Spectral gaps via additive combinatorics

Semyon Dyatlov (MIT/Clay Mathematics Institute) joint work with Joshua Zahl (MIT)

August 24, 2015

Setting: hyperbolic surfaces

$(M,g) = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface

Resonances: poles of the scattering resolvent

$$R(\lambda) = \left(-\Delta_g - \frac{1}{4} - \lambda^2\right)^{-1} : \begin{cases} L^2(M) \to L^2(M), & \text{Im } \lambda > 0 \\ L^2_{\text{comp}}(M) \to L^2_{\text{loc}}(M), & \text{Im } \lambda \leq 0 \end{cases}$$

Setting: hyperbolic surfaces

 $(M,g) = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface

Resonances: poles of the scattering resolvent

Also correspond to poles of the Selberg zeta function

Existence of meromorphic continuation: Patterson '75,'76, Perry '87,'89, Mazzeo-Melrose '87, Guillopé-Zworski '95, Guillarmou '05, Vasy '13

Featured in resonance expansions of waves:

Re λ = rate of oscillation, $-\operatorname{Im} \lambda$ = rate of decay

Borthwick '13, Borthwick-Weich '14: numerics for resonances

Featured in resonance expansions of waves:

Re λ = rate of oscillation, $-\operatorname{Im} \lambda$ = rate of decay

Borthwick '13, Borthwick-Weich '14: numerics for resonances

Pictures courtesy of David Borthwick

Featured in resonance expansions of waves:

Re λ = rate of oscillation, $-\operatorname{Im} \lambda$ = rate of decay

Borthwick '13, Borthwick-Weich '14: numerics for resonances

Pictures courtesy of David Borthwick

Featured in resonance expansions of waves:

Re λ = rate of oscillation, $-\operatorname{Im} \lambda$ = rate of decay

Borthwick '13, Borthwick-Weich '14: numerics for resonances

Pictures courtesy of David Borthwick

Spectral gaps

Essential spectral gap of size $\beta > 0$:

only finitely many resonances with $\operatorname{Im} \lambda > -\beta$

One application: exponential decay of linear waves

Patterson–Sullivan theory: the topmost resonance is at
$$\lambda = i(\delta - \frac{1}{2})$$
, where $\delta \in (0,1)$ is defined below \Rightarrow gap of size $\beta = \max(0,\frac{1}{2}-\delta)$.

$$\delta > \frac{1}{2}$$

$$\delta < \frac{1}{2}$$

Spectral gaps

Essential spectral gap of size $\beta > 0$:

only finitely many resonances with Im $\lambda > -\beta$

One application: exponential decay of linear waves

Patterson–Sullivan theory: the topmost resonance is at $\lambda = i(\delta - \frac{1}{2})$, where $\delta \in (0,1)$ is defined below \Rightarrow gap of size $\beta = \max(0,\frac{1}{2}-\delta)$.

The limit set and δ

$$M = \Gamma \backslash \mathbb{H}^2$$
 hyperbolic surface $\Lambda_{\Gamma} \subset \mathbb{S}^1$ the limit set $\delta := \dim_H(\Lambda_{\Gamma}) \in (0,1)$

Trapped geodesics: those with endpoints in Λ_{Γ}

Beyond the Patterson-Sullivan gap

Patterson–Sullivan gap: $\beta = \max(0, \frac{1}{2} - \delta)$

Borthwick-Weich '14: numerics for symmetric 3- and 4-funneled surfaces

Dolgopyat '98, Naud '04, Stoyanov '11,'13, Petkov–Stoyanov '10: for $0 < \delta \le \frac{1}{2}$, gap of size $\frac{1}{2} - \delta + \varepsilon$, where $\varepsilon > 0$ depends on the surface

