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Obstacle scattering

Resonances in obstacle scattering

E = R3 \ O exterior of several convex obstacles

utt −∆xu = 0
u|t=0 = χf0, ut |t=0 = χf1

u|x∈∂E = 0, χ ∈ C∞0 (R3)

Does ‖χu(t)‖L2 decay exponentially as t →∞?
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E = R3 \ O exterior of several convex obstacles

utt −∆xu = 0
u|t=0 = χf0, ut |t=0 = χf1

u|x∈∂E = 0, χ ∈ C∞0 (R3)

Resonances: poles of the meromorphic continuation

R(ω) = (−∆E − ω2)−1 :

{
L2(E)→ L2(E), Imω > 0
L2

comp(E)→ L2
loc(E), Imω ≤ 0

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β
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utt −∆xu = 0
u|t=0 = χf0, ut |t=0 = χf1

u|x∈∂E = 0, χ ∈ C∞0 (R3)

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β

⇓
resonance expansion:

χu(t) =
∑

ωj resonance
Imωj≥−β

e−itωjuj +O(e−βt), t → +∞
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Obstacle scattering

Resonances in obstacle scattering

E = R3 \ O exterior of several convex obstacles

utt −∆xu = 0
u|t=0 = χf0, ut |t=0 = χf1

u|x∈∂E = 0, χ ∈ C∞0 (R3)

Resonances in microwave experiments:

Potzuweit–Weich–Barkhofen–Kuhl–Stöckmann–Zworski ’12
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Obstacle scattering

The pressure gap

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β

Is there a gap? The answer depends on trapped trajectories
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Obstacle scattering

The pressure gap

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β

Is there a gap? The answer depends on trapped trajectories

Topological pressure P(1
2) ∈ R

measures the ‘thickness’ of the trapped set

Fewer trapped trajectories =⇒ smaller P(1
2)
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Obstacle scattering

The pressure gap

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β

Is there a gap? The answer depends on trapped trajectories

Topological pressure P(1
2) ∈ R

measures the ‘thickness’ of the trapped set

Pressure gap: β = −P(1
2) under the

pressure condition

P(1/2) < 0

Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09. . .
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Obstacle scattering

The pressure gap

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β

Is there a gap? The answer depends on trapped trajectories

Topological pressure P(1
2) ∈ R

measures the ‘thickness’ of the trapped set

Pressure gap: β = −P(1
2) under the

pressure condition

P(1/2) < 0
dots = pressure

Experiment: Barkhofen–Weich–Potzuweit–Stöckmann–Kuhl–Zworski ’13
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Obstacle scattering

The pressure gap

Essential spectral gap of size β > 0:

only finitely many resonances with Imω > −β

Is there a gap? The answer depends on trapped trajectories

Topological pressure P(1
2) ∈ R

measures the ‘thickness’ of the trapped set

Pressure gap: β = −P(1
2) under the

pressure condition

P(1/2) < 0
dots = pressure

Experiment: Barkhofen–Weich–Potzuweit–Stöckmann–Kuhl–Zworski ’13
There seems to be a bigger gap when P(1

2) ≈ 0. . .
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Hyperbolic surfaces

Resonances for hyperbolic surfaces

We now switch to the mathematically cleaner case of
convex co-compact hyperbolic surfaces M = Γ\H2

`1 `2

`3

M`

On the cover H2, trapped trajectories have endpoints in the limit set

ΛΓ ⊂ S1, dimH(ΛΓ) = δ ∈ (0, 1)
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Hyperbolic surfaces

Spectral gap for hyperbolic surfaces

ΛΓ ⊂ S1, dimH(ΛΓ) = δ ∈ (0, 1)

The pressure gap is −P(1
2) = 1

2 − δ

δ

β

11
2

1
2

Borthwick–Weich ’14: numerics for symmetric 3- and 4-funneled surfaces

Once again, the gap seems to be bigger than 1
2 − δ when δ ≈ 1

2 . . .
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Hyperbolic surfaces

Improved gap for hyperbolic surfaces

Pressure gap: −P(1
2) = 1

2 − δ
Dolgopyat ’98, Naud ’04, Stoyanov ’11,’13, Petkov–Stoyanov ’10:
for δ ≤ 1

2 , gap of size 1
2 − δ+ ε, where ε > 0 depends on the surface

Theorem [D–Zahl ’15]

There is an essential spectral gap of size

β =
3
8

(1
2
− δ
)

+
βE
16

where βE ∈ (0, δ) is the improvement in the asymptotic of additive energy
of the limit set. We have

βE > δ exp
[
− K (1− δ)−14 log14(1 + C )

]
where C is the constant in the δ-regularity of the limit set and K is a
global constant
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Hyperbolic surfaces

β =
3
8

(1
2
− δ
)

+
βE
16
, βE > exp

[
− K (1− δ)−14 log14(1 + C )

]

δ

β

11
2

1
2

3+βE
16

C depends continuously on the surface =⇒ examples of cases when the
pressure condition fails (i.e. δ > 1

2), but there is a gap
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Hyperbolic surfaces

β =
3
8

(1
2
− δ
)

+
βE
16
, βE > exp

[
− K (1− δ)−14 log14(1 + C )

]

Additive energy: X ⊂ {−N, . . . ,N}, |X | ∼ Nδ obtained by discretizing the
stereographically projected limit set ΛΓ on the scale 1/N → 0

EA(X ) = #{(a, b, c, d) ∈ X 4 | a + b = c + d} ≤ CN3δ−βE

Main idea: additive energy captures the fractal structure of ΛΓ and gives a
quantitative bound on cancellations in a fractal uncertainty principle
associated to ΛΓ
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Thank you for your attention!
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