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Overview

We study open quantum maps with underlying chaotic dynamics

Much studied issue: existence of spectral gap
(do waves decay exponentially?)

Known under dynamical “pressure condition” P(1
2) < 0,

but is the gap there when it is violated?

The only known cases with gap and P(1
2) > 0:

D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value

D–Jin [this talk] gap for open quantum maps, all values of P(1
2)
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Overview

Overview of open quantum maps

Resonances: complex characteristic frequencies of decaying waves in
systems where energy is allowed to escape (e.g. obstacle scattering)
Open quantum chaos studies the distribution of resonances, e.g.
spectral gaps and fractal Weyl laws, with applications going as far as
computer networks: Ermann–Frahm–Shepelyansky Rev.Mod.Phys.’15:

Eigenvalues for the Google Matrix of the Linux kernel and Weyl asymptotics
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Overview of open quantum maps

Resonances: complex characteristic frequencies of decaying waves in
systems where energy is allowed to escape (e.g. obstacle scattering)
Open quantum chaos studies the distribution of resonances, e.g.
spectral gaps and fractal Weyl laws, with applications going as far as
computer networks: Ermann–Frahm–Shepelyansky Rev.Mod.Phys.’15

Open quantum maps: popular models in open quantum chaos
See reviews by Nonnenmacher ’11 (math), Novaes ’13 (physics)

Proposed experiments: Hannay–Keating–Ozorio de Almeida ’94,
Brun–Schack ’99

Attractive model for numerical experimentation:
Schomerus–Tworzydło ’04, Nonnenmacher–Zworski ’05, ’07,
Keating et al. ’06, Nonnenmacher–Rubin ’07, Keating et al. ’08,
Novaes et al. ’09, Carlo et al. ’16 . . .

Semyon Dyatlov Resonances for open quantum maps September 12, 2016 3 / 24



Setup

Open baker’s maps

Open baker’s maps κ = κM,A are determined by
an integer M ≥ 3, the base
a set A ⊂ {0, . . . ,M − 1}, the alphabet
we always assume 1 < |A| < M

κ is a canonical relation on (0, 1)x × (0, 1)ξ:

κ : (x , ξ) 7→
(
Mx − a,

ξ + a

M

)
if x ∈

( a

M
,
a + 1
M

)
, a ∈ A

Basic model for a hyperbolic transformation with
‘holes’ through which one can escape

A B

A

B

κ3,{0,2}
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Setup

Cantor sets

For k ∈ N, the domain and range of κk are

Γ−k := Domain(κk) =
{

(x , ξ) : bMk · xc ∈ Ck
}

Γ+
k := Range(κk) =

{
(x , ξ) : bMk · ξc ∈ Ck

}
where Ck ⊂ {0, . . . ,Mk − 1} is a discrete Cantor set:

Ck = Ck(M,A) =
{∑k−1

r=0
arM

r : a0, . . . , ak−1 ∈ A
}

κ κ κ

Γ−3 Γ+
3
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(x , ξ) : bMk · xc ∈ Ck
}

Γ+
k := Range(κk) =

{
(x , ξ) : bMk · ξc ∈ Ck

}
where Ck ⊂ {0, . . . ,Mk − 1} is a discrete Cantor set:

Ck = Ck(M,A) =
{∑k−1

r=0
arM

r : a0, . . . , ak−1 ∈ A
}

The limiting Cantor set

C∞ :=
⋂
k

⋃
c∈Ck

[ c

Mk
,
c + 1
Mk

]
⊂ [0, 1]

has Hausdorff dimension

δ :=
log |A|
logM

∈ (0, 1)

Topological pressure: P(s) = δ − s, s ∈ R
Semyon Dyatlov Resonances for open quantum maps September 12, 2016 5 / 24



Setup

Discrete microlocal analysis

Let `2N := `2(ZN), ZN = {0, . . . ,N − 1}, N � 1. Fourier transform:

FN : `2N → `2N , FNu(j) =
1√
N

∑
`
e−2πij`/Nu(`)

Quantization of observables on the torus T2 = S1
x × S1

ξ , S1 = R/Z:

a ∈ C∞
(
T2) 7→ OpN(a) : `2N → `2N

OpN(a) can localize in both position x and frequency ξ

Properties

a = a(x) =⇒ OpN(a) = aN , aN(j) = a(j/N)

a = a(ξ) =⇒ OpN(a) = F∗NaNFN

[OpN(a),OpN(b)] = − i
2πN OpN({a, b}) +O(N−2)`2N→`

2
N
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Setup

Open quantum baker’s maps

Example: M = 3, A = {0, 2}. We put N := Mk and

BN = F∗N

χN/3FN/3 χN/3 0 0
0 0 0
0 0 χN/3FN/3 χN/3

 : `2N → `2N

where we fix χ ∈ C∞0 ((0, 1); [0, 1]), χN(j) = χ(j/N)

