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Motivation

Gravitational waves

Gravitational waves are perturbations of the curvature of
the space-time, just like light waves are perturbations of
the electromagnetic field
They can be used to detect and study black holes
There are numerous gravitational wave detectors: GEO
600, LIGO, MiniGRAIL, VIRGO, . . .
Quasi-normal modes are the complex frequencies of
gravitational waves; they characterize a black hole much
like the EM spectrum characterizes a star
No gravitational waves coming from outer space have been
detected on Earth so far; however, there is indirect
evidence that they exist (Hulse–Taylor binary system)
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Mathematics of black holes

Scattering theory on black holes

There are many works by physicists on quasi-normal modes;
however, there have been only a handful of attempts to put
these works on a mathematical foundation: Bachelot ’91,
Bachelot–Motet-Bachelot ’93, Sá Barreto–Zworski ’97,
Bony–Häfner ’07, Melrose–Sá Barreto–Vasy ’08, Vasy ’10, . . .
The mathematical definition of quasi-normal modes comes
from scattering theory:

Start with a Lorentzian metric on a 4D space-time and the
corresponding wave equation �u = 0. In the simplest
(linear scalar) case, gravitational waves are modeled as
solutions to this equation, and we are interested in their
behavior for large time.



Introduction Results Methods

Mathematics of black holes

Scattering theory on black holes

There are many works by physicists on quasi-normal modes;
however, there have been only a handful of attempts to put
these works on a mathematical foundation: Bachelot ’91,
Bachelot–Motet-Bachelot ’93, Sá Barreto–Zworski ’97,
Bony–Häfner ’07, Melrose–Sá Barreto–Vasy ’08, Vasy ’10, . . .
The mathematical definition of quasi-normal modes comes
from scattering theory:

Start with a Lorentzian metric on a 4D space-time and the
corresponding wave equation �u = 0. In the simplest
(linear scalar) case, gravitational waves are modeled as
solutions to this equation, and we are interested in their
behavior for large time.



Introduction Results Methods

Mathematics of black holes

Scattering theory on black holes

Take the Fourier transform in time: �u = 0 becomes

P(ω)û(ω) = f (ω), ω ∈ R

where P(ω) is a certain operator on the space slice, and f
depends on the initial conditions.
Prove the existence of a meromorphic family R(ω), ω ∈ C,
of operators on the space slice, such that

û(ω) = R(ω)f (ω).

This family is called the scattering resolvent. It is a right
inverse to P(ω), with outgoing boundary conditions.
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Mathematics of black holes

Scattering theory on black holes

Use contour deformation and estimates on R(ω) in the
strip {Imω > −ν} to obtain the asymptotic resonance
expansion as t → +∞:

u(t , x) =
∑

Im ω̂>−ν
e−itω̂

∑
j

t juω̂,j(x)+O(e−νt ).

Here ω̂ are resonances, the poles of R(ω).
Conclude that Quasi-Normal Modes = Resonances
In case we only have a small resonance free strip
{Imω > −ε}, resonance expansion takes the form of
exponential decay of linear waves, modulo resonance at 0.
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Related work

Decay of waves on black hole backgrounds

There are numerous results on decay of linear waves on both
spherically symmetric and rotating black holes using physical
space methods:
Andersson–Blue ’09, Bony–Häfner ’10, Blue–Sterbenz ’05,
Dafermos–Rodnianski ’07, ’08, ’09, ’10,
Donninger–Schlag–Soffer ’09,
Finster–Kamran–Smoller–Yau ’09, Luk ’09, ’10,
Marzuola–Metcalfe–Tataru–Tohaneanu ’08,
Tataru ’09, Tataru–Tohaneanu ’08. . .

However, most of these results deal with the case of zero
cosmological constant, when there is an asymptotically flat
infinity. In this case, the global meromorphy of the scattering
resolvent R(ω) is unlikely, and the rate of decay is only
polynomial in time.
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Related work

Black holes with positive cosmological constant

Schwarzschild–de Sitter (spherically symmetric)
Sá Barreto–Zworski ’97: constructed the scattering
resolvent and showed that QNMs approximately lie on a
lattice.
Bony–Häfner ’07: proved the resonance expansion.

