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Preface

These are the lecture notes for the course 18.155 (Differential Analysis I) taught at

MIT in Fall 2022. The topics include:

• basics of the theory of distributions,

• fundamental solutions to some constant coefficient PDEs,

• Fourier transform on distributions and Sobolev spaces,

• elliptic regularity and Fredholm mapping properties of elliptic operators on

Sobolev spaces,

• and applications to PDEs such as discreteness of the spectrum of the Laplacian

and Hodge’s theorem.

There are several sources used (acknowledged in more detail at the end of each section),

including:

• Hörmander’s book, volume I [Hör03]: a classical and comprehensive treat-

ment of distribution theory. The text is quite dense, so it is not an easy source

to learn about distrbutions for the first time, but a lot of the arguments in

the distribution theory part of these notes are taken from there.

• Friedlander–Joshi’s book [FJ98]: a much shorter book which does the es-

sentials of distribution theory. This one can be used by a beginner (familiar

with topics such as Lebesgue integration). Some of other arguments in the

distribution theory part of these notes are from this book.

• Melrose’s lecture notes for 18.155 [Mel]: these inspired some of the arguments

in the later part of the course. I also tried to model the structure of my version

of 18.155 roughly after the version taught by Prof. Melrose.

To comfortably read the entire notes, a reader would find it helpful to be familiar

with some fundamentals of analysis and differential geometry. Some of these are re-

viewed briefly in the notes, as a reminder and to fix notation, but a lot of proofs and

explanations are replaced by references to the literature. The topics we will need are:

• Real analysis (18.100B at MIT): basics of metric space topology, the theory

of differentiation and integration, and the Arzelà–Ascoli Theorem. This one

is a definite prerequisite to taking 18.155.
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8 PREFACE

• Lebesgue integration (covered in 18.102, 18.103, 18.125, or 18.675 at MIT):

Lebesgue integral, its convergence properties such as the Dominated Conver-

gence Theorem, metric spaces, the spaces Lp and their completeness, and the

change of variables formula. This one is used from the beginning but largely

as a black box.

• Functional analysis (partially covered in 18.102 at MIT, these notes provide

the pieces which are not covered): Hilbert spaces and their basic proper-

ties (orthogonal projections, Riesz representation theorem), Banach spaces

and their basic properties (including Banach–Steinhaus theorem), compact

and Fredholm operators, spectra of self-adjoint compact operators on Hilbert

spaces (Hilbert–Schmidt theorem), and the Fredholm alternative.

• Manifolds (18.101 at MIT): for the latter part of the course the reader should

be familiar with the concept of an abstract C∞ manifold, tangent and cotan-

gent bundles, differential forms and Stokes’ theorem, and basic Riemannian

geometry.

• Complex analysis (18.112 at MIT): we will occasionally use a bit of the basics

e.g. unique continuation of analytic functions.

To help the reader get the most of these notes, I use the following superscripts for

section names/theorems/etc.:

• R: review, a topic which I would say should be in the prerequisites for this

course rather than the course itself (regardless of whether prerequisite courses

at MIT actually cover this – if they don’t then I develop this in more detail);

• S: straightforward once you have enough understanding of the concepts in-

volved. If you feel comfortable with the material you might be able to skip

some of the details there;

• X: extra, will help deepen your understanding of the material but you might

be able to skip it at first reading.

I have been supported by the NSF CAREER grant DMS-1749858.



CHAPTER 1

Prologue: motivation and background

1.1. A bit of motivation

In this course we (among other things) develop the theory of distributions and show

various forms of elliptic regularity. These both take a while to set up, so let us first

look at a couple of applications to PDEs (partial differential equations).

1.1.1. Solving Poisson’s equation. To keep things simple, let us restrict to the

case of dimension 3. Consider the Laplace operator1 on R3

∆ := ∂2x1 + ∂2x2 + ∂2x3

and let us study Poisson’s equation

∆u = f, (1.1)

where f is a given function on R3 and u is the unknown function. If you took a physics

course, you might have encountered (1.1) in electrostatics (u = electric potential, f =

density of charge) or in Newtonian gravity (u = gravitational potential, f = density

of mass).

Perhaps you also learned that one solution to (1.1) is given by the integral formula

u(x) =

∫
R3

E(x− y)f(y) dy, x ∈ R3, (1.2)

where the Coulomb potential E is defined by

E(x) = − 1

4π|x|
, x ∈ R3 \ {0}. (1.3)

This is something that can be checked directly for sufficiently nice f , see Exercise 1.1

below. However, this leaves open some questions, which can be conceptually addressed

by developing the theory of distributions.

One question is: the formula (1.2) makes sense, for example, for any bounded

compactly supported (Lebesgue measurable) function f . But in this case u might not

1There are two conventions in the literature: ∆ = ∂2
x1

+ ∂2
x2

+ ∂2
x3

and ∆ = −∂2
x1

− ∂2
x2

− ∂2
x3
.

Physicists often use the first one and geometers often use the second one. We will use the first

convention here, for no good reason other than the author’s personal preference. However, the Hodge

Laplacian in §17.3.3 will use the opposite sign convention.
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10 1. PROLOGUE: MOTIVATION AND BACKGROUND

be twice differentiable. Can we still say that u solves Poisson’s equation in a certain

sense?

An answer to this question is given by weak solutions. Assume first that u ∈ C2(R3)

solves the equation (1.1) (we call such u a classical solution because it has enough

derivatives to make sense of the equation at each point). Take any smooth compactly

supported function φ ∈ C∞
c (R3) (see §1.2.4 below), which we call a test function.

Integrating by parts twice using the Divergence Theorem (where the boundary terms

do not appear since φ is compactly supported – see Theorem 1.17 below), we see that∫
R3

f(x)φ(x) dx =

∫
R3

(∆u(x))φ(x) dx

= −
∫
R3

3∑
j=1

(
∂xju(x)

)(
∂xjφ(x)

)
dx =

∫
R3

u(x)∆φ(x) dx,

that is we have ∫
R3

fφ dx =

∫
R3

u(∆φ) dx for all φ ∈ C∞
c (R3). (1.4)

The latter makes sense for any u, f which are locally integrable. For such u, f we say

that u is a weak solution to Poisson’s equation (1.1) if (1.4) holds. Two comments are

in order:

• as the calculation above shows, if u is a classical solution, then it is a weak

solution as well;

• if u is a weak solution and we also know that u ∈ C2(R3) then u is a classical

solution.

Weak solutions are thus a superset of classical solutions. The second comment above

leads to the following general strategy for studying solutions of linear partial differential

equations:

• understand all weak solutions to the equation;

• assuming regularity of the right-hand side, establish regularity of the weak

solution. If the weak solution is regular enough, then it is also a classical

solution.

Another question raised by the formula (1.2) is related to the following computa-

tion:

∆u(x) =

∫
R3

(∆E)(x− y)f(y) dy = 0. (1.5)

Here in the first equality we differentiate (in x) under the integral sign. In the second

equality we use the fact that ∆E = 0 on R3 \ {0} (see Exercise 1.1(a)) and thus the

integral is 0. This seems to contradict our expectation that ∆u = f .
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From the point of view of classical (Lebesgue) integration, the computation (1.5) is

invalid because the gradient∇E(x) blows up too fast at x = 0 to be able to differentiate

under the integral sign. But the theory of distributions gives another way of thinking

about this computation, which also gives a proof that ∆u = f . Namely, the first

equality in (1.5) is valid if we treat ∆E as a distribution and think of the integral as

a distributional pairing. In distributions, we do not have ∆E = 0, instead

∆E = δ0 (1.6)

where δ0 is the Dirac delta at the origin, which is not a function, but a distribution

with the following property:∫
R3

δ0(x)φ(x) dx = φ(0) for all φ ∈ C∞
c (R3).

Then (1.5) can be made correct as follows:

∆u(x) =

∫
R3

(∆E)(x− y)f(y) dy =

∫
R3

δ0(x− y)f(y) dy

=

∫
R3

δ0(y)f(x− y) dy = f(x).

(1.7)

Here the integral signs no longer denote literal integrals; instead they are distributional

pairings. It will take us some time to develop the theory of distributions enough to

rigorously justify statements such as (1.6) and (1.7), but these formulas have an im-

mediate physical interpretation which predates the development of distribution theory

in mathematics: (1.6) tells us that the Coulomb potential E corresponds to a point

charge (with δ0 being the ‘density’ of a point charge) and (1.7) is a version of superpo-

sition principle (i.e. for linear equations, taking linear combinations or more generally

parametric integrals of solutions gives other solutions).

1.1.2. Examples of elliptic regularity. For the next example, let us work in

R2. Consider the following three PDEs:

(∂2x1 + ∂2x2)u = 0, (1.8)

(∂x1 + i∂x2)u = 0, (1.9)

(∂2x1 − ∂2x2)u = 0. (1.10)

Here is a question:

Is it true that every solution u to these equations is a smooth (C∞) function?

Here we can restrict ourselves to classical solutions (e.g. for (1.8), if u ∈ C2 solves the

equation, then u ∈ C∞), or we can define weak solutions similarly to (1.4); the answer

will be the same either way.

The answer to the question above has been known a long time ago:
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• functions solving the Laplace equation (1.8) are called harmonic and they are

always smooth;

• functions solving the Cauchy–Riemann equation (1.9) are analytic functions

of the complex variable z = x1 + ix2 and they are also always smooth;

• but the wave equation (1.10) has some nonsmooth solutions, for example

u(x1, x2) = f(x1 + x2) for any C
2 function f .

However, the XXth century analysis that we study in this course will give a more sys-

tematic point of view on understanding what is different between the equations (1.8),

(1.9), and (1.10). To give a preview of it, let P be the differential operator such that the

equation studied is Pu = 0. Define the homogeneous polynomial p(ξ1, ξ2) by replacing

∂x1 by ξ1 and ∂x2 by ξ2, so that (1.8)–(1.10) correspond to the polynomials

ξ21 + ξ22 , (1.11)

ξ1 + iξ2, (1.12)

ξ21 − ξ22 . (1.13)

We say that the polynomial p is elliptic, if the equation p(ξ1, ξ2) = 0 has only one

solution on R2, namely ξ1 = ξ2 = 0.

One of the main results of this course is elliptic regularity which in particular

says that if the polynomial p is elliptic, then all solutions to the equation Pu = 0 are

smooth. This applies to the equations (1.8)–(1.9), since the corresponding polynomials

are elliptic, but not to (1.10).

We will study three versions of elliptic regularity. The third version has many

applications, three of which we present in the setting of compact manifolds without

boundary:

• Fredholm mapping property of elliptic differential operators on Sobolev spaces;

• discreteness of spectrum of self-adjoint elliptic operators;

• and Hodge’s Theorem, giving a bijection between de Rham cohomology classes

(an algebraic topological invariant) and harmonic forms (a Riemann geomet-

ric/spectral theoretic object).

1.2. Functional spacesR

We start by giving a very brief review of the spaces Lp and Ck. We then introduce

the space of smooth compactly supported functions C∞
c , which is important to us since

the space of distributions will be its dual.

For now we will work with subsets of Rn. The definition below collects some useful

notation.

Definition 1.1. Let M be a metric space and U ⊂ V ⊂ M be two sets.
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(1) We write

U ⊂◦ V
if U is a relatively open subset of V .

(2) We say that U is compactly contained in V , and write

U ⋐ V

if there exists a compact set K such that U ⊂ K ⊂ V .

An alternative definition of compact containment is that the closure of U be com-

pact and contained inside V .

Recall that any open set U ⊂◦ Rn can be exhausted by compact subsets:

U =
∞⋃
j=1

Kj where Kj ⋐ U, Kj ⋐ Kj+1. (1.14)

Indeed, one can for example let Kj consist of all points x such that |x| ≤ j and the

open ball B◦(x, 1/j) is contained in U . Moreover, any K ⋐ U is contained in one of

the sets Kj.

When U is a set, by default a function on U is a map f : U → C. That is, functions
are assumed complex valued unless stated otherwise.

1.2.1. Lebesgue integral and the spaces Lp. A theory of Lebesgue measure

and integral on Rn produces:

• the notion of which subsets of Rn are measurable (in practice, any set you can

construct without, say, using the Axiom of Choice will be measurable so we

will not worry about checking measurability in these notes);

• the Lebesgue measure, which maps each measurable subset A ⊂ Rn to its

‘volume’ vol(A) ∈ [0,∞];

• the Lebesgue integral, which defines for certain functions f : Rn → C their

integral
∫
Rn f(x) dx. More precisely, we always need f to be measurable, that

is for each a ∈ R the set {x ∈ Rn | f(x) ≤ a} should be measurable. If f is

nonnegative, then nothing else is needed and the integral
∫
Rn f(x) dx is always

defined as a possibly infinite number in [0,∞]. For general f we impose the

additional condition that
∫
Rn |f(x)| dx < ∞ (we call such functions Lebesgue

integrable) and the integral
∫
Rn f(x) dx is defined as a complex number.

We refer to the books [Bea02, Jon01, Rud64, Rud87, Str11] for constructions

of the above objects and their standard properties, which we will freely use in these

notes. We in particular note that:

• If f is Riemann integrable (in the proper sense), then it is also Lebesgue

integrable and the Riemann integral is the same as Lebesgue integral. In
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other words, the Lebesgue theory does not give a different value of the integral,

instead it lets us integrate more functions.

• We have Fubini’s/Tonelli’s Theorem: if we write elements of Rn+m as (x, y)

where x ∈ Rn, y ∈ Rm, the function f : Rn+m → C is measurable and f is

either nonnegative or Lebesgue integrable, then∫
Rn+m

f(x, y) dxdy =

∫
Rn

(∫
Rm

f(x, y) dy

)
dx.

In particular, this lets us reduce (at least in principle) integrals over Rn to

integrals over R, which one can hope to compute using the Fundamental

Theorem of Calculus.

• We also have the Dominated Convergence Theorem: if a sequence of measur-

able functions fk : Rn → C converges to some function f for almost every x

(see below) and there exists an integrable function g such that |fk| ≤ g for

all k, then
∫
Rn fk(x) dx→

∫
Rn f(x) dx.

For a logical statement S(x) with one free variable x ∈ Rn, we say that it holds

(Lebesgue) almost everywhere (often abbreviated to ‘a.e.’), if the set {x ∈ Rn |
S(x) is false} has Lebesgue measure 0. A measurable function f is equal to 0 almost

everywhere if and only if
∫
Rn |f(x)| dx = 0.

We can now define the spaces Lp. We start with the case p <∞:

Definition 1.2. Let 1 ≤ p < ∞. For a measurable function f : Rn → C, its

Lp-norm is

∥f∥Lp :=

(∫
Rn

|f(x)|p dx
)1/p

∈ [0,∞].

We define Lp(Rn) as the quotient space

Lp(Rn) :=
{f : ∥f∥Lp <∞}
{f : f = 0 a.e.}

. (1.15)

In the above definition we identify two Lp functions f and g if f = g almost

everywhere. This is important because otherwise ∥•∥Lp is not a norm on the space Lp

(as there are nonzero elements of the space which have norm zero). It also corresponds

well to the theory of distributions: two Lp functions are equal as distributions if and

only if they are equal almost everywhere as functions (see Theorem 1.16 below). So if,

say, a solution to some differential equation is given by the indicator function of a ball,

then we will not be worrying about what the values of this function on the boundary

of the ball are since that boundary has measure 0. Note however that none of this

matters for continuous functions: two continuous functions are equal a.e. if and only

if they are equal everywhere.

One of the main advantages of the Lebesgue integral over the Riemann integral

is that the space Lp with the norm ∥ • ∥Lp is a Banach space, namely it is a normed
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vector space which is complete. This is very useful in the study of PDE since quite often

solutions of differential equations are constructed as limits of sequences of approximate

solutions (even though in the modern theory this aspect is somewhat hidden).

We can also define the space L∞ which carries a version of the sup-norm adjusted

for measure zero sets. Namely, we put

∥f∥L∞ := inf{a ≥ 0: |f(x)| ≤ a for a.e. x}

and define the Banach space L∞(Rn) as a quotient similarly to (1.15).

For later use we recall Hölder’s inequality : if f ∈ Lp(Rn), g ∈ Lq(Rn), and 1
p
+ 1
q
= 1,

then

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq . (1.16)

More generally, we can define the spaces Lp(U) where U ⊂◦ Rn. More precisely, Lp(U)

consists of measurable functions f : U → C such that 1Uf ∈ Lp(Rn), where for a set

A ⊂ Rn we denote by 1A : Rn → R its indicator function:

1A(x) =

{
0, x ∈ A,

1, x /∈ A.
(1.17)

We also define the spaces of locally Lp functions

Lploc(U) :=
{f : U → C : 1Kf ∈ Lp(U) for all compact K ⊂ U}

{f : f = 0 a.e.}
and compactly supported Lp functions

Lpc(U) := {f ∈ Lp(U) | there exists compact K ⊂ U such that f = 1Kf a.e.}.

(Strictly speaking, Lpc(U) is the space of functions of compact essential support, whose

definition is different from Definition 1.5 below by adding ‘almost everywhere’.)

