Minicourse on fractal uncertainty principle Lecture 2: from control of eigenfunctions to FUP

Semyon Dyatlov (MIT)

June 2, 2021

Review: general setup

- (M, g) compact hyperbolic surface (curvature $\equiv-1$)
- We are given $a \in C_{\mathrm{c}}^{\infty}\left(T^{*} M\right)$ such that $\left.a\right|_{S^{*} M} \not \equiv 0$
- Goal (Theorem 1'): prove that for all $h \ll 1$ and $u \in C^{\infty}(M)$

$$
\left(-h^{2} \Delta_{g}-1\right) u=0 \quad \Longrightarrow \quad\|u\| \leq C\left\|\mathrm{Op}_{h}(a) u\right\|
$$

(all norms are L^{2} or operator norm $L^{2} \rightarrow L^{2}$)

Review: general setup

- (M, g) compact hyperbolic surface (curvature $\equiv-1$)
- We are given $a \in C_{\mathrm{c}}^{\infty}\left(T^{*} M\right)$ such that $\left.a\right|_{S^{*} M} \not \equiv 0$
- Goal (Theorem 1'): prove that for all $h \ll 1$ and $u \in C^{\infty}(M)$

$$
\left(-h^{2} \Delta_{g}-1\right) u=0 \quad \Longrightarrow \quad\|u\| \leq C\left\|\mathrm{Op}_{h}(a) u\right\|
$$

(all norms are L^{2} or operator norm $L^{2} \rightarrow L^{2}$)

- Take two functions $a_{1}, a_{2} \in C_{c}^{\infty}\left(T^{*} M \backslash 0 ;[0,1]\right)$ such that

$$
a_{1}+a_{2}=1 \text { near } S^{*} M, \quad \text { supp } a_{1} \subset\{a \neq 0\}, \quad S^{*} M \backslash \text { supp } a_{j} \neq \emptyset
$$

The operators $A_{j}:=\operatorname{Op}_{h}\left(a_{j}\right)$ satisfy $\left\|A_{j}\right\| \leq 1+\mathcal{O}(h)$ and

$$
\left\|A_{1}(j) u\right\| \leq C\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

where $A(j):=U(-t) A U(t)$ and $U(t)=\exp \left(-i t \sqrt{-\Delta_{g}}\right)$

Review: proof under GCC

- For a word $\mathbf{w}=w_{0} \ldots w_{N-1} \in \mathcal{W}(N)$, define

$$
A_{\mathbf{w}}:=A_{w_{N-1}}(N-1) \cdots A_{w_{1}}(1) A_{w_{0}}(0), \quad a_{\mathbf{w}}:=\prod_{j=0}^{N-1}\left(a_{w_{j}} \circ \varphi_{j}\right)
$$

- $A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}_{N}(h)$ and $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2 \ldots 2}=0$ where $2 \ldots 2 \in \mathcal{W}(N)$
e To do that we split $u=A_{\chi} u+A_{\gamma} u$ where $A_{\gamma}=A_{2}-\mathcal{O}(h)$ and $\left\|A_{y} u\right\| \leq C N\left\|O p_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Without GCC, we have $\sup _{S^{*} M}\left|a_{2 \ldots 2}\right|=1$ and thus $\|\mathcal{A} \mathcal{X}\|=1+\mathcal{O}(h)$
- Key fact for Theorem 1' without GCC: for $N \sim 2 \log (1 / h)$, we do not have $A_{2 \ldots 2}=O p_{h}\left(a_{2} \ldots 2\right)+\ldots$ and in fact $\left\|A_{2 \ldots 2}\right\| \ll 1$

Review: proof under GCC

- For a word $\mathbf{w}=w_{0} \ldots w_{N-1} \in \mathcal{W}(N)$, define

$$
A_{\mathbf{w}}:=A_{w_{N-1}}(N-1) \cdots A_{w_{1}}(1) A_{w_{0}}(0), \quad a_{\mathbf{w}}:=\prod_{j=0}^{N-1}\left(a_{w_{j}} \circ \varphi_{j}\right)
$$

- $A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}_{N}(h)$ and $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2 \ldots .2}=0$ where $2 \ldots 2 \in \mathcal{W}(N)$
- To do that we split $u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u$ where $A_{\mathcal{X}}=A_{2 \ldots 2}=\mathcal{O}(h)$ and $\left\|A_{\mathcal{Y} u}\right\| \leq C N\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|$

Review: proof under GCC

- For a word $\mathbf{w}=w_{0} \ldots w_{N-1} \in \mathcal{W}(N)$, define

$$
A_{\mathbf{w}}:=A_{w_{N-1}}(N-1) \cdots A_{w_{1}}(1) A_{w_{0}}(0), \quad a_{\mathbf{w}}:=\prod_{j=0}^{N-1}\left(a_{w_{j}} \circ \varphi_{j}\right)
$$

- $A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}_{N}(h)$ and $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2 \ldots .2}=0$ where $2 \ldots 2 \in \mathcal{W}(N)$
- To do that we split $u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u$ where $A_{\mathcal{X}}=A_{2 \ldots 2}=\mathcal{O}(h)$ and $\left\|A_{\mathcal{y}} u\right\| \leq C N\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Without GCC, we have $\sup _{S^{*} M}\left|a_{2 \ldots 2}\right|=1$ and thus $\left\|\mathcal{A X}_{\mathcal{X}}\right\|=1+\mathcal{O}(h)$

Review: proof under GCC

- For a word $\mathbf{w}=w_{0} \ldots w_{N-1} \in \mathcal{W}(N)$, define

$$
A_{\mathbf{w}}:=A_{w_{N-1}}(N-1) \cdots A_{w_{1}}(1) A_{w_{0}}(0), \quad a_{\mathbf{w}}:=\prod_{j=0}^{N-1}\left(a_{w_{j}} \circ \varphi_{j}\right)
$$

- $A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}_{N}(h)$ and $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2 \ldots .2}=0$ where $2 \ldots 2 \in \mathcal{W}(N)$
- To do that we split $u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u$ where $A_{\mathcal{X}}=A_{2 \ldots 2}=\mathcal{O}(h)$ and $\left\|A_{\mathcal{y}} u\right\| \leq C N\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|$
- Without GCC, we have $\sup _{S^{*} M}\left|a_{2 \ldots 2}\right|=1$ and thus $\left\|\mathcal{A X}_{\mathcal{X}}\right\|=1+\mathcal{O}(h)$
- Key fact for Theorem 1 ' without GCC: for $N \approx 2 \log (1 / h)$, we do not have $A_{2 \ldots 2}=\operatorname{Op}_{h}\left(a_{2 \ldots 2}\right)+\ldots$ and in fact $\left\|A_{2 \ldots 2}\right\| \ll 1$

