MATH 279 HOMEWORK 4

For this homework you might find useful the following formula for the FourierLaplace transform of general Gaussian integrals (following by analytic continuation from [Zw, Theorem 3.1]):

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2}\langle Q w, w\rangle-i\langle w, \zeta\rangle} d w=(2 \pi)^{n / 2} c_{Q}|\operatorname{det} Q|^{-1 / 2} e^{-\frac{1}{2}\left\langle Q^{-1} \zeta, \zeta\right\rangle} \tag{0.1}
\end{equation*}
$$

where Q is a complex symmetric $n \times n$ matrix, $\operatorname{Re} Q$ is positive definite, $\zeta \in \mathbb{C}^{n}$, $\langle z, w\rangle:=\sum_{j} z_{j} w_{j}$, and c_{Q} is a constant depending on Q such that $\left|c_{Q}\right|=1$.

1. Fix $\delta \geq 0$ and consider the symbol on $\mathbb{R}^{2 n}$

$$
a(x, \xi ; h):=a_{0}\left(\frac{x}{h^{\delta}}, \frac{\xi}{h^{\delta}}\right) \quad \text { where } \quad a_{0}(x, \xi):=\exp \left(-\frac{|x|^{2}+|\xi|^{2}}{2}\right)
$$

(a) Show that $a \in S_{\delta}(1)$.
(b) When $\delta \leq \frac{1}{2}$ show that

$$
\left\|a^{\mathrm{W}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)} \geq c>0
$$

for some h-independent constant c. (Hint: apply the operator to $u(x ; h)=\exp \left(-\frac{|x|^{2}}{2 h^{2 \delta}}\right)$, computing $a^{\mathrm{w}} u$ using (0.1).)
(c) When $\delta>\frac{1}{2}$ show that

$$
\left\|a^{\mathrm{W}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)} \leq C h^{n\left(\delta-\frac{1}{2}\right)}
$$

for some h-independent constant C. (Hint: bound the operator norm by the L^{2} norm of the integral kernel.)
2. Let a be as above. Let $a \# a$ be defined in [Zw, Theorem 4.11].
(a) Using (0.1) show that

$$
a \# a(x, \xi)=\left(1+\frac{1}{4} h^{2-4 \delta}\right)^{-n} \exp \left(-\frac{|x|^{2}+|\xi|^{2}}{h^{2 \delta}+\frac{1}{4} h^{2-2 \delta}}\right)
$$

(b) For which values of δ can we say that $a \# a=a^{2}+o(1)$ (uniformly on compact sets in $(x, \xi))$ as $h \rightarrow 0$?

References

[Zw] Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, AMS, 2012.