Beyond the Patterson-Sullivan gap

Patterson–Sullivan gap: $\beta = \max(0, \frac{1}{2} - \delta)$

Borthwick-Weich '14: numerics for symmetric 3- and 4-funneled surfaces

Dolgopyat '98, Naud '04, Stoyanov '11,'13, Petkov–Stoyanov '10: for $0<\delta\leq\frac{1}{2}$, gap of size $\frac{1}{2}-\delta+\varepsilon$, where $\varepsilon>0$ depends on the surface

Beyond the Patterson-Sullivan gap

Patterson–Sullivan gap: $\beta = \max(0, \frac{1}{2} - \delta)$

Borthwick-Weich '14: numerics for symmetric 3- and 4-funneled surfaces

Bourgain-Gamburd-Sarnak '11, Oh-Winter '14: gaps for the case of congruence quotients

Patterson–Sullivan gap: $\beta = \max(0, \frac{1}{2} - \delta)$

Theorem [D-Zahl '15]

There is an essential spectral gap with polynomial resolvent bound of size

$$\beta = \frac{3}{8} \left(\frac{1}{2} - \delta \right) + \frac{\beta_E}{16}$$

where $\beta_E \in [0, \delta]$ is the improvement in the asymptotic of additive energy of the limit set (explained below).

Theorem [D-Zahl '15]

$$\beta_E > \delta \exp\left[-K(1-\delta)^{-28}\log^{14}(1+C)\right]$$

where C is the constant in the δ -regularity of the limit set and K is a global constant.

C depends continuously on the surface \implies examples of cases when $\delta > \frac{1}{2}$, but there is a gap

Patterson–Sullivan gap: $\beta = \max(0, \frac{1}{2} - \delta)$

Theorem [D-Zahl '15]

There is an essential spectral gap with polynomial resolvent bound of size

$$\beta = \frac{3}{8} \left(\frac{1}{2} - \delta \right) + \frac{\beta_E}{16}$$

where $\beta_E \in [0, \delta]$ is the improvement in the asymptotic of additive energy of the limit set (explained below).

Theorem [D-Zahl '15]

$$\beta_E > \delta \exp \left[-K(1-\delta)^{-28} \log^{14}(1+C) \right]$$

where C is the constant in the δ -regularity of the limit set and K is a global constant.

C depends continuously on the surface \Longrightarrow examples of cases when $\delta>\frac{1}{2}$, but there is a gap

There is an essential spectral gap of size

$$\beta = \frac{3}{8} \left(\frac{1}{2} - \delta \right) + \frac{\beta_E}{16}$$

where $\beta_E \in [0, \delta]$ is the improvement in the asymptotic of additive energy of the limit set

Numerics by Borthwick–Weich '14 + our gap for $\beta_E := \delta$

Additive energy

 $X(y_0, \alpha) \subset \alpha \mathbb{Z} \cap [-1, 1]$ the discretization of Λ_{Γ} projected from $y_0 \in \Lambda_{\Gamma}$

Additive energy

$$X(y_0, \alpha) \subset \alpha \mathbb{Z} \cap [-1, 1]$$
 the discretization of Λ_{Γ} projected from $y_0 \in \Lambda_{\Gamma}$

Additive energy:

$$E_{A}(y_{0},\alpha) = \#\{(a,b,c,d) \in X(y_{0},\alpha)^{4} \mid a+b=c+d\}$$
$$|X(y_{0},\alpha)| \sim \alpha^{-\delta}, \quad \alpha^{-2\delta} \lesssim E_{A}(y_{0},\alpha) \lesssim \alpha^{-3\delta}$$

Definition

 Λ_{Γ} has improved additive energy with exponent $\beta_{E} \in [0, \delta]$, if

$$E_A(y_0,\alpha) \leq C\alpha^{-3\delta+\beta_E}, \quad 0 < \alpha < 1,$$

where C does not depend on y_0 .