Scheme of the proof of Theorem 1'

Key estimate

Let $N:=2\lfloor\log (1 / h)\rfloor$. Then there exist $\beta>0, C$ such that for all h

$$
\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta} \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u=\sum_{w \in \mathcal{N}(N)} A_{w} u=A_{\mathcal{X}} u+A_{\mathcal{y} u} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}$
- By the key estimate, $\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\| \ll\|u\|$
- Can estimate $A y u$ as before:

- Putting together, get $\|u\| \leq C \log (1 / h)\left\|\operatorname{Op}_{h}(a) u\right\|$ for $h \ll 1$
- Plan: prove the key estimate and

Scheme of the proof of Theorem 1'

Key estimate

Let $N:=2\lfloor\log (1 / h)\rfloor$. Then there exist $\beta>0, C$ such that for all h

$$
\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta} \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}$
- By the key estimate, $\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\| \ll\|u\|$
- Can estimate Ayu as before:

Scheme of the proof of Theorem 1'

Key estimate

Let $N:=2\lfloor\log (1 / h)\rfloor$. Then there exist $\beta>0, C$ such that for all h

$$
\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta} \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}$
- By the key estimate, $\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\| \ll\|u\|$
- Can estimate $A y u$ as before:

$$
\left\|A_{\mathcal{y} u} u \leq 2 \sum_{j=0}^{N-1}\right\| A_{1}(j) u\|\leq C \log (1 / h)\| \operatorname{Op}_{h}(a) u\left\|+\mathcal{O}\left(h^{\infty}\right)\right\| u \|
$$

- Putting together, get $\|u\| \leq C \log (1 / h)\left\|O p_{h}(a) u\right\|$ for $h \ll 1$
- Plan:
prove the key estimate and

Scheme of the proof of Theorem 1'

Key estimate

Let $N:=2\lfloor\log (1 / h)\rfloor$. Then there exist $\beta>0, C$ such that for all h

$$
\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta} \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}$
- By the key estimate, $\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\| \ll\|u\|$
- Can estimate $A y u$ as before:

$$
\left\|A_{\mathcal{y} u} u \leq 2 \sum_{j=0}^{N-1}\right\| A_{1}(j) u\|\leq C \log (1 / h)\| \operatorname{Op}_{h}(a) u\left\|+\mathcal{O}\left(h^{\infty}\right)\right\| u \|
$$

- Putting together, get $\|u\| \leq C \log (1 / h)\left\|\operatorname{Op}_{h}(a) u\right\|$ for $h \ll 1$

Scheme of the proof of Theorem 1'

Key estimate

Let $N:=2\lfloor\log (1 / h)\rfloor$. Then there exist $\beta>0, C$ such that for all h

$$
\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta} \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u=\sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}$
- By the key estimate, $\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\| \ll\|u\|$
- Can estimate $A y u$ as before:

$$
\left\|A_{\mathcal{y} u} u \leq 2 \sum_{j=0}^{N-1}\right\| A_{1}(j) u\|\leq C \log (1 / h)\| \operatorname{Op}_{h}(a) u\left\|+\mathcal{O}\left(h^{\infty}\right)\right\| u \|
$$

- Putting together, get $\|u\| \leq C \log (1 / h)\left\|\mathrm{Op}_{h}(a) u\right\|$ for $h \ll 1$
- Plan: prove the key estimate and get rid of $\log (1 / h)$

Long time propagation

By Egorov's Theorem + composition property, for N independent of h

$$
A_{\mathbf{w}}=\mathrm{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}(h) \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

Can this work when $N \rightarrow \infty$ as $h \rightarrow 0$?

- The proof of Egorov's Theorem uses basic semiclassical calculus. So the real question is:
- The problem with $a_{\mathbf{w}}=\prod_{j=0}^{N-1}\left(a_{w} \sigma_{j}\right)$ is that the derivatives of $a_{w_{j}} \circ \varphi_{j}$ are large when $j \gg 1$. How large?
- The geodesic flow $\varphi_{t}: S^{*} M \rightarrow S^{*} M$ of a hyperbolic surface has the flow/unstable/stable decomposition $T\left(S^{*} M\right)=E_{0} \oplus E_{u} \oplus E_{s}$:

Long time propagation

By Egorov's Theorem + composition property, for N independent of h

$$
A_{\mathbf{w}}=\mathrm{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}(h) \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

Can this work when $N \rightarrow \infty$ as $h \rightarrow 0$?

- The proof of Egorov's Theorem uses basic semiclassical calculus. So the real question is: ¿Can we still quantize a_{w} ?
- The problem with $a_{w}=\prod_{j=0}^{N-1}\left(a_{w_{j}} \circ \varphi_{j}\right)$ is that the derivatives of $a_{w_{j}} \circ \varphi_{j}$ are large when $j \gg 1$. How large?

Long time propagation

By Egorov's Theorem + composition property, for N independent of h

$$
A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}(h) \quad \text { for all } \quad \mathbf{w} \in \mathcal{W}(N)
$$

Can this work when $N \rightarrow \infty$ as $h \rightarrow 0$?

- The proof of Egorov's Theorem uses basic semiclassical calculus. So the real question is: ¿Can we still quantize a_{w} ?
- The problem with $a_{\mathbf{w}}=\prod_{j=0}^{N-1}\left(a_{w_{j}} \circ \varphi_{j}\right)$ is that the derivatives of $a_{w_{j}} \circ \varphi_{j}$ are large when $j \gg 1$. How large?
- The geodesic flow $\varphi_{t}: S^{*} M \rightarrow S^{*} M$ of a hyperbolic surface has the flow/unstable/stable decomposition $T\left(S^{*} M\right)=E_{0} \oplus E_{u} \oplus E_{s}$:

$$
\left|d \varphi_{t}(x, \xi) v\right|= \begin{cases}|v|, & v \in E_{0}(x, \xi) \\ e^{t}|v|, & v \in E_{u}(x, \xi) \\ e^{-t}|v|, & v \in E_{s}(x, \xi)\end{cases}
$$

