MATH 279 HOMEWORK 4

For this homework you might find useful the following formula for the Fourier– Laplace transform of general Gaussian integrals (following by analytic continuation from [Zw, Theorem 3.1]):

$$\int_{\mathbb{R}^n} e^{-\frac{1}{2}\langle Qw, w \rangle - i \langle w, \zeta \rangle} \, dw = (2\pi)^{n/2} c_Q |\det Q|^{-1/2} e^{-\frac{1}{2}\langle Q^{-1}\zeta, \zeta \rangle} \tag{0.1}$$

where Q is a complex symmetric $n \times n$ matrix, $\operatorname{Re} Q$ is positive definite, $\zeta \in \mathbb{C}^n$, $\langle z, w \rangle := \sum_j z_j w_j$, and c_Q is a constant depending on Q such that $|c_Q| = 1$.

1. Fix $\delta \geq 0$ and consider the symbol on \mathbb{R}^{2n}

$$a(x,\xi;h) := a_0\left(\frac{x}{h^\delta}, \frac{\xi}{h^\delta}\right) \quad \text{where} \quad a_0(x,\xi) := \exp\left(-\frac{|x|^2 + |\xi|^2}{2}\right)$$

(a) Show that $a \in S_{\delta}(1)$.

(b) When $\delta \leq \frac{1}{2}$ show that

$$||a^{\mathbf{w}}||_{L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)} \ge c > 0$$

for some *h*-independent constant *c*. (Hint: apply the operator to $u(x;h) = \exp(-\frac{|x|^2}{2h^{2\delta}})$, computing $a^{w}u$ using (0.1).)

(c) When $\delta > \frac{1}{2}$ show that

$$\|a^{\mathbf{w}}\|_{L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)} \le Ch^{n(\delta-\frac{1}{2})}$$

for some *h*-independent constant C. (Hint: bound the operator norm by the L^2 norm of the integral kernel.)

2. Let a be as above. Let a # a be defined in [Zw, Theorem 4.11].

(a) Using (0.1) show that

$$a \# a(x,\xi) = \left(1 + \frac{1}{4}h^{2-4\delta}\right)^{-n} \exp\left(-\frac{|x|^2 + |\xi|^2}{h^{2\delta} + \frac{1}{4}h^{2-2\delta}}\right).$$

(b) For which values of δ can we say that $a \# a = a^2 + o(1)$ (uniformly on compact sets in (x, ξ)) as $h \to 0$?

References

[Zw] Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, AMS, 2012.