Random sets have improved additive energy with $\beta_E = \min(\delta, 1 - \delta)$

Scheme of the proof

 $M = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface

 $\Lambda_{\Gamma} \subset \mathbb{S}^1$ limit set, $\delta = \dim_H(\Lambda_{\Gamma})$

To prove that M has an essential spectral gap of size β , enough to show

$$\left(-\Delta_g-rac{1}{4}-\lambda^2
ight)u=0,\quad u ext{ outgoing} \ \lim \lambda>-eta, \quad \operatorname{Re}\lambda\gg 1 \
ight\} \quad \Longrightarrow \quad u\equiv 0$$

To prove that M has an essential spectral gap of size β , enough to show

$$\left(-h^2 \Delta_g - \frac{h^2}{4} - \omega^2 \right) u = 0, \quad u \text{ outgoing}$$

$$| \operatorname{Im} \omega > -\beta h, \quad \operatorname{Re} \omega = 1, \quad 0 < h \ll 1$$

To prove that M has an essential spectral gap of size β , enough to show

$$\left(-h^2 \Delta_g - \frac{h^2}{4} - \omega^2 \right) u = 0, \quad u \text{ outgoing}$$

$$| \operatorname{Im} \omega > -\beta h, \quad \operatorname{Re} \omega = 1, \quad 0 < h \ll 1$$

Using Vasy '13 and propagation of singularities up to time *t*, get

$$\begin{aligned} \| (1 - \mathsf{Op}_h(\chi_+)) u \|_{L^2} &= \mathcal{O}(h^\infty) \| u \|_{L^2} \\ \| \mathsf{Op}_h(\chi_-) u \|_{L^2} &\gtrsim e^{\frac{\mathrm{Im}\,\omega}{h}t} \| u \|_{L^2} \end{aligned}$$

where χ_+, χ_- live e^{-t} -close to the outgoing/incoming tails $\Gamma_+, \Gamma_- \subset T^*M$

To prove that M has an essential spectral gap of size β , enough to show

$$\left(-h^2 \Delta_g - \frac{h^2}{4} - \omega^2 \right) u = 0, \quad u \text{ outgoing}$$

$$| \operatorname{Im} \omega > -\beta h, \quad \operatorname{Re} \omega = 1, \quad 0 < h \ll 1$$

Using Vasy '13 and propagation of singularities up to time $t = \log(1/h)$, get

$$\begin{aligned} \| (1 - \mathsf{Op}_{h}^{L_{u}}(\chi_{+})) u \|_{L^{2}} &= \mathcal{O}(h^{\infty}) \| u \|_{L^{2}} \\ \| \mathsf{Op}_{h}^{L_{s}}(\chi_{-}) u \|_{L^{2}} \gg h^{\beta} \| u \|_{L^{2}} \end{aligned}$$

where χ_+, χ_- live h-close to the outgoing/incoming tails $\Gamma_+, \Gamma_- \subset T^*M$ and L_u , L_s are weak unstable/stable Lagrangian foliations, tangent to Γ_+, Γ_-

$$\|(1 - \operatorname{Op}_{h}^{L_{u}}(\chi_{+}))u\|_{L^{2}} = \mathcal{O}(h^{\infty})\|u\|_{L^{2}}$$
$$\|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})u\|_{L^{2}} \gg h^{\beta}\|u\|_{L^{2}}$$

where χ_+, χ_- live *h*-close to $\Gamma_+, \Gamma_- \subset T^*M$

To get a contradiction, enough to show

$$\|\operatorname{Op}_{h}^{L_{s}}(\chi_{-})\operatorname{Op}_{h}^{L_{u}}(\chi_{+})\|_{L^{2}\to L^{2}}\leq Ch^{\beta}$$