So $\sup \left|\partial^{\alpha}\left(a_{w_{j}} \circ \varphi_{j}\right)\right| \leq C_{\alpha} e^{N|\alpha|}$

Picture of the unstable/stable decomposition

Remarks

- We often ignore the flow direction E_{0} because there is no expansion or contraction in it
- We also often restrict to $S^{*} M$, where u lives microlocally, and ignore the dilation direction $\xi \cdot \partial_{\xi}$
- So the effective dynamics (on a Poincaré section in $S^{*} M$, transversal to the flow) is similar to 2-dimensional hyperbolic maps (e.g. cat map)

Pushing the limits of quantization: isotropic symbols
Let us look at the standard quantization on \mathbb{R}^{n} :

$$
\mathrm{Op}_{h}(a) f(x)=(2 \pi h)^{-n} \int_{\mathbb{R}^{2 n}} e^{\frac{i}{h}\langle x-y, \xi\rangle} a(x, \xi) f(y) d y d \xi
$$

Composition formula: $\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b)=\mathrm{Op}_{h}(a \# b)$ where

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \quad \text { as } \quad h \rightarrow 0
$$

- Use 2 derivatives for each power of h. This works if a, b satisfy

Pushing the limits of quantization: isotropic symbols

Let us look at the standard quantization on \mathbb{R}^{n} :

$$
\mathrm{Op}_{h}(a) f(x)=(2 \pi h)^{-n} \int_{\mathbb{R}^{2 n}} e^{\frac{i}{h}\langle x-y, \xi\rangle} a(x, \xi) f(y) d y d \xi
$$

Composition formula: $\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b)=\mathrm{Op}_{h}(a \# b)$ where

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \quad \text { as } \quad h \rightarrow 0
$$

- Use 2 derivatives for each power of h. This works if a, b satisfy

$$
\sup \left|\partial^{\alpha} a\right|, \sup \left|\partial^{\alpha} b\right| \leq C_{\alpha} h^{-\rho|\alpha|} \quad \text { for some } \quad \rho<\frac{1}{2}
$$

with k-th term of the above expansion being $\mathcal{O}\left(h^{(1-2 \rho) k}\right)$

Pushing the limits of quantization: isotropic symbols

Let us look at the standard quantization on \mathbb{R}^{n} :

$$
\mathrm{Op}_{h}(a) f(x)=(2 \pi h)^{-n} \int_{\mathbb{R}^{2 n}} e^{\frac{i}{h}\langle x-y, \xi\rangle} a(x, \xi) f(y) d y d \xi
$$

Composition formula: $\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b)=\mathrm{Op}_{h}(a \# b)$ where

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \quad \text { as } \quad h \rightarrow 0
$$

- Use 2 derivatives for each power of h. This works if a, b satisfy

$$
\sup \left|\partial^{\alpha} a\right|, \sup \left|\partial^{\alpha} b\right| \leq C_{\alpha} h^{-\rho|\alpha|} \quad \text { for some } \quad \rho<\frac{1}{2}
$$

with k-th term of the above expansion being $\mathcal{O}\left(h^{(1-2 \rho) k}\right)$

- The derivatives of $a_{w_{j}} \circ \varphi_{j}$ grow like $e^{N|\alpha|}$. So it appears that $A_{\mathbf{w}}=\mathrm{Op}_{h}\left(a_{\mathbf{w}}\right)+\ldots$ until the Ehrenfest time: $N=\frac{1}{2} \log (1 / h)$

Pushing the limits of quantization: anisotropic symbols

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \quad \text { as } \quad h \rightarrow 0
$$

Can afford to lose $h^{-\rho}, \rho<1$, differentiating in x, if we lose nothing when differentiating in ξ
That is, we can take a, b in the class $S_{L_{0, \rho}}$ defined by the inequalities

Pushing the limits of quantization: anisotropic symbols

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \quad \text { as } \quad h \rightarrow 0
$$

Can afford to lose $h^{-\rho}, \rho<1$, differentiating in x, if we lose nothing when differentiating in ξ
That is, we can take a, b in the class $S_{L_{0}, \rho}$ defined by the inequalities

$$
\sup \left|\partial_{\chi}^{\alpha} \partial_{\xi}^{\beta} a\right| \leq C_{\alpha \beta} h^{-\rho|\alpha|}
$$

Or we could take a, b in the class $S_{L_{1, \rho}}$ defined by losing in ξ but not in x

Pushing the limits of quantization: anisotropic symbols

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \text { as } h \rightarrow 0
$$

Can afford to lose $h^{-\rho}, \rho<1$, differentiating in x, if we lose nothing when differentiating in ξ
That is, we can take a, b in the class $S_{L_{0}, \rho}$ defined by the inequalities

$$
\sup \left|\partial_{\chi}^{\alpha} \partial_{\xi}^{\beta} a\right| \leq C_{\alpha \beta} h^{-\rho|\alpha|}
$$

Or we could take a, b in the class $S_{L_{1}, \rho}$ defined by losing in ξ but not in x :

$$
\sup \left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right| \leq C_{\alpha \beta} h^{-\rho|\beta|}
$$

Pushing the limits of quantization: anisotropic symbols

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$
a \# b \sim \sum_{k=0}^{\infty}(-i h)^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b \text { as } h \rightarrow 0
$$

Can afford to lose $h^{-\rho}, \rho<1$, differentiating in x, if we lose nothing when differentiating in ξ
That is, we can take a, b in the class $S_{L_{0}, \rho}$ defined by the inequalities

$$
\sup \left|\partial_{\chi}^{\alpha} \partial_{\xi}^{\beta} a\right| \leq C_{\alpha \beta} h^{-\rho|\alpha|}
$$

Or we could take a, b in the class $S_{L_{1}, \rho}$ defined by losing in ξ but not in x :

$$
\sup \left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right| \leq C_{\alpha \beta} h^{-\rho|\beta|}
$$

But if $a \in S_{L_{1}, \rho}$ and $b \in S_{L_{0}, \rho}$, then the expansion diverges when $\rho>\frac{1}{2}$!

Pushing the limits of quantization: hyperbolic surfaces

The derivatives of $a_{w_{j}} \circ \varphi_{j}$ are only large in the unstable direction.

