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Reduction to the key estimate

Review: general setup

(M, g) compact hyperbolic surface (curvature ≡ −1)
We are given a ∈ C∞c (T ∗M) such that a|S∗M 6≡ 0
Goal (Theorem 1’): prove that for all h� 1 and u ∈ C∞(M)

(−h2∆g − 1)u = 0 =⇒ ‖u‖ ≤ C‖Oph(a)u‖

(all norms are L2 or operator norm L2 → L2)
Take two functions a1, a2 ∈ C∞c (T ∗M \ 0; [0, 1]) such that

a1 + a2 = 1 near S∗M, supp a1 ⊂ {a 6= 0}, S∗M \ supp aj 6= ∅

The operators Aj := Oph(aj) satisfy ‖Aj‖ ≤ 1 +O(h) and

‖A1(j)u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

where A(j) := U(−t)AU(t) and U(t) = exp(−it
√
−∆g )

Semyon Dyatlov Minicourse on FUP, Lecture 2 June 2, 2021 2 / 19



Reduction to the key estimate

Review: general setup

(M, g) compact hyperbolic surface (curvature ≡ −1)
We are given a ∈ C∞c (T ∗M) such that a|S∗M 6≡ 0
Goal (Theorem 1’): prove that for all h� 1 and u ∈ C∞(M)

(−h2∆g − 1)u = 0 =⇒ ‖u‖ ≤ C‖Oph(a)u‖

(all norms are L2 or operator norm L2 → L2)
Take two functions a1, a2 ∈ C∞c (T ∗M \ 0; [0, 1]) such that

a1 + a2 = 1 near S∗M, supp a1 ⊂ {a 6= 0}, S∗M \ supp aj 6= ∅

The operators Aj := Oph(aj) satisfy ‖Aj‖ ≤ 1 +O(h) and

‖A1(j)u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

where A(j) := U(−t)AU(t) and U(t) = exp(−it
√
−∆g )

Semyon Dyatlov Minicourse on FUP, Lecture 2 June 2, 2021 2 / 19



Reduction to the key estimate

Review: proof under GCC

For a word w = w0 . . .wN−1 ∈ W(N), define

Aw := AwN−1(N − 1) · · ·Aw1(1)Aw0(0), aw :=
N−1∏
j=0

(awj ◦ ϕj)

Aw = Oph(aw) +ON(h) and u =
∑

w∈W(N) Awu +O(h∞)‖u‖

Previously we gave the proof under the geometric control condition:
there exists N such that a2...2 = 0 where 2 . . . 2 ∈ W(N)

To do that we split u = AXu + AYu where AX = A2...2 = O(h) and
‖AYu‖ ≤ CN‖Oph(a)u‖+O(h∞)‖u‖

Without GCC, we have supS∗M |a2...2| = 1 and thus ‖AX ‖ = 1 +O(h)

Key fact for Theorem 1’ without GCC: for N ≈ 2 log(1/h),
we do not have A2...2 = Oph(a2...2) + . . . and in fact ‖A2...2‖ � 1
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Reduction to the key estimate

Scheme of the proof of Theorem 1’

Key estimate

Let N := 2blog(1/h)c. Then there exist β > 0,C such that for all h

‖Aw‖ ≤ Chβ for all w ∈ W(N)

Why 2? Related to expansion rate of the geodesic flow, more below
Can write u =

∑
w∈W(N) Awu = AXu + AYu, AX := A2...2

By the key estimate, ‖AXu‖ ≤ Chβ‖u‖ � ‖u‖
Can estimate AYu as before:

‖AYu‖ ≤ 2
N−1∑
j=0

‖A1(j)u‖ ≤ C log(1/h)‖Oph(a)u‖+O(h∞)‖u‖

Putting together, get ‖u‖ ≤ C log(1/h)‖Oph(a)u‖ for h� 1

Plan: prove the key estimate and get rid of log(1/h)
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Proving the key estimate

Long time propagation

By Egorov’s Theorem + composition property, for N independent of h

Aw = Oph(aw) +O(h) for all w ∈ W(N)

Can this work when N →∞ as h→ 0?
The proof of Egorov’s Theorem uses basic semiclassical calculus.
So the real question is: ¿Can we still quantize aw?
The problem with aw =

