MATH 279 HOMEWORK 5

1. Let m be an order function on $\mathbb{R}^{2 n}$ and assume that $a \in S(m)$ is globally elliptic, that is there exists a constant $c>0$ such that

$$
|a(x, \xi ; h)| \geq c m(x, \xi) \quad \text { for all } \quad(x, \xi) \in \mathbb{R}^{2 n}, \quad h \in(0,1] .
$$

(a) Show that $a^{-1} \in S\left(m^{-1}\right)$.
(b) Arguing by induction construct symbols $b_{0}:=a^{-1}, b_{1}, b_{2}, \ldots$ and $r_{1}, r_{2} \ldots$ such that $b_{j} \in h^{j} S\left(m^{-1}\right), r_{j} \in h^{j} S(1)$, and for all $j \geq 0$

$$
a \#\left(b_{0}+\cdots+b_{j}\right)=1+r_{j+1}
$$

(c) Using Borel's Lemma, take an asymptotic sum

$$
b \sim \sum_{j=0}^{\infty} b_{j} \in S\left(m^{-1}\right)
$$

and show that $a \# b=1+\mathcal{O}\left(h^{\infty}\right)_{S(1)}$.
(d) Arguing similarly, we can construct $\tilde{b} \in S\left(m^{-1}\right)$ such that $\tilde{b} \# a=1+\mathcal{O}\left(h^{\infty}\right)_{S(1)}$. Using associativity of the \# product, show that $\tilde{b}=b+\mathcal{O}\left(h^{\infty}\right)_{S\left(m^{-1}\right)}$ and thus

$$
a^{\mathrm{w}} b^{\mathrm{w}}=I+\mathcal{O}\left(h^{\infty}\right)_{L^{2} \rightarrow L^{2}}, \quad b^{\mathrm{w}} a^{\mathrm{w}}=I+\mathcal{O}\left(h^{\infty}\right)_{L^{2} \rightarrow L^{2}} .
$$

2. Let m be an order function and $a \in S(m)$ be nonnegative and globally elliptic.
(a) Show that $\sqrt{a} \in S(\sqrt{m})$.
(b) Arguing as in the previous exercise, construct $b \sim \sum_{j=0}^{\infty} b_{j} \in S(\sqrt{m}), b_{j} \in$ $h^{j} S(\sqrt{m}), b_{0}=\sqrt{a}$, such that $b \# b=a+\mathcal{O}\left(h^{\infty}\right)_{S(m)}$.
(c) Assume now that $m \equiv 1$. Writing

$$
a^{\mathrm{w}}=\left(b^{\mathrm{w}}\right)^{2}+\mathcal{O}\left(h^{\infty}\right)_{L^{2} \rightarrow L^{2}}
$$

show the easy Gårding inequality: there exists $c>0, h_{0}>0$ such that for all $h \in\left(0, h_{0}\right)$

$$
\left\langle a^{\mathrm{w}}\left(x, h D_{x}\right) u, u\right\rangle \geq c\|u\|_{L^{2}}^{2} \quad \text { for all } \quad u \in L^{2}\left(\mathbb{R}^{n}\right)
$$

(For this part one could actually just use $b:=\sqrt{a}$.)