Using this, we get $A_{w}=O p_{h}\left(a_{w}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ for times $N \leq \rho \log (1 / h)$ for any $\rho<1$ Here $a_{w} \in S_{L_{s}, \rho}\left(T^{*} M\right)$, putting $L_{s}:=E_{0} \oplus E$

Let $L:(x, \xi) \in T^{*} M \mapsto L_{(x, \xi)} \subset T_{(x, \xi)}\left(T^{*} M\right)$ be a smooth foliation such

 that $L_{(x, \xi)}$ are Lagrangian (dim $2+$ the symplectic form vanishes). Fix $\rho<1$. Define the class $S_{L, \rho}\left(T^{*} M\right)$ of $a \in C_{c}^{\infty}\left(T^{*} M\right)$ satisfying$$
\sup \left|X_{1} \ldots X_{k} Y_{1} \ldots Y_{\ell} a\right| \leq C h^{-\rho \ell}
$$

\square
For $a \in S_{L, \rho}\left(T^{*} M\right)$, can define $O p_{p}($ a) by using a Fourier Integral Operator to conjugate to the case $L=L_{0}=\operatorname{span}\left(\partial_{\xi}\right)$

Pushing the limits of quantization: hyperbolic surfaces
The derivatives of $a_{w_{j}} \circ \varphi_{j}$ are only large in the unstable direction.

Using this, we get $A_{\mathbf{w}}=\mathrm{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ for times $N \leq \rho \log (1 / h)$ for any $\rho<1$ Here $a_{w} \in S_{L_{s, \rho}}\left(T^{*} M\right)$, putting $L_{s}:=E_{0} \oplus E_{s}$:

for all vector fields X \square X_{k}, Y_{1}, Y_{e} s.t. X_{1}, , .., X_{k} are tangent to L For $a \in S_{L .,}\left(T^{*} M\right)$, can define $O p_{p}($ a) by using a Fourier Integral Operator to conjugate to the case $L=L_{0}=\operatorname{span}\left(\partial_{\xi}\right)$

Pushing the limits of quantization: hyperbolic surfaces
The derivatives of $a_{w_{j}} \circ \varphi_{j}$ are only large in the unstable direction.

Using this, we get $A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ for times $N \leq \rho \log (1 / h)$ for any $\rho<1$
Here $a_{w} \in S_{L_{s}, \rho}\left(T^{*} M\right)$, putting $L_{s}:=E_{0} \oplus E_{s}$:

Let $L:(x, \xi) \in T^{*} M \mapsto L_{(x, \xi)} \subset T_{(x, \xi)}\left(T^{*} M\right)$ be a smooth foliation such that $L_{(x, \xi)}$ are Lagrangian (dim $2+$ the symplectic form vanishes).

Pushing the limits of quantization: hyperbolic surfaces

The derivatives of $a_{w_{j}} \circ \varphi_{j}$ are only large in the unstable direction.

Using this, we get $A_{\mathbf{w}}=O p_{h}\left(a_{\mathbf{w}}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ for times $N \leq \rho \log (1 / h)$ for any $\rho<1$
Here $a_{w} \in S_{L_{s}, \rho}\left(T^{*} M\right)$, putting $L_{s}:=E_{0} \oplus E_{s}$:

Let $L:(x, \xi) \in T^{*} M \mapsto L_{(x, \xi)} \subset T_{(x, \xi)}\left(T^{*} M\right)$ be a smooth foliation such that $L_{(x, \xi)}$ are Lagrangian (dim $2+$ the symplectic form vanishes).
Fix $\rho<1$. Define the class $S_{L, \rho}\left(T^{*} M\right)$ of $a \in C_{c}^{\infty}\left(T^{*} M\right)$ satisfying

$$
\sup \left|X_{1} \ldots X_{k} Y_{1} \ldots Y_{\ell} a\right| \leq C h^{-\rho \ell}
$$

for all vector fields $X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{\ell}$ s.t. X_{1}, \ldots, X_{k} are tangent to L
For $a \in S_{L, \rho}\left(T^{*} M\right)$, can define $O p_{h}(a)$ by using a Fourier Integral Operator to conjugate to the case $L=L_{0}=\operatorname{span}\left(\partial_{\varepsilon}\right)$

Pushing the limits of quantization: hyperbolic surfaces

The derivatives of $a_{w_{j}} \circ \varphi_{j}$ are only large in the unstable direction.

Using this, we get $A_{\mathbf{w}}=\mathrm{Op}_{h}\left(a_{\mathrm{w}}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ for times $N \leq \rho \log (1 / h)$ for any $\rho<1$
Here $a_{w} \in S_{L_{s}, \rho}\left(T^{*} M\right)$, putting $L_{s}:=E_{0} \oplus E_{s}$:

Let $L:(x, \xi) \in T^{*} M \mapsto L_{(x, \xi)} \subset T_{(x, \xi)}\left(T^{*} M\right)$ be a smooth foliation such that $L_{(x, \xi)}$ are Lagrangian (dim $2+$ the symplectic form vanishes).
Fix $\rho<1$. Define the class $S_{L, \rho}\left(T^{*} M\right)$ of $a \in C_{\mathrm{c}}^{\infty}\left(T^{*} M\right)$ satisfying

$$
\sup \left|X_{1} \ldots X_{k} Y_{1} \ldots Y_{\ell} a\right| \leq C h^{-\rho \ell}
$$

for all vector fields $X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{\ell}$ s.t. X_{1}, \ldots, X_{k} are tangent to L
For $a \in S_{L, \rho}\left(T^{*} M\right)$, can define $\mathrm{Op}_{h}(a)$ by using a Fourier Integral Operator to conjugate to the case $L=L_{0}=\operatorname{span}\left(\partial_{\xi}\right)$

Proof of the key estimate: splitting in the middle
Key estimate: $\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta}$ for $\mathbf{w} \in \mathcal{W}\left(2 N_{1}\right), N_{1}=\lfloor\rho \log (1 / h)\rfloor, \rho<1$ Write $A_{w}=A_{w_{2 N_{1}-1}}\left(2 N_{1}-1\right) \cdots A_{w_{0}}(0)$ as $A_{w}=U\left(-N_{1}\right) A_{-} A_{+} U\left(N_{1}\right)$
$A_{-}:=A_{w_{2 N_{1}-1}}\left(N_{1}-1\right) \cdots A_{W_{N_{1}}}(0), \quad A_{+}:=A_{w_{N_{1}-1}}(-1) \cdots A_{w_{0}}\left(-N_{1}\right)$ We have $A_{-}=O p_{h}\left(a_{-}\right)+\mathcal{O}\left(h^{1-\rho}\right), \quad A_{+}=O p_{h}\left(a_{+}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ where $a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{W_{j}+N_{1}} \circ \varphi_{j}\right) \in S_{L_{S}, \rho,}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{W_{N_{1}-j}} \circ \varphi_{-j}\right) \in S_{L_{U}, \rho}$ and $L_{s}=E_{0} \oplus E_{s}, \quad L_{u}=E_{0} \oplus E_{u}$. Reformulate the key estimate as $\left\|O p_{h}\left(a_{-}\right) O p_{h}\left(a_{+}\right)\right\| \leq C h^{\beta}$

