y|$ and $\left|x-x_{j}\right| \leq h^{1 / 2}$ then on supp χ

$$
e^{\frac{i}{h} \Phi(x, y)} \approx e^{\frac{i}{h} \Phi\left(x_{j}, y\right)} e^{\frac{i}{h}\left(x-x_{j}\right) \kappa_{j}(y)}, \quad \kappa_{j}(y):=\partial_{x} \Phi\left(x_{j}, y\right)
$$

- The β for hyperbolic FUP is $\frac{1}{2}$ of the β for the Fourier FUP

Discrete Cantor sets

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

- Fix $M \geq 3, \mathscr{A} \subset\{0, \ldots, M-1\}$. Put $N:=M^{k}, k \gg 1$ and define

- Example: if $M=3, \mathscr{A}=\{0,2\}$, then $\mathcal{C}_{k} \subset\{0, \ldots, N-1\}, N=3^{k}$ is the discrete mid-3rd Cantor set $\{0,2,6,8,18,20,24,26, \ldots\}$
- The number of elements of C_{k} is $\left|C_{k}\right|=N^{\delta}$ where $\delta=\log _{M}|\mathscr{A}|$

Discrete Cantor sets

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

- Discrete unitary Fourier transform $\mathcal{F}_{N}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$

$$
\mathcal{F}_{N} u(j)=\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2 \pi i j \ell}{N}} u(\ell)
$$

- Fix $M \geq 3, \mathscr{A} \subset\{0, \ldots, M-1\}$. Put $N:=M^{k}, k \gg 1$ and define $\mathcal{C}_{k}:=\left\{a_{0}+a_{1} M+\cdots+a_{k-1} M^{k-1} \mid a_{0}, \ldots, a_{k-1} \in \mathscr{A}\right\}$
- Example: if $M=3, \mathscr{A}=\{0,2\}$, then $\mathcal{C}_{k} \subset\{0, \ldots, N-1\}, N=3^{k}$ is the discrete mid-3rd Cantor set $\{0,2,6,8,18,20,24,26, \ldots\}$ - The number of elements of \mathcal{C}_{k} is $\left|\mathcal{C}_{k}\right|=N^{\delta}$ where $\delta=\log _{M} \mid \mathscr{A}$

Discrete Cantor sets

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

- Discrete unitary Fourier transform $\mathcal{F}_{N}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$

$$
\mathcal{F}_{N} u(j)=\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2 \pi i j \ell}{N}} u(\ell)
$$

- Fix $M \geq 3, \mathscr{A} \subset\{0, \ldots, M-1\}$. Put $N:=M^{k}, k \gg 1$ and define

$$
\mathcal{C}_{k}:=\left\{a_{0}+a_{1} M+\cdots+a_{k-1} M^{k-1} \mid a_{0}, \ldots, a_{k-1} \in \mathscr{A}\right\}
$$

- Example: if $M=3, \mathscr{A}=\{0,2\}$, then $\mathcal{C}_{k} \subset\{0, \ldots, N-1\}, N$
is the discrete mid-3rd Cantor set $\{0,2,6,8,18,20,24,26, \ldots\}$
- The number of elements of \mathcal{C}_{k} is $\left|\mathcal{C}_{k}\right|=N^{\delta}$ where $\delta=\log _{M} \mid \mathscr{A}$

Discrete Cantor sets

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

- Discrete unitary Fourier transform $\mathcal{F}_{N}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$

$$
\mathcal{F}_{N} u(j)=\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2 \pi i j \ell}{N}} u(\ell)
$$

- Fix $M \geq 3, \mathscr{A} \subset\{0, \ldots, M-1\}$. Put $N:=M^{k}, k \gg 1$ and define

$$
\mathcal{C}_{k}:=\left\{a_{0}+a_{1} M+\cdots+a_{k-1} M^{k-1} \mid a_{0}, \ldots, a_{k-1} \in \mathscr{A}\right\}
$$

- Example: if $M=3, \mathscr{A}=\{0,2\}$, then $\mathcal{C}_{k} \subset\{0, \ldots, N-1\}, N=3^{k}$, is the discrete mid-3rd Cantor set $\{0,2,6,8,18,20,24,26, \ldots\}$
- The number of elements of \mathcal{C}_{k} is $\left|\mathcal{C}_{k}\right|=N^{\delta}$ where $\delta=\log _{M}|\mathscr{A}|$

