MATH 279 HOMEWORK 7

$$u(x;h) := \psi(x - y(h)).$$

Show that for every $a \in C_{c}^{\infty}(\mathbb{R}^{2n})$ we have

$$\langle a^{\mathbf{w}}(x, hD_x)u(h), u(h) \rangle_{L^2(\mathbb{R}^n)} \to 0 \text{ as } h \to 0$$

(Hint: fix $\chi \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R})$ such that $\chi \psi = \psi$ and define $\varphi(x; h) := \chi(x - y(h))$. Considering φ as a function of $(x, \xi; h)$ in the class S(1), let φ^w be the corresponding quantization, which here is a multiplication operator. Apply the composition formula to the product $\varphi^w a^w \varphi^w$ and use that $\varphi^w u = u$. There is also a more direct solution using repeated integration by parts.)

(b) Let
$$\eta(h) \in \mathbb{R}^n$$
 satisfy $\eta(h) \to \infty$ as $h \to 0$ and define $v(h) \in L^2(\mathbb{R}^n)$ by
 $v(x;h) = e^{\frac{i}{h}\langle x,\eta(h) \rangle} \psi(x).$

Show that for every $a \in C^{\infty}_{c}(\mathbb{R}^{2n})$ we have

$$\langle a^{\mathbf{w}}(x, hD_x)v(h), v(h) \rangle_{L^2(\mathbb{R}^n)} \to 0 \text{ as } h \to 0.$$

(Hint: use the strategy of part (a) where φ^{w} should now be a Fourier multiplier, with $\varphi(x,\xi;h) = \chi(\xi - \eta(h))$ and $\chi \in C_{c}^{\infty}(\mathbb{R}^{n})$ equal to 1 near 0.)

2. Let $P(h) := -h^2 \Delta + V(x)$ where V is a potential satisfying the assumptions from the lectures. Assume that $E_0 \in \mathbb{R}$ satisfies $E_0 \geq \min V$. Using the Weyl Law, show that there exists a family of eigenvalues E(h) of P(h), $0 < h < h_0$, such that $E(h) \to E_0$ as $h \to 0$.

3. Let P(h) as before and take $q \in S(1)$. Assume that $h_j \to 0$ and $u_j \in L^2(\mathbb{R}^n)$ satisfy as $j \to \infty$

$$||(P(h_j) + hq^{w}(x, h_j D_x))u_j||_{L^2} = o(h_j), \quad ||u_j||_{L^2} = 1.$$

Assume also that u_j converge weakly to a measure μ on \mathbb{R}^{2n} .

(a) Show that for all $b \in C^{\infty}_{c}(\mathbb{R}^{2n})$ we have

$$\int_{\mathbb{R}^{2n}} H_p b + 2(\operatorname{Im} q) b \, d\mu = 0.$$

(b) Assume that $P(h) = -h^2 \partial_x^2 + |x|^2 - 1$ is the (shifted) one-dimensional quantum harmonic oscillator. Show that the integral of Im q on the unit circle in \mathbb{R}^2 is equal to 0 and μ has a C^{∞} density (with respect to the standard measure on the circle) given by

 e^F where F is a function on the circle such that $H_pF = 2 \operatorname{Im} q$. (Hint: such F always exists locally, and $H_pb + 2(\operatorname{Im} q)b = e^{-F}H_p(e^Fb)$.)