Proof of the key estimate: splitting in the middle
Key estimate: $\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta}$ for $\mathbf{w} \in \mathcal{W}\left(2 N_{1}\right), N_{1}=\lfloor\rho \log (1 / h)\rfloor, \rho<1$ Write $A_{\boldsymbol{w}}=A_{w_{2} N_{1}-1}\left(2 N_{1}-1\right) \cdots A_{w_{0}}(0)$ as $A_{\mathbf{w}}=U\left(-N_{1}\right) A_{-} A_{+} U\left(N_{1}\right)$

$$
A_{-}:=A_{w_{2} N_{1}-1}\left(N_{1}-1\right) \cdots A_{w_{N_{1}}}(0), \quad A_{+}:=A_{w_{N_{1}-1}}(-1) \cdots A_{w_{0}}\left(-N_{1}\right)
$$

$$
\text { We have } A_{-}=O p_{h}\left(a_{-}\right)+\mathcal{O}\left(h^{1-\rho}\right), \quad A_{+}=O p_{h}\left(a_{+}\right)+\mathcal{O}\left(h^{1-\rho}\right) \text { where }
$$

Proof of the key estimate: splitting in the middle
Key estimate: $\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta}$ for $\mathbf{w} \in \mathcal{W}\left(2 N_{1}\right), N_{1}=\lfloor\rho \log (1 / h)\rfloor, \rho<1$ Write $A_{\boldsymbol{w}}=A_{w_{2} N_{1}-1}\left(2 N_{1}-1\right) \cdots A_{w_{0}}(0)$ as $A_{\boldsymbol{w}}=U\left(-N_{1}\right) A_{-} A_{+} U\left(N_{1}\right)$

$$
A_{-}:=A_{w_{2} N_{1}-1}\left(N_{1}-1\right) \cdots A_{w_{N_{1}}}(0), \quad A_{+}:=A_{w_{N_{1}-1}}(-1) \cdots A_{w_{0}}\left(-N_{1}\right)
$$

We have $A_{-}=O p_{h}\left(a_{-}\right)+\mathcal{O}\left(h^{1-\rho}\right), \quad A_{+}=O p_{h}\left(a_{+}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ where

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{w_{j+N_{1}}} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{w_{N_{1}-j}} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

and $L_{s}=E_{0} \oplus E_{s}, \quad L_{u}=E_{0} \oplus E_{u}$. Reformulate the key estimate as

Proof of the key estimate: splitting in the middle
Key estimate: $\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta}$ for $\mathbf{w} \in \mathcal{W}\left(2 N_{1}\right), N_{1}=\lfloor\rho \log (1 / h)\rfloor, \rho<1$ Write $A_{\boldsymbol{w}}=A_{w_{2} N_{1}-1}\left(2 N_{1}-1\right) \cdots A_{w_{0}}(0)$ as $A_{\boldsymbol{w}}=U\left(-N_{1}\right) A_{-} A_{+} U\left(N_{1}\right)$

$$
A_{-}:=A_{w_{2} N_{1}-1}\left(N_{1}-1\right) \cdots A_{w_{N_{1}}}(0), \quad A_{+}:=A_{w_{N_{1}-1}}(-1) \cdots A_{w_{0}}\left(-N_{1}\right)
$$

We have $A_{-}=O p_{h}\left(a_{-}\right)+\mathcal{O}\left(h^{1-\rho}\right), \quad A_{+}=O p_{h}\left(a_{+}\right)+\mathcal{O}\left(h^{1-\rho}\right)$ where

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{w_{j+N_{1}}} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{w_{N_{1}-j}} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

and $L_{s}=E_{0} \oplus E_{s}, \quad L_{u}=E_{0} \oplus E_{u}$. Reformulate the key estimate as

$$
\left\|\mathrm{Op}_{h}\left(\mathrm{a}_{-}\right) \mathrm{Op}_{h}\left(\mathrm{a}_{+}\right)\right\| \leq C h^{\beta}
$$

But $\mathrm{Op}_{h}\left(a_{-}\right)$and $\mathrm{Op}_{h}\left(a_{+}\right)$do not lie in the same calculus!

Assume for simplicity that $\mathbf{w}=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

Assume for simplicity that $\mathbf{w}=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

$$
N_{1}=0
$$

Using cat map for illustration:

Assume for simplicity that $\mathbf{w}=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

Using cat map for illustration:

Assume for simplicity that $\mathbf{w}=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

Using cat map for illustration:

Assume for simplicity that $w=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

Using cat map for illustration:

Assume for simplicity that $w=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

Using cat map for illustration:

Assume for simplicity that $w=2 \ldots 2$, then

$$
a_{-}=\prod_{j=0}^{N_{1}-1}\left(a_{2} \circ \varphi_{j}\right) \in S_{L_{s}, \rho}, \quad a_{+}=\prod_{j=1}^{N_{1}}\left(a_{2} \circ \varphi_{-j}\right) \in S_{L_{u}, \rho}
$$

We have supp $a_{ \pm} \subset V_{ \pm}\left(N_{1}\right)$ where $N_{1}=\lfloor\rho \log (1 / h)\rfloor$ and

$$
V_{-}\left(N_{1}\right)=\bigcap_{j=0}^{N_{1}-1} \varphi_{-j}\left(\operatorname{supp} a_{2}\right), \quad V_{+}\left(N_{1}\right)=\bigcap_{j=1}^{N_{1}} \varphi_{j}\left(\operatorname{supp} a_{2}\right)
$$

$$
N_{1}=5
$$

Using cat map for illustration:
$V_{-}\left(N_{1}\right)$ is nice in the stable direction, porous up to scale $e^{-N_{1}} \sim h^{\rho}$ in the unstable direction
$V_{+}\left(N_{1}\right)$ is nice in the unstable direction, porous up to scale h^{ρ} in the stable direction