Uncertainty principle for discrete Cantor sets

Theorem

Assume that $0<\delta<1$, i.e. $1<|\mathscr{A}|<M$. Then there exists $\beta=\beta(M, \mathscr{A})>\max \left(0, \frac{1}{2}-\delta\right)$ such that as $N=M^{k} \rightarrow \infty$,

$$
\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}=\mathcal{O}\left(N^{-\beta}\right)
$$

- Trivial bound $\beta=0$: since \mathcal{F}_{N} is unitary, $\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}} \leq 1$ - Volume bound $\beta=\frac{1}{2}-\delta$: defining the Hilbert-Schmidt norm

we have

$$
\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}} \leq\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathrm{HS}}=N^{\delta-\frac{1}{2}}
$$

Uncertainty principle for discrete Cantor sets

Theorem

Assume that $0<\delta<1$, i.e. $1<|\mathscr{A}|<M$. Then there exists $\beta=\beta(M, \mathscr{A})>\max \left(0, \frac{1}{2}-\delta\right)$ such that as $N=M^{k} \rightarrow \infty$,

$$
\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}=\mathcal{O}\left(N^{-\beta}\right)
$$

- Trivial bound $\beta=0$: since \mathcal{F}_{N} is unitary, $\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}} \leq 1$
- Volume bound $\beta=\frac{1}{2}-\delta$: defining the Hilbert-Schmidt norm

$$
\|A\|_{\text {HS }}^{2}=\sum_{j, k}\left|a_{j k}\right|^{2} \quad \text { where } \quad A=\left(a_{j k}\right)_{j, k=1}^{N}
$$

we have

$$
\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}} \leq\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathrm{HS}}=N^{\delta-\frac{1}{2}}
$$

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
\square

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{\partial b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2 \pi i a b}{N}}$
- Apply the Fourier transform $\mathcal{F}_{N_{1}}$ to each column of U
- The resulting matrix V gives $v=\mathcal{F}_{N u}$ by $V_{a b}=v\left(N_{2} a+b\right)$
- Using that $\mathcal{C}_{k}=N_{1} \mathcal{C}_{k_{2}}+\mathcal{C}_{k_{1}}=N_{2} \mathcal{C}_{k_{1}}+\mathcal{C}_{k_{2}}$, we get $r_{k_{1}+k_{2}} \leq r_{k_{1}}$

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{a b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2 \pi i a b}{N}}$
- Apply the Fourier transform $\mathcal{F}_{N_{1}}$ to each column of U

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{a b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Apply the Fourier transform $\mathcal{F}_{N_{1}}$ to each column of U

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{a b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2 \pi i a b}{N}}$

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{a b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2 \pi i a b}{N}}$
- Apply the Fourier transform $\mathcal{F}_{N_{1}}$ to each column of U

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{a b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2 \pi i a b}{N}}$
- Apply the Fourier transform $\mathcal{F}_{N_{1}}$ to each column of U
- The resulting matrix V gives $v=\mathcal{F}_{N} u$ by $V_{a b}=v\left(N_{2} a+b\right)$

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}^{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}$. Then $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ for all k_{1}, k_{2}.
To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_{1}+k_{2}, \quad N=M^{k}=N_{1} \cdot N_{2}, \quad N_{j}:=M^{k_{j}}$
- Identify $u \in \mathbb{C}^{N}$ with an $N_{1} \times N_{2}$ matrix $U_{a b}=u\left(N_{1} b+a\right)$
- Apply the Fourier transform $\mathcal{F}_{N_{2}}$ to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2 \pi i a b}{N}}$
- Apply the Fourier transform $\mathcal{F}_{N_{1}}$ to each column of U
- The resulting matrix V gives $v=\mathcal{F}_{N} u$ by $V_{a b}=v\left(N_{2} a+b\right)$
- Using that $\mathcal{C}_{k}=N_{1} \mathcal{C}_{k_{2}}+\mathcal{C}_{k_{1}}=N_{2} \mathcal{C}_{k_{1}}+\mathcal{C}_{k_{2}}$, we get $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$