∏N−1
j=0 (awj ◦ ϕj) is that the derivatives of

awj ◦ ϕj are large when j � 1. How large?
The geodesic flow ϕt : S∗M → S∗M of a hyperbolic surface has the
flow/unstable/stable decomposition T (S∗M) = E0 ⊕ Eu ⊕ Es :

|dϕt(x , ξ)v | =


|v |, v ∈ E0(x , ξ)

et |v |, v ∈ Eu(x , ξ)

e−t |v |, v ∈ Es(x , ξ)

So sup |∂α(awj ◦ ϕj)| ≤ Cαe
N|α|
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Proving the key estimate

Picture of the unstable/stable decomposition

ρ

ϕt(ρ)vu

dϕt(ρ)vu

vs

dϕt(ρ)vs

geodesic flow ϕt

on unit cotangent bundle S∗M

Remarks
We often ignore the flow direction E0 because there is no expansion or
contraction in it
We also often restrict to S∗M, where u lives microlocally, and ignore
the dilation direction ξ · ∂ξ
So the effective dynamics (on a Poincaré section in S∗M, transversal
to the flow) is similar to 2-dimensional hyperbolic maps (e.g. cat map)
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Proving the key estimate

Pushing the limits of quantization: isotropic symbols

Let us look at the standard quantization on Rn:

Oph(a)f (x) = (2πh)−n
∫
R2n

e
i
h
〈x−y ,ξ〉a(x , ξ)f (y) dydξ

Composition formula: Oph(a)Oph(b) = Oph(a#b) where

a#b ∼
∞∑
k=0

(−ih)k
∑
|α|=k

1
α!
∂αξ a · ∂αx b as h→ 0

Use 2 derivatives for each power of h. This works if a, b satisfy

sup |∂αa|, sup |∂αb| ≤ Cαh
−ρ|α| for some ρ < 1

2

with k-th term of the above expansion being O(h(1−2ρ)k)

The derivatives of awj ◦ ϕj grow like eN|α|. So it appears that
Aw = Oph(aw) + . . . until the Ehrenfest time: N = 1

2 log(1/h)

Semyon Dyatlov Minicourse on FUP, Lecture 2 June 2, 2021 7 / 19



Proving the key estimate

Pushing the limits of quantization: isotropic symbols

Let us look at the standard quantization on Rn:

Oph(a)f (x) = (2πh)−n
∫
R2n

e
i
h
〈x−y ,ξ〉a(x , ξ)f (y) dydξ

Composition formula: Oph(a)Oph(b) = Oph(a#b) where

a#b ∼
∞∑
k=0

(−ih)k
∑
|α|=k

1
α!
∂αξ a · ∂αx b as h→ 0

Use 2 derivatives for each power of h. This works if a, b satisfy

sup |∂αa|, sup |∂αb| ≤ Cαh
−ρ|α| for some ρ < 1

2

with k-th term of the above expansion being O(h(1−2ρ)k)

The derivatives of awj ◦ ϕj grow like eN|α|. So it appears that
Aw = Oph(aw) + . . . until the Ehrenfest time: N = 1

2 log(1/h)

Semyon Dyatlov Minicourse on FUP, Lecture 2 June 2, 2021 7 / 19



Proving the key estimate

Pushing the limits of quantization: isotropic symbols

Let us look at the standard quantization on Rn:

Oph(a)f (x) = (2πh)−n
∫
R2n

e
i
h
〈x−y ,ξ〉a(x , ξ)f (y) dydξ

Composition formula: Oph(a)Oph(b) = Oph(a#b) where

a#b ∼
∞∑
k=0

(−ih)k
∑
|α|=k

1
α!
∂αξ a · ∂αx b as h→ 0

Use 2 derivatives for each power of h. This works if a, b satisfy

sup |∂αa|, sup |∂αb| ≤ Cαh
−ρ|α| for some ρ < 1

2

with k-th term of the above expansion being O(h(1−2ρ)k)

The derivatives of awj ◦ ϕj grow like eN|α|. So it appears that
Aw = Oph(aw) + . . . until the Ehrenfest time: N = 1

2 log(1/h)

Semyon Dyatlov Minicourse on FUP, Lecture 2 June 2, 2021 7 / 19



Proving the key estimate

Pushing the limits of quantization: anisotropic symbols

Can we quantize symbols which are rougher in x but smoother in ξ?

a#b ∼
∞∑
k=0

(−ih)k
∑
|α|=k

1
α!
∂αξ a · ∂αx b as h→ 0

Can afford to lose h−ρ, ρ < 1, differentiating in x ,
if we lose nothing when differentiating in ξ
That is, we can take a, b in the class SL0,ρ defined by the inequalities

sup |∂αx ∂
β
ξ a| ≤ Cαβh

−ρ|α|

Or we could take a, b in the class SL1,ρ defined by losing in ξ but not in x :

sup |∂αx ∂
β
ξ a| ≤ Cαβh

−ρ|β|

But if a ∈ SL1,ρ and b ∈ SL0,ρ, then the expansion diverges when ρ > 1
2 !
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Proving the key estimate

Pushing the limits of quantization: hyperbolic surfaces

The derivatives of awj ◦ ϕj are only large
in the unstable direction.

