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Overview

This talk presents several recent results in quantum chaos
Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency

near a fractal set

Using tools from
Microlocal analysis ( classical/quantum correspondence )
Hyperbolic dynamics ( classical chaos )
Fractal geometry
Harmonic analysis

Despite recent progress, many open problems remain
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Control of eigenfunctions

Application: control of eigenfunctions

(M, g) compact hyperbolic surface
Geodesic flow ϕt : T ∗M → T ∗M is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1 [Bourgain–D ’16, D–Jin ’17]

Let Ω ⊂ M be an arbitrary nonempty open set. Then
‖u‖L2(Ω) ≥ c > 0

where c depends on M,Ω but not on λ

For bounded λ this follows from unique continuation principle
The new result is in the high frequency limit λ→∞
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studied by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1 [Bourgain–D ’16, D–Jin ’17]

Let Ω ⊂ M be an arbitrary nonempty open set. Then
‖u‖L2(Ω) ≥ c > 0

where c depends on M,Ω but not on λ

The chaotic nature of geodesic flow is important
For example, Theorem 1 is false if M is the round sphere
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Control of eigenfunctions

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x , ξ) ∈ C∞(T ∗M) 7→ Oph(a) = a
(
x ,

h

i
∂x

)
: C∞(M)→ C∞(M)

Examples (on Rn): Oph(xj)u = xju, Oph(ξj)u = h
i ∂xju

Properties of quantization in the semiclassical limit h→ 0

Oph(a)Oph(b) = Oph(ab) +O(h)

Oph(a)∗ = Oph(a) +O(h)

[Oph(a),Oph(b)] = −ihOph({a, b}) +O(h2)

sup |a| <∞ =⇒ ‖Oph(a)‖L2→L2 = O(1)

Rescale (−∆g − λ2)u = 0, λ→∞
to obtain (−h2∆g − 1)u = 0, h = λ−1 → 0

where − h2∆g − 1 = Oph(p2 − 1), p(x , ξ) = |ξ|g
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Control of eigenfunctions

Microlocal version of Theorem 1

General elliptic estimate

If a, b ∈ C∞(T ∗M) and supp b ⊂ {a 6= 0} then for all u ∈ L2(M)

‖Oph(b)u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

Localization of eigenfunctions to S∗M := {(x , ξ) ∈ T ∗M : |ξ|g = 1}

Assume (−h2∆g − 1)u = 0, ‖u‖L2(M) = 1. (1)

Then supp b ∩ S∗M = ∅ =⇒ ‖Oph(b)u‖L2 = O(h∞)

Theorem 1′ [Bourgain–D ’16, D–Jin ’17]

Let a ∈ C∞c (T ∗M) satisfy a|S∗M 6≡ 0, u satisfy (1). Then for h� 1

‖Oph(a)u‖L2(M) ≥ c > 0

where c depends on M, a but not on h
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Control of eigenfunctions

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

(−h2
j ∆g − 1)uj = 0, ‖uj‖L2(M) = 1, hj → 0

We say uj converges weakly to a measure µ on T ∗M if

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Call such limits µ semiclassical measures

Basic properties
µ is a probability measure, suppµ ⊂ S∗M

µ is invariant under the geodesic flow ϕt : S∗M → S∗M

Natural candidate: Liouville measure µL ∼ d vol (equidistribution)
Natural enemy: delta measure δγ on a closed geodesic (scarring)
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Control of eigenfunctions

Semiclassical measures and Theorem 1

(−h2
j ∆g − 1)uj = 0, ‖uj‖L2(M) = 1, hj → 0

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Theorem 1′: a|S∗M 6≡ 0 =⇒ ‖Ophj (a)uj‖L2 ≥ c > 0

Theorem 1′′ [Bourgain–D ’16, D–Jin ’17]

Let µ be a semiclassical measure on M. Then suppµ = S∗M

Brief overview of history

Quantum Ergodicity [Shnirelman ’74, Zelditch ’87, Colin de
Verdière ’85]: µ = µL for density 1 sequence of eigenfunctions
Quantum Unique Ergodicity conjecture [Rudnick–Sarnak ’94]:
µ = µL for all eigenfunctions, that is µL is the only semiclassical
measure. Proved in the arithmetic case [Lindenstrauss ’06]
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Control of eigenfunctions

Semiclassical measures and Theorem 1

(−h2
j ∆g − 1)uj = 0, ‖uj‖L2(M) = 1, hj → 0

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Theorem 1′: a|S∗M 6≡ 0 =⇒ ‖Ophj (a)uj‖L2 ≥ c > 0

