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Remainders in Weyl Law

(M,g) a compact Riemannian manifold of dimension n + 1

∆guj = z2
j uj , zj ≥ 0, ‖uj‖L2 = 1.

Weyl Law

Hörmander: #{j | zj ≤ z} = c zn+1 +O(zn).
Duistermaat–Guillemin: o(zn) if periodic trajectories form a set of
measure zero.
Bérard: O(zn/ log z) if sectional curvature < 0.

Local Weyl Law∑
zj≤z

∫
M

a|uj |2 d Vol = c zn+1
∫

M
a d Vol +. . .

for each a ∈ C∞(M), where . . . is the remainder in the Weyl Law.
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Remainders in Weyl Law

Our case: (M,g) a noncompact Riemannian manifold, either
Euclidean or asymptotically hyperbolic with curvature −1 outside of a
compact set.
Example: convex co-compact hyperbolic quotients Γ\Hn+1.

Application of our work: improved remainders in the Weyl Law
The remainders depend on the structure of the trapped set K , the
union of all (unit speed) geodesics which stay in some fixed compact
set for all times. For hyperbolic quotients, the trapped set is fractal of
Hausdorff dimension dimH(K ) = 2δ + 1, 0 < δ < n.
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Remainders in Weyl Law

We assume that the trapped set K has measure zero. The remainders
below can be expressed via classical escape rate and maximal
expansion rate. To simplify the statements, we assume that M has
sectional curvature −1 near K and dimH(K ) = 2δ + 1.

“Local Weyl Law” in the noncompact case [D–Guillarmou ’12]

a ∈ C∞0 (M) =⇒ Tr(a · 1[0,z2](∆g)) =
∑

j

cjzn+1−j +O(zδ+).

“Weyl Law” in the noncompact case [D–Guillarmou ’12]

If (M,g) is Euclidean near infinity and s(z) is the spectral shift function:

ϕ ∈ C∞0 (R) =⇒
∫ ∞

0
ϕ(z)s′(z) dz = Trbb(ϕ(

√
∆g)− ϕ(

√
∆Rn+1)),

then s(z) =
∑

j

cjzn+1−j +O(zδ+).
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Remainders in Weyl Law

Birman–Krein ’62: spectral shift function = scattering phase
Asymptotics of s(z): Buslaev ’75, Majda–Ralston ’78, Jensen–Kato
’78, Petkov–Popov ’82, Melrose ’88, Robert ’92, Guillopé–Zworski ’97,
Christiansen ’98, Bruneau–Petkov ’03, Dimassi ’05 . . .
Limits of plane waves: Guillarmou–Naud ’11, D ’11.
Our result is the first one on manifolds without boundary with a fractal
remainder depending on dynamical information.

Further results
The remainder is bounded by the number of resonances, i.e.
poles of s(z), in a logarithmic region {|zj − z| ≤ c log z}. If the
fractal Weyl Law of Sjöstrand–Zworski ’07, Datchev–D ’12 were
known to hold there, we would get O(zδ+), with dimM(K ) = 2δ+ 1.
For hyperbolic surfaces, the remainder is related to Selberg zeta
function. Guillopé–Lin–Zworski ’04: O(zδ). Jakobson–Naud ’10:
for δ > 3/4, the remainder is not O(z2δ−3/2−).
Guillarmou–Naud ’11: O(z−∞) for Γ\Hn+1 when δ < n/2.
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Microlocal limits of plane waves

Microlocal limits of eigenfunctions

Semiclassical quantization: each a(m, ν) ∈ C∞0 (T ∗M) is mapped to a
compactly supported operator

Oph(a) = a(m,hDm) : C∞(M)→ C∞0 (M).

Here h→ 0 is proportional to z−1, so that λ := hz ∼ 1.

Quantum Ergodicity [Shnirelman, Colin de Verdière, Zelditch]

For compact (M,g) with ergodic geodesic flow, a density one
subsequence of eigenfunctions converges to the Liouville measure:

a ∈ C∞0 (T ∗M) =⇒ 〈Opz−1
jk

(a)ujk ,ujk 〉 → c
∫

S∗M
a dµL.