From Hölder’s inequality we can see that

Lploc(U) ⊂ Lrloc(U), Lpc(U) ⊂ Lrc(U) for all p ≥ r. (1.18)

1.2.2. More on the space L2. Let U ⊂◦ Rn. For us the most convenient Lp space

will often be the one with p = 2. This is because the space L2(U) is a Hilbert space,

whose norm is induced by the L2 Hermitian inner product (with • denoting complex

conjugation)

⟨f, g⟩L2(U) :=

∫
U

f(x)g(x) dx. (1.19)

Note that ∥f∥2L2 = ⟨f, f⟩L2 . We have the Cauchy–Schwarz inequality (following e.g.

from Hölder’s inequality)

|⟨f, g⟩L2| ≤ ∥f∥L2∥g∥L2 . (1.20)

We now list several important properties of L2(U), which are actually true for general

Hilbert spaces (relying crucially on completeness). See for example [DS88, §IV.4],
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[Lax02, Chapter 6], [RS81, Chapter II], or [Rud87, Chapter 4] for the proofs. We

start with

Theorem 1.3 (Orthogonal Complement Theorem). Assume that W ⊂ L2(U) is a

closed subspace. Define its orthogonal complement as

W⊥ := {f ∈ L2(U) | for all g ∈ L2(U) we have ⟨f, g⟩L2 = 0}.

Then L2(U) = W ⊕W⊥.

Recall from functional analysis that a (linear) functional on a Banach space X is

a linear operator X → C. The dual space X ′ to X is the space of bounded linear

functionals on X, and it is a Banach space when taken with the operator norm

∥T∥X′ = sup
f∈X\{0}

|T (f)|
∥f∥X

.

The next theorem establishes a canonical isomorphism between L2(U) and its dual

space L2(U)′.

Theorem 1.4 (Riesz Representation Theorem for L2). 1. Let g ∈ L2(U). Then

Tg : f ∈ L2(U) 7→ ⟨f, g⟩L2 ∈ C

is a bounded linear functional on L2(U), and ∥Tg∥L2(U)′ = ∥g∥L2(U).

2. Assume that T is a bounded linear functional on L2(U). Then there exists unique

g ∈ L2(U) such that T = Tg.

More generally, the spaces Lp(U) and Lq(U) are dual to each other when p, q ∈
(1,∞) and 1

p
+ 1

q
= 1, but we will not use this fact in this course.

1.2.3. The spaces Ck. For U ⊂◦ Rn, define the space of continuous functions

C0(U) := {f : U → C | f is continuous}.

The natural norm to use on the space of continuous functions would be the sup-norm

∥f∥C0 := sup
x∈U

|f(x)|.

However, since U is open rather than compact, the sup-norm ∥f∥C0 is infinite for

some f ∈ C0(U). This is a common theme for many of the spaces of functions and

distributions that we will be using in the study of PDEs: we do not make any a priori

assumptions on the growth of f(x) as x approaches the boundary of U .

To fix this we can consider the space of compactly supported continuous functions:

Definition 1.5. Let U ⊂◦ Rn and f : U → C. Define the support of f , denoted

supp f , as the closure of the set {x ∈ U | f(x) ̸= 0} in U . We say that f is compactly

supported if supp f is a compact subset of U .
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For example, if U = B◦(0, 1) is the open unit ball, then the function f(x) ≡ 1 is

not compactly supported since its support is the whole U . But the indicator function

f = 1B(0,1/2) is compactly supported. We typically use Definition 1.5 for continuous

functions only.

Denote by C0
c (U) the space of compactly supported functions in C0(U). Then

∥ • ∥C0 defines a norm on C0
c (U), though C

0
c (U) is not complete with respect to this

norm (see Exercise 1.2 below). Moreover, we have the inclusion

C0
c (U) ⊂ Lp(U) for all p.

Finally, any function f ∈ C0
c (U) is uniformly continuous, thus it has a modulus of

continuity:

ωf (ε) := sup
{
|f(x)− f(y)| : x, y ∈ U, |x− y| ≤ ε

}
→ 0 as ε→ 0 + . (1.21)

We next define the spaces Ck of k times continuously differentiable functions:

Definition 1.6. Let U ⊂◦ Rn. Define the space C1(U) consisting of continuously

differentiable functions:

C1(U) := {f ∈ C0(U) | ∂x1f, . . . , ∂xnf exist and lie in C0(U)}.

For an integer k ≥ 2, define the space Ck(U) inductively by

Ck(U) := {f ∈ Ck−1(U) | ∂x1f, . . . , ∂xnf exist and lie in Ck−1(U)}.

Denote by Ck
c (U) the space of compactly supported functions in Ck(U).

Remark 1.7.X Even though we used partial derivatives with respect to the given

coordinates in the definition above, the resulting spaces are independent of the choice of

linear coordinates on Rn. A conceptual way to see this would be to give an alternative

definition of C1 in terms of the (Fréchet) differential df : U → (Rn)′, define C2 using

the differential d(df) : U → (Rn)′⊗ (Rn)′ etc. but we do not develop this here since for

our purposes working with coordinates is perfectly fine.

Remark 1.8. The closure in the definition of support is important in particular

because this makes support well-behaved under differentiation:

supp(∂xjf) ⊂ supp f for all f ∈ C1(U). (1.22)

Indeed, if x ∈ U \ supp f , then f vanishes on some ball B(x, ε) centered at x, so

∂xjf(x) = 0.

The set {f ̸= 0} is not closed under differentiation: consider for example the

function f(x) = x on R.

To work with higher order derivatives, we introduce the multiindex notation. A

multiindex in Rn is a vector α = (α1, . . . , αn) whose entries are nonnegative integers.
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We denote (recalling that for functions in Ck the order of differentiation k times does

not matter)

|α| := α1 + · · ·+ αn, ∂αx := ∂α1
x1
. . . ∂αn

xn .

A norm on Ck
c (U) (which is coordinate dependent but the resulting topology is canon-

ical) is given by

∥f∥Ck := max
|α|≤k

sup
x∈U

|∂αx f(x)|. (1.23)

For later use, we also introduce the notation

xα := xα1
1 · · · xαn

n , x = (x1, . . . , xn) ∈ Rn. (1.24)

1.2.4. The spaces C∞ and C∞
c . We now define the spaces C∞ and C∞

c that are

ubiquitous in the rest of these notes.

Definition 1.9. Let U ⊂◦ Rn. We say that a function f : U → C lies in C∞(U) if

it lies in Ck(U) for all k, that is

C∞(U) :=
⋂
k≥0

Ck(U).

The elements of C∞(U) are called smooth functions.

We say that a function f lies in C∞
c (U) if it lies in C∞(U) and is compactly

supported. We often call functions in C∞
c (U) test functions because of the way they

are used to define the space of distributions later.

Note that the partial differential operators ∂xj act

∂xj : C
∞(U) → C∞(U), C∞

c (U) → C∞
c (U). (1.25)

Remark 1.10.X In principle, most of the results involving the spaces C∞ can be

proved for the spaces Ck where k is large enough. But this means we will have to keep

track of the value of k, which changes from place to place (as seen already from (1.25):

the operator ∂xj does not map Ck to itself). The space C∞ provides a much cleaner

way to develop the basic theory and, as we see very soon, it still contains a lot of

functions.

It is easy to give plenty of examples of functions in C∞(Rn); one can for example

take any polynomial. Nontrivial functions in C∞
c (Rn) are a bit harder to construct

because a lot of basic formulas produce functions which are real analytic and thus

cannot be compactly supported (or even vanish on any ball) unless they are identically

zero. A standard example of a function in C∞
c (Rn), and one which is used in the next

section to construct many more functions in this space, is given by the ‘bump function’

f(x) =

{
exp

(
− 1

1−|x|2
)
, |x| < 1;

0, |x| ≥ 1.
(1.26)
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Figure 1.1. The ‘bump function’ (1.26).

The function (1.26) is plotted on Figure 1.1. See for example [Hör03, Lemma 1.2.3]

for a proof that this function does indeed lie in C∞
c (Rn).

1.3. Convolution and approximation by smooth functions

We now discuss how to approximate ‘rough’ functions (e.g. those in C0 or Lp) by

‘smooth’ functions (those in C∞
c ). One of the goals is to prove the following

Theorem 1.11. Let U ⊂◦ Rn. Then the space C∞
c (U) is dense in the space C0

c (U),

more precisely for each f ∈ C0
c (U) there exists a sequence fk ∈ C∞

c (U) such that fk → f

uniformly on U and all the supports supp fk are contained in some k-independent

compact subset of U .

We will also show the Lp version of this statement, see Theorem 1.14 below.

1.3.1. Convolution. To show Theorem 1.11 we take a function f ∈ C0
c (U) and

mollify it to get a function fn ∈ C∞
c (U). This is typically done using convolution, which

is an operation on functions on Rn important in its own right. Thus we start with

introducing convolution and studying its basic properties. We assume for now that

the convolved functions are in C0
c (Rn) but the integral below makes sense under much

weaker assumptions. In fact, convolution appeared in these notes already in (1.2).

See [Hör03, §1.3] and [Str11, §6.3.2] for more information about convolution.

Definition 1.12. Assume that f, g ∈ C0
c (Rn). Define their convolution f ∗ g ∈

L∞(Rn) by

f ∗ g(x) =
∫
Rn

f(y)g(x− y) dy, x ∈ Rn. (1.27)

Some standard properties of convolution are collected in
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Theorem 1.13. 1. For f, g ∈ C0
c (Rn) we have f ∗ g ∈ C0

c (Rn) and

supp(f ∗ g) ⊂ supp f + supp g := {x+ y | x ∈ supp f, y ∈ supp g}. (1.28)

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h and f ∗ g = g ∗ f , that is convolution is associative and

commutative.

3. If f ∈ C0
c (Rn) and g ∈ C1

c (Rn), then f ∗ g ∈ C1
c (Rn) and

∂xj(f ∗ g) = f ∗ (∂xjg).

4. If f ∈ C0
c (Rn) and g ∈ Ck

c (Rn), then f ∗ g ∈ Ck
c (Rn) and

∂αx (f ∗ g) = f ∗ (∂αx g) for all α, |α| ≤ k.

Proof. 1. We first check that f ∗ g is continuous. Let x, x̃ ∈ Rn. We compute

|(f ∗ g)(x)− (f ∗ g)(x̃)| =
∣∣∣∣ ∫

Rn

f(y)
(
g(x− y)− g(x̃− y)

)
dy

∣∣∣∣
≤ ∥f∥L1(Rn) sup

y

∣∣g(x− y)− g(x̃− y)
∣∣.

Since g lies in C0
c (Rn), it has a modulus of continuity ωg, see (1.21). We then estimate

|(f ∗ g)(x)− (f ∗ g)(x̃)| ≤ ∥f∥L1(Rn) ωg(|x− x̃|)

which shows that the function f ∗ g is continuous.

For the support property, we note first that the set {x ∈ Rn | f ∗ g(x) ̸= 0} is

contained in supp f + supp g since in order for f ∗ g(x) to be nonzero there must exist

some y ∈ Rn such that f(y) ̸= 0 and g(x − y) ̸= 0. Next, the set supp f + supp g is

compact (as the image of the compact set supp f×supp g under the map (x, y) 7→ x+y)

and thus closed, so supp(f ∗ g) ⊂ supp f + supp g.

2. For associativity, we compute

f ∗ (g ∗ h)(x) =
∫
R2n

f(y)g(z)h(x− y − z) dydz,

(f ∗ g) ∗ h(x) =
∫
R2n

f(p)g(q − p)h(x− q) dpdq

and make the change of variables y = p, z = q − p. Commutativity follows similarly

by using the change of variables y 7→ x− y.

3. The fact that f∗g is compactly supported already follows from (1.28), and we also

know that f ∗(∂xjg) is continuous. Thus it remains to show that ∂xj(f ∗g) = f ∗(∂xjg).
Denoting by e1, . . . , en the canonical basis of Rn, we compute for x ∈ Rn and t ∈ R\{0}

(f ∗ g)(x+ tej)− f ∗ g(x)
t

=

∫
Rn

f(y)
g(x− y + tej)− g(x− y)

t
dy.
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Figure 1.2. Left: the mollifying kernels χε from (1.31) for n = 1 and

several values of ε. Right: a function f on R (in black) and its successive

mollifications fε. We have fε → f uniformly in x.

From the Mean Value Theorem and the fact that ∂xjg is uniformly continuous we get

g(z + tej)− g(z)

t
→ ∂xjg(z) as t→ 0 uniformly in z ∈ Rn. (1.29)

Since f is bounded and compactly supported, we can pass to the limit under the

integral sign and get

(f ∗ g)(x+ tej)− f ∗ g(x)
t

→
∫
Rn

f(y)∂xjg(x− y) dy = f ∗ (∂xjg)(x) as t→ 0

which means that ∂xj(f ∗ g)(x) = f ∗ (∂xjg)(x).
4. This follows from the previous property by induction on k. □

From part 4 of Theorem 1.13 we see that

f ∈ C0
c (Rn), g ∈ C∞

c (Rn) =⇒ f ∗ g ∈ C∞
c (Rn). (1.30)

That is, convolving a rough function with a smooth one produces a smooth result.

1.3.2. Mollification and the density theorems. We are now ready to give

Proof of Theorem 1.11. 1. Fix a ‘bump function’

χ ∈ C∞
c (Rn), suppχ ⊂ B(0, 1),

∫
Rn

χ(x) dx = 1.

One way to construct it is to multiply the function (1.26) by a constant.

For ε > 0, define the rescaling (see Figure 1.2)

χε(x) := ε−nχ
(x
ε

)
, χε ∈ C∞

c (Rn), suppχε ⊂ B(0, ε). (1.31)

Let U ⊂◦ Rn. Take arbitrary f ∈ C0
c (U) and extend it by 0 to a function in C0

c (Rn)

(which we still denote by f). Define the mollifications of f as

fε := f ∗ χε. (1.32)
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(See Figure 1.2.) From (1.30) and (1.28), we see that for each ε > 0

fε ∈ C∞
c (Rn), supp fε ⊂ supp f +B(0, ε).

Since supp f ⊂ U is compact, for ε small enough (that is, smaller than the distance

between supp f and Rn \ U) we have supp fε ⊂ U and thus we can think of fε as a

function in C∞
c (U). We claim that

fε → f as ε→ 0 + uniformly on Rn. (1.33)

Once we show (1.33), the proof of Theorem 1.11 is finished (we can for example take

fk := fε with ε = 1/k for large k).

2. To show (1.33), let ωf be the modulus of continuity of f defined in (1.21). Take

x ∈ Rn and estimate

|f(x)− fε(x)| =
∣∣∣∣ ∫

Rn

(
f(x)− f(x− y)

)
χε(y) dy

∣∣∣∣
≤ ∥χε∥L1(Rn) sup

y∈B(0,ε)

∣∣f(x)− f(x− y)
∣∣

≤ ∥χ∥L1(Rn) ωf (ε)

(1.34)

Here in the first line we use the definition of convolution and the fact that
∫
χε = 1.

In the second line we use that suppχε ⊂ B(0, ε). In the last line we use that ∥χε∥L1 =

∥χ∥L1 . Now the expression on the last line of (1.34) is independent of x and converges

to 0 as ε→ 0+, which gives the uniform convergence statement (1.33) and finishes the

proof. □

We now give an Lp version of Theorem 1.11:

Theorem 1.14. Let U ⊂◦ Rn and 1 ≤ p < ∞. Then the space C∞
c (U) is dense in

the space Lp(U), more precisely for each f ∈ Lp(U) there exists a sequence fk ∈ C∞
c (U)

such that fk → f in Lp(U).

Proof. We do not give a detailed proof to avoid going too deep into the details

of Lebesgue theory of integration. But here is a scheme of a proof:

• Using Theorem 1.11 and the fact that C0
c (U)-convergence in that theorem

implies convergence in Lp(U), we see that it suffices to show that C0
c (U) is

dense in Lp(U).

• A standard fact in the theory of Lebesgue integral is that the space of simple Lp

functions is dense in Lp(U), where ‘simple’ means that the function only takes

finitely many different values. So it remains to show that any simple function

can be approximated in Lp(U) by functions in C0
c (U), and this immediately

reduces to approximating indicator functions 1A where A ⊂ U is measurable

of finite measure.
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• For A as above, the regularity property of Lebesgue measure implies that

for each ε > 0 there exists a compact set K and an open set V such that

K ⊂ A ⊂ V ⊂ U . There exists a function g ∈ C0
c (U) such that g = 1 on K,

0 ≤ g ≤ 1 everywhere, and supp g ⊂ V (it can be constructed for example as

a function of distance to K). Then ∥1A − g∥Lp(U) ≤ ε1/p and, since ε can be

chosen arbitrarily small, we can approximate 1A in Lp by functions in C0
c (U).

□

1.3.3. More on smooth compactly supported functions. We finally give

two more statements about the spaces C∞
c . The first one is the existence of smooth

partitions of unity:

Theorem 1.15. Let U1, . . . , Um ⊂◦ Rn and K ⊂ U1 ∪ · · · ∪ Um be a compact set.