Theorem 1′′ [Bourgain–D ’16, D–Jin ’17]

Let µ be a semiclassical measure on M. Then suppµ = S∗M

Brief overview of history, continued

Entropy bound [Anantharaman ’08, A–Nonnenmacher ’07]:
HKS(µ) ≥ 1

2 , in particular µ 6= δγ . Here HKS denotes
Kolmogorov–Sinai entropy. Note HKS(µL) = 1 and HKS(δγ) = 0
Theorem 1′′: between QE and QUE and ‘orthogonal’ to entropy
bound. There exist ϕt-invariant µ with suppµ 6= S∗M, HKS(µ) > 1

2
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Control of eigenfunctions: the proof

Proof of Theorem 1′

(−h2∆g − 1)u = 0, ‖u‖L2 = 1, a ∈ C∞c (T ∗M), a|S∗M 6≡ 0

We say u is controlled on an open set V ⊂ T ∗M if

‖Oph(b)u‖L2 ≤ C‖Oph(a)u‖L2 + o(1)h→0 when supp b ⊂ V

Goal: show u is controlled on T ∗M (then can take b ≡ 1, Oph(b)u = u)

u is controlled away from S∗M (by ellipticity)
u is controlled on {a 6= 0} (also by ellipticity)
Use the half-wave propagator U(t) = exp(−it

√
−∆g )

U(t)u = e−it/hu =⇒ ‖U(−t)Oph(a)U(t)u‖L2 = ‖Oph(a)u‖L2

Egorov’s Theorem: U(−t)Oph(a)U(t) = Oph(a ◦ ϕt) +O(h) where
ϕt = exp(tHp) : T ∗M → T ∗M is the homogeneous geodesic flow
Thus u is controlled on ϕt({a 6= 0}) for all t, |t| ≤ ρ log(1/h), ρ < 1
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Control of eigenfunctions: the proof

u is controlled on ϕt({a 6= 0}) for |t| ≤ T (h) := ρ log(1/h)

Thus u = Oph(b±)u + (controlled) for some b±, supp b± ⊂ Γ±(h),

Γ±(h) =
{

(x , ξ) ∈ T ∗M : ϕ∓t(x , ξ) /∈ {a 6= 0} ∀ t ∈ [0,T (h)]
}

Hyperbolicity of ϕt + unique ergodicity of horocycle flows =⇒
Γ+(h) smooth in the unstable direction, porous in the stable direction
Γ−(h) smooth in the stable direction, porous in the unstable direction

(using Arnold cat map model for the figures)

Γ−(h), T = 0 {a = 0} Γ+(h), T = 0
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Control of eigenfunctions: the proof
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Γ−(h), T = 2 {a = 0} Γ+(h), T = 2
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Control of eigenfunctions: the proof

u is controlled on ϕt({a 6= 0}) for |t| ≤ T (h) := ρ log(1/h)

Thus u = Oph(b±)u + (controlled) for some b±, supp b± ⊂ Γ±(h),
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(using Arnold cat map model for the figures)

Γ−(h), T = 3 {a = 0} Γ+(h), T = 3
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}

Hyperbolicity of ϕt + unique ergodicity of horocycle flows =⇒
Γ+(h) smooth in the unstable direction, porous in the stable direction
Γ−(h) smooth in the stable direction, porous in the unstable direction

(using Arnold cat map model for the figures)

Γ−(h), T = 4 {a = 0} Γ+(h), T = 4
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Control of eigenfunctions: the proof

u is controlled on ϕt({a 6= 0}) for |t| ≤ T (h) := ρ log(1/h)

Thus u = Oph(b±)u + (controlled) for some b±, supp b± ⊂ Γ±(h),

Γ±(h) =
{

(x , ξ) ∈ T ∗M : ϕ∓t(x , ξ) /∈ {a 6= 0} ∀ t ∈ [0,T (h)]
}

Hyperbolicity of ϕt + unique ergodicity of horocycle flows =⇒
Γ+(h) smooth in the unstable direction, porous in the stable direction
Γ−(h) smooth in the stable direction, porous in the unstable direction

(using Arnold cat map model for the figures)

Γ−(h), T = 5 {a = 0} Γ+(h), T = 5
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Control of eigenfunctions: the proof

u = Oph(b−)Oph(b+)u + (controlled)
supp b± ⊂ Γ±(h)

Γ+(h) ν-porous in the stable direction
Γ−(h) ν-porous in the unstable direction

ν = ν
(
M, {a 6= 0}

)
> 0

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h
if for each interval I ⊂ R of length h ≤ |I | ≤ 1,
there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Γ−(h)

Γ+(h)

