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Motivation

Detecting black holes

A black hole is an object whose gravitational field is so strong
that not even light can escape.
Since we cannot observe the electromagnetic radiation of black
holes, how to detect them?

Indirect methods
Use the effect of the gravitational field of the black hole on
nearby objects, such as stars
Do not provide accurate information about the parameters
of the black hole, such as mass or angular momentum

We want to get more information about a particular black
hole. . .
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Motivation

Gravitational waves

Theory
Gravitational waves are perturbations of the curvature of
the spacetime, caused by a major cosmic event, such as
creation or merging of black holes
Their frequencies, called quasi-normal modes, depend
only on the black hole itself, not on the perturbation

Practice
Indirect evidence that gravitational waves exist:
Hulse–Taylor binary system (1993 Nobel Prize)
Gravitational wave detectors: GEO 600, LIGO, MiniGRAIL,
VIRGO, . . .
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Motivation

Laser Interferometer Gravitational-Wave Observatory
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Motivation

Quasi-normal modes

Quasi-normal modes (QNMs) are the frequencies of the
gravitational waves emitted by a black hole.

Properties of QNMs
They are complex numbers: real part = rate of oscillation,
negative imaginary part = rate of exponential decay
They characterize the black hole much like the
electromagnetic spectrum characterizes a star

Benefits of computing QNMs and detecting gravitational waves

Precise information about any particular black hole
One more verification of general relativity
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Overview of previous work

Mathematics of black holes

There are many works by physicists on quasi-normal modes;
however, there have been only a handful of attempts to put
these works on a mathematical foundation: Bachelot ’91,
Bachelot–Motet-Bachelot ’93, Sá Barreto–Zworski ’97,
Bony–Häfner ’07, Melrose–Sá Barreto–Vasy ’08, . . .
A black hole is represented as a Lorentzian metric on a 4D
spacetime; gravitational waves (in the simplest case of scalar
perturbations) are approximated by solutions to the wave
equation

�u = 0

We study solutions to this equation for large time using
scattering theory.
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Overview of previous work

Scattering theory strategy

Take the Fourier transform in time: �u = 0 becomes

P(ω)û(ω) = f (ω), ω ∈ R

where P(ω) is a certain operator on the space slice, and f
depends on the initial conditions.
Prove the existence of a meromorphic family R(ω), ω ∈ C,
of operators on the space slice, such that

û(ω) = R(ω)f (ω).

This family is called the scattering resolvent. It is a right
inverse to P(ω), with outgoing boundary conditions.
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Overview of previous work

Scattering theory strategy, continued

Study the distribution of poles of R(ω), also known as
resonances
Use contour deformation and estimates on R(ω) in the
nonphysical half-plane to obtain the asymptotic resonance
decomposition as t →∞:

u(t , x) ∼
∑

j

tkj e−itωj uj(x)

Here ωj are resonances.
Conclude that Quasi-Normal Modes = Resonances
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Overview of previous work

Schwarzschild–de Sitter black hole

The scattering theory strategy has been implemented by Sá
Barreto–Zworski and Bony–Häfner in the case of
Schwarzschild–de Sitter metric, corresponding to a spherically
symmetric black hole with positive cosmological constant.

Sá Barreto–Zworski ’97
Used the theorem of Mazzeo–Melrose ’87 to construct the
scattering resolvent R(ω)

Used semiclassical analysis and complex scaling to show
that QNMs approximately lie on a lattice

Bony–Häfner ’07

Proved an estimate on R(ω) for bounded Imω

Established the resonance decomposition
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Overview

The next logical step after Schwarzschild–de Sitter is to study
the rotating black hole given by the Kerr–de Sitter metric. This
is the object of study of the presented research; the goals are:

Construct the scattering resolvent and establish its
connection to the wave equation
Make the physicists’ definitions of QNMs rigorous
Study the asymptotic distribution of QNMs and compare it
with the physicists’ results
Establish a resonance decomposition of linear waves

The paper [D ’10] achieves the first two goals, and makes
partial progress on the last one; namely, exponential local
energy decay of solutions to the wave equation.
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Kerr–de Sitter black hole

Kerr–de Sitter metric

g = −ρ2
(dr2

∆r
+

dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2 (a dt − (r2 + a2) dϕ)2

+
∆r

(1 + α)2ρ2 (dt − a sin2 θ dϕ)2.

r− r+

Two radial timelike
geodesics, with light

cones shown

Here a is the angular momentum; ρ(r , θ) and ∆θ(θ) are nonzero
functions, and ∆r (r) is a fourth degree polynomial. The metric
is defined on Rt × (r−, r+)× S2

θ,ϕ, where r± are two roots of the
equation ∆r = 0. The surfaces {r = r±} are event horizons.
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Kerr–de Sitter black hole

Features of the metric

Positive cosmological constant
Two asymptotically hyperbolic event
horizons
Stationary (∂t is a Killing field)
Invariant under axial rotation (∂ϕ is a
Killing field)
The field ∂t is not timelike inside the
two ergospheres, located close to
the event horizons. Inside the
ergospheres, the operator P(ω) is
not elliptic

Picture courtesy of
Wikipedia.
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Statement of results

Existence and exponential decay

Theorem

Fix a compact region K ⊂ (r−, r+)× S2. If the angular
momentum a is small enough, depending on K , then:

1K R(ω)1K , where R(ω) is the scattering resolvent R(ω), is
a meromorphic family of operators on C.
There are no resonances in {Imω ≥ 0, ω 6= 0}.
There is a resonance free strip {−ν < Imω < 0}.
Any solution u to the wave equation with initial data in
H3/2+ε

0 (K )⊕ H1/2+ε
0 (K ) and orthogonal to the resonant

state at zero has ‖u‖L2(K ) ≤ Ce−νt as t → +∞.