Then there exist functions

χj ∈ C∞
c (Uj), j = 1, . . . ,m, χj ≥ 0, χ1 + · · ·+ χm ≤ 1,

χ1 + · · ·+ χm = 1 in a neighborhood of K.

The last statement above can be alternatively written as supp(1−χ1−· · ·−χm)∩K = ∅.

For the proof of Theorem 1.15, see for example [Hör03, Theorem 1.4.5]. One of the

key points of the proof is that one can construct a function in C∞
c (Rn) approximating

the indicator function of a set A by taking the convolution 1A ∗ χε for small ε > 0

similarly to the proof of Theorem 1.11.

The second statement, which is crucial for the development of the theory of distri-

butions, tells us that a function f ∈ L1
loc(U) is determined uniquely by the integrals∫

U
fφ for all the functions φ ∈ C∞

c (U):

Theorem 1.16. Let U ⊂◦ Rn, f ∈ L1
loc(U), and assume that∫

U

f(x)φ(x) dx = 0 for all φ ∈ C∞
c (U). (1.35)

Then f(x) = 0 for almost every x ∈ U .

Proof. As with Theorem 1.14 we do not give a detailed proof to avoid going too

much into Lebesgue integration theory. But here are the sketches of two different

proofs:

• The equation (1.35) actually holds for all φ ∈ C0
c (U). Indeed, by Theorem 1.11

we can take a sequence φk ∈ C∞
c (U) which converges to φ. We have

∫
U
fφk =

0 for all k and we can pass to the limit under the integral to get
∫
U
fφ = 0

as well. Now, the uniqueness part of the Riesz representation theorem for

measures gives that f = 0 almost everywhere.
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• It suffices to show that ψf = 0 almost everywhere for any ψ ∈ C∞
c (U).

Consider a mollifying kernel χε as in (1.31) and define the convolution (ψf) ∗
χε, where we extend ψf by zero to a function on Rn. Using (1.35) for the

function φ(y) = ψ(y)χε(x−y), we see that (ψf)∗χε(x) = 0 for all x ∈ Rn. On

the other hand, we have (ψf) ∗χε(x) → ψf(x) as ε→ 0+ for almost every x:

|ψf(x)− (ψf) ∗ χε(x)| =
∣∣∣∣ ∫

Rn

(
ψf(x)− ψf(y)

)
χε(x− y) dy

∣∣∣∣
≤ sup |χ| · ε−n

∫
B(x,ε)

∣∣ψf(x)− ψf(y)
∣∣ dy → 0 for a.e. x

where the last step follows from the Lebesgue Differentiation Theorem. Thus

ψf = 0 almost everywhere. □

We finish this section by reviewing a simple yet very powerful tool, integration by

parts.

Theorem 1.17. Let U ⊂◦ Rn. Assume that f ∈ C1(U) and g ∈ C1
c (U). Then we

have for all j, ∫
U

(∂xjf(x))g(x) dx = −
∫
U

f(x)(∂xjg(x)) dx. (1.36)

Proof. We will show that∫
U

∂xjh(x) dx = 0 for all h ∈ C1
c (U). (1.37)

The identity (1.36) follows by applying (1.37) to the function h := fg.

To show (1.37), extend h by zero to a function in C∞
c (Rn), which we still denote by

h. For notational convenience assume that j = 1 and write x = (x1, x
′) where x′ ∈ Rn.

Now by Fubini’s Theorem∫
Rn

∂x1h(x) dx =

∫
Rn−1

∫
R
∂x1h(x1, x

′) dx1dx
′ = 0

since
∫
R ∂x1φ(x1) dx1 = 0 for any φ ∈ C1

c (R) by the Fundamental Theorem of Calculus.

□

Remark 1.18. If U is bounded with a smooth boundary, then the Divergence The-

orem for the vector field h(x)ej, where ej is the j-th coordinate vector on Rn, gives the

following version of (1.37) for h ∈ C1(U) (that is, C1 up to the boundary of U) which

is not necessarily compactly supported:∫
U

∂xjh(x) dx =

∫
∂U

h(x)nj(x) dS(x). (1.38)
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Here nj(x) is the j-th coordinate of the outward unit normal vector to ∂U at x and

dS is the area measure on ∂U . This in turn gives the integration by parts identity for

f, g ∈ C1(U)∫
U

(∂xjf(x))g(x) dx =

∫
∂U

f(x)g(x)nj(x) dS(x)−
∫
U

f(x)(∂xjg(x)) dx. (1.39)

1.4. Notes and exercises

For a quick review of classical differential calculus, see [Hör03, Chapter 1]. This is

in particular where our proof of Theorem 1.16 comes from, see [Hör03, Theorem 1.2.5].

Exercise 1.1. (4 = 1 + 1 + 2 pts) Assume that f ∈ C∞
c (R3) (see §1.2.4 below).

Let u be defined by the formula (1.2). Show that u solves the equation (1.1), following

the steps below:

(a) Show that ∆E(x) = 0 for all x ∈ R3 \ {0}.
(b) Show that u ∈ C∞(R3) and

∆u(x) =

∫
R3

E(x− y)∆f(y) dy.

(Hint: make the change of variables y 7→ x− y in the integral.)

(c) Fix x ∈ R3 and let Ωε := {y ∈ R3 : ε ≤ |x− y| ≤ ε−1} for small ε > 0. Write

∆u(x) = lim
ε→0+

∫
Ωε

E(x− y)∆f(y) dy

Use the Divergence Theorem/integration by parts twice to write ∆u(x) as an integral

over the sphere ∂B(x, ε). Letting ε→ 0+, show that ∆u = f .

Exercise 1.2. (1 pt) Let U := (−1, 1) ⊂ R. Show that the space C0
c (U) is not

complete with respect to the sup-norm.

Exercise 1.3. (1 pt) Let U := (−1, 1) ⊂ R. Show that C∞
c (U) is not dense

in L∞(U).





CHAPTER 2

Basics of distribution theory

2.1. Definition of distributions

We are now ready to introduce distributions, which are one of the central objects

of this course. The definition below is somewhat technical and some philosophical

explanations are provided later. But the general idea is: the space of distributions

on an open set U is the dual to the space of smooth compactly supported functions

C∞
c (U) (the latter also known as test functions), i.e. the space of continuous linear

functionals on C∞
c (U). The notion of convergence on C∞

c (U) is complicated (we only

study sequential convergence, see §2.2.1 below), so we first define a distribution as a

bounded linear functional, with the boundedness made precise in

Definition 2.1. Let U ⊂◦ Rn and assume that

u : C∞
c (U) → C

is a linear functional. We say that u is a distribution on U if for each compact set

K ⊂ U there exist constants C,N such that∣∣u(φ)∣∣ ≤ C∥φ∥CN for all φ ∈ C∞
c (U) such that suppφ ⊂ K. (2.1)

Here the CN norm ∥ • ∥CN is defined in (1.23) above.

We denote the set of all distributions on U by

D′(U).

This notation goes back to Laurent Schwartz, the inventor of the theory of distribu-

tions: he denoted D(U) := C∞
c (U), and D′(U) was its dual space.

Proposition 2.2.S D′(U) is a vector space.

The relation of distributions to functions comes from the following embedding of

locally integrable functions into distributions:

Proposition 2.3. Let U ⊂◦ Rn and f ∈ L1
loc(U). Define the linear functional

f̃ : C∞
c (U) → C, f̃(φ) =

∫
U

f(x)φ(x) dx for all φ ∈ C∞
c (U). (2.2)

Then f̃ is a distribution in D′(U) and the map f 7→ f̃ is linear and injective.

27
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Proof. The functional f̃ is a distribution because it satisfies the following bound

of type (2.1) for any compact K ⊂ U and φ ∈ C∞
c (U) such that suppφ ⊂ K:

|f̃(φ)| ≤ ∥1Kf∥L1 · ∥φ∥C0 .

Linearity of the map f 7→ f̃ is immediate, and injectivity follows from Theorem 1.16.

□

We now introduce important notation to be used throughout the rest of these notes:

• For f ∈ L1
loc(U), we identify the function f with the distribution f̃ from

Proposition 2.3;

• For f ∈ L1
loc(U) and φ ∈ C∞

c (U), we define the pairing

(f, φ) :=

∫
U

f(x)φ(x) dx; (2.3)

• For u ∈ D′(U) and φ ∈ C∞
c (U), we define the pairing

(u, φ) := u(φ). (2.4)

Sometimes we may even write (which is something you will see in textbooks

and papers using distribution theory, so you might as well get used to it)∫
U

u(x)φ(x) dx := u(φ)

which still means the distributional pairing and not an actual Lebesgue inte-

gral since u might not even be a function.

This notation might be confusing at first, but it makes the presentation much cleaner.

It is also represents the following philosophical point underlying the theory of distri-

butions. To specify a function f : U → C, we need to answer the following question:

For any x ∈ U , what is the value of f at the point x? (2.5)

To specify a distribution u ∈ D′(U), we need to answer a different question:

For any test function φ ∈ C∞
c (U), what is the integral

∫
U

u(x)φ(x) dx ? (2.6)

The question (2.6) provides weaker information than (2.5), which corresponds to the

fact that there are plenty of distributions which are not functions (as we will see

shortly). In fact, we cannot even answer the question (2.5) for a function f ∈ L1
loc(U)

because the space L1 is defined modulo equality almost everywhere.

Moreover, the question (2.6) more physically relevant because if u is a physical

quantity (for example, the temperature in some reservoir) then, since a physical sensor

has positive size, any measurement of u will produce an integral featuring u instead

of the value of u at a single point. (Not to mention that if we go to a subatomic scale

then the notion of the temperature at a given point does not make sense – all we can
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really define is the average temperature in a macroscopic region, which is a rougher

version of (2.6).)

A standard example of a distribution which is not a function is given by the Dirac

delta function:

Definition 2.4. Let U ⊂◦ Rn and y ∈ U be a point. Define the distribution

δy ∈ D′(U) by

(δy, φ) := φ(y) for all φ ∈ C∞
c (U).

This is something that has been used in physics much earlier than the mathemati-

cally rigorous development of the theory of distributions: if we think of a distribution

in D′(U) as, say, the density of electric charge, then δy is the density of the point

charge centered at y.

To see that δy is not a function, assume the contrary: δy = f for some f ∈ L1
loc(U).

Take arbitrary χ ∈ C∞
c (Rn) with χ(0) = 1 and consider the test function φε(x) :=

χ((x − y)/ε) which lies in C∞
c (U) for sufficiently small ε > 0. Then (f, φε) → 0 as

ε→ 0+ by the Dominated Convergence Theorem but (δy, φε) = 1.

2.2. Distributions and convergence

2.2.1. Sequential convergence of test functions. If X is a Banach space, then

a functional u : X → C is bounded if and only if it is continuous. We now give an

analog of this statement for distributions. A proper way to do this would be to define

a topology on C∞
c (U) but it turns out to be an inductive limit topology which is a

bit complicated to describe (related to property (1) in Definition 2.5 below). So we

instead settle for defining convergence of sequences of elements in C∞
c (U), which is

enough for our applications. See for example [RS81, §V.4] or [Rud91, §6.2] for the

definition of the inductive limit topology on C∞
c (U).

Definition 2.5. Let U ⊂◦ Rn and assume that φk ∈ C∞
c (U) is a sequence and

φ ∈ C∞
c (U). We say that

φk → φ as k → ∞ in C∞
c (U)

if the following two conditions hold:

(1) there exists compact K ⊂ U such that suppφk ⊂ K for all k, and

(2) we have ∥φk − φ∥CN → 0 as k → ∞ for all N .

We use the sequential notion of continuity to establish the equivalence of bound-

edness and continuity for functionals on C∞
c (U):

Proposition 2.6. Let u : C∞
c (U) → C be a linear functional. Then the following

are equivalent:
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(1) u is a distribution, that is it satisfies the norm bounds (2.1);

(2) for each sequence φk ∈ C∞
c (U), if φk → 0 in C∞

c (U), then (u, φk) → 0.

Proof. (1) ⇒ (2): Assume that φk → 0 in C∞
c (U). Then in particular there exists

K ⋐ U such that suppφk ⊂ K for all K. The norm bound (2.1) implies that there

exist C,N such that for all k

|(u, φk)| ≤ C∥φk∥CN .

The right-hand side goes to 0 as k → ∞, so (u, φk) → 0 as needed.

(2) ⇒ (1): We argue by contradiction. Assume that u does not satisfy the norm

bounds (2.1), that is there exists K ⋐ U such that for any choice of C,N there exists

φ ∈ C∞
c (U) such that suppφ ⊂ K and |(u, φ)| ≥ C∥φ∥CN . Choosing C = N = k and

dividing φ by u(φ), we construct a sequence

φk ∈ C∞
c (U), suppφk ⊂ K, (u, φk) = 1, ∥φk∥Ck ≤ 1

k
.

The sequence φk converges to 0 in C∞
c (U) since for all k ≥ m we have ∥φk∥Cm ≤

∥φk∥Ck ≤ 1
k
. Thus u does not satisfy the sequential continuity property (2). □

2.2.2. Weak convergence of distributions. We next discuss convergence of

sequences of distributions. This is a very weak notion of convergence, in contrast with

convergence in C∞
c (U) which is very strong.

Definition 2.7. Let U ⊂◦ Rn, uk ∈ D′(U) be a sequence, and u ∈ D′(U). We say

that

uk → u as k → ∞ in D′(U)

if we have

(uk, φ) → (u, φ) as k → ∞ for all φ ∈ C∞
c (U).

We give a few examples of weak convergence:

Proposition 2.8. If uk, u ∈ L1
loc(U) satisfy uk(x) → u(x) for almost every x ∈ U ,

and there exists g ∈ L1
loc(U) such that |uk(x)| ≤ g(x) for all k, then uk → u in D′(U).

Proof. This follows immediately from the Dominated Convergence Theorem. □

Proposition 2.9. Define the functions uk ∈ L1
loc(R) by

uk(x) := k1[−1/k,1/k](x).

(This is a classical example of a sequence which does not satisfy the assumptions of

the Dominated Convergence Theorem.) Then uk → 2δ0 in D′(R).
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Proof. Take arbitrary φ ∈ C∞
c (R). Then

(uk, φ) = k

∫ 1/k

−1/k

φ(x) dx → 2φ(0) = (2δ0, φ)

by the continuity of φ. □

Proposition 2.10. Define the functions uk ∈ L1
loc(R) by

uk(x) = eikx.

Then uk → 0 in D′(R).

Proof. Take arbitrary φ ∈ C∞
c (R). Then

(uk, φ) =

∫
R
eikxφ(x) dx = φ̂(−k)

where φ̂ is the Fourier transform of φ. We will study the Fourier transform in detail

later but for now we note that integration by parts using eikx = −(i/k)∂xe
ikx gives

|φ̂(−k)| = O(1/k) and thus (uk, φ) → 0. □

While the convergence in Definition 2.7 is indeed very weak, it does imply a (weak)

uniform bound on the sequence uk – see Theorem 4.16 below.

2.3. Localization

We now discuss how the space D′(U) depends on the open set U and the related

question of localization of distributions. This is easy for functions (when we have

access to values at points) and takes more effort for distributions.

As with many concepts later in these notes, we start by reviewing what happens

for functions and then generalize to distributions. Let V ⊂◦ U ⊂◦ Rn. Then we have

the restriction operator

L1
loc(U) → L1

loc(V ), f 7→ f |V .

Its generalization to distributions is given by

Definition 2.11. Let V ⊂◦ U ⊂◦ Rn. For u ∈ D′(U), define its restriction u|V ∈
D′(V ) as follows:

(u|V , φ) := (u, φ) for all φ ∈ C∞
c (V ).

Here C∞
c (V ) is considered a subset of C∞

c (U) as follows: for φ ∈ C∞
c (V ) we extend it

by 0 to produce an element of C∞
c (U) (owing to compactness of support).
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Proposition 2.12.S The restriction map rV,U : D′(U) → D′(V ) from Defini-

tion 2.11 is linear and satisfies

rU,U = I,

rW,V rV,U = rW,U for all W ⊂◦ V ⊂◦ U ⊂◦ Rn.

(In algebraic terms, we have obtained a presheaf – but if you don’t know what this

means, do not worry since we won’t be using this terminology later.)

The next theorem states that if we have an open cover of U , then a distribution on

U is uniquely determined from its restrictions to the elements of the cover. That is, if

we construct a distribution locally (i.e. on each set of the cover) then we can recover

it globally. The proof would be straightforward for functions but takes more effort for

distributions, using in a key way partitions of unity.

Theorem 2.13 (Sheaf property of distributions). Assume that J is an arbitrary

set and

Uj ⊂◦ Rn for j ∈ J , U =
⋃
j∈J

Uj.

