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Overview

What are resonances?

Resonances: complex characteristic frequencies
associated to open or dissipative systems

real part = rate of oscillation, imaginary part = rate of decay

For an observable u(t), the resonance expansion is

u(t) =
∑

ωj resonance
Imωj≥−ν

e−itωjuj +O(e−νt), t → +∞

which is analogous to eigenvalue expansions for closed systems

−ν
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Classical (Pollicott–Ruelle) resonances

Motivation: statistics for billiards

One billiard ball in a Sinai billiard with finite horizon
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Classical (Pollicott–Ruelle) resonances

10000 billiard balls in a Sinai billiard with finite horizon
#(balls in the box) → volume of the box

velocity angles distribution → uniform measure
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Classical (Pollicott–Ruelle) resonances

10000 billiard balls in a three-disk system
#(balls in the box) → 0 exponentially

velocity angles distribution → some fractal measure
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Classical (Pollicott–Ruelle) resonances

Dynamical systems

U phase space of the dynamical system
ϕt : U → U flow of the system

Correlations: f , g ∈ C∞(U)

ρf ,g (t) =

∫
U

(f ◦ ϕ−t)g dxdv

y
v

Examples

Billiard ball flow on U = {(y , v) | y ∈ M, |v | = 1}, M ⊂ R2

Geodesic flow on U = {(y , v) | y ∈ M, |v |g = 1},
(M, g) a negatively curved Riemannian manifold
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Classical (Pollicott–Ruelle) resonances

Pollicott–Ruelle resonances

ρf ,g (t) =

∫
U

(f ◦ ϕ−t)g dxdv

Pollicott–Ruelle resonances would appear in resonance expansions of ρf ,g
for smooth hyperbolic systems and are independent of f , g :

ρf ,g (t) =
∑

ωj PR resonance
Imωj≥−ν

e−itωj cj(f , g) +O(e−νt), t → +∞

−ν

They are defined as poles of meromorphic continuations of

ρ̂f ,g (ω) =

∫ ∞
0

e itωρf ,g (t) dt
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Classical (Pollicott–Ruelle) resonances

Pollicott–Ruelle resonances

ρf ,g (t) =

∫
U

(f ◦ ϕ−t)g dxdv

Pollicott–Ruelle resonances would appear in resonance expansions of ρf ,g
for smooth hyperbolic systems and are independent of f , g :

ρf ,g (t) =
∑

ωj PR resonance
Imωj≥−ν

e−itωj cj(f , g) +O(e−νt), t → +∞

Closed system: ρf ,g (t) = c
( ∫
U f dxdv

)( ∫
U g dxdv

)
+ o(1)
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Classical (Pollicott–Ruelle) resonances

Pollicott–Ruelle resonances

ρf ,g (t) =

∫
U

(f ◦ ϕ−t)g dxdv

Pollicott–Ruelle resonances would appear in resonance expansions of ρf ,g
for smooth hyperbolic systems and are independent of f , g :

ρf ,g (t) =
∑

ωj PR resonance
Imωj≥−ν

e−itωj cj(f , g) +O(e−νt), t → +∞

Open system: ρf ,g (t) = e−δt
( ∫
U f dµ−

)( ∫
U g dµ+

)
+ o(e−δt)

−δ
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Classical (Pollicott–Ruelle) resonances

Pollicott–Ruelle resonances

ρf ,g (t) =

∫
U

(f ◦ ϕ−t)g dxdv

Pollicott–Ruelle resonances would appear in resonance expansions of ρf ,g
for smooth hyperbolic systems and are independent of f , g :

ρf ,g (t) =
∑

ωj PR resonance
Imωj≥−ν

e−itωj cj(f , g) +O(e−νt), t → +∞

Ruelle ’76,’86,’87, Pollicott ’85,’86, Parry–Pollicott ’90, Rugh ’92,
Fried ’95, Kitaev ’99, Blank–Keller–Liverani ’02, Liverani ’04,’05,
Gouëzel–Liverani ’06, Baladi–Tsujii ’07, Butterley–Liverani ’07,
Faure–Roy–Sjöstrand ’08, Faure–Sjöstrand ’11, D–Guillarmou ’14

Climate models: Chekroun–Neelin–Kondrashov–McWilliams–Ghil ’14

Inverse problems: Guillarmou ’14
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Classical (Pollicott–Ruelle) resonances

Ruelle zeta function

ζR(ω) =
∏
γ

(1− e iωTγ ), Imω � 1

where Tγ are periods of primitive closed trajectories γ

Theorem [Giulietti–Liverani–Pollicott ’12,D–Zworski ’13,D–Guillarmou ’14]

For a hyperbolic dynamical system (open or closed)∗, the Ruelle zeta
function continues meromorphically to ω ∈ C.