An example of the 'Fast Fourier Transform' decomposition

Let's say $N=4=N_{1} N_{2}$ where $N_{1}=N_{2}=2$.
Take $u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in \mathbb{C}^{4}$. Follow the instructions on the last slide:

- Take $U=\left(\begin{array}{ll}u_{0} & u_{2} \\ u_{1} & u_{3}\end{array}\right), \mathcal{F}_{2}$ each row to get $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}u_{0}+u_{2} & u_{0}-u_{2} \\ u_{1}+u_{3} & u_{1}-u_{3}\end{array}\right)$
- Multiply by twist factors $e^{-\frac{\pi i a b}{2}}$ to get $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}u_{0}+u_{2} & u_{0}-u_{2} \\ u_{1}+u_{3} & i\left(u_{3}-u_{1}\right)\end{array}\right)$
- \mathcal{F}_{2} each column to get

- V gives the Fourier transform $\mathcal{F}_{4} u$:

An example of the 'Fast Fourier Transform' decomposition

Let's say $N=4=N_{1} N_{2}$ where $N_{1}=N_{2}=2$.
Take $u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in \mathbb{C}^{4}$. Follow the instructions on the last slide:

- Take $U=\left(\begin{array}{ll}u_{0} & u_{2} \\ u_{1} & u_{3}\end{array}\right), \mathcal{F}_{2}$ each row to get $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}u_{0}+u_{2} & u_{0}-u_{2} \\ u_{1}+u_{3} & u_{1}-u_{3}\end{array}\right)$
- Multiply by twist factors $e^{-\frac{\pi i a b}{2}}$ to get $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}u_{0}+u_{2} & u_{0}-u_{2} \\ u_{1}+u_{3} & i\left(u_{3}-u_{1}\right)\end{array}\right)$
- \mathcal{F}_{2} each column to get

- V gives the Fourier transform $\mathcal{F}_{4} u$:

An example of the 'Fast Fourier Transform' decomposition

Let's say $N=4=N_{1} N_{2}$ where $N_{1}=N_{2}=2$.
Take $u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in \mathbb{C}^{4}$. Follow the instructions on the last slide:

- Take $U=\left(\begin{array}{ll}u_{0} & u_{2} \\ u_{1} & u_{3}\end{array}\right), \mathcal{F}_{2}$ each row to get $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}u_{0}+u_{2} & u_{0}-u_{2} \\ u_{1}+u_{3} & u_{1}-u_{3}\end{array}\right)$
- Multiply by twist factors $e^{-\frac{\pi i a b}{2}}$ to get $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}u_{0}+u_{2} & u_{0}-u_{2} \\ u_{1}+u_{3} & i\left(u_{3}-u_{1}\right)\end{array}\right)$
- \mathcal{F}_{2} each column to get

$$
V=\frac{1}{2}\left(\begin{array}{ll}
u_{0}+u_{1}+u_{2}+u_{3} & u_{0}-i u_{1}-u_{2}+i u_{3} \\
u_{0}-u_{1}+u_{2}-u_{3} & u_{0}+i u_{1}-u_{2}-i u_{3}
\end{array}\right)
$$

- V gives the Fourier transform $\mathcal{F}_{4} u$:

$$
V=\left(\begin{array}{ll}
\mathcal{F}_{4} u(0) & \mathcal{F}_{4} u(1) \\
\mathcal{F}_{4} u(2) & \mathcal{F}_{4} u(3)
\end{array}\right)
$$

FUP with $\beta>0$

- $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We want $r_{k} \leq C N^{-\beta}$ for large k and some $\beta>0$, so enough to show that $\exists k: r_{k}<1$
- Since \mathcal{F}_{N} is unitary, we always have $r_{k} \leq 1$. Assume $r_{k}=1$, then

- Define the polynomial $P(z)=\sum_{\ell \in \mathcal{C}_{k}} u(\ell) z^{\ell}$, then

$$
\mathcal{F}_{N U}(j)=N^{-1 / 2} p\left(\omega^{i}\right), \quad \omega:=e^{-\frac{2 \pi}{N}}
$$