Kerr–de Sitter (rotating)
Vasy ’10: constructed the scattering resolvent
Together with earlier results of Wunsch–Zworski ’10 and
Datchev–Vasy ’10, this gives an alternative proof for some
results presented here, such as exponential decay of linear
waves. However, quantization condition and resonance
expansion cannot be recovered this way.
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Overview

The presented research concentrates on the slowly rotating
Kerr–de Sitter black hole. The main results are:

meromorphy of the scattering resolvent in the entire
complex plane;
resonance free strip and exponential decay of linear waves;
resonance expansion;
semiclassical approximation (quantization condition) for
QNMs in any strip of fixed width;
comparison of the semiclassical approximation with QNMs
computed by physicists.
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Overview

Kerr–de Sitter metric

g = −ρ2
(dr2

∆r
+

dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2 (a dt − (r2 + a2) dϕ)2

+
∆r

(1 + α)2ρ2 (dt − a sin2 θ dϕ)2.

r− r+

Two radial timelike
geodesics, with light

cones shown

Here a is the angular momentum; ρ(r , θ) and ∆θ(θ) are nonzero
functions, and ∆r (r) is a fourth degree polynomial. The metric
is defined on Rt × (r−, r+)× S2

θ,ϕ, where r± are two roots of the
equation ∆r = 0. The surfaces {r = r±} are event horizons.
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Overview

Features of the metric

Two event horizons. Each of them is
an apparent singularity, which can
be removed by a change of variables
(t , r , θ, ϕ)→ (t∗, r , θ, ϕ∗), with
t∗ ∼ t + c± ln |r − r±| near r = r±.
Symmetries: both ∂t and ∂ϕ are
Killing, and the geodesic flow is
completely integrable
Inside the two ergospheres, located
close to the event horizons, the field
∂t is spacelike and thus the operator
P(ω) is not elliptic

Picture courtesy of
Wikipedia.
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Statements

Theorem 1 [D Fix]

’10 a compact region K ⊂ (r−, r+)× S2. If the angular
momentum a is small enough, depending on K , then:

The cutoff scattering resolvent 1K Rg(ω)1K is meromorphic
on the entire C and holomorphic in {Imω ≥ 0, ω 6= 0}.
There is a resonance free strip {−ε < Imω < 0}.

Combining Theorem 1 with red-shift effect, we get

Theorem 2 [D ’10]
For a, ε > 0 small enough and u any solution to the wave
equation on Kerr–de Sitter with sufficiently regular initial data,
there exists a constant u0 such that

‖u(t∗)− u0‖H1 ≤ Ce−εt
∗
.

Here t∗ ∼ t + c± ln |r − r±| near r = r±.
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Statements

Resonance expansion

Theorem 3 [D ’11]
Let ν > 0. Then any solution u(t∗) to the wave equation �u = 0
with u|t∗=0 = f0 ∈ Hs(X ), ut |t∗=0 = f1 ∈ Hs−1(X ) and s large
enough satisfies

u(t∗) =
∑

Im ω̂>−ν
e−iω̂t∗

∑
0≤j<Jω̂

(t∗)jΠω̂,j(f0, f1)+OH1(X)(e
−νt∗),

as t∗ → +∞. The sum is over QNMs ω̂, and each
Πω̂,j : Hs ⊕ Hs−1 → H1 is a finite dimensional operator;
X = (r− − δ, r+ + δ)× S2 is the whole space slice.

Theorem 3 justifies interpretation of quasi-normal modes as
complex frequencies of (linear scalar) gravitational waves.
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Statements

Quantization condition

Theorem 4 [D ’11]
Fix ν > 0. Then quasi-normal modes with Imω > −ν, Reω � 1
are simple and given modulo O(|ω|−∞) by

ω = F(m, l , k), m, l , k ∈ Z, 0 ≤ m ≤ Cm, |k | ≤ l , l � 1.