Integrated semiclassical form [Helffer–Martinez–Robert ’87]:

hn
∑

hzj∈[1,1+h]

∣∣∣〈Oph(a)uj ,uj〉 − c
∫

S∗M
a dµL

∣∣∣→ 0 as h→ 0.
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Microlocal limits of plane waves

We study noncompact manifolds (M,g) which are either Euclidean or
asymptotically hyperbolic with curvature −1 outside of a compact set.
We refer to the Euclidean case as a model case here.
Eigenfunctions are replaced by plane waves Eh(λ, ξ), λ > 0, ξ ∈ Sn:

(h2∆g − λ2)Eh(λ, ξ) = 0, Eh(λ, ξ; m) = e
iλ
h m·ξ + (incoming)

ξ is the direction of the outgoing part of the wave at infinity.

Theorem [D–Guillarmou ’12]
If the trapped set has measure zero, then for each a ∈ C∞0 (M),

h−1
∫

[1,1+h]×Sn

∣∣∣〈Oph(a)Eh(λ, ξ),Eh(λ, ξ)〉 −
∫

S∗M
a dµξ

∣∣∣→ 0 as h→ 0.

Here µξ is a measure on S∗M depending on ξ, and∫
µξ dξ = µL.
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Microlocal limits of plane waves

Remainder estimates

The remainder can be estimated by the measure of the set of
trajectories that stay in a fixed compact set for a multiple of the
Ehrenfest time te ∼ log(1/h). If M has curvature −1 near K and
dimH(K ) = 2δ + 1, then for f ∈ C∞(Sn), ignoring subprincipal terms,

h−1
∫

[1,1+h]×Sn

∣∣∣〈Oph(a)Eh,Eh〉 −
∫

S∗M
a dµξ

∣∣∣ = O(h
n−δ

2 −),

h−1
∫

[1,1+h]

∣∣∣ ∫
Sn

f (ξ)〈Oph(a)Eh,Eh〉dξ −
∫

S∗M
a dµL

∣∣∣ = O(hn−δ−).

Remainder bounds in local Weyl Law by a Tauberian argument and

1[a2,b2](h
2∆g) =

1
(2πh)n+1

∫ b

a
λn
∫
Sn

Eh(λ, ξ)⊗ Eh(λ, ξ) dξdλ.

Use Robert ’92 to express the spectral shift function as a trace.
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Proofs

Outline of the proof

Using the Schrödinger group U(t) = e
ith∆

2 , we have modulo cutoffs

〈Oph(a)Eh,Eh〉 = 〈A−tEh,Eh〉, A−t = U(−t) Oph(a)U(t).

By Egorov’s Theorem, A−t = Oph(a ◦ g−t ) +O(h). Here gt is the
geodesic flow. We take limt→+∞ limh→0〈A−tEh,Eh〉.

Write A−t = A−t
0 + A−t

1 , with A−t
0 in a

compact set and A−t
1 near infinity.

In 〈A−t
1 Eh,Eh〉, we can replace Eh by

the incoming wave e
iλ
h m·ξ, getting µξ.

‖〈A−t
0 Eh,Eh〉‖L1

λ,ξ
can be estimated by

the measure of the set of trajectories
trapped for time t . Goes to zero since
µL(K ) = 0.

ϕdχ0

A−t
0 A−t

1
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Proofs

To get a remainder estimate, take t before the Ehrenfest time:

t = Λ−1
0 log(1/h)/2, Λ0 > Λmax := lim sup

t→∞

1
t

log sup
S∗M
‖dgt‖.

Then A−t is still pseudodifferential in a mildly exotic class.

Ingredients of the proof

Egorov’s Theorem up to Ehrenfest time for noncompact manifolds,
using iteration and cutoffs
A weak form of propagation of singularities for the scattering
resolvent, to handle 〈A−t

1 Eh,Eh〉. Vasy ’10 for hyperbolic infinities
Hilbert–Schmidt norm estimates for spectral projectors (via
Fourier integral operators) to estimate 〈A−t

0 Eh,Eh〉
Going to twice the Ehrenfest time by propagating in both directions

Propagating the kernel
∫

e
iλ
h (m−m′)·ξf (ξ) dξ up to Ehrenfest time

by parametrizing it as
∫

U(t)Bt dt , for pseudodifferential Bt
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Thank you for your attention!
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