Using this, we get Aw = Oph(aw) +O(h1−ρ)
for times N ≤ ρ log(1/h) for any ρ < 1
Here aw ∈ SLs ,ρ(T ∗M), putting Ls := E0 ⊕ Es :

Let L : (x , ξ) ∈ T ∗M 7→ L(x ,ξ) ⊂ T(x ,ξ)(T
∗M) be a smooth foliation such

that L(x ,ξ) are Lagrangian (dim 2 + the symplectic form vanishes).
Fix ρ < 1. Define the class SL,ρ(T ∗M) of a ∈ C∞c (T ∗M) satisfying

sup |X1 . . .XkY1 . . .Y`a| ≤ Ch−ρ`

for all vector fields X1, . . . ,Xk ,Y1, . . . ,Y` s.t. X1, . . . ,Xk are tangent to L

For a ∈ SL,ρ(T ∗M), can define Oph(a) by using a Fourier Integral Operator
to conjugate to the case L = L0 = span(∂ξ)
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Proving the key estimate
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Proving the key estimate

Proof of the key estimate: splitting in the middle

Key estimate: ‖Aw‖ ≤ Chβ for w ∈ W(2N1), N1 = bρ log(1/h)c, ρ < 1

Write Aw = Aw2N1−1(2N1 − 1) · · ·Aw0(0) as Aw = U(−N1)A−A+U(N1)

A− := Aw2N1−1(N1 − 1) · · ·AwN1
(0), A+ := AwN1−1(−1) · · ·Aw0(−N1)

We have A− = Oph(a−) +O(h1−ρ), A+ = Oph(a+) +O(h1−ρ) where

a− =

N1−1∏
j=0

(awj+N1
◦ ϕj) ∈ SLs ,ρ, a+ =

N1∏
j=1

(awN1−j
◦ ϕ−j) ∈ SLu ,ρ

and Ls = E0 ⊕ Es , Lu = E0 ⊕ Eu. Reformulate the key estimate as

‖Oph(a−)Oph(a+)‖ ≤ Chβ

But Oph(a−) and Oph(a+) do not lie in the same calculus!
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Proving the key estimate

Assume for simplicity that w = 2 . . . 2, then

a− =

N1−1∏
j=0

(a2 ◦ ϕj) ∈ SLs ,ρ, a+ =

N1∏
j=1

(a2 ◦ ϕ−j) ∈ SLu ,ρ

We have supp a± ⊂ V±(N1) where N1 = bρ log(1/h)c and

V−(N1) =

N1−1⋂
j=0

ϕ−j(supp a2), V+(N1) =

N1⋂
j=1

ϕj(supp a2)

Using cat map for illustration:
V−(N1) is nice in the stable direction, porous
up to scale e−N1 ∼ hρ in the unstable
direction

V+(N1) is nice in the unstable direction,
porous up to scale hρ in the stable direction

Want: localizations to V−, V+ incompatible
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porous up to scale hρ in the stable direction

Want: localizations to V−, V+ incompatible

N1 = 3
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Proving the key estimate

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency
near a fractal set

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous on scales 0 to 1

Theorem 2 [Bourgain–D ’18]

Assume that X ,Y ⊂ R are ν-porous up to scale h. Then ∃β = β(ν) > 0:
‖1lX (hi ∂x)1lY (x)‖L2(R)→L2(R) = O(hβ) as h→ 0

Note: enough to require porosity up to scales hρ where ρ > 1
2
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Proving the key estimate

From FUP to the key estimate

Need: ‖Oph(a−)Oph(a+)‖ ≤ Chβ ,
supp a− porous in unstable direction,
supp a+ porous in stable direction

FUP: ‖Oph(b−)Oph(b+)‖ ≤ Chβ ,
b± ∈ C∞c (R2), supp b− ⊂ {ξ ∈W−},
supp b+ ⊂ {x ∈W+}, W± ⊂ R porous