- Assume for simplicity that $M-1 \notin \mathscr{A}$, then the degree of P satisfies $\operatorname{deg} P \leq \max \mathcal{C}_{k} \leq M^{k}\left(1-\frac{1}{M}\right)$
- On the other hand, $P\left(\omega^{j}\right)=0$ for all $j \in\{0, \ldots . N-1\} \backslash C_{k}$, so P has at least $N-\left|\mathcal{C}_{k}\right| \geq M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)$ roots
- For k large, $M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)>M^{k}\left(1-\frac{1}{M}\right)$, so $r_{k}<1$ as needed

FUP with $\beta>0$

- $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We want $r_{k} \leq C N^{-\beta}$ for large k and some $\beta>0$, so enough to show that $\exists k: r_{k}<1$
- Since \mathcal{F}_{N} is unitary, we always have $r_{k} \leq 1$. Assume $r_{k}=1$, then

$$
\exists u \in \mathbb{C}^{N} \backslash\{0\}: \quad u=\mathbb{1}_{\mathcal{C}_{k}} u, \quad \mathcal{F}_{N} u=\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} u
$$

- Define the polynomial $P(z)=\sum_{\ell \in \mathcal{C}_{k}} u(\ell) z^{\ell}$, then

- Assume for simplicity that $M-1 \notin \mathscr{A}$, then the degree of P satisfies

$$
\operatorname{deg} P \leq \max C_{k} \leq M^{k}\left(1-\frac{1}{M}\right)
$$

- On the other hand, $P\left(\omega^{j}\right)=0$ for all $j \in\{0, \ldots, N-1\} \backslash \mathcal{C}_{k}$, so P has at least $N-\left|\mathcal{C}_{k}\right| \geq M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)$ roots

FUP with $\beta>0$

- $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We want $r_{k} \leq C N^{-\beta}$ for large k and some $\beta>0$, so enough to show that $\exists k: r_{k}<1$
- Since \mathcal{F}_{N} is unitary, we always have $r_{k} \leq 1$. Assume $r_{k}=1$, then

$$
\exists u \in \mathbb{C}^{N} \backslash\{0\}: \quad u=\mathbb{1}_{\mathcal{C}_{k}} u, \quad \mathcal{F}_{N} u=\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} u
$$

- Define the polynomial $P(z)=\sum_{\ell \in \mathcal{C}_{k}} u(\ell) z^{\ell}$, then

$$
\mathcal{F}_{N} u(j)=N^{-1 / 2} P\left(\omega^{j}\right), \quad \omega:=e^{-\frac{2 \pi i}{N}}
$$

- Assume for simplicity that $M-1 \notin \mathscr{A}$, then the degree of P satisfies

$$
\operatorname{deg} P \leq \max \mathcal{C}_{k} \leq M^{k}\left(1-\frac{1}{M}\right)
$$

 P has at least $N-\left|\mathcal{C}_{k}\right| \geq M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)$ roots

FUP with $\beta>0$

- $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We want $r_{k} \leq C N^{-\beta}$ for large k and some $\beta>0$, so enough to show that $\exists k: r_{k}<1$
- Since \mathcal{F}_{N} is unitary, we always have $r_{k} \leq 1$. Assume $r_{k}=1$, then

$$
\exists u \in \mathbb{C}^{N} \backslash\{0\}: \quad u=\mathbb{1}_{\mathcal{C}_{k}} u, \quad \mathcal{F}_{N} u=\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} u
$$

- Define the polynomial $P(z)=\sum_{\ell \in \mathcal{C}_{k}} u(\ell) z^{\ell}$, then

$$
\mathcal{F}_{N} u(j)=N^{-1 / 2} P\left(\omega^{j}\right), \quad \omega:=e^{-\frac{2 \pi i}{N}}
$$

- Assume for simplicity that $M-1 \notin \mathscr{A}$, then the degree of P satisfies

$$
\operatorname{deg} P \leq \max \mathcal{C}_{k} \leq M^{k}\left(1-\frac{1}{M}\right)
$$

- On the other hand, $P\left(\omega^{j}\right)=0$ for all $j \in\{0, \ldots, N$
P has at least $N-\left|C_{k}\right| \geq M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)$ roots
\square