Assume next that we are given uj ∈ D′(Uj), j ∈ J , satisfying the compatibility condi-

tions

uj|Uj∩Uℓ
= uℓ|Uj∩Uℓ

for all j, ℓ ∈ J . (2.7)

Then there exists unique u ∈ D′(U) such that

u|Uj
= uj for all j ∈ J . (2.8)

Proof. 1. We first show uniqueness of u, which can be reformulated as follows:

u ∈ D′(U), u|Uj
= 0 for all j ∈ J =⇒ u = 0. (2.9)

Recalling Definition 2.11, we can reformulate (2.9) as follows:

(u, ψ) = 0 for all j ∈ J , ψ ∈ C∞
c (Uj) ⇒ (u, φ) = 0 for all φ ∈ C∞

c (U). (2.10)

Take abritrary φ ∈ C∞
c (U). We can decompose it as

φ =
∑
j∈J

φj, φj ∈ C∞
c (Uj), (2.11)

where only finitely many of φj are nonzero. Indeed, since suppφ is compact and covered

by the open sets Uj, there exists a finite set J ′ ⊂ J such that suppφ ⊂
⋃
j∈J ′ Uj.

Using Theorem 1.15, we take a partition of unity

χj ∈ C∞
c (Uj), j ∈ J ′,

∑
j∈J ′

χj = 1 on suppφ.

Multiplying the last identity by φ, we get (2.11) if we put φj := χjφ for j ∈ J ′ and

φj := 0 otherwise.
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Pairing (2.11) with u, we get

(u, φ) =
∑
j∈J

(u, φj).

If the assumption in (2.10) holds, then (u, φj) = 0 for all j, which gives (u, φ) = 0 as

needed.

2. It remains to show that given uj ∈ D′(Uj) satisfying the compatibility condi-

tions (2.7), there exists u ∈ D′(U) satisfying (2.8). To define u, we need to specify

(u, φ) for each φ ∈ C∞
c (U). Take such φ and decompose it as in (2.11):

φ =
∑
j∈J

χjφ, χj ∈ C∞
c (Uj), (2.12)

where only finitely many χj are nonzero. We then put

(u, φ) :=
∑
j∈J

(uj, χjφ). (2.13)

The rest of the proof proceeds in several steps:

• The value of (u, φ) from (2.13) does not depend on the choice of the decom-

position (2.12). Indeed, assume that we have a different decomposition

φ =
∑
j′∈J

χ̃j′φ, χ̃j′ ∈ C∞
c (Uj′).

We write ∑
j∈J

(uj, χjφ) =
∑
j,j′∈J

(uj, χjχ̃j′φ)

=
∑
j,j′∈J

(uj′ , χjχ̃j′φ)

=
∑
j′∈J

(uj′ , χ̃j′φ)

giving the required independence. Here in the first equality above we use

that χjφ =
∑

j′∈J χjχ̃j′φ. In the second equality we use the compatibility

conditions (2.7): we have χjχ̃j′φ ∈ C∞
c (Uj ∩ Uj′) and the restrictions of uj

and uj′ to Uj ∩ Uj′ are equal. Finally, in the last equality we use that χ̃j′φ =∑
j∈J χjχ̃j′φ.

• (S) The map φ 7→ (u, φ) is linear. Indeed, take any φ(1), φ(2) ∈ C∞
c (U) and

a1, a2 ∈ C. Take a partition of unity (with only finitely many nonzero elements

as before)

χj ∈ C∞
c (Uj),

∑
j∈J

χj = 1 on suppφ(1) ∪ suppφ(2).
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Then (2.12) holds for φ(1), φ(2), and their linear combination a1φ
(1) + a2φ

(2).

By (2.13) and since the maps φ→ (uj, φ) are linear, we have

(u, a1φ
(1) + a2φ

(2)) =
∑
j∈J

(
uj, χj(a1φ

(1) + a2φ
(2))

)
= a1

∑
j∈J

(uj, χjφ
(1)) + a2

∑
j∈J

(uj, χjφ
(2))

= a1(u, φ
(1)) + a2(u, φ

(2))

which shows linearity.

• (S) The linear map u satisfies the bounds (2.1) and thus defines a distribution

in D′(U). Indeed, take any K ⋐ U . Fix a partition of unity

χj ∈ C∞
c (Uj),

∑
j∈J ′

χj = 1 on K,

where J ′ ⊂ J is a finite set. Since each of the finitely many distributions uj,

j ∈ J ′, satisfies the bounds (2.1), we can find C,N such that

|(uj, ψ)| ≤ C∥ψ∥CN for all j ∈ J ′, ψ ∈ C∞
c (Uj), suppψ ⊂ suppχj.

Then for each φ ∈ C∞
c (U) with suppφ ⊂ K we have by (2.13)

|(u, φ)| ≤
∑
j∈J ′

|(uj, χjφ)|

≤ C
∑
j∈J ′

∥χjφ∥CN

≤ C ′∥φ∥CN

for some constant C ′ depending only on C, N , and the functions χj. This

gives the bounds (2.1).

• We have u|Uj
= uj for all j ∈ J , that is (u, φ) = (uj, φ) for each φ ∈ C∞

c (Uj).

For such φ we have the decomposition (2.12) if we choose χj ∈ C∞
c (Uj) with

χj = 1 on suppφ and put χj′ = 0 for all j′ ̸= j. Then (2.13) gives

(u, φ) = (uj, χjφ) = (uj, φ)

finishing the proof. □

2.4. Notes and exercises

The modern theory of distributions was developed by Schwartz in the 1950s (and

was included in the citation for his Fields medal), see [Sch50, Sch57]. There have

been various precursors to this theory, most notably the definition of weak derivatives

of functions by Sobolev in [Sob36] in the context of existence and uniqueness theorems

for hyperbolic equations.
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Our presentation largely follows [Hör03, §§2.1–2.2] and [FJ98, §§1.3–1.4].

Exercise 2.1. (1 pt) Let U ⊂◦ Rn and assume that u ∈ D′(U) satisfies the bound

|(u, φ)| ≤ C∥φ∥L2(U)

for some constant C and all φ ∈ C∞
c (U). Show that u ∈ L2(U). (Hint: use the

Continuous Linear Extension theorem from functional analysis.)

Exercise 2.2. (1 pt) Let χ ∈ C∞
c (Rn) satisfy

∫
Rn χ = 1. Define

χε(x) := ε−nχ(x/ε), ε > 0.

Show that χε → δ0 in D′(Rn) as ε→ 0+.

Exercise 2.3. (2 pts) Assume that the sequence {ak}k∈Z satisfies

|ak| ≤ C(1 + |k|)N for some constants C,N.

Show that the Fourier series ∑
k∈Z

ake
ikx

converges in D′(R).

Exercise 2.4. (2 pts) Let U ⊂ Rn, V ⊂ Rn′
be open and consider a linear operator

A : C∞
c (U) → C∞

c (V ).

Show that the following two definitions of continuity of A are equivalent:

(1) the following two conditions both hold:

(a) for every K ⋐ U there exists K ′ ⋐ V such that for all φ ∈ C∞
c (U) with

suppφ ⊂ K, we have supp(Aφ) ⊂ K ′ (we can call this ‘uniform control

on compact support’); and

(b) for every K ⋐ U and N ∈ N there exist C > 0, N ′ ∈ N such that we

have the seminorm bound

∥Aφ∥CN (V ) ≤ C∥φ∥CN′ (U) for all φ ∈ C∞
c (U) with suppφ ⊂ K;

(2) for each sequence φk ∈ C∞
c (U) such that φk → 0 in C∞

c (U), we have Aφk → 0

in C∞
c (V ) (this is called ‘sequential continuity’).

(Hint: for the direction (2) ⇒ (1) you can argue by contradiction: if either 1(a)

or 1(b) fails then construct a sequence φk which violates sequential continuity. In case

of 1(a) it helps to take a sequence of compact subsets Kℓ exhausting V (see (1.14)): if

1(a) fails then there exists K ⊂ U such that neither of the sets Kℓ will work as K ′.)
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Exercise 2.5. (1 pt) Show that

u(φ) =
∞∑
k=1

∂kxφ(1/k), φ ∈ C∞
c ((0,∞))

defines a distribution on (0,∞) but this distribution does not extend to R, that is there
exists no v ∈ D′(R) such that u = v|(0,∞). (Hint: pair u with a dilated cutoff function

whose support contains 1/k but no other points of the form 1/j, j ∈ N.)



CHAPTER 3

Operations with distributions

To quote from [Hör03], “In differential calculus one encounters immediately the

unpleasant fact that every function is not differentiable. The purpose of distribution

theory is to remedy this flaw; indeed, the space of distributions is essentially the small-

est extension of the space of continuous functions where differentiation is always well

defined.”

In this chapter we learn how to differentiate distributions and also how to multiply

them by smooth functions. This will follow two general principles:

• Uniqueness of extension from a dense set: for any operator on the space of

smooth functions there is at most one continuous extension of this operator

to distributions, because any distribution can be approximated in D′(U) by

functions in C∞
c (U).

• Duality: one can extend many operators A : C∞(U) → C∞(U) to distribu-

tions by defining (Au, φ) = (u,Atφ) for all u ∈ D′(U), φ ∈ C∞
c (U), and a

correct choice of the transpose operator At. (We make this strategy into a

theorem in §7.3 below.) That is, one defines operations on distributions by

defining the dual operation on test functions.

Once we define the two fundamental operations above, we can apply to a distribution

any differential operator with smooth coefficients, and thus we can pose PDEs in

distributions. We are not yet ready to study any ‘serious’ PDE, but in this chapter we

will solve two ‘baby’ ODEs: u′ = 0 and xu = 0.

3.1. Differentiation

3.1.1. Definition. Before giving the definition of a derivative of a distribution,

let us first discuss which properties this operation should satisfy:

(1) We are looking for a linear operator ∂̃xj : D′(U) → D′(U) where U ⊂◦ Rn.

(2) This operator should agree with the usual (classical) partial derivative on nice

functions: if f ∈ C1(U) then ∂̃xjf = ∂xjf . Here C
1(U) ⊂ L1

loc(U) is embedded

into D′(U) in the standard way (2.2).

(3) This operator should also be (sequentially) continuous: if uk ∈ D′(U) is a

sequence converging to 0 in D′(U), then ∂̃xjuk → 0 in D′(U) as well.

37
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Remark 3.1. If an operator satisfying (1)–(3) above exists, then it is unique.

Indeed, we will show later (see Theorem 6.10) that C∞
c (U) is dense in D′(U), that is

for each u ∈ D′(U) there exists a sequence fk ∈ C∞
c (U) which converges to u in D′(U).

Then ∂̃xju has to be the limit in D′(U) of the classical derivatives ∂xjfk and thus is

uniquely determined.

This proof applies to other operators on distributions that we define below, and

makes it possible to shorten proofs of various identities featuring these operations: by

density it is enough to verify these identities for ‘nice’ functions only.

As mentioned above, we will define the operator ∂̃xj by duality:

(1) First, let us take a ‘nice’ f ∈ C1(U), and a test function φ ∈ C∞
c (U). Using

integration by parts (Theorem 1.17), we see that

(∂xjf, φ) =

∫
U

(∂xjf)φdx = −
∫
U

f(∂xjφ) dx = −(f, ∂xjφ). (3.1)

(2) Now we take (3.1) as the definition of ∂̃xj . More precisely, if u ∈ D′(U) and

φ ∈ C∞
c (U), then we define

(∂̃xju, φ) := −(u, ∂xjφ). (3.2)

Here we use that ∂xjφ ∈ C∞
c (U).

(3) It is direct to see (as ∂xj is a linear operator on C∞
c (U)) that the formula (3.2)

defines a linear functional ∂̃xju : C∞
c (U) → C. We now show that this func-

tional satisfies the bound (2.1) and thus gives a distribution ∂̃xju ∈ D′(U).

Fix arbitrary K ⋐ U . Since u is a distribution, it satisfies the bound (2.1):

there exist C,N such that

|(u, ψ)| ≤ C∥ψ∥CN for all ψ ∈ C∞
c (U) such that suppψ ⊂ K.

If φ ∈ C∞
c (U) and suppφ ⊂ K, then we apply the above bound with ψ := ∂xjφ

to get

|(∂̃xju, φ)| = |(u, ∂xjφ)| ≤ C∥∂xjφ∥CN ≤ C∥φ∥CN+1 ,

that is the bound (2.1) does indeed hold for ∂̃xju with N replaced by N + 1.

(Alternatively, we could use Proposition 2.6 and the fact that if φk → 0 in

C∞
c (U), then ∂xjφk → 0 in C∞

c (U) as well.)

(4) From (3.1) we see that if f ∈ C1(U), then ∂̃xjf = ∂xjf . Moreover, the operator

∂̃xj is sequentially continuous on D′(U). Indeed, if uk ∈ D′(U) converges to 0

in D′(U), then for each φ ∈ C∞
c (U) we have

(∂̃xjuk, φ) = −(uk, ∂xjφ) → 0

and thus ∂̃xjuk → 0 in D′(U) as well.
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We now constructed the operator ∂̃xj that satisfies the properties (1)–(3) above. By a

slight abuse of notation, we will henceforth forget about the tilde and just write

∂xju := ∂̃xju for all u ∈ D′(U).

We remark that we still have ∂xj∂xℓ = ∂xℓ∂xj in distributions, so we can define ∂αx :

D′(U) → D′(U) for any multiindex α.

3.1.2. Examples. Having defined derivatives of distributions, we look at a few

examples with U = R:

• u(x) = |x|. To compute u′ = ∂xu ∈ D′(R), take arbitrary φ ∈ C∞
c (R) and

write

(u′, φ) = −(u, φ′) = −
∫
R
|x|φ′(x) dx

=

∫ 0

−∞
xφ′(x) dx−

∫ ∞

0

xφ′(x) dx

= −
∫ 0

−∞
φ(x) dx+

∫ ∞

0

φ(x) dx

where in the last equality we use integration by parts, with the boundary

terms being zero. This shows that ∂x|x| is given by the locally integrable

function sgnx:

∂x|x| = sgnx :=

{
1, x > 0,

−1, x < 0.

• The Heaviside function:

H(x) :=

{
1, x > 0,

0, x < 0.
(3.3)

Take arbitrary φ ∈ C∞
c (R) and compute

(H ′, φ) = −(H,φ′) = −
∫ ∞

0

φ′(x) dx = φ(0)

where the last equality follows from the Fundamental Theorem of Calculus.

Thus the distributional derivative of the Heaviside function is the Dirac delta

‘function’:

H ′(x) = δ0(x). (3.4)

• The delta function δ0. Take arbitrary φ ∈ C∞
c (R) and compute

(δ′0, φ) = −(δ0, φ
′) = −φ′(0).

There isn’t a better way to write this down, so we just denote the derivative

of the delta function by δ′0.
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3.1.3. A differential equation. We are now ready to solve our first differential

equation, u′ = 0. In this case being in distributions does not produce any new solutions:

Proposition 3.2. Assume that U ⊂ R is an open interval, u ∈ D′(U), and u′ = 0.

Then u is a constant function.

Proof. The statement that u′ = 0 in distributions is equivalent to

(u, ψ′) = 0 for all ψ ∈ C∞
c (U).

Let us rewrite this as follows:

(u, φ) = 0 for all φ in the space V := {ψ′ | ψ ∈ C∞
c (U)}. (3.5)

The space V has codimension 1 inside C∞
c (U), indeed it can be characterized as

V =

{
φ ∈ C∞

c (U)

∣∣∣∣ ∫
U

φ(x) dx = 0

}
.

To check this, we have to show that each φ ∈ C∞
c (U) which integrates to 0 can be

written as ψ′ for some ψ ∈ C∞
c (U), which can be done by putting ψ(x) =

∫ x
a
φ(t) dt

where a ∈ U lies to the left of suppφ.

Now, fix χ0 ∈ C∞
c (U) such that

∫
U
χ0(x) dx = 1. Then for each φ ∈ C∞

c (U) we

have

φ− (1, φ)χ0 ∈ V where (1, φ) =

∫
U

φ(x) dx.

Then by (3.5) we have for all φ ∈ C∞
c (U)

(u, φ) = (1, φ)(u, χ0) =
(
(u, χ0)1, φ),

that is u = (u, χ0)1 is a constant function. □

3.2. Multiplication by smooth functions

3.2.1. Definition and basic properties. The next operation we extend to dis-

tributions is the multiplication operator

f ∈ L1
loc(U) 7→ af

where a ∈ C∞(U) is given. For each f ∈ L1
loc(U) and a test function φ ∈ C∞

c (U) we

have

(af, φ) =

∫
U

a(x)f(x)φ(x) dx = (f, aφ).

Thus we define for u ∈ D′(U) and a ∈ C∞(U) the product au ∈ D′(U) as follows:

(au, φ) := (u, aφ) for all φ ∈ C∞
c (U). (3.6)

This gives the usual pointwise multiplication when u ∈ L1
loc(U). Arguing similarly

to §3.1 we see that au is indeed a distribution and the map u 7→ au is sequentially

continuous.
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Remark 3.3. The definition (3.6) uses crucially that a ∈ C∞(U) and thus aφ ∈
C∞

c (U). In general it is not possible to define the product au when u is an arbitrary

distribution and a is a non-smooth function. Similarly, we generally cannot define the

product of two distributions. Indeed, let uk be the step function from Proposition 2.9,

with uk → 2δ0 in D′(R). If we could define products of distributions, we would expect

that u2k → 4δ20, but

u2k(x) = k21[−1/k,1/k](x)

does not have a limit in D′(R) since (u2k, χ) → ∞ for any χ ∈ C∞
c (R) such that

χ(0) > 0.