To pass from FUP to the key estimate, we can try to conjugate by a
Fourier Integral operator to map Eu 7→ R∂ξ, Es 7→ R∂x . Not quite possible
but after some cutting and pasting can make it work. . .
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Removing the log prefactor

Removing the log

So far we proved that ‖u‖ ≤ C log(1/h)‖Oph(a)u‖ by writing

u = AXu + AYu, AX := A2...2

and estimating

‖AXu‖ ≤ Chβ‖u‖, ‖AYu‖ ≤ C log(1/h)‖Oph(a)u‖+O(h∞)‖u‖

To get rid of the log prefactor, we will revise the decomposition
u = AXu + AYu so that

‖AXu‖ ≤ Ch
β
2 ‖u‖, ‖AYu‖ ≤ C‖Oph(a)u‖+O(h

1
10 )‖u‖

Here the constant in front of ‖Oph(a)u‖ will be large depending on β
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Removing the log prefactor

Removing the log: uncontrolled words

Recall that we are dealing with words of length 2blog(1/h)c.
Let’s use instead the similar time 20N0 where N0 = b 1

10 log(1/h)c
Define the set of controlled short logarithmic words

Z := {w ∈ W(N0) | F (w) ≥ α}, F (w) :=
#{j | wj = 1}

N0

where 0 < α� 1 is chosen depending on β from the key estimate
Now write

∑
w∈W(20N0)

Aw = AX + AY where, writing words in
W(20N0) as concatenations of 20 words in W(N0)

AX :=
∑
w∈X

Aw, X := {w(1) . . .w(20) | w(1), . . . ,w(20) ∈ W(N0) \ Z}

We have #(X ) ≤ Ch100α logα, so for α�β 1 the triangle inequality
+ the key estimate ‖Aw‖ ≤ Chβ give ‖AX ‖ ≤ Ch

β
2
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Removing the log prefactor

Removing the log: controlled words I

It remains to bound AYu where

AY :=
∑
w∈Y

Aw, Y := {w(1) . . .w(20) | ∃` : w(`) ∈ Z}

Similarly to the end of Lecture 1, since u = AZu + AZ{u, write

AYu =
19∑
`=0

AZ{(19N0) · · ·AZ{((`+ 1)N0)AZ(`N0)u

We can show that ‖AZ{‖ ≤ 1 +O(h
1
10 ), so

‖AYu‖ ≤ 2
19∑
`=0

‖AZ(`N0)u‖ ≤ 40‖AZu‖

since ‖A(j)u‖ = ‖Au‖ for all A, j
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Removing the log prefactor

Removing the log: controlled words II

Now it suffices to estimate AZu where AZ :=
∑

w∈Z Aw and

Z := {w ∈ W(N0) | F (w) ≥ α}, F (w) :=
#{j | wj = 1}

N0

Because N0 = b 1
10 log(1/h)c and 1

10 is small, we have

AZ = Oph(aZ) +O(h
1
10 ), aZ :=

∑
w∈Z

aw.

Now define AF :=
∑

w∈W(N0)
F (w)Aw = Oph(aF ) +O(h

1
10 ) where

aF :=
∑

w∈W(N0)

F (w)aw

By the definition of Z, we have aZ ≤ α−1aF . By sharp Gårding inequality

‖AZu‖ ≤ α−1‖AFu‖+O(h
1
10 )‖u‖
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aF :=
∑

w∈W(N0)

F (w)aw

By the definition of Z, we have aZ ≤ α−1aF . By sharp Gårding inequality

‖AZu‖ ≤ α−1‖AFu‖+O(h
1
10 )‖u‖
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Removing the log prefactor

Removing the log: controlled words III

We finally need to estimate ‖AFu‖ where

AF :=
∑

w∈W(N0)

F (w)Aw, F (w) :=
#{j | wj = 1}

N0

Write AF = 1
N0

∑N0−1
j=0 AFj

where

F =
1
N0

N0−1∑
j=0

Fj , Fj(w) :=

{
1, wj = 1
0, wj = 2

Then (pretending that A1 + A2 = I ) we have AFj
= A1(j), so

‖AFu‖ ≤
1
N0

N0−1∑
j=0

‖A1(j)u‖ ≤ ‖A1u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

which gives the bound on ‖AYu‖ needed to finish the proof of Theorem 1’.
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Thank you for your attention!
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