Want: localizations to V_{-}, V_{+}incompatible

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

Definition
Fix $\boldsymbol{\sim}>0$. A set $X \subset \mathbb{R}$ is ν-porous up to scale h if for each interval $/ \subset R$ of length $h \leq|I| \leq 1$, there is an interval $J \subset I,|J|=\nu| |, J \cap X=$
Example: mid-third Cantor set $\mathcal{C} \subset[0,1]$ is $\frac{1}{6}$-porous on scales 0 to 1 Theorem 2 [Bourgain-D '18] Assume that $X, V \subset \mathbb{R}$ are u-porous up to scale h. Then $\exists \beta=\beta(\nu)>0$ $\left\|\mathbb{1}_{X}\left(\frac{h}{i} \partial_{X}\right) \mathbb{1}_{Y}(x)\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad$ as $h \rightarrow 0$ Note: enough to require porosity up to scales h^{ρ} where $\rho>\frac{1}{2}$

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu>0$. A set $X \subset \mathbb{R}$ is ν-porous up to scale h if for each interval $I \subset R$ of length $h \leq|I| \leq 1$, there is an interval $J \subset I,|J|=\nu|I|, J \cap X=\emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset[0,1]$ is $\frac{1}{6}$-porous on scales 0 to 1

\square

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu>0$. A set $X \subset \mathbb{R}$ is ν-porous up to scale h if for each interval $I \subset R$ of length $h \leq|I| \leq 1$, there is an interval $J \subset I,|J|=\nu|I|, J \cap X=\emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset[0,1]$ is $\frac{1}{6}$-porous on scales 0 to 1 ■! ■!

Theorem 2 [Bourgain-D '18]
Assume that $X, Y \subset \mathbb{R}$ are ν-porous up to scale h. Then $\exists \beta=\beta(\nu)>0$:

$$
\left\|\mathbb{1}_{X}\left(\frac{h}{i} \partial_{X}\right) \mathbb{1}_{Y}(x)\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } h \rightarrow 0
$$

Note: enough to require porosity up to scales h^{ρ} where ρ

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu>0$. A set $X \subset \mathbb{R}$ is ν-porous up to scale h if for each interval $I \subset R$ of length $h \leq|I| \leq 1$, there is an interval $J \subset I,|J|=\nu|I|, J \cap X=\emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset[0,1]$ is $\frac{1}{6}$-porous on scales 0 to 1

Theorem 2 [Bourgain-D '18]

Assume that $X, Y \subset \mathbb{R}$ are ν-porous up to scale h. Then $\exists \beta=\beta(\nu)>0$:

$$
\left\|\mathbb{1}_{X}\left(\frac{h}{i} \partial_{X}\right) \mathbb{1}_{Y}(x)\right\|_{L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})}=\mathcal{O}\left(h^{\beta}\right) \quad \text { as } h \rightarrow 0
$$

Note: enough to require porosity up to scales h^{ρ} where $\rho>\frac{1}{2}$

From FUP to the key estimate

Need: $\left\|\mathrm{Op}_{h}\left(a_{-}\right) \mathrm{Op}_{h}\left(a_{+}\right)\right\| \leq C h^{\beta}$, supp a_{-}porous in unstable direction, $b_{ \pm} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$, supp $b_{-} \subset\left\{\xi \in W_{-}\right\}$, supp a_{+}porous in stable direction

FUP: $\left\|O p_{h}\left(b_{-}\right) \mathrm{Op}_{h}\left(b_{+}\right)\right\| \leq C h^{\beta}$, $\operatorname{supp} b_{+} \subset\left\{x \in W_{+}\right\}, W_{ \pm} \subset \mathbb{R}$ porous

To pass from FUP to the key estimate, we can try to conjugate by a Fourier Integral operator to map $E_{u} \mapsto \mathbb{R} \partial_{\xi}, E_{s} \mapsto \mathbb{R} \partial_{x}$. Not quite possible but after some cutting and pasting can make it work

From FUP to the key estimate

Need: $\left\|\mathrm{Op}_{h}\left(a_{-}\right) \mathrm{Op}_{h}\left(a_{+}\right)\right\| \leq C h^{\beta}$, supp a_{-}porous in unstable direction, $b_{ \pm} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$, supp $b_{-} \subset\left\{\xi \in W_{-}\right\}$, supp a_{+}porous in stable direction

FUP: $\left\|O p_{h}\left(b_{-}\right) O p_{h}\left(b_{+}\right)\right\| \leq C h^{\beta}$, $\operatorname{supp} b_{+} \subset\left\{x \in W_{+}\right\}, W_{ \pm} \subset \mathbb{R}$ porous

To pass from FUP to the key estimate, we can try to conjugate by a Fourier Integral operator to map $E_{u} \mapsto \mathbb{R} \partial_{\xi}, E_{s} \mapsto \mathbb{R} \partial_{x}$. Not quite possible but after some cutting and pasting can make it work...

Removing the log

So far we proved that $\quad\|u\| \leq C \log (1 / h)\left\|O p_{h}(a) u\right\| \quad$ by writing

$$
u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}
$$

and estimating

$$
\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\|, \quad\left\|A_{\mathcal{Y}} u\right\| \leq C \log (1 / h)\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

To get rid of the log prefactor, we will revise the decomposition $u=A_{\mathcal{X}} u+A_{y} u$ so that

Here the constant in front of $\left\|\mathrm{Op}_{h}(a) u\right\|$ will be large depending on β

Removing the log

So far we proved that $\quad\|u\| \leq C \log (1 / h)\left\|O p_{h}(a) u\right\| \quad$ by writing

$$
u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u, \quad A_{\mathcal{X}}:=A_{2 \ldots 2}
$$

and estimating

$$
\left\|A_{\mathcal{X}} u\right\| \leq C h^{\beta}\|u\|, \quad\left\|A_{\mathcal{y}} u\right\| \leq C \log (1 / h)\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

To get rid of the log prefactor, we will revise the decomposition $u=A_{\mathcal{X}} u+A_{\mathcal{Y}} u$ so that

$$
\left\|A_{\mathcal{X}} u\right\| \leq C h^{\frac{\beta}{2}}\|u\|, \quad\left\|A_{\mathcal{y}} u\right\| \leq C\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\frac{1}{10}}\right)\|u\|
$$

Here the constant in front of $\left\|\mathrm{Op}_{h}(a) u\right\|$ will be large depending on β