Why is BN a quantization of κM,A? It satisfies Egorov’s theorem:

BN OpN(a) = OpN(b)BN +O(N−1)`2N→`
2
N

if a(x , ξ) = b(y , η) when κM,A(x , ξ) = (y , η), ξ, y ∈ suppχ

κsupp a supp b
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Example: M = 3, A = {0, 2}. We put N := Mk and

BN = F∗N

χN/3FN/3 χN/3 0 0
0 0 0
0 0 χN/3FN/3 χN/3

 : `2N → `2N

where we fix χ ∈ C∞0 ((0, 1); [0, 1]), χN(j) = χ(j/N)

Why is BN a quantization of κM,A? It satisfies Egorov’s theorem:

BN OpN(a) = OpN(b)BN +O(N−1)`2N→`
2
N

if a(x , ξ) = b(y , η) when κM,A(x , ξ) = (y , η), ξ, y ∈ suppχ

Resonances = eigenvalues of BN

Spec(BN) ⊂ D(0, 1)

Similar procedure works for any M,A
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Setup

Numerical example: M = 5, A = {1, 3}

Spec(BN) for k = 2, N = Mk
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Setup

Numerical example: M = 5, A = {1, 3}

Spec(BN) for k = 4, N = Mk
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Numerical example: M = 5, A = {1, 3}

Spec(BN) for k = 5, N = Mk
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Spectral gaps

Results: spectral gaps

Define the spectral radius of BN :

RN := max
{
|λ| : λ ∈ Spec(BN)

}
, N := Mk

Theorem 1 [D–Jin ’16]

There exists (explicitly computable!)

β = β(M,A)> max
(
0,

1
2
− δ
)

such that BN has an asymptotic spectral gap of size β:

lim sup
N→∞

RN ≤ M−β < 1 (1)

The convention M−β = e−β logM is due to κ having expansion rate M

The bound (1) with β = −P(1/2) = 1
2 − δ is the pressure gap,

valid under the pressure condition δ < 1
2
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Spectral gaps

Numerical example: M = 5, A = {1, 3}, N = M5

P(1/2)
Theorem 1

For some cases the gap of Theorem 1 approximates the spectral radius well
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Spectral gaps

Numerical example: M = 5, A = {1, 2}, N = M5

P(1/2)
Theorem 1

. . . and for some cases, this upper bound is far from sharp
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Spectral gaps

Previous work

Nonnenmacher–Zworski ’07, Walsh quantization of open quantum baker’s
maps which uses the Fourier transform on ⊗kZM instead of ZN :
gap for M = 3, A = {0, 2}, but no gap for M = 4, A = {0, 2}

General hyperbolic systems:
Patterson ’76, Sullivan ’79, Ikawa ’88, Gaspard–Rice ’89,
Nonnenmacher–Zworski ’09: pressure gap β = −P(1

2) for P(1
2) < 0

Naud ’05, Petkov–Stoyanov ’10, Stoyanov ’11, ’12,
Bourgain–Gamburd–Sarnak ’11, Oh–Winter ’16: improved gap
β = −P(1

2) + ε for some systems with P(1
2) ≤ 0, where ε > 0

depends on the system in an unspecified way. Build on Dolgopyat ’98
D–Zahl ’16: improved gap β > 0 for hyperbolic surfaces with
P(1

2) = 0 and nearby surfaces, some with P(1
2) > 0.

Bounds on β in terms of constants in Ahlfors–David regularity of the
limit set. Uses fractal uncertainty principle and additive combinatorics
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Spectral gaps

Reduction to fractal uncertainty principle

Let (BN − λ)u = 0, ‖u‖`2N = 1, |λ| ≥ c > 0

Iterate Egorov’s theorem ρk times, where N = Mk , 0 < 1− ρ� 1

Bk
N OpN(a)u = OpN(b)Bk

Nu +O(N−∞)

if a(x , ξ) = b(y , η) + L.O.T. when κk(x , ξ) = (y , η)

This is still possible since the resulting symbols vary on the scale N−1

Recall Γ−k = Domain(κk), Γ+
k = Range(κk)

κ κ κ

Γ−3 Γ+
3
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Bk
N OpN(a)u = OpN(b)λku +O(N−∞)

if a(x , ξ) = b(y , η) + L.O.T. when κk(x , ξ) = (y , η)