As one would expect, the Leibniz rule still applies in distributions:

Proposition 3.4. Assume that u ∈ D′(U) and a ∈ C∞(U). Then

∂xj(au) = (∂xja)u+ a(∂xju). (3.7)

Remark 3.5. Note that (3.7) features the distributional derivatives defined in (3.2)

and the distributional multiplication by a smooth function a defined in (3.6). If we

denote the first of these operators by ∂̃xj and the second one by Ma, then a more

pedantic way to write (3.7) would be

∂̃xj(Ma(u)) =M∂xja
(u) +Ma(∂̃xj(u)).

Proof of Proposition 3.4. First proof: We can do this by direct computation.

Let φ ∈ C∞
c (U), then

(∂xj(au), φ) = −(au, ∂xjφ) = −(u, a(∂xjφ)),

((∂xja)u, φ) = (u, (∂xja)φ),

(a(∂xju), φ) = (∂xju, aφ) = −(u, ∂xj(aφ))

which gives (3.7) since ∂xj(aφ) = (∂xja)φ+ a(∂xjφ).

Second proof: This one relies on the density of C∞
c in D′ that we have not proved

yet, but it is more robust than the first one. By Theorem 6.10 below, there exists a

sequence fk ∈ C∞
c (U) converging to u in D′(U). By the usual Leibniz rule we have for

all k

∂xj(afk) = (∂xja)fk + a(∂xjfk).

We now pass to the limit in D′(U), using that the operations u 7→ ∂xju and u 7→ au

are sequentially continuous, and obtain (3.7). □

As a basic example of multiplication of distributions and smooth functions we have

the following formula featuring the delta function: if y ∈ U and a ∈ C∞(U), then

a(x)δy(x) = a(y)δy(x). (3.8)
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3.2.2. Another differential equation. The next proposition solves the differ-

ential equation xu = 0 in distributions. This time there are interesting solutions which

are not functions, namely constant multiples of the Dirac delta function δ0, where

xδ0(x) = 0 by (3.8).

Proposition 3.6. Let U ⊂◦ R be an interval containing 0. Assume that u ∈ D′(U)

and xu = 0. Then u = cδ0 for some c ∈ C.

The proof of Proposition 3.6 uses the following lemma from classical analysis which

is important in its own right:

Lemma 3.7. Assume that U ⊂◦ R is an interval containing 0 and φ ∈ C∞
c (U)

satisfies φ(0) = 0. Then there exists ψ ∈ C∞
c (U) such that φ(x) = xψ(x).

Proof. It is tempting to just define ψ(x) := φ(x)/x and compute derivatives of

all orders to see that they extend continuously to x = 0. But a faster strategy is to

apply the Fundamental Theorem of Calculus to the function t 7→ φ(tx) on the interval

[0, 1] and get for x ∈ U

φ(x) =

∫ 1

0

∂t(φ(tx)) dt = xψ(x) where ψ(x) :=

∫ 1

0

φ′(tx) dt.

Differentiating under the integral sign, we get that ψ ∈ C∞(U), and it is compactly

supported since φ(x) = xψ(x) and φ is compactly supported. □

We can now give

Proof of Proposition 3.6. We follow a similar scheme to Proposition 3.2. The

statement that xu = 0 in distributions is equivalent to

(u, φ) = 0 for all φ in the space V := {xψ | ψ ∈ C∞
c (U)}. (3.9)

From Lemma 3.7 we see that V has codimension 1, in fact

V = {φ ∈ C∞
c (U) | φ(0) = 0}.

Fix χ0 ∈ C∞
c (U) such that χ0(0) = 1. Then for each φ ∈ C∞

c (U) we have

φ(x)− φ(0)χ0(x) ∈ V .

By (3.9) this implies that for all φ ∈ C∞
c (U)

(u, φ) = φ(0)(u, χ0) =
(
(u, χ0)δ0, φ

)
,

that is u = (u, χ0)δ0 is a multiple of the delta function. □
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3.3. Notes and exercises

A natural generalization of Proposition 3.2 is that for a linear ODE

u(m)(x) + am−1(x)u
(m−1)(x) + · · ·+ a0(x)u(x) = f ∈ C0(U)

on an interval U ⊂◦ R with coefficients aj ∈ C∞(U), all distributional solutions are

classical, i.e. they lie in Cm(U). See [Hör03, Corollary 3.1.6]. If f ∈ C∞(U) then we

can also see this as a corollary of elliptic regularity, proved in Theorem 14.2 below.

Our presentation follows [Hör03, §3.1] and [FJ98, Chapter 2].

Exercise 3.1. (1 pt) Consider a function f : R → C such that f lies in C1 on

(−∞, a) and (a,∞) for some a ∈ R and the derivative f ′ ∈ C0(R \ {a}) is locally

integrable on R. The latter implies the existence of one-sided limits f(a + 0) and

f(a− 0). Show that

∂xf = f ′ + (f(a+ 0)− f(a− 0))δa

where ∂xf denotes the distributional derivative of f ∈ D′(R).

Exercise 3.2. (1 pt) Assume that u, v ∈ C0(R) and ∂xu = v in the sense of

distributions in D′(R). Show that u ∈ C1(R) and u′ = v in the sense of the ordinary

derivative. That is, if the distributional derivative is continuous, then it is the ordinary

derivative.

Exercise 3.3. (3 = 1 + 2 pts) (a) For m ∈ N, write x∂mx δ0 ∈ D′(R) as a linear

combination of δ0, ∂xδ0, . . . , ∂
m−1
x δ0.

(b) Show that the space of solutions to the equation xmu = 0, u ∈ D′(R), is the span

of δ0, ∂xδ0, . . . , ∂
m−1
x δ0. (Hint: for m = 1 this was done in class. The m = 1 result can

be iterated to get the general case.)

Exercise 3.4. (2 pts) Find all u ∈ D′(R) such that u sinx = 0.

Exercise 3.5. (2 pts) This exercise gives a higher dimensional version of the

Division Lemma 3.7. Let U ⊂◦ Rn contain 0. Define

V := {x1ψ1 + · · ·+ xnψn | ψ1, . . . , ψn ∈ C∞
c (U)} ⊂ C∞

c (U).

(In algebraic terms, at least if we forget about the compact support condition, V is the

ideal generated by x1, . . . , xn.) Show that

V = {φ ∈ C∞
c (U) | φ(0) = 0}.

(Hint: first show that V contains C∞
c (U\{0}), by taking a partition of unity subordinate

to covering by the sets U ∩ {xj ̸= 0}. Next, take arbitrary φ ∈ C∞
c (U) such that

φ(0) = 0 and use the Fundamental Theorem of Calculus for the function t 7→ φ(tx) to

write φ as the sum of an element of V and an element of C∞
c (U \ {0}).)
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Exercise 3.6. (1 pt) Let U ⊂◦ Rn contain 0. Using Exercise 3.5, find all solutions

u ∈ D′(U) to the system of equations

x1u = x2u = · · · = xnu = 0.



CHAPTER 4

Distributions and support

In this chapter we define the support of a distribution. We next consider the space

E ′ of distributions with compact support and give an alternative characterization of

it as the dual to C∞. The latter is a Fréchet space, which lets us prove a Banach–

Steinhaus Theorem for distributions. Finally, we give a complete description of the

space of distributions supported at a single point.

4.1. Support of a distribution

Recall from Definition 1.5 that the support of a continuous function f is the closure

of the set {x | f(x) ̸= 0}. If f is instead a distribution, then we cannot define the

support this way since we cannot evaluate f at a point. Luckily, all we actually

need is to know when f vanishes identically on an open subset, which makes sense in

distributions thanks to the restriction operator from Definition 2.11.

Definition 4.1. Let U ⊂◦ Rn and u ∈ D′(U). We say a point x ∈ U does not lie

in suppu if there exists V ⊂◦ U containing x and such that u|V = 0. This defines a

subset

suppu ⊂ U.

From the definition above we see that suppu is a relatively closed subset of U since

its complement is open. We also see that for f ∈ C0(U), Definitions 1.5 and 4.1 give

the same set supp f . As another example, the support of a delta function consists of

a single point:

supp δy = {y}.
The next statement is trivial for continuous functions, but it needs a proof for distri-

butions since support of the latter is not defined in a pointwise way.

Proposition 4.2. Let u ∈ D′(U). Then

u|U\suppu = 0.

That is, if φ ∈ C∞
c (U) and suppu ∩ suppφ = ∅, then (u, φ) = 0.

Proof. Here is a short proof: for each x ∈ U \ suppu, there exists Vx ⊂◦ U \ suppu
containing x and such that u|Vx = 0. The sets Vx cover U \suppu, so by the uniqueness

part of Theorem 2.13 applied to u|U\suppu, we see that u|U\suppu = 0.

45



46 4. DISTRIBUTIONS AND SUPPORT

Alternatively we can repeat part of the proof of Theorem 2.13. Assume that φ ∈
C∞

c (U) and suppu ∩ suppφ = ∅. Then for each x ∈ suppφ there exists Vx ⊂◦ U
containing x and such that u|Vx = 0. Using a partition of unity we can write φ =

φ1 + · · · + φm where each φj ∈ C∞
c (U) is supported in one of the sets Vx. Then

(u, φj) = 0 and thus (u, φ) = 0. □

Other properties of the support of a distribution are given in

Proposition 4.3.S Let U ⊂◦ Rn. For all u, v ∈ D′(U) and a ∈ C∞(U) we have:

(1) u = 0 if and only if suppu = ∅;
(2) supp(u+ v) ⊂ suppu ∪ supp v;

(3) supp(au) ⊂ supp a ∩ suppu;

(4) supp(∂xju) ⊂ suppu;

(5) if au = 0 then suppu ⊂ {x ∈ U | a(x) = 0};
(6) if V ⊂◦ U then supp(u|V ) = suppu ∩ V ;

(7) if uk → u in D′(U), then suppu is contained in the closure (in U) of the union⋃
k suppuk.

We omit the proofs since they are straightforward; some of the above properties

are assigned as exercises below.

Later in §8.3 we will study the related notion of singular support which will be

essential for Elliptic Regularity.

4.2. Distributions with compact support

Let U ⊂◦ Rn. We previously defined D′(U) as the dual to the space C∞
c (U). One

can alternatively consider the space E ′(U) which is dual to the space C∞(U) of all

smooth functions, not necessarily compactly supported. (The notation E ′ goes back

to Schwartz who denoted E := C∞.) In this section we define the space E ′(U) and

identify it with the space of compactly supported distributions in D′(U).

We start by defining convergence of sequences in C∞(U), by requiring uniform

convergence of all derivatives on every compact set. For K ⋐ U and φ ∈ C∞(U),

define the seminorm

∥φ∥CN (U,K) := max
|α|≤N

sup
x∈K

|∂αxφ(x)|. (4.1)

Definition 4.4. Let φk ∈ C∞(U) be a sequence and φ ∈ C∞(U). We say that

φk → φ in C∞(U) if

∥φk − φ∥CN (U,K) → 0 as k → ∞ for all K ⋐ U and N.

We define the space E ′(U) in a way analogous to the alternative definition of D′(U)

from Proposition 2.6:
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Definition 4.5. Let u : C∞(U) → C be a linear functional. We say that u lies

in E ′(U) if it is sequentially continuous, namely for each sequence φk converging to 0

in C∞(U) we have u(φk) → 0.

As in the case of D′(U), we use the notation (u, φ) := u(φ) when u ∈ E ′(U) and

φ ∈ C∞(U).

We next discuss the relationship between D′(U) and E ′(U). Let u ∈ E ′(U). Then

the functional u : C∞(U) → C can be restricted to C∞
c (U), which yields a distribution

in D′(U) by Proposition 2.6 and since φk → 0 in C∞
c (U) implies that φk → 0 in C∞(U)

as well. This yields the operator

ι : E ′(U) → D′(U), (ι(u), φ) = (u, φ) for all u ∈ E ′(U), φ ∈ C∞
c (U). (4.2)

The next theorem shows that ι is injective and its range is exactly the space of distri-

butions in D′(U) with compact support. Thus ι gives an identification

E ′(U) ≃ {u ∈ D′(U) | suppu ⋐ U}.

Once the theorem is proved, we will drop ι in the notation and treat E ′(U) as a subspace

of D′(U).

Theorem 4.6. 1. Assume that u ∈ E ′(U) and ι(u) = 0. Then u = 0.

2. Assume that u ∈ E ′(U). Then supp ι(u) ⋐ U .

3. Assume that v ∈ D′(U) and supp v ⋐ U . Then there exists u ∈ E ′(U) such that

ι(u) = v.

Proof. 1. Take arbitrary φ ∈ C∞(U). Then there exists a sequence φk ∈ C∞
c (U)

which converges to φ in C∞(U). Indeed, using (1.14), take a sequence of compact

subsets exhausting U :

U =
∞⋃
k=1

Kk, Kk ⋐ U. (4.3)

Take cutoff functions

χk ∈ C∞
c (U), supp(1− χk) ∩Kk = ∅ (4.4)

and put φk := χkφ ∈ C∞
c (U). Then φk → φ in C∞(U), since for each K ⋐ U there

exists k0 such that for all k ≥ k0 we have K ⊂ Kk and thus ∥φk − φ∥CN (U,K) = 0.

Now, since ι(u) = 0 we have (u, φk) = 0 for all k. Passing to the limit, we see that

(u, φ) = 0 as well, which shows that u = 0.

2. We argue by contradiction. Assume that supp ι(u) is not compactly contained

in U . Take a sequence Kk as in (4.3), then we have supp ι(u) ̸⊂ Kk for each k. Then

there exists a test function φk ∈ C∞
c (U \ Kk) such that (u, φk) = 1. Similarly to

part 1 of this proof, we have φk → 0 in C∞(U), which gives a contradiction with the

sequential continuity of u as a functional on C∞(U).
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3. Fix a cutoff χ ∈ C∞
c (U) such that supp(1 − χ) ∩ supp v = ∅. For φ ∈ C∞(U),

define

(u, φ) := (v, χφ).

It is straightforward to check that this defines u ∈ E ′(U); indeed, if φk → 0 in C∞(U)

then χφk → 0 in C∞
c (U). Moreover, if φ ∈ C∞

c (U) then by Proposition 4.2 applied

to v and (1− χ)φ we have

(v, φ)− (u, φ) = (v, (1− χ)φ) = 0

which shows that ι(u) = v. □

We used in §2.3 that any test function φ ∈ C∞
c (V ) can be extended by zero to a

test function in any open set containing V . The next statement is a version of this for

distributions with compact support. Its proof is left as an exercise below.

Proposition 4.7. Let V ⊂◦ U ⊂◦ Rn and v ∈ E ′(V ). Then there exists unique

u ∈ E ′(U) such that u|V = v and suppu ⊂ V . In fact, we have suppu = supp v.

Similarly to the space D′(U), we define weak convergence in E ′(U):

Definition 4.8. Let U ⊂◦ Rn, uk ∈ E ′(U) be a sequence, and u ∈ E ′(U). We say

that

uk → u as k → ∞ in E ′(U)

if we have

(uk, φ) → (u, φ) as k → ∞ for all φ ∈ C∞(U).

As we see in Proposition 4.15 below, this convergence can be characterized in terms

of convergence in D′(U).

Finally, let us give here the analog of Proposition 4.2 for the space E ′. Note that

when writing suppu for u ∈ E ′(U), we technically mean supp ι(u).

Proposition 4.9. Let U ⊂◦ Rn, u ∈ E ′(U), φ ∈ C∞(U), and suppu ∩ suppφ = ∅.
Then (u, φ) = 0.

Proof. Let φk = χkφ ∈ C∞
c (U) be the sequence constructed in Step 1 of the

proof of Theorem 4.6, converging to φ in C∞(U). Then suppu ∩ suppφk = ∅, so by

Proposition 4.2 we have (u, φk) = 0. Since u ∈ E ′(U), we have (u, φk) → (u, φ), giving

that (u, φ) = 0. □
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4.3. Fréchet metric and Banach–Steinhaus for distributions

4.3.1. A metric on C∞(U). Unlike C∞
c (U), convergence of sequences in the space

C∞(U) from Definition 4.4 corresponds to a metric topology, which we introduce now.

The proofs in this section are left as exercises below.

Let U ⊂◦ Rn. Using (1.14), take a sequence of compact subsets exhausting U :

U =
∞⋃
j=1

Kj, Kj ⋐ U, Kj ⋐ Kj+1.

For N ∈ N, define the N -th seminorm ∥ • ∥N on C∞(U) using (4.1):

∥φ∥N := ∥φ∥CN (U,KN ).

These seminorms depend on the choice of the exhausting sets KN , and they are not

coordinate invariant, but the convergence they define is independent of these choices,

in fact it is the convergence of Definition 4.4:

Proposition 4.10. Let φk ∈ C∞(U) be a sequence and φ ∈ C∞(U). Then φk → φ

in C∞(U) if and only if ∥φk − φ∥N → 0 as k → ∞ for each N .

The set of seminorms ∥ • ∥N makes C∞(U) into a complete space:

Proposition 4.11. Assume that φk ∈ C∞(U) is a Cauchy sequence in the follow-

ing sense: for each N we have

sup
k,ℓ≥r

∥φk − φℓ∥N → 0 as r → ∞.