Definition

 Λ_{Γ} satisfies a fractal uncertainty principle with exponent β , if

$$\|\mathbf{1}_{\Lambda_{\Gamma}(h)}\mathcal{B}_{\chi}\mathbf{1}_{\Lambda_{\Gamma}(h)}\|_{L^{2}(\mathbb{S}^{1})\to L^{2}(\mathbb{S}^{1})} \leq Ch^{\beta},$$

$$\mathcal{B}_{\chi}v(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{S}^{1}} |y-y'|^{\frac{2i}{h}} \chi(y,y')v(y') dy$$

for all $\chi \in C_0^{\infty}(\mathbb{S}^1 \times \mathbb{S}^1 \setminus \{y = y'\})$, where $\Lambda_{\Gamma}(h) \subset \mathbb{S}^1$ is the h-neighborhood of the limit set Λ_{Γ}

$$\begin{aligned} \|(1 - \mathsf{Op}_{h}^{L_{u}}(\chi_{+}))u\|_{L^{2}} &= \mathcal{O}(h^{\infty})\|u\|_{L^{2}} \\ \|\mathsf{Op}_{h}^{L_{s}}(\chi_{-})u\|_{L^{2}} \gg h^{\beta}\|u\|_{L^{2}} \end{aligned}$$

where χ_+, χ_- live *h*-close to $\Gamma_+, \Gamma_- \subset T^*M$

To get a contradiction, enough to show

$$\|\mathsf{Op}_h^{L_s}(\chi_-)\mathsf{Op}_h^{L_u}(\chi_+)\|_{L^2\to L^2} \le Ch^{\beta}$$

Definition

 Λ_{Γ} satisfies a fractal uncertainty principle with exponent β , if

$$\|\mathbf{1}_{\Lambda_{\Gamma}(h)}\mathcal{B}_{\chi}\mathbf{1}_{\Lambda_{\Gamma}(h)}\|_{L^{2}(\mathbb{S}^{1})\to L^{2}(\mathbb{S}^{1})} \leq Ch^{\beta},$$

$$\mathcal{B}_{\chi}v(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{S}^{1}} |y-y'|^{\frac{2i}{h}} \chi(y,y')v(y') dy'$$

for all $\chi \in C_0^{\infty}(\mathbb{S}^1 \times \mathbb{S}^1 \setminus \{y = y'\})$, where $\Lambda_{\Gamma}(h) \subset \mathbb{S}^1$ is the h-neighborhood of the limit set Λ_{Γ}

$$\|\mathbf{1}_{\Lambda_{\Gamma}(h)}\mathcal{B}_{\chi}\mathbf{1}_{\Lambda_{\Gamma}(h)}\|_{L^{2}(\mathbb{S}^{1})\to L^{2}(\mathbb{S}^{1})} \leq Ch^{\beta},$$

$$\mathcal{B}_{\chi}v(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{S}^{1}} |y-y'|^{\frac{2i}{h}} \chi(y,y')v(y') dy'$$

Theorem [D-Zahl '15]

If Λ_{Γ} satisfies the fractal uncertainty principle with exponent β , then $M = \Gamma \backslash \mathbb{H}^2$ has an essential spectral gap of size β

- $\|\mathcal{B}_{\chi}\|_{L^{2}\to L^{2}}$: $\beta=0$
- $\bullet \|\mathcal{B}_{\chi}\|_{L^1 \to L^{\infty}} \colon \beta = \frac{1}{2} \delta$
- L^4 : $\beta = \frac{3}{8} \left(\frac{1}{2} \delta \right) + \frac{\beta_E}{16}$, where β_E comes from the improvement on additive energy

$$\|\mathbf{1}_{\Lambda_{\Gamma}(h)}\mathcal{B}_{\chi}\mathbf{1}_{\Lambda_{\Gamma}(h)}\|_{L^{2}(\mathbb{S}^{1})\to L^{2}(\mathbb{S}^{1})} \leq Ch^{\beta},$$

$$\mathcal{B}_{\chi}v(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{S}^{1}} |y-y'|^{\frac{2i}{h}} \chi(y,y')v(y') dy'$$

Theorem [D-Zahl '15]

If Λ_{Γ} satisfies the fractal uncertainty principle with exponent β , then $M = \Gamma \backslash \mathbb{H}^2$ has an essential spectral gap of size β