FUP with $\beta>0$

- $r_{k_{1}+k_{2}} \leq r_{k_{1}} \cdot r_{k_{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We want $r_{k} \leq C N^{-\beta}$ for large k and some $\beta>0$, so enough to show that $\exists k: r_{k}<1$
- Since \mathcal{F}_{N} is unitary, we always have $r_{k} \leq 1$. Assume $r_{k}=1$, then

$$
\exists u \in \mathbb{C}^{N} \backslash\{0\}: \quad u=\mathbb{1}_{\mathcal{C}_{k}} u, \quad \mathcal{F}_{N} u=\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} u
$$

- Define the polynomial $P(z)=\sum_{\ell \in \mathcal{C}_{k}} u(\ell) z^{\ell}$, then

$$
\mathcal{F}_{N} u(j)=N^{-1 / 2} P\left(\omega^{j}\right), \quad \omega:=e^{-\frac{2 \pi i}{N}}
$$

- Assume for simplicity that $M-1 \notin \mathscr{A}$, then the degree of P satisfies

$$
\operatorname{deg} P \leq \max \mathcal{C}_{k} \leq M^{k}\left(1-\frac{1}{M}\right)
$$

- On the other hand, $P\left(\omega^{j}\right)=0$ for all $j \in\{0, \ldots, N-1\} \backslash \mathcal{C}_{k}$, so P has at least $N-\left|\mathcal{C}_{k}\right| \geq M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)$ roots
- For k large, $M^{k}\left(1-\left(1-\frac{1}{M}\right)^{k}\right)>M^{k}\left(1-\frac{1}{M}\right)$, so $r_{k}<1$ as needed

FUP with $\beta>\frac{1}{2}-\delta$ ('baby Dolgopyat')

- Similarly to the previous slide, enough to show that $\exists k: r_{k}<N^{\delta-\frac{1}{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We always have $r_{k} \leq\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\text {HS }}=N^{\delta-\frac{1}{2}}$
- Assume $r_{k}=N^{\delta-\frac{1}{2}}$, then $\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}$ has the same operator norm

- This can only happen if $\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}$ is a rank 1 matrix, i.e. each of its 2×2 minors is equal to 0 . This gives
- This cannot happen already when $k=2$ (and $|\mathscr{A}|>1)$: just take two different $a, b \in \mathscr{A}$ and put

FUP with $\beta>\frac{1}{2}-\delta$ ('baby Dolgopyat')

- Similarly to the previous slide, enough to show that $\exists k: r_{k}<N^{\delta-\frac{1}{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We always have $r_{k} \leq\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\text {HS }}=N^{\delta-\frac{1}{2}}$
- Assume $r_{k}=N^{\delta-\frac{1}{2}}$, then $\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}$ has the same operator norm ($=\max$ singular value σ_{j}) and $\mathrm{H}-\mathrm{S}$ norm $\left(=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{N}^{2}}\right)$
- This can only happen if $\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}$ is a rank 1 matrix, i.e. each of its 2×2 minors is equal to 0 . This gives

$$
\left(j-j^{\prime}\right)\left(\ell-\ell^{\prime}\right) \in N \mathbb{Z} \quad \text { for all } \quad j, j^{\prime}, \ell, \ell^{\prime} \in \mathcal{C}_{k}
$$

- This cannot happen already when $k=2$ (and $|\mathscr{A}|>1)$: just take two

FUP with $\beta>\frac{1}{2}-\delta$ ('baby Dolgopyat')

- Similarly to the previous slide, enough to show that $\exists k: r_{k}<N^{\delta-\frac{1}{2}}$ where $r_{k}:=\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}}, N=M^{k}$
- We always have $r_{k} \leq\left\|\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}\right\|_{\text {HS }}=N^{\delta-\frac{1}{2}}$
- Assume $r_{k}=N^{\delta-\frac{1}{2}}$, then $\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}$ has the same operator norm ($=$ max singular value σ_{j}) and $\mathrm{H}-\mathrm{S}$ norm $\left(=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{N}^{2}}\right)$
- This can only happen if $\mathbb{1}_{\mathcal{C}_{k}} \mathcal{F}_{N} \mathbb{1}_{\mathcal{C}_{k}}$ is a rank 1 matrix, i.e. each of its 2×2 minors is equal to 0 . This gives

$$
\left(j-j^{\prime}\right)\left(\ell-\ell^{\prime}\right) \in N \mathbb{Z} \quad \text { for all } \quad j, j^{\prime}, \ell, \ell^{\prime} \in \mathcal{C}_{k}
$$