Then there exists φ ∈ C∞(U) such that φk → φ in C∞(U).

As an application of the seminorms ∥ • ∥N , arguing similarly to Proposition 2.6 we

can reformulate the statement that u ∈ E ′(U) in terms of a seminorm bound:

Proposition 4.12. Let u : C∞(U) → C be a linear map. Then u ∈ E ′(U) if and

only if there exist K ⋐ U and constants C,N such that

|(u, φ)| ≤ C∥φ∥CN (U,K) for all φ ∈ C∞(U). (4.5)

Proof.S If (4.5) holds, then it is immediate that φk → 0 in C∞(U) implies that

(u, φk) → 0, and thus u ∈ E ′(U).

Assume now that u ∈ E ′(U). We show the bound (4.5) by contradiction. If (4.5)

does not hold, then for each N there exists

φN ∈ C∞(U), (u, φN) = 1, ∥φN∥N ≤ 1
N
.

Then φN → 0 as N → ∞ in C∞(U), which contradicts the sequential continuity of

u : C∞(U) → C. □
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We now follow the standard construction (coming from the theory of Fréchet spaces)

to define a metric on C∞(U). Namely, for φ, ψ ∈ C∞(U), put

dC∞(φ, ψ) :=
∞∑
N=1

2−N
∥φ− ψ∥N

1 + ∥φ− ψ∥N
. (4.6)

The fundamental properties of dC∞ are collected in

Proposition 4.13. 1. dC∞ defines a metric on C∞(U).

2. For a sequence φk ∈ C∞(U), we have φk → φ in C∞(U) (in the sense of

Definition 4.4) if and only if dC∞(φk, φ) → 0.

3. The metric space (C∞(U), dC∞) is complete.

4.3.2. Banach–Steinhaus for distributions. The next theorem shows in par-

ticular that if a sequence of distributions in E ′(U) converges weakly, then it satisfies a

uniform bound. The proof is analogous to the Banach–Steinhaus theorem for operators

on Banach spaces and can be skipped at first reading.

Theorem 4.14 (Banach–Steinhaus for E ′(U)). Let U ⊂◦ Rn and assume that a

sequence of compactly supported distributions uk ∈ E ′(U) is weakly bounded in the

following sense:

for each φ ∈ C∞(U) there exists Cφ such that for all k |(uk, φ)| ≤ Cφ. (4.7)

Then there exist K ⋐ U and constants C,N such that for all k we have:

suppuk ⊂ K, (4.8)

|(uk, φ)| ≤ C∥φ∥CN (U,K) for all φ ∈ C∞(U). (4.9)

Proof.X 1. We use the notation of §4.3.1. For L ∈ N, define the subset of C∞(U)

AL :=
{
φ ∈ C∞(U) : for all k, |(uk, φ)| ≤ L

}
.

Each set AL is closed in (C∞(U), dC∞). Indeed, assume that φm → φ in C∞(U) and

φm ∈ AL for all m. For each k we have uk ∈ E ′(U), so (uk, φm) → (uk, φ) as m→ ∞.

Thus |(uk, φm)| ≤ L implies that |(uk, φ)| ≤ L which shows that φ ∈ AL.

By the weak bound (4.7) we have

C∞(U) =
⋃
L≥1

AL.

Then by the Baire Category Theorem for the complete metric space (C∞(U), dC∞) we

can fix L such that the interior of AL is nonempty, that is AL contains a metric ball:

BdC∞ (ψ, ε) ⊂ AL for some ψ ∈ C∞(U), ε > 0. (4.10)

From (4.10) we get

BdC∞ (0, ε) ⊂ A2L. (4.11)
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Indeed, take arbitrary φ ∈ BdC∞ (0, ε). Then both φ+ψ and ψ lie in BdC∞ (ψ, ε), which

is contained in AL; thus φ ∈ A2L.

2. Recalling the definition (4.6) of dC∞ , and using that the seminorms ∥φ∥N are a

monotone increasing sequence, we see that for any N

d(φ, 0) ≤ ∥φ∥N + 2−N .

Thus there exist N, δ > 0 such that for all φ ∈ C∞(U)

∥φ∥N ≤ δ =⇒ d(φ, 0) ≤ ε.

Putting C := 2L/δ, we get from (4.11) that

for all φ ∈ C∞(U) and k, |(uk, φ)| ≤ C∥φ∥N .

This implies the bound (4.9) with K := KN . It also shows that suppuk ⊂ KN for all

k: indeed, if φ ∈ C∞
c (U \KN) then ∥φ∥N = 0 and thus (uk, φ) = 0. □

As a consequence of Theorem 4.14, we obtain a characterization of the convergence

in E ′(U) (see Definition 4.8) in terms of convergence in D′(U) (see Definition 2.7). To

make the proof easier to read, we make explicit the use of the embedding ι from (4.2).

Proposition 4.15. Assume that uk ∈ E ′(U). Then we have uk → u in E ′(U) if

and only if both of the conditions below hold:

(1) there exists K ⋐ U such that for all k we have suppuk ⊂ K, and

(2) ι(uk) → ι(u) in D′(U).

Proof.S Assume first that the conditions (1) and (2) hold. Without loss of gen-

erality we have suppu ⊂ K. Fix χ ∈ C∞
c (U) such that supp(1−χ)∩K = ∅. Then by

Proposition 4.9 we have for each φ ∈ C∞(U)

(uk, φ) = (uk, χφ), (u, φ) = (u, χφ).

Now, since χφ ∈ C∞
c (U) and ι(uk) → ι(u) in D′(U), we have (uk, χφ) → (u, χφ). Thus

uk → u in E ′(U).

Now, assume that uk → u in E ′(U). Then condition (1) above follows from Theo-

rem 4.14 and condition (2) above it immediate since C∞
c (U) ⊂ C∞(U). □

Another consequence of Theorem 4.14 is the Banach–Steinhaus theorem in the

space D′:

Theorem 4.16 (Banach–Steinhaus for D′(U)). Let U ⊂◦ Rn and assume that uk ∈
D′(U) is a sequence of distributions which is weakly bounded in the following sense:

for each φ ∈ C∞
c (U) there exists Cφ such that for all k, |(uk, φ)| ≤ Cφ. (4.12)
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Then uk satisfies a uniform version of the norm bound (2.1), namely for each compact

K ⊂ U there exist C,N such that

|(uk, φ)| ≤ C∥φ∥CN for all k and φ ∈ C∞
c (U) such that suppφ ⊂ K. (4.13)

Proof. Take arbitrary K ⋐ U and fix a cutoff function χ ∈ C∞
c (U) such that

supp(1 − χ) ∩ K = ∅. Then χuk lies in E ′(U) and is weakly bounded in the sense

of (4.7). By Theorem 4.14 we see that there exist C, N , and K ′ ⋐ U such that for all

k

|(χuk, φ)| ≤ C∥ψ∥CN (U,K′) for all φ ∈ C∞(U). (4.14)

Now, take any φ ∈ C∞
c (U) such that suppφ ⊂ K. Then φ = χφ and thus by (4.14)

we have for all k

|(uk, φ)| = |(χuk, φ)| ≤ C∥φ∥CN (U,K′) ≤ C∥φ∥CN .

This gives the required estimate (4.13). □

One of the corollaries of Theorems 4.14 and 4.16 is that if a sequence of distributions

converges weakly, then the limit is always a distribution. We state it in the spaceD′(U):

Proposition 4.17. Assume that uk ∈ D′(U) is a sequence of distributions and

u : C∞
c (U) → C is a map such that

(uk, φ) → u(φ) as k → ∞ for all φ ∈ C∞
c (U).

Then u ∈ D′(U) is a distribution as well.

Proof. Since each uk is linear, u is also a linear map. Passing to the limit in the

estimate provided by Theorem 4.16, we see that u satisfies the bounds (2.1) and thus

u ∈ D′(U). □

Finally, we show here that the map u ∈ D′(U), φ ∈ C∞
c (U) 7→ (u, φ) ∈ C is

sequentially continuous. An analogous statement holds for u ∈ E ′(U) and φ ∈ C∞(U).

Proposition 4.18. Assume that uk ∈ D′(U) and φk ∈ C∞
c (U) are sequences such

that

uk → u in D′(U), φk → φ in C∞
c (U).

Then (uk, φk) → (u, φ).

Proof. We estimate∣∣(uk, φk)− (u, φ)
∣∣ ≤ ∣∣(uk, φk − φ)

∣∣+ ∣∣(uk − u, φ)
∣∣.

The second term on the right-hand side converges to 0 since uk → u in D′(U). As for

the first term, we take K ⋐ U containing suppφk for all k; Theorem 4.16 shows that

there exist constants C,N such that for all k∣∣(uk, φk − φ)
∣∣ ≤ C∥φk − φ∥CN .
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Since ∥φk − φ∥CN → 0, we have |(uk, φk − φ)| → 0 as well, finishing the proof. □

4.4. Distributions supported at one point

Here we discuss distributions whose support consists of a single point. The next

theorem provides their complete description as linear combinations of the delta function

and its derivatives:

Theorem 4.19. Assume that u ∈ E ′(Rn) and suppu ⊂ {y} for some y ∈ Rn. Then

we have

u =
∑
|α|≤N

cα ∂
α
x δy (4.15)

for some N ∈ N0 and some coefficients cα ∈ C.

To simplify the notation in the proof, we assume that y = 0. We use the following

Definition 4.20. Let φ ∈ C∞(Rn) and m ∈ N0. We say that φ vanishes at 0 with

m derivatives if

∂αxφ(0) = 0 for all α, |α| ≤ m.

The basic properties of vanishing are collected in

Proposition 4.21.S 1. Assume that φ vanishes at 0 with m derivatives. Then

φ(x) = O(|x|m+1) as x→ 0.

2. Assume that φ vanishes at 0 with m derivatives, and |α| ≤ m. Then ∂αxφ

vanishes at 0 with m− |α| derivatives.

The key ingredient in the proof of Theorem 4.19 is the following

Lemma 4.22. Assume that u ∈ E ′(Rn) and suppu ⊂ {0}. Then there exists N such

that for each φ ∈ C∞(Rn) which vanishes at 0 with N derivatives, we have (u, φ) = 0.

Proof. 1. Since suppu ⊂ {0}, we have by Proposition 4.9

(u, ψ) = 0 for all ψ ∈ C∞(Rn) such that 0 /∈ suppψ. (4.16)

Fix a cutoff function

χ ∈ C∞
c (B(0, 1)), 0 /∈ supp(1− χ).

For φ ∈ C∞(Rn) and 0 < ε < 1, define the function

φε(x) := χ
(x
ε

)
φ(x), φε ∈ C∞

c (Rn).

Applying (4.16) to ψ := φ− φε, we see that

(u, φ) = (u, φε) for all ε ∈ (0, 1). (4.17)
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2. Since u is a distribution on Rn, by (2.1) there exists constants C,N such that

|(u, ψ)| ≤ C∥ψ∥CN for all ψ ∈ C∞
c (B(0, 1)). (4.18)

Assume that φ ∈ C∞(Rn) vanishes at 0 with N derivatives. We will show that

∥φε∥CN → 0 as ε→ 0 + . (4.19)

This finishes the proof since by (4.17) and (4.18) we have for all ε ∈ (0, 1)

|(u, φ)| = |(u, φε)| ≤ C∥φε∥CN .

3. It remains to prove (4.19). To make the proof more readable, we first consider the

simpler case N = 0. Since φε is supported in B(0, ε), we estimate

∥φε∥C0 = sup |φε| ≤ ∥χ∥C0 sup
B(0,ε)

|φ| = O(ε)

since φ(0) = 0.

The case of general N is handled similarly. Fix a multiindex α with |α| ≤ N ; we

need to show that ∥∂αxφε(x)∥C0 → 0 as ε → 0+. By the Leibniz rule, the derivative

∂αxφε is a linear combination with constant coefficients of terms of the form

ε−|β| ∂βxχ
(x
ε

)
∂γxφ(x)

where the multiindices β, γ satisfy α = β+γ. By Proposition 4.21 and since φ vanishes

at 0 with N derivatives, we have ∂γxφ(x) = O(|x|N+1−|γ|) as x→ 0. Thus

sup
x

∣∣∣ε−|β| ∂βxχ
(x
ε

)
∂γxφ(x)

∣∣∣ ≤ ε−|β| sup |∂βxχ| sup
B(0,ε)

|∂γxφ| = O(εN+1−|β|−|γ|)

which finishes the proof since |β|+ |γ| = |α| ≤ N . □

We are now ready to give

Proof of Theorem 4.19. Assume that u ∈ E ′(Rn), suppu ⊂ {0}, and let N be

the number in Lemma 4.22. For any φ ∈ C∞(Rn) we have the Taylor expansion

φ(x) =
∑
|α|≤N

xα

α!
∂αxφ(0) + ψ(x)

where ψ ∈ C∞(Rn) vanishes at 0 with N derivatives and xα := xα1
1 · · ·xαn

n are mono-

mials. By Lemma 4.22 we have (u, ψ) = 0 and thus

(u, φ) =
∑
|α|≤N

(u, xα)

α!
∂αxφ(0).

This shows that u has the form (4.15) with cα := (−1)|α|(u, xα)/α!. □
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4.5. Notes and exercises

Our presentation largely follows [Hör03, §§2.2–2.3] and [FJ98, §§1.4,3.1–3.2].
These books do not prove the Banach–Steinhaus theorems in §4.3.2, sending the reader
instead to functional analysis textbooks such as [Rud91, Theorem 2.6 and §6.16].

Exercise 4.1. (3 = 0.75 + 0.75 + 0.75 + 0.75 pts) Prove parts (3)–(6) of Proposi-

tion 4.3.

Exercise 4.2. (1 pt) Prove Proposition 4.7.

Exercise 4.3. (0.5 pts) Prove Proposition 4.10. (You will have to use that each

compact subset of U is contained in one of the sets Kj.)

Exercise 4.4. (1 pt) Prove Proposition 4.11. (This is similar to how we prove

completeness of the spaces Ck in an analysis course.)

Exercise 4.5. (3 = 1 + 1 + 1 pts) Prove Proposition 4.13.





CHAPTER 5

Homogeneous distributions

One of the goals of the next few sections is to prove the following fact: if P is

a constant coefficient differential operator on Rn (for example, the Laplacian ∆) and

f ∈ E ′(Rn) is a compactly supported distribution, then a solution to the differential

equation Pu = f is given by the distribution

u = E ∗ f (5.1)

where ‘∗’ denotes convolution of distributions (defined in Chapter 8 below) and E ∈
D′(Rn) is a fundamental solution of P , namely PE = δ0. (We will deliver (5.1) in

Chapter 9 below.)

To make (5.1) work it is important to find a fundamental solution E. Quite often

these fundamental solutions are homogeneous distributions on Rn. In this section we

study general homogeneous distributions and give important examples of homogeneous

distributions on R.

5.1. Basic properties

5.1.1. Homogeneous functions. We first review the definition of a homoge-

neous function:

Definition 5.1. A function f : Rn \ {0} → C is called homogeneous of degree

a ∈ C if

f(tx) = taf(x) for all t > 0, x ∈ Rn \ {0}. (5.2)

Here to make sense of ta when t > 0 and a is complex, we define ta := exp(a log t)

where log t ∈ R.

We collect some basic properties of homogeneous functions in

Proposition 5.2.R 1. A function f is homogeneous of degree a if and only if it

can be written in polar coordinates as

f(x) = rag(θ), x = rθ, r > 0, θ ∈ Sn−1 (5.3)

for a function g on Sn−1 := {x ∈ Rn : |x| = 1}.
57
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2. If f ∈ C1(Rn \ {0}) then f is homogeneous of degree a if and only if it satisfies

Euler’s equation

x · ∂xf = af where x · ∂x :=
n∑
j=1

xj∂xj . (5.4)

3. If f ∈ C1(Rn \ {0}) is homogeneous of degree a, then ∂xjf is homogeneous of

degree a− 1.

5.1.2. Homogeneous distributions. To define homogeneity in distributions, we

rewrite the definition (5.2) in terms of the distributional pairing (•, •). Assume that

f ∈ L1
loc(Rn) is a homogeneous function of degree a (where strictly speaking, we should

require (5.2) to hold for almost every x). Take φ ∈ C∞
c (Rn) and t > 0 and pair the

equation (5.2) with φ:

ta(f, φ) =

∫
Rn

f(tx)φ(x) dx = t−n
∫
Rn

f(x)φ(t−1x) dx.

Here in the last equality we use the change of variables formula. Thus, if we define the

dilated function

Λtφ ∈ C∞
c (Rn), Λtφ(x) = φ(tx), (5.5)

then we have the identity

(f,Λtφ) = t−a−n(f, φ) for all t > 0. (5.6)

Conversely, if (5.6) holds for all φ ∈ C∞
c (Rn), then f is homogeneous of degree a. Thus

we can give the following definition of homogeneity for distributions:

Definition 5.3. Assume that u ∈ D′(Rn) and a ∈ C. We say that u is homoge-

neous of degree a if

(u,Λtφ) = t−a−n(u, φ) for all t > 0, φ ∈ C∞
c (Rn). (5.7)

This extends the usual definition of homogeneity, so for example the constant func-

tion 1 is homogeneous of degree 0, and more generally any homogeneous polynomial of

degree k ∈ N0 is a homogeneous distribution of degree k in the sense of Definition 5.3.