This is still possible since the resulting symbols vary on the scale N−1

Recall Γ−k = Domain(κk), Γ+
k = Range(κk)

a ≡ 1, b = 1Γ+
k

=⇒ u = OpN(1Γ+
k

)u +O(N−∞)

b ≡ 1, a = 1Γ−k
=⇒ ‖OpN(1Γ−k

)u‖ ≥ |λ|k

Contradiction if |λ| ≥ M−β+ε and the fractal uncertainty principle
holds with exponent β:

‖OpN(1Γ−k
)OpN(1Γ+

k
)‖`2N→`2N ≤ CN−β
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Spectral gaps

Want to prove the fractal uncertainty principle

‖OpN(1Γ−k
)OpN(1Γ+

k
)‖`2N→`2N ≤ CN−β

Using the relation of Γ±k with the Cantor set Ck ⊂ ZN , rewrite this as

‖1CkFN1Ck‖`2N→`2N ≤ CN−β (2)

(2) ⇒ no function can be localized on Ck in both position and frequency

Volume bound: N = Mk , |Ck | = |A|k = Nδ, ‖FN‖`1N→`∞N ≤ N−1/2

⇒ (2) with β = 1
2 − δ, recovering the pressure gap

To prove Theorem 1, we need to improve over β = 0 and the volume bound
Semyon Dyatlov Resonances for open quantum maps September 12, 2016 14 / 24
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Spectral gaps

Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have ‖1CkFN1Ck‖`2N→`2N ≤ N−β for some

β = β(M,A)> max
(
0,

1
2
− δ
)

Submultiplicativity: if rk := ‖1CkFN1Ck‖`2N→`2N then rk+` ≤ rk · r`
Thus enough to show that rk < min(1,Nδ−1/2) for some k

Semyon Dyatlov Resonances for open quantum maps September 12, 2016 15 / 24



Spectral gaps

Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have ‖1CkFN1Ck‖`2N→`2N ≤ N−β for some

β = β(M,A)> max
(
0,

1
2
− δ
)

Submultiplicativity: if rk := ‖1CkFN1Ck‖`2N→`2N then rk+` ≤ rk · r`
Thus enough to show that rk < min(1,Nδ−1/2) for some k

Semyon Dyatlov Resonances for open quantum maps September 12, 2016 15 / 24



Spectral gaps

Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have ‖1CkFN1Ck‖`2N→`2N ≤ N−β for some

β = β(M,A)> max
(
0,

1
2
− δ
)

Submultiplicativity: if rk := ‖1CkFN1Ck‖`2N→`2N then rk+` ≤ rk · r`
Thus enough to show that rk < min(1,Nδ−1/2) for some k

rk < 1: if not, then find nonzero u = 1Cku, FNu = 0 on ZN \ Ck
By cyclic shift, may assume that M − 1 /∈ A. The polynomial

p(z) =
∑

j
u(j)z j

has degree at most max Ck ≤ (M − 1)Mk−1 and at least
|ZN \ Ck | ≥ Mk − (M − 1)k roots. Contradiction for large k
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Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have ‖1CkFN1Ck‖`2N→`2N ≤ N−β for some

β = β(M,A)> max
(
0,

1
2
− δ
)

Submultiplicativity: if rk := ‖1CkFN1Ck‖`2N→`2N then rk+` ≤ rk · r`
Thus enough to show that rk < min(1,Nδ−1/2) for some k

rk < Nδ−1/2 = |Ck |/
√
N: if not, then

‖1CkFN1Ck‖`2N→`2N =
|Ck |√
N

= ‖1CkFN1Ck‖HS

Then 1CkFN1Ck has rank 1, so all 2× 2 minors are zero.
Contradiction when |A| > 1, k = 2
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Spectral gaps

More on fractal uncertainty exponents
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M = 3
M = 4
M = 5
M = 6
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M = 8
M = 9
M = 10

X axis: δ; Y axis: FUP exponent β (numerics); all alphabets with M ≤ 10

Solid line: β = max(0, 1
2 − δ), dashed line: β = −P(1)

2 = 1−δ
2
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Spectral gaps

More on fractal uncertainty exponents
Bounds on β as M →∞:

δ ≤ 1/2:

β −
(1

2 − δ
)
& 1

M8 logM

δ ≈ 1/2: using additive energy,

β & 1
logM

δ ≥ 1/2:

β & exp
(
−M

δ
1−δ

+o(1)) 0 0.5 1

Solid: β = max(0, 1
2 − δ), dashed: β = 1−δ

2

Examples of alphabets (arithmetic progressions) with δ ≤ 1/2 and

β −
(1

2 − δ
)
. M2δ−1

logM

Examples of special alphabets with β = 1−δ
2
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Spectral gaps