- This cannot happen already when $k=2$ (and $|\mathscr{A}|>1$): just take two different $a, b \in \mathscr{A}$ and put

$$
j=\ell=M a+a, \quad j^{\prime}=\ell^{\prime}=M a+b
$$

A picture of FUP exponents for all alphabets with $M \leq 10$

Horizontal axis: δ, vertical axis: β, solid line: $\beta=\max \left(0, \frac{1}{2}-\delta\right)$, dashed line: $\beta=\frac{1-\delta}{2}$ (corresponding to the gap conjectured by Jakobson-Naud)

A higher dimensional FUP?

- Open problem: get FUP with $\beta>0$ on $\mathbb{R}^{n}, n>1$. Let's take $n=2$
- $\mathcal{F}_{h} f(x)=(2 \pi h)^{-1} \widehat{f}\left(\frac{x}{h}\right)$ semiclassical Fourier transform
- Want $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)}=\mathcal{O}\left(h^{\beta}\right)$ where $X, Y \subset \mathbb{R}^{2}$ are δ-regular up to scale h and $\delta<2$
- Han-Schlag '20: FUP holds with $\beta>0$ if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{1}{\hbar}(x, y)}$ replaced by $\left.|x-y|^{-\frac{2 i}{h}}\right)$ still holds. Partial result by D-Zhang WIP, when one of X, Y is a curve

A higher dimensional FUP?

- Open problem: get FUP with $\beta>0$ on $\mathbb{R}^{n}, n>1$. Let's take $n=2$
- $\mathcal{F}_{h} f(x)=(2 \pi h)^{-1} \widehat{f}\left(\frac{x}{h}\right)$ semiclassical Fourier transform
- Want $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)}=\mathcal{O}\left(h^{\beta}\right)$ where $X, Y \subset \mathbb{R}^{2}$ are δ-regular up to scale h and $\delta<2$
- This is false: take $\delta=1, X=[0, h] \times[0,1], Y=[0,1] \times[0, h]$
- Han-Schlag '20: FUP holds with $\beta>0$ if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{1}{\hbar}(x, y)}$ replaced by Partial result by D-Zhang WIP, when one of X, Y is a curve

A higher dimensional FUP?

- Open problem: get FUP with $\beta>0$ on $\mathbb{R}^{n}, n>1$. Let's take $n=2$
- $\mathcal{F}_{h} f(x)=(2 \pi h)^{-1} \widehat{f}\left(\frac{x}{h}\right)$ semiclassical Fourier transform
- Want $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)}=\mathcal{O}\left(h^{\beta}\right)$ where $X, Y \subset \mathbb{R}^{2}$ are δ-regular up to scale h and $\delta<2$
- This is false: take $\delta=1, X=[0, h] \times[0,1], Y=[0,1] \times[0, h]$
- Han-Schlag '20: FUP holds with $\beta>0$ if one of X, Y is contained in the product of 2 fractal sets

Partial result by D-Zhang WIP, when one of X, Y is a curve

A higher dimensional FUP?

- Open problem: get FUP with $\beta>0$ on $\mathbb{R}^{n}, n>1$. Let's take $n=2$
- $\mathcal{F}_{h} f(x)=(2 \pi h)^{-1} \widehat{f}\left(\frac{x}{h}\right)$ semiclassical Fourier transform
- Want $\left\|\mathbb{1}_{X} \mathcal{F}_{h} \mathbb{1}_{Y}\right\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)}=\mathcal{O}\left(h^{\beta}\right)$ where $X, Y \subset \mathbb{R}^{2}$ are δ-regular up to scale h and $\delta<2$
- This is false: take $\delta=1, X=[0, h] \times[0,1], Y=[0,1] \times[0, h]$
- Han-Schlag '20: FUP holds with $\beta>0$ if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{i}{h}\langle x, y\rangle}$ replaced by $\left.|x-y|^{-\frac{2 i}{h}}\right)$ still holds.
Partial result by D-Zhang WIP, when one of X, Y is a curve

Thank you for your attention!

