MATH 279 HOMEWORK 8

1. Let $P := p^{w}(x, hD_x)$ where $p = p_0 + \mathcal{O}(h)$, $p \in C_c^{\infty}(\mathbb{R}^{2n})$ is bounded uniformly in h and supported in an h-independent compact set, and $p_0 \in C_c^{\infty}(\mathbb{R}^{2n})$ is real-valued and h-independent. Let $U(t) = e^{-itP/h} : L^2 \to L^2$ which is well-defined since P is a bounded operator on L^2 and the function $e^{-it\lambda/h}$ is entire.

(a) Using that $P - P^* = \mathcal{O}(h)_{L^2 \to L^2}$ show the bound

$$||U(t)||_{L^2 \to L^2} \le e^{C|t|}$$

(Hint: differentiate $||U(t)u||_{L^2}^2$ in t.)

(b) Explain why the proof of Egorov's Theorem still applies, giving that for each $a \in C_c^{\infty}(\mathbb{R}^{2n})$ there exists $a_t \in C_c^{\infty}(\mathbb{R}^{2n})$ such that

$$U(-t)a^{\mathsf{w}}(x,hD_x)U(t) = a_t^{\mathsf{w}}(x,hD_x) + \mathcal{O}(h^{\infty})_{L^2 \to L^2},$$

$$a_t = a \circ e^{tH_{p_0}} + \mathcal{O}(h), \quad \operatorname{supp} a_t \subset e^{-tH_{p_0}}(\operatorname{supp} a).$$

In particular, where does the subprincipal part $p - p_0$ come up in the construction of a_t ?

2. Let $P_0 := p_0^{w}(x, hD_x)$, $P := p^{w}(x, hD_x)$ where $p = p_0 - ihq$, $p_0, q \in C_c^{\infty}(\mathbb{R}^{2n})$ are *h*-independent and p_0 is real-valued. Define $U(t) := e^{-itP/h}$, $U_0(t) := e^{-itP_0/h}$.

(a) Show that

$$U_0(-t)U(t) = b_t^{\mathsf{w}}(x, hD_x) + \mathcal{O}(h)_{L^2 \to L^2}$$

where $b_t \in C^{\infty}(\mathbb{R}^{2n}), b_t - 1 \in C_c^{\infty}$, is the attenuation coefficient defined by

$$b_t(x,\xi) := \exp\Big(-\int_0^t q(e^{sH_{p_0}}(x,\xi))\,ds\Big).$$

(This has applications to the study of damped waves, with U(t) being the damped propagator.)

(b) Use part (a) to show that for each $a \in C^{\infty}_{c}(\mathbb{R}^{2n})$ we have

$$e^{a^{\mathsf{w}}(x,hD_x)} = (e^a)^{\mathsf{w}}(x,hD_x) + \mathcal{O}(h)_{L^2 \to L^2}.$$