The presence of the compact set K can be interpreted as
construction of the resolvent away from the ergospheres.
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Statement of results

Decay on black holes

There are numerous results on decay of linear waves on both
spherically symmetric and rotating black holes:
Bony–Häfner ’07, ’10, Dafermos–Rodnianski ’07, ’08, ’09,
Donninger–Schlag–Soffer ’09, Finster–Kamran–Smoller–
Yau ’09, Marzuola–Metcalfe–Tataru–Tohaneanu ’08,
Tataru ’09, Tataru–Tohaneanu ’08. . .
However, most of these results deal with the case of zero
cosmological constant, when there is an asymptotically flat
infinity. In this case, the global meromorphy of the scattering
resolvent R(ω) is unlikely, and the rate of decay is only
polynomial in time.
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Statement of results

Distribution of resonances (work in progress)

a = 0: QNMs lie asymptotically on a lattice [Sá Ba–Zw]

ω ∼ [±(l+1/2)−i(m+1/2)]

√
1− 9ΛM2

3
√

3M
; l ,m = 0,1 . . . (1)

Spherical symmetry→ each QNM has multiplicity 2l + 1
a 6= 0: analogue of the Zeeman effect: each QNM in (1)
splits into 2l + 1 QNMs, each corresponding to its own
value of the ϕ-angular momentum in the range −l , . . . , l .
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Statement of results

Comparison with physicists (work in progress)

For Λ = 0, l = 2, . . . ,6, m = 0, a = 0,0.1,0.2,0.3, we compare
our first degree approximation of QNMs, given by a certain
Bohr–Sommerfeld condition, with QNMs computed in by
Berti–Cardoso–Starinets (see http://phy.olemiss.edu
/~berti/qnms.html). Each line on the graph displays the
QNMs for fixed angular momentum and varying a.
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Overview

Ingredients

Instead of Mazzeo–Melrose theorem, use Teukolsky
separation of variables and a customized version of
complex scaling
Obtain resolvent estimates in the low energy regime and
use them to prove the meromorphy of the resolvent
Normally hyperbolic trapping→ use the result of
Wunsch–Zworski ’10 to get a resonance free strip

Problems
The angular operator given by the separation of variables
is nonselfadjoint and depends on ω
Complex scaling fails at low energy→ use analyticity to get
boundary conditions away from the event horizons
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Overview

Separation of variables

The operator P(ω) is invariant under the axial rotation
ϕ 7→ ϕ+ s. Take k ∈ Z and let D′k = Ker(Dϕ − k) be the space
of functions with angular momentum k ; then

ρ2P(ω)|D′
k

= Pr (ω, k) + Pθ(ω)|D′
k
,

where Pr is a differential operator in r and Pθ is a differential
operator on S2. For a = 0, Pθ is independent of ω and is just the
negative Laplace–Betrami operator on the round sphere.

Pr (ω, k) = Dr (∆r Dr )− (1 + α)2

∆r
((r2 + a2)ω − ak)2,

Pθ(ω) =
1

sin θ
Dθ(∆θ sin θDθ) +

(1 + α)2

∆θ sin2 θ
(aω sin2 θ − Dϕ)2.
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Overview

Separation of variables, continued

We need to invert the operator ρ2P(ω)|D′
k

= Pr (ω, k) + Pθ(ω)|D′
k

Problems for a 6= 0
Pθ is not self-adjoint→ complete
system of eigenfunctions?
Pθ depends on ω

∗

∗

∗

∗
∗

∗

∗

∗

∗

∗
∗

∗

∗ ∗

γ

Solution

For each λ ∈ C, construct Rr (ω, k , λ) = (Pr (ω, k) + λ)−1 and
Rθ(ω, λ) = (Pθ(ω)− λ)−1 and write

R(ω)|D′
k

=
1

2πi

∫
γ

Rr (ω, k , λ)⊗ Rθ(ω, λ)|D′
k

dλ.

Here γ is a contour separating the poles of Rr from those of Rθ.
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Analysis of the resolvent

Nonstandard complex contour deformation

After a Regge–Wheeler change of variables r → x mapping
r± 7→ ±∞, the operator Pr + λ is roughly equivalent to

Px = D2
x + V (x ;ω, λ, k), V (x) ∼ (ω − ak)2 − λe∓x , ±x � 1.

We need to study the scattering problem for Px in the low
energy regime |λ| � |ω|2 + |ak |2.

Standard complex scaling fails (no ellipticity near x = ±∞).
Let u be an outgoing solution to Pxu = f ∈ L2

comp; extend it
analytically to a neighborhood of R in C.
Use semiclassical analysis on two circles to get control on
u at two distant, but fixed, points z± ∈ C.
Formulate a BVP for the restriction of u to a certain contour
between z− and z+, and get ‖u‖ . |λ|−1‖f‖.
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Analysis of the resolvent

Trapping

The trapping in our situation
is normally hyperbolic. It
features:

incoming tail (codim=1)
outgoing tail (codim=1)
trapped set (codim=2)

x

ξ

x

ξ

x

ξ

Example of normally hyperbolic
trapping in 1D

Wunsch–Zworski ’10: for normally hyperbolic trapping and
under suitable assumptions at the boundary, there is a
resonance free strip, with a polynomial resolvent estimate.
We use the method of Wunsch–Zworski together with complex
scaling to get the resonance free strip and exponential local
energy decay in our case.
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Thank you for your attention!
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