Removing the log: uncontrolled words

- Recall that we are dealing with words of length $2\lfloor\log (1 / h)\rfloor$. Let's use instead the similar time $20 N_{0}$ where $N_{0}=\left\lfloor\frac{1}{10} \log (1 / h)\right\rfloor$
- Define the set of controlled short logarithmic words

$$
\mathcal{Z}:=\left\{\mathbf{w} \in \mathcal{W}\left(N_{0}\right) \mid F(\mathbf{w}) \geq \alpha\right\}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

where $0<\alpha \ll 1$ is chosen depending on β from the key estimate

Removing the log: uncontrolled words

- Recall that we are dealing with words of length $2\lfloor\log (1 / h)\rfloor$. Let's use instead the similar time $20 N_{0}$ where $N_{0}=\left\lfloor\frac{1}{10} \log (1 / h)\right\rfloor$
- Define the set of controlled short logarithmic words

$$
\mathcal{Z}:=\left\{\mathbf{w} \in \mathcal{W}\left(N_{0}\right) \mid F(\mathbf{w}) \geq \alpha\right\}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

where $0<\alpha \ll 1$ is chosen depending on β from the key estimate

- Now write $\sum_{\mathbf{w} \in \mathcal{W}\left(20 N_{0}\right)} A_{\mathbf{w}}=A_{\mathcal{X}}+A_{\mathcal{Y}}$ where, writing words in $\mathcal{W}\left(20 N_{0}\right)$ as concatenations of 20 words in $\mathcal{W}\left(N_{0}\right)$

$$
A_{\mathcal{X}}:=\sum_{\mathbf{w} \in \mathcal{X}} A_{\mathbf{w}}, \quad \mathcal{X}:=\left\{\mathbf{w}^{(1)} \ldots \mathbf{w}^{(20)} \mid \mathbf{w}^{(1)}, \ldots, \mathbf{w}^{(20)} \in \mathcal{W}\left(N_{0}\right) \backslash \mathcal{Z}\right\}
$$

Removing the log: uncontrolled words

- Recall that we are dealing with words of length $2\lfloor\log (1 / h)\rfloor$. Let's use instead the similar time $20 N_{0}$ where $N_{0}=\left\lfloor\frac{1}{10} \log (1 / h)\right\rfloor$
- Define the set of controlled short logarithmic words

$$
\mathcal{Z}:=\left\{\mathbf{w} \in \mathcal{W}\left(N_{0}\right) \mid F(\mathbf{w}) \geq \alpha\right\}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

where $0<\alpha \ll 1$ is chosen depending on β from the key estimate

- Now write $\sum_{\mathbf{w} \in \mathcal{W}\left(20 N_{0}\right)} A_{\mathbf{w}}=A_{\mathcal{X}}+A_{\mathcal{Y}}$ where, writing words in $\mathcal{W}\left(20 N_{0}\right)$ as concatenations of 20 words in $\mathcal{W}\left(N_{0}\right)$

$$
A_{\mathcal{X}}:=\sum_{\mathbf{w} \in \mathcal{X}} A_{\mathbf{w}}, \quad \mathcal{X}:=\left\{\mathbf{w}^{(1)} \ldots \mathbf{w}^{(20)} \mid \mathbf{w}^{(1)}, \ldots, \mathbf{w}^{(20)} \in \mathcal{W}\left(N_{0}\right) \backslash \mathcal{Z}\right\}
$$

- We have $\#(\mathcal{X}) \leq C h^{100 \alpha \log \alpha}$, so for $\alpha \ll_{\beta} 1$ the triangle inequality + the key estimate $\left\|A_{\mathbf{w}}\right\| \leq C h^{\beta}$ give $\left\|A_{\mathcal{X}}\right\| \leq C h^{\frac{\beta}{2}}$

Removing the log: controlled words I

It remains to bound $A_{y} u$ where

$$
A_{\mathcal{Y}}:=\sum_{\mathbf{w} \in \mathcal{Y}} A_{\mathbf{w}}, \quad \mathcal{Y}:=\left\{\mathbf{w}^{(1)} \ldots \mathbf{w}^{(20)} \mid \exists \ell: \mathbf{w}^{(\ell)} \in \mathcal{Z}\right\}
$$

Similarly to the end of Lecture 1 , since $u=A_{\mathcal{Z}} u+A_{\mathcal{Z}} u$, write

$$
A_{\mathcal{Y}} u=\sum_{\ell=0}^{19} A_{\mathcal{Z}^{\mathrm{c}}}\left(19 N_{0}\right) \cdots A_{\mathcal{Z}^{\mathrm{c}}}\left((\ell+1) N_{0}\right) A_{\mathcal{Z}}\left(\ell N_{0}\right) u
$$

We can show that $\left\|A_{\mathcal{Z}^{0}}\right\| \leq 1+\mathcal{O}\left(h^{\frac{1}{10}}\right)$, so

Removing the log: controlled words I

It remains to bound $A_{y} u$ where

$$
A_{\mathcal{Y}}:=\sum_{\mathbf{w} \in \mathcal{Y}} A_{\mathbf{w}}, \quad \mathcal{Y}:=\left\{\mathbf{w}^{(1)} \ldots \mathbf{w}^{(20)} \mid \exists \ell: \mathbf{w}^{(\ell)} \in \mathcal{Z}\right\}
$$

Similarly to the end of Lecture 1 , since $u=A_{\mathcal{Z}} u+A_{\mathcal{Z}^{c}} u$, write

$$
A_{\mathcal{Y}} u=\sum_{\ell=0}^{19} A_{\mathcal{Z}^{\mathrm{c}}}\left(19 N_{0}\right) \cdots A_{\mathcal{Z}^{\mathrm{c}}}\left((\ell+1) N_{0}\right) A_{\mathcal{Z}}\left(\ell N_{0}\right) u
$$

We can show that $\left\|A_{\mathcal{Z}^{\mathrm{c}}}\right\| \leq 1+\mathcal{O}\left(h^{\frac{1}{10}}\right)$, so

$$
\left\|A_{\mathcal{Y}} u\right\| \leq 2 \sum_{\ell=0}^{19}\left\|A_{\mathcal{Z}}\left(\ell N_{0}\right) u\right\| \leq 40\left\|A_{\mathcal{Z}} u\right\|
$$

since $\|A(j) u\|=\|A u\|$ for all A, j

Removing the log: controlled words II

Now it suffices to estimate $A_{\mathcal{Z}} u$ where $A_{\mathcal{Z}}:=\sum_{\mathbf{w} \in \mathcal{Z}} A_{\mathbf{w}}$ and

$$
\mathcal{Z}:=\left\{\mathbf{w} \in \mathcal{W}\left(N_{0}\right) \mid F(\mathbf{w}) \geq \alpha\right\}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