Special alphabets with β = 1−δ
2

We call A a special alphabet, if

for all j , ` ∈ A, j 6= `, we have FM(1A)(j − `) = 0 (3)

Such A have β = 1−δ
2 = −P(1)

2 , which is the largest possible value of β
and all nonzero singular values of 1CkFN1Ck are equal to N−β
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Special alphabets with β = 1−δ
2

We call A a special alphabet, if

for all j , ` ∈ A, j 6= `, we have FM(1A)(j − `) = 0 (3)

Such A have β = 1−δ
2 = −P(1)

2 , which is the largest possible value of β
and all nonzero singular values of 1CkFN1Ck are equal to N−β

P(1)/2

Example: M = 6, A = {1, 4}, N = M5
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Spectral gaps

Special alphabets with β = 1−δ
2

We call A a special alphabet, if

for all j , ` ∈ A, j 6= `, we have FM(1A)(j − `) = 0 (3)

Such A have β = 1−δ
2 = −P(1)

2 , which is the largest possible value of β
and all nonzero singular values of 1CkFN1Ck are equal to N−β

P(1)/2

Example: M = 8, A = {2, 4}, N = M4
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Spectral gaps

Special alphabets with β = 1−δ
2

We call A a special alphabet, if

for all j , ` ∈ A, j 6= `, we have FM(1A)(j − `) = 0 (3)

Such A have β = 1−δ
2 = −P(1)

2 , which is the largest possible value of β
and all nonzero singular values of 1CkFN1Ck are equal to N−β

P(1)/2

Example: M = 8, A = {1, 2, 5, 6}, N = M4

Semyon Dyatlov Resonances for open quantum maps September 12, 2016 18 / 24



Spectral gaps

Special alphabets with β = 1−δ
2

We call A a special alphabet, if

for all j , ` ∈ A, j 6= `, we have FM(1A)(j − `) = 0 (3)

Such A have β = 1−δ
2 = −P(1)

2 , which is the largest possible value of β
and all nonzero singular values of 1CkFN1Ck are equal to N−β

Conjecture 1 (band structure)

Assume (M,A) satisfies (3). Then there exists µ > 1−δ
2 such that:

For any ε > 0 and N large, there is a second gap

Spec(BN) ∩ {M−µ ≤ |λ| ≤ M−
1−δ
2 −ε} = ∅

Eigenvalues in the first band satisfy exact fractal Weyl law:∣∣ Spec(BN) ∩ {|λ| ≥ M−µ}
∣∣ = |A|k = Nδ

Conjecture 1 is confirmed by numerics
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Resonance counting

Results: resonance counting

We count eigenvalues of BN in annuli:
#(N, ν) =

∣∣ Spec(BN) ∩ {|λ| ≥ M−ν}
∣∣

Theorem 3 [D–Jin ’16]

For each ε > 0 and ν > 0 we have the fractal Weyl upper bound

#(N, ν) ≤ Cν,εN
m(δ,ν)+ε, m(δ, ν) = min(δ, 2ν + 2δ − 1)

Note: m = δ for ν ≥ 1−δ
2 = −P(1)

2 , m < 0 for ν < 1
2 − δ = −P(1

2)

ν

m

δ

1−δ
2

1
2 − δ
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Resonance counting

Results: resonance counting

We count eigenvalues of BN in annuli:
#(N, ν) =

∣∣ Spec(BN) ∩ {|λ| ≥ M−ν}
∣∣

Theorem 3 [D–Jin ’16]

For each ε > 0 and ν > 0 we have the fractal Weyl upper bound

#(N, ν) ≤ Cν,εN
m(δ,ν)+ε, m(δ, ν) = min(δ, 2ν + 2δ − 1)

Sjöstrand ’90, Guillopé–Lin–Zworski ’04, Sjöstrand–Zworski ’07,
Nonnenmacher–Sjöstrand–Zworski ’11, ’14, Datchev–D ’13:
#(N, ν) ≤ CνN

δ for more general hyperbolic situations
Lu–Sridhar–Zworski ’03: concentration of decay rates near
ν = −P(1)/2. Jakobson–Naud ’12 conjectured gap of this size
Naud ’14, Jakobson–Naud ’14: #(N, ν) ≤ CνN

m(ν), m(ν) < δ for
ν < 1

2 − δ for convex co-compact hyperbolic surfaces
D ’15: Theorem 3 for convex co-compact hyperbolic manifolds
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Resonance counting