- $\|\mathcal{B}_{\chi}\|_{L^2 \to L^2}$: $\beta = 0$
- $\bullet \|\mathcal{B}_{\chi}\|_{L^1 \to L^{\infty}} \colon \beta = \frac{1}{2} \delta$
- L^4 : $\beta = \frac{3}{8} \left(\frac{1}{2} \delta \right) + \frac{\beta_E}{16}$, where β_E comes from the improvement on additive energy

$$\|\mathbf{1}_{\Lambda_{\Gamma}(h)}\mathcal{B}_{\chi}\mathbf{1}_{\Lambda_{\Gamma}(h)}\|_{L^{2}(\mathbb{S}^{1})\to L^{2}(\mathbb{S}^{1})} \leq Ch^{\beta},$$

$$\mathcal{B}_{\chi}v(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{S}^{1}} |y-y'|^{\frac{2i}{h}} \chi(y,y')v(y') dy'$$

Theorem [D-Zahl '15]

If Λ_{Γ} satisfies the fractal uncertainty principle with exponent β , then $M = \Gamma \backslash \mathbb{H}^2$ has an essential spectral gap of size β

- $\|\mathcal{B}_{\chi}\|_{L^2 \to L^2}$: $\beta = 0$
- $\bullet \|\mathcal{B}_{\chi}\|_{L^1 \to L^{\infty}} \colon \beta = \frac{1}{2} \delta$
- L^4 : $\beta = \frac{3}{8} \left(\frac{1}{2} \delta \right) + \frac{\beta_E}{16}$, where β_E comes from the improvement on additive energy

$$\|\mathbf{1}_{\Lambda_{\Gamma}(h)}\mathcal{B}_{\chi}\mathbf{1}_{\Lambda_{\Gamma}(h)}\|_{L^{2}(\mathbb{S}^{1})\to L^{2}(\mathbb{S}^{1})} \leq Ch^{\beta},$$

$$\mathcal{B}_{\chi}v(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{S}^{1}} |y-y'|^{\frac{2i}{h}} \chi(y,y')v(y') dy'$$

Theorem [D-Zahl '15]

If Λ_{Γ} satisfies the fractal uncertainty principle with exponent β , then $M = \Gamma \backslash \mathbb{H}^2$ has an essential spectral gap of size β

- $\|\mathcal{B}_{\chi}\|_{L^2 \to L^2}$: $\beta = 0$
- $\bullet \|\mathcal{B}_{\chi}\|_{L^1 \to L^{\infty}} \colon \beta = \frac{1}{2} \delta$
- L^4 : $\beta = \frac{3}{8} \left(\frac{1}{2} \delta \right) + \frac{\beta_E}{16}$, where β_E comes from the improvement on additive energy

From regularity to an additive energy bound

Definition

 $\Lambda_{\Gamma} \subset \mathbb{S}^1$ is δ -regular with constant C, if $(\mu_{\delta}$ is the Hausdorff measure)

$$C^{-1}\alpha^{\delta} \leq \mu_{\delta}(\Lambda_{\Gamma} \cap B(y_0, \alpha)) \leq C\alpha^{\delta}, \quad y_0 \in \Lambda_{\Gamma}, \quad \alpha \in (0, 1)$$

Theorem [D-Zahl '15]

If Λ_{Γ} is δ -regular with constant C, then it has improved additive energy with exponent (here K is a global constant)

$$\beta_E = \delta \exp \left[-K(1-\delta)^{-28} \log^{14}(1+C) \right]$$

- δ -regularity + $\delta < 1 \Rightarrow \Lambda_{\Gamma}$ does not have long arithmetic progressions
- A version of Freĭman's theorem $\Rightarrow \Lambda_{\Gamma}$ cannot have maximal additive energy at a small enough scale
- Induction on scale ⇒ improvement in the additive energy at all scales

Thank you for your attention!