Fractal uncertainty principle + porosity of supp b± gives

‖Oph(b−)Oph(b+)‖L2(M)→L2(M) = O(hβ) for some β = β(ν) > 0

Thus u = (small) + (controlled), finishing the proof of Theorem 1′
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Fractal uncertainty principle

Fractal uncertainty principle

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Simplified setting on R using unitary semiclassical Fourier transform

Fhf (ξ) = (2πh)−1/2
∫
R
e−ixξ/hu(x) dx , u ∈ L2(R)

Localization in stable direction → Localization in position
Oph(b+) → 1lX , X ⊂ R

Localization in unstable direction → Localization in frequency
Oph(b−) → F∗h 1lY Fh, Y ⊂ R

‖Oph(b−)Oph(b+)‖L2(M)→L2(M) → ‖1lYFh1lX‖L2(R)→L2(R)
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Fractal uncertainty principle

Fractal uncertainty principle

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Fhf (ξ) = (2πh)−1/2
∫
R
e−ixξ/hu(x) dx , u ∈ L2(R)

Theorem 2 [Bourgain–D ’16]

Assume that X ,Y ⊂ [0, 1] are ν-porous up to scale h. Then
‖ 1lY Fh 1lX ‖L2(R)→L2(R) = O(hβ) as h→ 0

where β = β(ν) > 0

The proof uses tools from harmonic analysis, in particular the
Beurling–Malliavin theorem, and iteration on scale
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Spectral gaps

Another application: spectral gaps

(M, g) = Γ\H2 convex co-compact hyperbolic surface

F`

`3/2

`1/2

`1/2

`3/2

`2/2

`2/2

q3

q1q2

q2 q1

D1 D2

D3 D4

γ1 γ2

`1 `2

`3

An example: three-funnel surface with neck lengths `1, `2, `3
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Spectral gaps

Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
∆g Laplace–Beltrami operator on L2(M)

The L2 spectrum of −∆g consists of
eigenvalues in (0, 1

4)

continuous spectrum [1
4 ,∞)

`1 `2

`3

0 1/4
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Spectral gaps

Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
∆g Laplace–Beltrami operator on L2(M)

The L2 spectrum of −∆g consists of
eigenvalues in (0, 1

4)

continuous spectrum [1
4 ,∞)

`1 `2

`3

0 1/4

Resonances are poles of the meromorphic continuation

R(λ) =
(
−∆g−λ2−1

4

)−1
:

{
L2 → H2, Imλ > 0
L2

comp → H2
loc, Imλ ≤ 0
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Spectral gaps

Essential spectral gaps

Definition
M has an essential spectral gap of size β ≥ 0 if the half-plane
{Imλ ≥ −β} only has finitely many resonances

Applications of spectral gaps

Resonance expansions of linear waves with O(e−βt) remainder
Strichartz estimates [Burq–Guillarmou–Hassell ’10]
Diophantine problems [Bourgain–Gamburd–Sarnak ’11,
Magee–Oh–Winter ’14]

Previous results (δ ∈ (0, 1) dimension of the limit set)

Patterson ’76, Sullivan ’79: β = 1
2 − δ. Related to pressure gap

Naud ’05: β > 1
2 − δ
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Spectral gaps

Application of FUP to spectral gaps

Theorem 3 [D–Zahl ’16, Bourgain–D ’16]

Every convex co-compact surface M has an essential spectral gap of some
size β = β(M) > 0

δ

β

11
2

1
2

Numerics for 3- and 4-funneled surfaces by Borthwick–Weich ’14
+ standard gap β = max(0, 1

2 − δ)
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Spectral gaps

Application of FUP to spectral gaps

Theorem 3 [D–Zahl ’16, Bourgain–D ’16]

Every convex co-compact surface M has an essential spectral gap of some
size β = β(M) > 0

The proof uses fractal uncertainty principle

‖Oph(b−)Oph(b+)‖L2(M)→L2(M) = O(hβ) as h→ 0,

supp b± ⊂ Γ±(h)

but this time Γ±(h) are the sets of forward/backward trapped geodesics:

Γ±(h) = B ∩ ϕ±T (B), T = log(1/h)

where B ⊂ T ∗M is large but bounded set and ϕt is the geodesic flow
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Open problems

Open problems

Can Theorem 1 (control of eigenfunctions) and Theorem 3
(spectral gap) be extended to surfaces of variable negative curvature
and more general systems with hyperbolic classical dynamics?

Can Theorems 1 and 3 be extended to higher dimensional manifolds?

Is the exponent in FUP bigger for generic systems?
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Thank you for your attention!
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