Results: resonance counting

We count eigenvalues of BN in annuli:
#(N, ν) =

∣∣ Spec(BN) ∩ {|λ| ≥ M−ν}
∣∣

Theorem 3 [D–Jin ’16]

For each ε > 0 and ν > 0 we have the fractal Weyl upper bound

#(N, ν) ≤ Cν,εN
m(δ,ν)+ε, m(δ, ν) = min(δ, 2ν + 2δ − 1)

No matching lower bounds are known, except
Nonnenmacher–Zworski ’07: Exact fractal Weyl law for Walsh quantization

Conjecture 2 (fractal Weyl law)

For each ν > 1−δ
2 , we have #(N, ν) ≥ cνN

δ > 0

Conjecture 2 is also supported by numerics
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Resonance counting

Results: resonance counting

We count eigenvalues of BN in annuli:
#(N, ν) =

∣∣ Spec(BN) ∩ {|λ| ≥ M−ν}
∣∣

Theorem 3 [D–Jin ’16]

For each ε > 0 and ν > 0 we have the fractal Weyl upper bound

#(N, ν) ≤ Cν,εN
m(δ,ν)+ε, m(δ, ν) = min(δ, 2ν + 2δ − 1)

Ideas of the proof

Recall that for (BN − λ)u = 0, ‖u‖ = 1, |λ| ≥ M−ν ,

u = OpN(1Γk
+

)u +O(N−∞), ‖OpN(1Γk
−

)u‖ ≥ N−ν

The first statement ⇒ #(N, ν) . Rank(OpN(1Γk
+

)) = Nδ

Both statements together ⇒ #(N, ν) . N2ν+2δ−1
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Resonance counting

Numerical example: M = 6, A = {1, 2, 3, 4}

ν = 0.5 - 0.6δ
ν = 0.5 - 0.55δ
ν = 0.5 - 0.5δ
ν = 0.5 - 0.4δ
ν = 0.5 - 0.3δ

k = 2
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Resonance counting

Numerical example: M = 6, A = {1, 2, 3, 4}

ν = 0.5 - 0.6δ
ν = 0.5 - 0.55δ
ν = 0.5 - 0.5δ
ν = 0.5 - 0.4δ
ν = 0.5 - 0.3δ

k = 3
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Resonance counting

Numerical example: M = 6, A = {1, 2, 3, 4}

ν = 0.5 - 0.6δ
ν = 0.5 - 0.55δ
ν = 0.5 - 0.5δ
ν = 0.5 - 0.4δ
ν = 0.5 - 0.3δ

k = 4
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Resonance counting

Numerical example: M = 6, A = {1, 2, 3, 4}

2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

ν = 0.5 - 0.6δ
ν = 0.5 - 0.55δ
ν = 0.5 - 0.5δ
ν = 0.5 - 0.4δ
ν = 0.5 - 0.3δ

Plot of log#(Mk , ν)/ logM as a function of k
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Resonance counting

Numerical example: M = 6, A = {1, 2, 3, 4}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.55

0.6

0.65
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0.75

0.8

0.85

Linear fits for the growth exponent of #(N, ν) and the bound of Theorem 3
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Resonance counting

Summary

We obtain results on spectral gap which lie well beyond
what is known for more general systems

We use fractal uncertainty principle, the fine structure of the
associated Cantor sets, and simple tools from harmonic analysis,
algebra, combinatorics, and number theory

We also show a fractal Weyl upper bound

We discover that the studied systems form a rich class
with a variety of different types of behavior
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Thank you for your attention!
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Dependence on cutoff

Results: dependence on cutoff

Recall that the defininition of BN = BN,χ involved a cutoff function

χ ∈ C∞0 ((0, 1); [0, 1])

e.g. for M = 3, A = {0, 2}

BN = F∗N

χN/3FN/3 χN/3 0 0
0 0 0
0 0 χN/3FN/3 χN/3



Theorem 4 [D–Jin ’16]

Assume that χ1, χ2 ∈ C∞0 ((0, 1); [0, 1]) and χ1 = χ2 near the Cantor set
C∞ ⊂ [0, 1]. Then for each ν, eigenvalues of BN,χ1 in {|λ| ≥ M−ν} are
O(N−∞) quasimodes of BN,χ2 .
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Dependence on cutoff

Dependence on cutoff

If 0,M − 1 /∈ A it is natural to take χ = 1 near C∞.
However we cannot take χ ≡ 1:

χ1
χ2
χ≡ 1

M = 5, A = {1, 3}, N = M5, χ1 = χ2 = 1 near C∞
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