A genuinely distributional example is given by the delta function (with the proof by a

direct computation):

Proposition 5.4. The delta distribution δ0 ∈ D′(Rn) is homogeneous of degree −n.

Some properties of homogeneous distributions are collected in

Proposition 5.5. 1. If u ∈ D′(Rn) is homogeneous of degree a, then xju is

homogeneous of degree a+ 1 and ∂xju is homogeneous of degree a− 1.

2. If u ∈ D′(Rn), then u is homogeneous of degree a if and only if it solves Euler’s

equation (5.4) in the sense of distributions on Rn.
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We leave part 1 as an exercise below. For a proof of part 2, see for example [Hör03,

(3.2.19)′].

5.1.3. Extending homogeneous distributions through the origin. In §5.1.2,
we considered homogeneous distributions on Rn. One could alternatively define homo-

geneous distributions on Rn \{0}, following Definition 5.3 but with φ ∈ C∞
c (Rn \{0}).

The latter class turns out to be isomorphic to distributions on the sphere Sn−1 by a

distributional version of the formula (5.3) (something we cannot do here as we have

not yet introduced distributions on manifolds). However, for applications to PDE we

will often need homogeneous distributions on Rn with the origin included. Thus it is

reasonable to ask the following question:

Given v ∈ D′(Rn \ {0}) which is homogeneous of degree a ∈ C,
does there exist unique u ∈ D′(Rn) homogeneous of degree a

such that u|Rn\{0} = v?

Proposition 5.4 shows that in general the answer is ‘No’: the delta function δ0 is

homogeneous of degree −n and it restricts to 0 on Rn \ {0} (existence also fails for

a = −n though it is a bit harder to see). It turns out that the answer to the question

above is ‘Yes’ unless a is a negative integer ≤ −n, and for such integers one can give a

precise description of non-existence and non-uniqueness – see [Hör03, Theorems 3.2.3

and 3.2.4]. In these notes we only present a simpler special case when Re a > −n:

Theorem 5.6. Assume that a ∈ C satisfies Re a > −n, and v ∈ D′(Rn \ {0})
is homogeneous of degree a. Then there exists unique u ∈ D′(Rn) homogeneous of

degree a and such that u|Rn\{0} = v.

Proof. 1. We first show uniqueness. Assume that u ∈ D′(Rn) is homogeneous of

degree a and u|Rn\{0} = 0. Then suppu ⊂ {0}, so Theorem 4.19 gives

u =
∑

0≤k≤N

uk, uk =
∑
|α|=k

cα∂
α
x δ0.

for some N and cα ∈ C. By Propositions 5.4 and 5.5, each uk is homogeneous of

degree −n−k. Since u is homogeneous of degree a, we have for each φ ∈ C∞
c (Rn) and

t > 0

t−a−n(u, φ) = (u,Λtφ) =
∑

0≤k≤N

tk(uk, φ). (5.8)

Since Re(−a−n) < 0, we see that the left-hand side of (5.8) converges to 0 as t→ ∞.

This implies that (uk, φ) = 0 for all k and φ, which shows that u = 0.

2. To motivate the proof of existence, assume first that v is a function in L1
loc(Rn\{0}).

Then by (5.3) we can write v(rθ) = rag(θ) for some w ∈ L1(Sn−1). Since Re a >

−n, the function |x|a is integrable near the origin, and we see that v actually lies in
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L1
loc(Rn) and thus defines a distribution u on Rn. To present this argument in a more

distributional way, we take any φ ∈ C∞
c (Rn) and write (u, φ) using integration in polar

coordinates:

(u, φ) =

∫ ∞

0

∫
Sn−1

rag(θ)φ(rθ)rn−1 dS(θ)dr =

∫
Sn−1

g(θ)Raφ(θ) dS(θ) (5.9)

where we define

Raφ(x) :=

∫ ∞

0

ta+n−1φ(tx) dt for any x ∈ Rn \ {0}.

Since Re(a+n−1) > −1 and φ is compactly supported, the integral Raφ(x) converges

for each x ∈ Rn \ {0}. Moreover, we can differentiate under the integral sign to see

that Raφ ∈ C∞(Rn \ {0}), in fact the derivatives are given by the integrals

∂αxRaφ(x) =

∫ ∞

0

ta+n−1+|α|(∂αxφ)(tx) dt

which still converge as Re(a + n − 1 + |α|) > −1. Since g ∈ L1(Sn−1), and Raφ is

bounded on Sn−1, the right-hand side of (5.9) converges and gives a way to define u

as a distribution.

We now show existence in the case when v is a general distribution on Rn \ {0}.
It is tempting to still define the extension u by (5.9) since Raφ restricts to a smooth

function on Sn−1 and g is a distribution on Sn−1. This is perfectly valid but we cannot

do this here since we do not know distributions on manifolds yet (and accordingly have

not shown the distributional analog of (5.3)).

3.X So instead we fix a radial function ψ ∈ C∞
c (Rn \ {0}) as follows:

ψ(x) = χ(|x|), χ ∈ C∞
c ((0,∞)),

∫ ∞

0

χ(t)

t
dt =

∫ ∞

0

χ(1/t)

t
dt = 1.

Note that ∫ ∞

0

ψ(x/t)

t
dt = 1 for all x ∈ Rn \ {0}. (5.10)

Let v ∈ D′(Rn\0) be homogeneous of degree a. Define the linear map u : C∞
c (Rn) → C

as follows:

(u, φ) := (v, ψRaφ) for all φ ∈ C∞
c (Rn).

Here, as discussed above, Raφ ∈ C∞(Rn \ {0}) and thus the product ψRaφ lies in

C∞
c (Rn \ {0}) and can be paired with v. The operator φ 7→ ψRaφ is sequentially

continuous C∞
c (Rn) → C∞

c (Rn \ {0}), so u ∈ D′(Rn) is a distribution. We claim that

u is the extension of v we are looking for.

We first show that u|Rn\0 = v, which is where the homogeneity of v is exploited.

Take arbitrary φ ∈ C∞
c (Rn \ 0); we need to show that

(v, ψRaφ) = (v, φ). (5.11)
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If v ∈ L1
loc(Rn \ 0) is a function, then this follows from (5.3) by a direct computation.

In general, we write (with integral converging in C∞
c (Rn \ {0}))

ψRaφ =

∫ ∞

0

ta+n−1ψΛtφdt.

Since v is continuous C∞
c (Rn \ 0) → C, we can pair it with both sides to get

(v, ψRaφ) =

∫ ∞

0

ta+n−1(v, ψΛtφ) dt (5.12)

It does require some work to justify putting pairing with u inside the integral – this

can be done using Riemann sums similarly to Lemma 6.8 below.

Now, since v is homogeneous of degree a, we have

(v, ψΛtφ) = (v,Λt(Λt−1ψ · φ)) = t−a−n(v,Λt−1ψ · φ)

and thus

(v, ψRaφ) =

∫ ∞

0

t−1(v,Λt−1ψ · φ) dt.

However, (5.10) shows that, with the integral converging in C∞
c (Rn \ {0}) (with the

support property coming from our assumption on suppφ),∫ ∞

0

t−1Λt−1ψ · φdt = φ.

Pairing this with v and again putting the pairing inside the integral, we get (5.11).

Thus u is indeed an extension of v.

It remains to show that u is homogeneous of degree a. Take arbitrary φ ∈ C∞
c (Rn).

Then for any t > 0 and x ∈ Rn \ {0} we have

RaΛtφ(x) =

∫ ∞

0

sa+n−1φ(tsx) ds = t−a−n
∫ ∞

0

sa+n−1φ(sx) ds = t−a−nRaφ(x).

Thus

(u,Λtφ) = (v, ψRaΛtφ) = t−a−n(v, ψRaφ) = t−a−n(u, φ),

showing that u is homogeneous of degree a. □

5.2. Homogeneous distributions on R

We now introduce an important family of homogeneous distributions xa+ ∈ D′(R),
where a ∈ C is a complex parameter. Let us first assume that Re a > −1 and define

xa+ as the locally integrable function

xa+ :=

{
xa, x > 0,

0, x < 0.
(5.13)

Then xa+ is a homogeneous distribution of degree a. Note that the Heaviside function

is the special case with a = 0.
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5.2.1. Non-exceptional values of a. We now want to consider the case of gen-

eral a ∈ C. When Re a ≤ −1, the function (5.13) is no longer locally integrable, so we

need a different definition. We use the following

Lemma 5.7. If Re a > 0 then, with derivatives understood in D′(R),

∂xx
a
+ = axa−1

+ . (5.14)

Proof.S Take arbitrary φ ∈ C∞
c (R) and compute

(∂xx
a
+, φ) = −(xa+, φ

′) = −
∫ ∞

0

xaφ′(x) dx = − lim
ε→0+

∫ ∞

ε

xaφ′(x) dx.

Integrating by parts, we see that this is equal to

lim
ε→0+

(
εaφ(ε) +

∫ ∞

ε

axa−1φ(x) dx

)
=

∫ ∞

0

axa−1φ(x) dx,

giving (5.14). □

We can now extend xa+ to Re a > −2 except a = −1 as follows:

xa+ :=
∂xx

a+1
+

a+ 1
for Re a > −2, a ̸= −1. (5.15)

Here ∂x is the distributional derivative, so (5.15) means that

(xa+, φ) := −
∫ ∞

0

xa+1

a+ 1
φ′(x) dx for all φ ∈ C∞

c (R).

By Lemma 5.7 the definitions (5.15) and (5.13) agree for Re a > −1.

The process can be repeated: for any j ≥ 0 we can put

xa+ :=
∂jxx

a+j
+

(a+ j) · · · (a+ 2)(a+ 1)
for Re a > −j − 1, a ̸∈ −N (5.16)

and by Lemma 5.7 these definitions agree for different j (as long as Re a > −j − 1).

We have obtained an extension of xa+ to all a ∈ C except at the points a ∈ −N =

{−1,−2, . . . }. In a natural way it is the extension because of holomorphy in a. Indeed,

for each φ ∈ C∞
c (R) the map a 7→ (xa+, φ) is holomorphic in {Re a > −1} as can be

seen by differentiating under the integral sign; in fact

∂ax
a
+ = xa+ log x

is still a locally integrable function for Re a > −1. Using (5.16) we see that in fact the

map a 7→ (xa+, φ) is holomorphic in a ∈ C\−N. By the unique continuation property of

holomorphic functions, we see that the formula (5.16) provides the unique holomorphic

continuation of xa+, defined in {Re a > −1} by the formula (5.13), to a ∈ C \ −N.
We record some standard properties of xa+ (which can be checked directly for Re a >

−1 and follow in general by analytic continuation, or using (5.16)) in
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Proposition 5.8. For a ∈ C \ −N the identity (5.14) still holds and

x · xa+ = xa+1
+ , (5.17)

suppxa+ = [0,∞). (5.18)

Moreover, xa+ ∈ D′(R) is homogeneous of degree a.

5.2.2. Exceptional values of a. We now briefly discuss what happens at the

exceptional values a ∈ −N. Looking at (5.16), we see that xa+ is meromorphic in a ∈ C
with poles at −N (in the sense that for each φ ∈ C∞

c (R), the map a 7→ (xa+, φ) is

meromorphic). A typical way to get rid of the singularities of xa+ is to divide by the

Gamma function, looking at the distribution

χa+ :=
xa+

Γ(a+ 1)
(5.19)

which is holomorphic in a ∈ C. Note that it satisfies the identities for all a ∈ C

∂xχ
a
+ = χa−1

+ , (5.20)

x · χa+ = (a+ 1)χa+1
+ . (5.21)

We also have suppχa+ ⊂ [0,∞) and χa+ is homogeneous of degree a. In a way it is

more natural to consider χa+ than xa+, defining it similarly to (5.13) for Re a > −1 and

extending to general a ∈ C using the identity (5.20) similarly to (5.16).

Given that χa+ makes sense for all a ∈ C, it is irresistible to compute what it is

when a lies in the exceptional set −N. For a = −1, we use (5.20): χ0
+ = x0+ = H(x) is

the Heaviside function, so by (3.4)

χ−1
+ = δ0. (5.22)

Using (5.20) repeatedly, we then get

Proposition 5.9. For k ∈ N we have

χ−k
+ = ∂k−1

x δ0. (5.23)

Remark 5.10. So far we studied homogeneous distributions of degree a which are

supported on [0,∞). We can alternatively define their analogs supported on (−∞, 0],

starting with the locally integrable function when Re a > −1

(−x)a+ :=

{
0, x > 0,

(−x)a, x < 0

and repeating the above constructions to obtain distributions (−x)a+ ∈ D′(R) when

a ∈ C \ −N and (−χ)a+ ∈ D′(R) for all a ∈ C. Another useful family of homogeneous

distributions, (x± i0)a, are defined in Exercise 5.4 below.



64 5. HOMOGENEOUS DISTRIBUTIONS

5.2.3. A division problem. In §3.2.2 we found all solutions u ∈ D′(R) to the

equation xu = 0. We now look at the equation

xu = 1 where u ∈ D′(R). (5.24)

If we restrict this equation to R \ {0} and multiply both sides by 1
x
∈ C∞(R \ {0}),

then we get

u|R\{0} =
1

x
. (5.25)

So we can think of (5.24) as the problem of extending the function 1
x
to a distribution

on R. This is nontrivial since 1
x
is not locally integrable on R and Theorem 5.6 does

not apply since 1
x
is homogeneous of degree −1; since xδ0 = 0 the extension is also not

going to be unique.

As in §5.2.1 a solution is to define a solution u as a distributional derivative. The

standard antiderivative of 1
x
on R \ {0} is given by the function log |x|, which is locally

integrable on R. We now define the principal value distribution

p.v.
1

x
:= ∂x log |x| ∈ D′(R). (5.26)

To justify the term ‘principal value’, we compute for φ ∈ C∞
c (R) using integration by

parts (
p.v.

1

x
, φ

)
= −(log |x|, φ′) = −

∫
R
φ′(x) log |x| dx

= − lim
ε→0+

∫
R\(−ε,ε)

φ′(x) log |x| dx

= lim
ε→0+

(∫
R\(−ε,ε)

φ(x)

x
dx+ (φ(ε)− φ(−ε)) log ε

)
= lim

ε→0+

∫
R\(−ε,ε)

φ(x)

x
dx.

(5.27)

One can see directly that the limit on the last line of (5.27) exists by writing φ(x) =

φ(0) +O(x). This limit is known as the principal value integral of φ(x)/x.

Some properties of the distribution p.v. 1
x
(including (5.24) and (5.25)) are collected

in

Proposition 5.11. We have

p.v.
1

x

∣∣∣
R\{0}

=
1

x
, (5.28)

x · p.v.1
x
= 1. (5.29)

Moreover, p.v. 1
x
is a homogeneous distribution of order −1.

The proof is left as an exercise below.
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5.3. Notes and exercises

Our presentation follows [Hör03, §3.2] and [FJ98, §§2.2–2.3], and to a lesser ex-

tent [FJ98, §4.2]. Our proof of Theorem 5.6 differs slightly from [Hör03], in particular

in how we justify the identity (5.12) – Hörmander is careful to not use anything that

has not been proved yet but our approach is perhaps more direct and thus easier to

comprehend at first reading.

Exercise 5.1. (1 pt) Prove part 1 of Proposition 5.5.

Exercise 5.2. (2 pts) Show that x−1
+ − (−x)−1

+ = p.v. 1
x
in the following sense

(where you can restrict to a ∈ R in the limit):

xa+ − (−x)a+ → p.v.
1

x
in D′(R) as a→ −1 + 0.

Exercise 5.3. (1 pt) Prove Proposition 5.11, using the definition of p.v. 1
x
provided

by the limit on the last line of (5.27) (and without using explicitly the distributional

definition (5.26)).

Exercise 5.4. (3 = 1+1+1 pts) This exercise explores homogeneous distributions

on R which are alternatives to xa+ and (−x)a+.
(a) For ε > 0 and a ∈ C, define (x + iε)a ∈ C∞(R) by the formula (x + iε)a :=

exp(a log(x + iε)) where we use the branch of log on C \ (−∞, 0] which sends (0,∞)

to reals. Similarly we can define (x− iε)a. Show that there exist limits in D′(R)

(x± i0)a = lim
ε→0+

(x± iε)a ∈ D′(R).

(Hint: for Re a > −1 this is direct and (x ± i0)a are locally integrable functions. For

a = −1, write (x ± iε)−1 = ∂x log(x ± iε) and note that log(x ± iε) has a distribu-

tional limit which is in L1
loc(R). For general a ̸= −1, reduce to the case of a + 1 by

antidifferentiation, similarly to what was done for xa+ in lecture.)

(b) For a ∈ C\−N, express (x± i0)a as a linear combination of xa+ and (−x)a+. (Hint:
it is enough to consider the case Re a > −1 by analytic continuation.)

