MATH 279 HOMEWORK 8

1. Let $P:=p^{\mathrm{w}}\left(x, h D_{x}\right)$ where $p=p_{0}+\mathcal{O}(h), p \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is bounded uniformly in h and supported in an h-independent compact set, and $p_{0} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is real-valued and h-independent. Let $U(t)=e^{-i t P / h}: L^{2} \rightarrow L^{2}$ which is well-defined since P is a bounded operator on L^{2} and the function $e^{-i t \lambda / h}$ is entire.
(a) Using that $P-P^{*}=\mathcal{O}(h)_{L^{2} \rightarrow L^{2}}$ show the bound

$$
\|U(t)\|_{L^{2} \rightarrow L^{2}} \leq e^{C|t|}
$$

(Hint: differentiate $\|U(t) u\|_{L^{2}}^{2}$ in t.)
(b) Explain why the proof of Egorov's Theorem still applies, giving that for each $a \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ there exists $a_{t} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ such that

$$
\begin{gathered}
U(-t) a^{\mathrm{w}}\left(x, h D_{x}\right) U(t)=a_{t}^{\mathrm{w}}\left(x, h D_{x}\right)+\mathcal{O}\left(h^{\infty}\right)_{L^{2} \rightarrow L^{2}}, \\
a_{t}=a \circ e^{t H_{p_{0}}}+\mathcal{O}(h), \quad \operatorname{supp} a_{t} \subset e^{-t H_{p_{0}}}(\operatorname{supp} a) .
\end{gathered}
$$

In particular, where does the subprincipal part $p-p_{0}$ come up in the construction of a_{t} ?
2. Let $P_{0}:=p_{0}^{\mathrm{w}}\left(x, h D_{x}\right), P:=p^{\mathrm{w}}\left(x, h D_{x}\right)$ where $p=p_{0}-i h q, p_{0}, q \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ are h-independent and p_{0} is real-valued. Define $U(t):=e^{-i t P / h}, U_{0}(t):=e^{-i t P_{0} / h}$.
(a) Show that

$$
U_{0}(-t) U(t)=b_{t}^{\mathrm{w}}\left(x, h D_{x}\right)+\mathcal{O}(h)_{L^{2} \rightarrow L^{2}}
$$

where $b_{t} \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$, $b_{t}-1 \in C_{\mathrm{c}}^{\infty}$, is the attenuation coefficient defined by

$$
b_{t}(x, \xi):=\exp \left(-\int_{0}^{t} q\left(e^{s H_{p_{0}}}(x, \xi)\right) d s\right) .
$$

(This has applications to the study of damped waves, with $U(t)$ being the damped propagator.)
(b) Use part (a) to show that for each $a \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2 n}\right)$ we have

$$
e^{a^{\mathrm{w}}\left(x, h D_{x}\right)}=\left(e^{a}\right)^{\mathrm{w}}\left(x, h D_{x}\right)+\mathcal{O}(h)_{L^{2} \rightarrow L^{2}} .
$$