Prime orbit theorem (POT): #{γ | Tγ ≤ T} = ehtopT

htopT
(1 + o(1))

htop

Margulis, Parry–Pollicott ’90
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Classical (Pollicott–Ruelle) resonances

Spectral gaps

Essential spectral gap of size β > 0:
there are finitely many resonances in {Imω ≥ Imω0 − β},

where ω0 is the top resonance

ω0

β

ω0

gap no gap

Spectral gap∗ =⇒ resonance expansion:

ρf ,g (t) =
∑

ωj PR resonance
Imωj≥−ν

e−itωj cj(f , g) +O(e−νt), ν := Imω0 − β
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Classical (Pollicott–Ruelle) resonances

Spectral gaps

Essential spectral gap of size β > 0:
there are finitely many resonances in {Imω ≥ Imω0 − β},

where ω0 is the top resonance

ω0

β

ω0

gap no gap

Spectral gap for ζR =⇒ exponential remainder in POT:

#{γ | Tγ ≤ T} =
ehtopT

htopT
(1 +O(e−β̃T ))
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Classical (Pollicott–Ruelle) resonances

Spectral gaps

Essential spectral gap of size β > 0:
there are finitely many resonances in {Imω ≥ Imω0 − β},

where ω0 is the top resonance

ω0

β

ω0

gap no gap

Gaps known for geodesic flows on compact negatively curved manifolds:
Dolgopyat ’98, Liverani ’04, Tsujii ’12, Giulietti–Liverani–Pollicott ’12,
Nonnenmacher–Zworski ’13, Faure–Tsujii ’13
and some special noncompact cases: Naud ’05, Petkov–Stoyanov ’10,
Stoyanov ’11,’13
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Quantum resonances

We now switch to a different case of quantum resonances, featured in
expansions of solutions to wave equations rather than classical correlations

Examples

Potential scattering (Schrödinger operators)
Obstacle scattering
Black hole ringdown

Questions
Can resonances be defined?
Is there a spectral gap?
How fast does the number of resonances grow?
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Quantum resonances

Example: scattering on the line

Wave equation:

{
(∂2

t − ∂2
x )u = f ∈ C∞0 ((0,∞)t × Rx)

u|t<0 = 0

Question: how does u(t, x) behave for t →∞ and |x | ≤ R?

x

t

−R R

f
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Quantum resonances

Example: scattering on the line

Wave equation:

{
(∂2

t − ∂2
x )u = f ∈ C∞0 ((0,∞)t × Rx)

u|t<0 = 0

Fourier–Laplace transform in time:

û(ω)(x) :=

∫ ∞
0

e itωu(t, x) dt ∈ L2(R), Imω > 0

(−∂2
x − ω2)û(ω) = f̂ (ω), Imω > 0

Resolvent: û(ω) = R(ω)f̂ (ω), where

R(ω) := (−∂2
x − ω2)−1 : L2(R)→ L2(R), Imω > 0

Fourier inversion formula:

u(t) =
1
2π

∫
Imω=1

e−itωR(ω)f̂ (ω) dω
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Quantum resonances

Example: scattering on the line

Wave equation:

{
(∂2

t − ∂2
x )u = f ∈ C∞0 ((0,∞)t × Rx)

u|t<0 = 0

R(ω) := (−∂2
x − ω2)−1 : L2(R)→ L2(R), Imω > 0

u(t) =
1
2π

∫
Imω=1

e−itωR(ω)f̂ (ω) dω

Meromorphically continue R(ω) : L2
comp(R)→ L2

loc(R)