Because $N_{0}=\left\lfloor\frac{1}{10} \log (1 / h)\right\rfloor$ and $\frac{1}{10}$ is small, we have

$$
A_{\mathcal{Z}}=\mathrm{Op}_{h}\left(a_{\mathcal{Z}}\right)+\mathcal{O}\left(h^{\frac{1}{10}}\right), \quad a_{\mathcal{Z}}:=\sum_{\mathbf{w} \in \mathcal{Z}} a_{\mathbf{w}} .
$$

 $\left\|\Delta_{-u}\right\| \leq \alpha^{-1\left\|A_{\text {-u }}\right\|}+\mathcal{O}\left(h^{\frac{1}{10}}\right)\|u\|$

Removing the log: controlled words II

Now it suffices to estimate $A_{\mathcal{Z}} u$ where $A_{\mathcal{Z}}:=\sum_{\mathbf{w} \in \mathcal{Z}} A_{\mathbf{w}}$ and

$$
\mathcal{Z}:=\left\{\mathbf{w} \in \mathcal{W}\left(N_{0}\right) \mid F(\mathbf{w}) \geq \alpha\right\}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

Because $N_{0}=\left\lfloor\frac{1}{10} \log (1 / h)\right\rfloor$ and $\frac{1}{10}$ is small, we have

$$
A_{\mathcal{Z}}=\operatorname{Op}_{h}\left(a_{\mathcal{Z}}\right)+\mathcal{O}\left(h^{\frac{1}{10}}\right), \quad a_{\mathcal{Z}}:=\sum_{\mathbf{w} \in \mathcal{Z}} a_{\mathbf{w}}
$$

Now define $A_{F}:=\sum_{\mathbf{w} \in \mathcal{W}\left(N_{0}\right)} F(\mathbf{w}) A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{F}\right)+\mathcal{O}\left(h^{\frac{1}{10}}\right)$ where

$$
a_{F}:=\sum_{\mathbf{w} \in \mathcal{W}\left(N_{0}\right)} F(\mathbf{w}) a_{\mathbf{w}}
$$

By the definition of \mathcal{Z}, we have
By sharp Gårding inequality

Removing the log: controlled words II

Now it suffices to estimate $A_{\mathcal{Z}} u$ where $A_{\mathcal{Z}}:=\sum_{\mathbf{w} \in \mathcal{Z}} A_{\mathbf{w}}$ and

$$
\mathcal{Z}:=\left\{\mathbf{w} \in \mathcal{W}\left(N_{0}\right) \mid F(\mathbf{w}) \geq \alpha\right\}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

Because $N_{0}=\left\lfloor\frac{1}{10} \log (1 / h)\right\rfloor$ and $\frac{1}{10}$ is small, we have

$$
A_{\mathcal{Z}}=\operatorname{Op}_{h}\left(a_{\mathcal{Z}}\right)+\mathcal{O}\left(h^{\frac{1}{10}}\right), \quad a_{\mathcal{Z}}:=\sum_{\mathbf{w} \in \mathcal{Z}} a_{\mathbf{w}}
$$

Now define $A_{F}:=\sum_{\mathbf{w} \in \mathcal{W}\left(N_{0}\right)} F(\mathbf{w}) A_{\mathbf{w}}=\operatorname{Op}_{h}\left(a_{F}\right)+\mathcal{O}\left(h^{\frac{1}{10}}\right)$ where

$$
a_{F}:=\sum_{\mathbf{w} \in \mathcal{W}\left(N_{0}\right)} F(\mathbf{w}) a_{\mathbf{w}}
$$

By the definition of \mathcal{Z}, we have $a_{\mathcal{Z}} \leq \alpha^{-1} a_{F}$. By sharp Gårding inequality

$$
\left\|A_{\mathcal{Z}} u\right\| \leq \alpha^{-1}\left\|A_{F} u\right\|+\mathcal{O}\left(h^{\frac{1}{10}}\right)\|u\|
$$

Removing the log: controlled words III

We finally need to estimate $\left\|A_{F} u\right\|$ where

$$
A_{F}:=\sum_{\mathbf{w} \in \mathcal{W}\left(N_{0}\right)} F(\mathbf{w}) A_{\mathbf{w}}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

Write $A_{F}=\frac{1}{N_{0}} \sum_{j=0}^{N_{0}-1} A_{F_{j}}$ where

$$
F=\frac{1}{N_{0}} \sum_{j=0}^{N_{0}-1} F_{j}, \quad F_{j}(w):= \begin{cases}1, & w_{j}=1 \\ 0, & w_{j}=2\end{cases}
$$

Then (pretending that $A_{1}+A_{2}=I$) we have $A_{F_{j}}=A_{1}(j)$, so

Removing the log: controlled words III

We finally need to estimate $\left\|A_{\digamma} u\right\|$ where

$$
A_{F}:=\sum_{\mathbf{w} \in \mathcal{W}\left(N_{0}\right)} F(\mathbf{w}) A_{\mathbf{w}}, \quad F(\mathbf{w}):=\frac{\#\left\{j \mid w_{j}=1\right\}}{N_{0}}
$$

Write $A_{F}=\frac{1}{N_{0}} \sum_{j=0}^{N_{0}-1} A_{F_{j}}$ where

$$
F=\frac{1}{N_{0}} \sum_{j=0}^{N_{0}-1} F_{j}, \quad F_{j}(\mathbf{w}):= \begin{cases}1, & w_{j}=1 \\ 0, & w_{j}=2\end{cases}
$$

Then (pretending that $A_{1}+A_{2}=I$) we have $A_{F_{j}}=A_{1}(j)$, so

$$
\left\|A_{F} u\right\| \leq \frac{1}{N_{0}} \sum_{j=0}^{N_{0}-1}\left\|A_{1}(j) u\right\| \leq\left\|A_{1} u\right\| \leq C\left\|\mathrm{Op}_{h}(a) u\right\|+\mathcal{O}\left(h^{\infty}\right)\|u\|
$$

which gives the bound on $\left\|A_{\mathcal{y}} u\right\|$ needed to finish the proof of Theorem 1'.

Thank you for your attention!