Here F is a classical symbol in the (l , k) variables and

F(m, l , k)|a=0 =

√
1− 9ΛM2

3
√

3M
[(l + 1/2)− i(m + 1/2)] + O(l−1),

(∂kF)|a=0 =
2 + 9ΛM2

27M2 a + O(a2 + l−1).
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Comparison to exact QNMs
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[BeCaSt]

m corresponds to the depth of the resonance (m = 0 for
the top picture and m = 1 for the bottom one)
l is the index of the angular eigenvalue
k is the angular momentum
Each line on the picture corresponds to QNMs for fixed
values of m, l , k , and a = 0,0.05, . . . ,0.25. The lines for
different k all start at the same Schwarzschild–de Sitter
QNM; this splitting is analogous to Zeeman effect.
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Comparison to exact QNMs

One can follow the proof of Theorem 4 and extract an
explicit construction for the asymptotic series of the
quantization symbol F .
We have computed the series for F numerically for the
case l − |k | = O(1), using bottom of the well asymptotics.
In the following slides, we compare the semiclassical
approximation to QNMs, given by F , to exact QNMs as
computed by Berti–Cardoso–Starinets ’09 using Leaver’s
continued fraction method.
Berti–Cardoso–Starinets consider the case Λ = 0 of the
Kerr black hole. Our theorems do not apply; however, the
reason is the asymptotically flat infinity, while QNMs are
generated by trapping, located in a compact set.
Therefore, we can still carry out the computations.
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[BeCaSt]
N = 2

For m = 0,1, l = 1, . . . ,4, l − |k | ≤ 1, and a = 0,0.05, . . . ,0.25,
we compare order 2 semiclassical approximation to QNMs (that
is, sum of the first 3 terms in the asymptotic series for F) with
QNMs computed by Berti–Cardoso–Starinets. We see that
semiclassical approximation gets better when m is small and
l → +∞.
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Comparison to exact QNMs
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l = 3

l = 4 [BeCaSt]
N = 2
N = 4

For m = 0, l = 3,4, l − |k | ≤ 1, and a = 0,0.05, . . . ,0.25, we
compare order 2 semiclassical approximation to QNMs, order 4
approximation, and data of Berti–Cardoso–Starinets. We see
that the higher order approximation is considerably better.
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Overview

Theorems 1–4

Separation
of variables

Angular problem

Microlocal
normal form

Grushin problems
for joint spectrum

Radial problem

Low energy case

Customized
complex scaling

High energy case

Microlocal study
of 1D barrier-top

resonances

The items in red contain new (or at least less standard)
methods and will be elaborated on in the following slides.
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Separation of variables

Separation of variables

The operator P(ω) is invariant under the axial rotation
ϕ 7→ ϕ+ s. Take k ∈ Z and let D′k = Ker(Dϕ − k) be the space
of functions with angular momentum k ; then

ρ2P(ω)|D′k = Pr (ω, k) + Pθ(ω)|D′k ,

where Pr is a differential operator in r and Pθ is a differential
operator on S2. For a = 0, Pθ is independent of ω and is just the
negative Laplace–Betrami operator on the round sphere.

Pr (ω, k) = Dr (∆r Dr )− (1 + α)2

∆r
((r2 + a2)ω − ak)2,

Pθ(ω) =
1

sin θ
Dθ(∆θ sin θDθ) +

(1 + α)2

∆θ sin2 θ
(aω sin2 θ − Dϕ)2.
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Separation of variables

Separation of variables

We need to invert the operator ρ2P(ω)|D′k = Pr (ω, k) + Pθ(ω)|D′k

Problems for a 6= 0
Pθ is not self-adjoint→ complete
system of eigenfunctions?
Pθ depends on ω

∗

∗

∗

∗
∗

∗

∗

∗

∗

∗
∗

∗

∗ ∗

γ

Solution (see also Ben-Artzi–Devinatz ’83, Mazzeo–Vasy ’02)

For each λ ∈ C, construct Rr (ω, k , λ) = (Pr (ω, k) + λ)−1 and
Rθ(ω, λ) = (Pθ(ω)− λ)−1 and write

R(ω)|D′k =
1

2πi

∫
γ

Rr (ω, k , λ)⊗ Rθ(ω, λ)|D′k dλ.