R(ω)g(x) =
i

2ω

∫
R
e iω|x−y |g(y) dy , ω ∈ C

and deform the contour, with the integral being O(e−νt) in L2(−R,R):

u(t) = cf +
1
2π

∫
Imω=−ν

e−itωR(ω)f̂ (ω) dω
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Quantum resonances

Potential scattering on the line

Introduce a potential V ∈ L∞(R)

R(ω) = (−∂2
x +V − ω2)−1 : L2(R)→ L2(R), Imω > 0

continues meromorphically to a family of operators

R(ω) : L2
comp(R)→ L2

loc(R), ω ∈ C

The poles of R(ω), called resonances, are featured in resonance expansions
for the wave equation (∂2

t − ∂2
x + V )u = f , and sound like this:
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Quantum resonances

Potential scattering on the line

Introduce a potential V ∈ L∞(R)

R(ω) = (−∂2
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Quantum resonances

Obstacle scattering

∆E : the Laplacian on E = R3 \ O with Dirichlet boundary conditions,
where O ⊂ R3 is an obstacle

R(ω) = (−∆E − ω2)−1 : L2(R3)→ L2(R3), Imω > 0

continues meromorphically to a family of operators

R(ω) : L2
comp(R3)→ L2

loc(R3), ω ∈ C

and the poles of R(ω) are called resonances

A rich mathematical theory dating back to Lax–Phillips ’69, Vainberg ’73,
Melrose, Sjöstrand

D–Zworski, Mathematical theory of scattering resonances, available online
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Quantum resonances

A real experimental example

Microwave experiments:

Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Zworski ’12
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Quantum resonances

Essential spectral gap for obstacles

Essential spectral gap: R(ω) has finitely many poles in {Imω > −β}

Implies∗ exponential decay of local energy of waves modulo a finite
dimensional space

Is there a gap? Depends on the structure of trapped billiard ball trajectories
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Quantum resonances

Essential spectral gap for obstacles

Is there a gap? Depends on the structure of trapped billiard ball trajectories

One convex obstacle:

No trapping =⇒ gap of any size

Lax–Phillips ’69, Morawetz–Ralston–Strauss ’77, Vainberg ’89,
Melrose–Sjöstrand ’82, Sjöstrand–Zworski ’91. . .
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Quantum resonances

Essential spectral gap for obstacles

Is there a gap? Depends on the structure of trapped billiard ball trajectories

Two convex obstacles:

One trapped trajectory =⇒ a lattice of resonances and gap of fixed size

Ikawa ’82, Gérard–Sjöstrand ’87, Christianson ’06
Related case of black holes: Wunsch–Zworski ’10,
Nonnenmacher–Zworski ’13, Dyatlov ’13,’14
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Quantum resonances

Essential spectral gap for obstacles

Is there a gap? Depends on the structure of trapped billiard ball trajectories

Three convex obstacles:

Fractal set of trapped trajectories =⇒ gap under a pressure condition

Ikawa ’88, Gaspard–Rice ’89, Naud ’04, Nonnenmacher–Zworski ’09,
Petkov–Stoyanov ’10. . .
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Quantum resonances

Experimental observation of the gap

Three-disk system:

Barkhofen–Weich–Potzuweit–Stöckmann–Kuhl–Zworski ’13
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Quantum resonances

Fractal Weyl laws

Weyl law for −∆uj = λ2
j uj on a compact manifold M of dimension n:

#{λj ≤ R} = cn Vol(M)Rn(1 + o(1)), R →∞

On a noncompact manifold with a hyperbolic trapped set, for each ν > 0

#{ωj ∈ Res : |Reωj | ≤ R, Imωj ≥ −ν} ≤ CR1+δ,

where 2δ + 2 is the upper Minkowski dimension of the trapped set
Melrose ’83, Sjöstrand ’90, Zworski ’99, Wunsch–Zworski ’00,
Guillopé–Lin–Zworski ’04, Sjöstrand–Zworski ’07,
Nonnenmacher–Sjöstrand–Zworski ’11, Datchev–Dyatlov ’12,
Datchev–D–Zworski ’12
Weyl laws and band structure for some cases with smooth trapped sets:

Black holes (Kerr–de Sitter): Dyatlov ’13
Closed hyperbolic systems (contact Anosov): Faure–Tsujii ’11,’13
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Thank you for your attention!
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