Here γ is a contour separating the poles of Rr from those of Rθ.
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Angular problem

Theorems 1–4

Separation
of variables

Angular problem

Microlocal
normal form

Grushin problems
for joint spectrum

Radial problem

Low energy case

Customized
complex scaling

High energy case

Microlocal study
of 1D barrier-top

resonances

The items in red contain new (or at least less standard)
methods and will be elaborated on in the following slides.
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Angular problem

We study poles of the angular resolvent (Pθ(ω)− λ)−1|D′k .

Semiclassical problem

Equivalent to finding joint spectrum of (P1,P2), with P1 an
O(h) perturbation of a self-adjoint operator and P2 = hDϕ

The principal symbols (p1,p2) form an integrable system

Microlocal normal form
Microlocally near a Liouville torus for (p1,p2), we can write

BP1B−1 = f (hDx ,hDy ; h), BP2B−1 = hDy

B is a Fourier integral operator;
Dx ,Dy are operators on T2 = R2

x ,y/(2πZ2);
the joint pseudospectrum is given by (f (hZ,hZ),hZ).

Similar methods are used in Hitrik–Sjöstrand ’03.
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Angular problem

Grushin problems for joint spectrum

Let P1,P2 be h-semiclassical differential operators on a
compact manifold. Given microlocal normal form for P1,P2,
how to obtain information on their joint spectrum?

Lemma
Assume that [P1,P2] = 0 and there exist operators
A1,A2 : L2 → L2, S1 : C→ L2, S2 : L2 → C, such that:

every two of the operators P1,P2,A1,A2 commute modulo
O(h∞);
(almost joint eigenfunction) S2S1 = 1 + O(h∞) and
(∗)S1,S2(∗) = O(h∞), with (∗) any of P1,P2,A1,A2;
(joint invertibility) P1A1 + P2A2 = 1− S1S2 + O(h∞).

Then there exists an element of the joint spectrum of P1,P2
within O(h∞) of the origin.
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Radial problem

Theorems 1–4

Separation
of variables

Angular problem

Microlocal
normal form

Grushin problems
for joint spectrum

Radial problem

Low energy case

Customized
complex scaling

High energy case

Microlocal study
of 1D barrier-top

resonances

The items in red contain new (or at least less standard)
methods and will be elaborated on in the following slides.
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Radial problem

After a Regge–Wheeler change of variables r → x mapping
r± 7→ ±∞, the operator Pr + λ is roughly equivalent to

Px = D2
x + V (x ;ω, λ, k), V (x) ∼ (ω − ak)2 − λe∓x , ±x � 1.

For fixed ω, λ, k , the radial resolvent
Rr is constructed using 1D potential
scattering. The hard part is then to
obtain uniform estimates on Rr in the
following two cases:

x

ξ

x

ξ

x

ξ

Trapping for Px

Low energy regime: |λ| � |ω|2 + |ak |2;
High energy regime: |λ|+ |k |2 = O(|ω|2). Here, trapping
comes into play; we use previous research on barrier-top
resonances (Gérard–Sjöstrand ’87, Sjöstrand ’87, Ramond
’96), with microlocal analysis near the trapped set of Colin
de Verdière–Parisse ’94. (One can also use
Wunsch–Zworski ’10 for a resonance free strip.)
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Radial problem

Customized complex scaling

We study scattering for Px = D2
x + V (x), in the low energy

regime |λ| � |ω|2 + |ak |2; V (x) ∼ (ω− ak)2− λe∓x for ±x � 1.

Standard complex scaling fails (no ellipticity near x = ±∞).
Let u be an outgoing solution to Pxu = f ∈ L2

comp; extend it
analytically to a neighborhood of R in C.
Use semiclassical analysis on two circles to get control on
u at two distant, but fixed, points z± ∈ C.
Formulate a BVP for the restriction of u to a certain contour
between z− and z+, and get ‖u‖ . |λ|−1‖f‖.
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Thank you for your attention!
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