(c) Show the identities

(x− i0)−1 − (x+ i0)−1 = 2πiδ0,

(x− i0)−1 + (x+ i0)−1 = 2p.v.
1

x

(Hint: write (x ± i0)−1 = ∂x log(x ± i0). Note that log(x ± i0) = log x for x > 0 and

log(x± i0) = log(−x)± iπ for x < 0.)





CHAPTER 6

Convolution I

In §1.3.1 we introduced the notion of convolution of two functions,

f ∗ g(x) =
∫
Rn

f(y)g(x− y) dy. (6.1)

We would like to extend this notion to distributions. In this chapter, we define the

convolution when one of the factors is a distribution and another one is a smooth

function, with the result which is a smooth function. We next use this notion to show

that smooth functions are dense in the space of distributions.

6.1. Convolution of a distribution and a smooth function

For a function φ ∈ C∞(Rn) and x ∈ Rn, define the function

φ(x− •) ∈ C∞(Rn), φ(x− •)(y) = φ(x− y).

Then (6.1) can be rewritten in terms of the pairing (•, •) as

f ∗ φ(x) = (f, φ(x− •)).

Thus we can extend the operation of convolution to the case when f is a distribution

as follows:

Definition 6.1. Assume that u ∈ D′(Rn), φ ∈ C∞(Rn), and either u or φ is

compactly supported. Define the function u ∗ φ : Rn → C by

u ∗ φ(x) := (u, φ(x− •)), x ∈ Rn. (6.2)

As an example, we compute the convolution with a delta function:

Proposition 6.2. For any φ ∈ C∞(Rn) we have

δ0 ∗ φ = φ. (6.3)

Proof. Let x ∈ Rn. Then

δ0 ∗ φ(x) = (δ0, φ(x− •)) = φ(x− •)(0) = φ(x).

□
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6.1.1. Smoothness of convolution. We now want to show that the function

u ∗φ defined in (6.2) is smooth. This is an application of the following general fact on

the pairing of a distribution with a test function depending on a parameter, which we

will use several more times later:

Proposition 6.3. Assume that U ⊂◦ Rn, V ⊂◦ Rm, and

v ∈ E ′(V ), ψ ∈ C∞(U × V ). (6.4)

For x ∈ U , define ψ(x, •) ∈ C∞(V ) by ψ(x, •)(y) = ψ(x, y). Then the function

f(x) := (v, ψ(x, •)), x ∈ U (6.5)

lies in C∞(U), with derivatives given by ∂αx f(x) = (v, ∂αxψ(x, •)).
The same conclusion holds if instead of (6.4) we assume that v ∈ D′(V ), ψ ∈

C∞(U × V ), and the restriction of the projection πx : U × V → U to suppψ is proper,

namely for each compact subset KU ⊂ U , the preimage π−1
x (KU) ∩ suppψ is compact.

Proof. 1. Assume that (6.4) holds. Let us first show that f ∈ C0(U). Since

v ∈ E ′(V ), we have the bound (4.5): there exists KV ⋐ V and constants C,N such

that

|(v, φ)| ≤ C∥φ∥CN (V,KV ) for all φ ∈ C∞(V ). (6.6)

Fix x ∈ U and estimate for x̃ ∈ U close to x

|f(x)− f(x̃)| =
∣∣(v, ψ(x, •)− ψ(x̃, •))

∣∣ ≤ C∥ψ(x, •)− ψ(x̃, •)∥CN (V,KV ). (6.7)

Since ψ ∈ C∞(U × V ), we have as x̃→ x

∥ψ(x, •)− ψ(x̃, •)∥CN (V,KV ) = max
|β|≤N

sup
y∈KV

|∂βyψ(x, y)− ∂βyψ(x̃, y)| → 0 (6.8)

thus f(x̃) → f(x) as x̃→ x, which shows that f is indeed continuous.

Assume now that the alternative condition to (6.4) (in the last paragraph of the

statement of the proposition) holds. Fix x ∈ U and put KU := B(x, ε) where ε > 0

is small enough so that KU ⋐ U . Since πx|suppψ is proper, there exists KV ⋐ V such

that suppψ(x̃, •) ⊂ KV for all x̃ ∈ KU . Using the bound (2.1) for v with this set KV ,

we get similarly to (6.7) and (6.8) that there exist C,N such that for all x̃ ∈ KU

|f(x)− f(x̃)| ≤ C∥ψ(x, •)− ψ(x̃, •)∥CN → 0 as x̃→ x

giving again the continuity of f .

2. We now show that f is differentiable (in the classical sense) and

∂xjf(x) = (v, ∂xjψ(x, •)). (6.9)

Iterating this statement, we get that f ∈ C∞(U) and the formula for the derivatives

of f .
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We assume that (6.4) holds; the argument can be modified for the alternative

assumption in the same way as for the continuity of f above. Fix x ∈ U and estimate

for small t ∈ R (where ej denotes the j-th basis vector in Rn and we use the bound (6.6))∣∣f(x+ tej)− f(x)− t(v, ∂xjψ(x, •))
∣∣ = ∣∣(v, ψ(x+ tej, •)− ψ(x, •)− t∂xjψ(x, •)

)∣∣
≤ C∥ψ(x+ tej, •)− ψ(x, •)− t∂xjψ(x, •)∥CN (V,KV ).

Since ψ ∈ C∞, we have as t→ 0

∥ψ(x+ tej, •)− ψ(x, •)− t∂xjψ(x, •)∥CN (V,KV ) = o(t),

which shows that

lim
t→0

f(x+ tej)− f(x)

t
= (v, ∂xjψ(x, •))

and gives (6.9). □

Armed with Proposition 6.3, we can now prove

Theorem 6.4. Assume that u ∈ D′(Rn), φ ∈ C∞(Rn), and either u or φ is

compactly supported. Then u ∗ φ ∈ C∞(Rn) and

∂αx (u ∗ φ) = u ∗ (∂αxφ) = (∂αxu) ∗ φ. (6.10)

Proof. Define ψ ∈ C∞(R2n) by the formula

ψ(x, y) = φ(x− y).

Then we can rewrite (6.2) as

u ∗ φ(x) = (u, ψ(x, •)).

Applying Proposition 6.3, we see that u ∗ φ ∈ C∞(Rn) and

∂αx (u ∗ φ) = (u, ∂αxψ(x, •)) = u ∗ ∂αxφ.

Here if u ∈ E ′(Rn), then the assumption (6.4) holds. If instead φ ∈ C∞
c (Rn), then the

projection πx|suppψ is proper. Indeed, if K ⊂ Rn is compact, then we have

π−1
x (K) ∩ suppψ = {(x, y) ∈ R2n | x ∈ K, x− y ∈ suppφ} (6.11)

which is a compact set as it is the image of K × suppφ by a continuous map (see also

Figure 6.1).

Finally, the last equality in (6.10) follows from the definition (3.2) of distributional

derivatives:

u ∗ (∂αxφ)(x) =
(
u, (∂αxφ)(x− •)

)
= (−1)|α|

(
u, ∂αy (φ(x− •))

)
=

(
∂αy u, φ(x− •)

)
= (∂αxu) ∗ φ(x).

□
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x

y

K

Figure 6.1. An illustration of the proper projection condition in the

proof of Theorem 6.4. The lighter shaded area is suppψ which is not

compact. The darker shaded area is the compact set in (6.11).

6.1.2. Further properties of convolution. The bilinear map (u, φ) 7→ u ∗ φ is

sequentially continuous:

Proposition 6.5. Assume that uk ∈ D′(Rn), φk ∈ C∞
c (Rn) satisfy

uk → u in D′(Rn), φk → φ in C∞
c (Rn). (6.12)

Then uk ∗ φk → u ∗ φ in C∞(Rn). Same is true if instead uk ∈ E ′(Rn), φk ∈ C∞(Rn)

and we revise (6.12) accordingly.

Proof. By the formula (6.10) for derivatives of convolution, we see that it suffices

to show that for each K ⊂ Rn we have

sup
K

|uk ∗ φk − u ∗ φ| → 0. (6.13)

We assume that (6.12) holds; the argument for the case uk ∈ E ′, φk ∈ C∞ is similar.

To show (6.13) it suffices to check that for each sequence xk ∈ K converging to

some x∞ ∈ K we have

uk ∗ φk(xk) → u ∗ φ(x∞). (6.14)

By the definition (6.2) we have

uk ∗ φk(xk) = (uk, φk(xk − •)).

Since φk → φ ∈ C∞(Rn) and xk → x∞, we have

φk(xk − •) → φ(x∞ − •) in C∞
c (Rn).

Now the convergence statement (6.14) follows from Proposition 4.18, which itself is a

corollary of the Banach–Steinhaus theorem for distributions. □

We collect some further properties of convolution in
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Proposition 6.6. 1. If u ∈ D′(Rn), φ ∈ C∞(Rn), and either u or φ is compactly

supported, then

supp(u ∗ φ) ⊂ suppu+ suppφ. (6.15)

In particular, if both u and φ are compactly supported, then so is their convolution.

2. If u ∈ D′(Rn) and φ, ψ ∈ C∞
c (Rn), then

(u ∗ φ) ∗ ψ = u ∗ (φ ∗ ψ). (6.16)

The proofs are given as exercises below.

6.2. Approximation of distributions by smooth functions

In this section, we show that the space C∞
c (U) is dense in D′(U), see Theorem 6.10

below. (It is also dense in E ′(U), which is shown by a similar argument.)

6.2.1. The case of Rn. Before giving the density statement for a general open

set U ⊂◦ Rn, we consider the case U = Rn. We follow the same mollification procedure

as in §1.3.2. Fix a ‘bump function’

χ ∈ C∞
c (Rn), suppχ ⊂ B(0, 1),

∫
Rn

χ(x) dx = 1,

and define the rescaling for ε > 0

χε(x) := ε−nχ
(x
ε

)
∈ C∞

c (Rn). (6.17)

The next theorem implies in particular that C∞(Rn) is dense in D′(Rn).

Theorem 6.7. Let u ∈ D′(Rn) and define for ε > 0

uε := u ∗ χε (6.18)

which lies in C∞(Rn) by Theorem 6.4. Then

uε → u as ε→ 0 + in D′(Rn).

To prove Theorem 6.7, we need to represent (uε, φ) for any φ ∈ C∞
c (Rn) as the

result of applying the original distribution u to some function. This is done by the

following

Lemma 6.8. Let u ∈ D′(Rn), uε be defined in (6.18), φ ∈ C∞
c (Rn), and define

φε ∈ C∞
c (Rn) by

φε(y) :=

∫
Rn

χε(x− y)φ(x) dx. (6.19)

Then we have

(uε, φ) = (u, φε). (6.20)
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Remark 6.9. Lemma 6.8 applies for any fixed ε. In fact, the precise form of the

integrand is not important in the proof – the main point is that we can exchange pairing

with a distribution with integration in a parameter. We will use the same idea later

in these notes, referring to Lemma 6.8 (or to Proposition 7.4 below) for the scheme of

the proof.

Proof. 1. If uε ∈ L1
loc(Rn), then (6.20) follows from Fubini’s Theorem:

(uε, φ) =

∫
R2n

u(y)χε(x− y)φ(x) dxdy = (u, φε). (6.21)

What we need is a version of (6.21) which works when u is a distribution. Informally,

the argument goes as follows: we have

φε =

∫
Rn

χε(x− •)φ(x) dx (6.22)

with the integral converging in the space C∞
c (Rn). Pairing both sides with the distri-

bution u and putting the pairing inside the integral, we get

(u, φε) =

∫
Rn

(u, χε(x− •))φ(x) dx =

∫
Rn

uε(x)φ(x) dx

which gives (6.20).

2. To make sense of the argument above, we need to show that pairing with u can be

put under the integral sign in (6.22), preferably without relying on the general theory

of integral with values in a topological vector space. A common way to do this is by

using Riemann sums. Namely, for δ > 0 define the Riemann sum for the integral (6.22)

Rδ := δn
∑
x∈δZn

χε(x− •)φ(x) ∈ C∞
c (Rn).

We have

Rδ → φε as δ → 0 + in C∞
c (Rn). (6.23)

Indeed, the support condition is immediate since φ and χε are compactly supported.

Any derivative of Rδ has the same form with χε replaced by its derivative, so it suffices

to show that Rδ(y) → φε(y) uniformly in y. The latter follows in the same way as

convergence of the usual Riemann sums to the integral, writing the Riemann sum as

the integral of a step function and using that the function (x, y) 7→ χε(x − y)φ(y) is

continuous and compactly supported, and thus uniformly continuous.

Since u ∈ D′(Rn), by Proposition 2.6 we can pair (6.23) with u to get

(u,Rδ) → (u, φε) as δ → 0 + .

On the other hand, since u is a linear map C∞
c (Rn) → C, we compute

(u,Rδ) = δn
∑
x∈δZn

(u, χε(x− •))φ(x) = δn
∑
x∈δZn

uε(x)φ(x).
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This is a Riemann sum for the function uεφ, which converges as δ → 0+ to the integral∫
Rn

uε(x)φ(x) dx = (uε, φ),

finishing the proof of (6.20). □

We can now give

Proof of Theorem 6.7. Fix φ ∈ C∞
c (Rn). We need to show that

(uε, φ) → (u, φ) as ε→ 0 + . (6.24)

By Lemma 6.8, we have (uε, φ) = (u, φε). Since u is a distribution, by Proposition 2.6

it suffices to show that

φε → φ in C∞
c (Rn) as ε→ 0 + . (6.25)

Note that the statement (6.25) is similar to the convergence statement (1.33) from §1.3.2;
indeed, φε is the convolution of φ with the function χε(−x).

We now show (6.25). The support condition is immediate from the definition (6.19)

of φε since φ is compactly supported, so it remains to show that for each multtiindex

α we have uniformly in y ∈ Rn

∂αy φε(y) → ∂αy φ(y) as ε→ 0 + .

By a change of variables we have

φε(y) =

∫
Rn

χ(w)φ(y + εw) dw.

Since
∫
Rn χ(w) dw = 1, we have

|∂αy φε(y)− ∂αy φ(y)| ≤
∫
Rn

∣∣χ(w)(∂αy φ(y + εw)− ∂αy φ(y))
∣∣ dw

≤ ∥χ∥L1(Rn) sup
x∈B(y,ε)

|∂αy φ(x)− ∂αy φ(y)|

which goes to 0 as ε→ 0+ uniformly in y since the function ∂αy φ is uniformly continuous

(see (1.21)). □

6.2.2. The case of a general open set. We now generalize Theorem 6.7 to

distributions on an open subset of Rn, proving the stronger statement that C∞
c (rather

than C∞) is dense.

Theorem 6.10. Let U ⊂◦ Rn and u ∈ D′(U). Then there exists a sequence

fk ∈ C∞
c (U), fk → u in D′(U).
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Proof. 1. Using (1.14), take a sequence of compact sets exhausting U :

U =
∞⋃
k=1

Kk, Kk ⋐ Kk+1.

For each k, choose a cutoff function

ψk ∈ C∞
c (U), supp(1− ψk) ∩Kk = ∅

and fix a number εk > 0 small enough so that

suppψk +B(0, εk) ⋐ U.

We also require that εk → 0 as k → ∞.

Let χε be the function from (6.17) and put

fk := (ψku) ∗ χεk .

Here ψku ∈ E ′(U) is extended by zero to an element of E ′(Rn), see Proposition 4.7. The

convolution fk lies in C∞(Rn) by Theorem 6.4; by (6.15) it is supported in suppψk +

B(0, εk) ⋐ U , so it restricts to an element of C∞
c (U).

2. We now claim that fk → u in D′(U). Take arbitrary φ ∈ C∞
c (U) and extend it by 0

to an element of C∞
c (Rn). We need to show that

(fk, φ) → (u, φ) as k → ∞.

By Lemma 6.8 we have

(fk, φ) = (u, ψkφεk)

where φεk ∈ C∞
c (Rn) is defined by (6.19).

Since u ∈ D′(U), by Proposition 2.6 it suffices to show that

ψkφεk → φ in C∞
c (U). (6.26)

We have

suppφεk ⊂ suppφ+B(0, εk).

Fix ε0 > 0 small enough so that the compact set Kε0 := suppφ+B(0, ε0) be contained

in U . Then for k large enough we have suppφεk ⊂ Kε0 , which implies that all the

supports of ψkφεk are contained in a k-independent compact subset of U . Moreover, if

k is large enough then suppφεk ⊂ Kε0 ⊂ Kk and thus ψkφεk = φεk . By (6.25) we have

φεk → φ in C∞
c (Rn) as k → ∞, which gives (6.26) and finishes the proof. □
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6.3. Notes and exercises

Our presentation mostly follows [Hör03, §4.1]. An alternative presentation is

available in [FJ98, §§5.1–5.2].

Exercise 6.1. (4 = 1 + 1 + 1 + 1 pts) This exercise discusses the convolution

property (6.15).

(a) Assume that X ⊂ Rn is closed and Y ⊂ Rn is compact. Show that the set

X + Y := {x+ y | x ∈ X, y ∈ Y } ⊂ Rn (6.27)

is closed.

(b) Give an example of two closed sets X, Y ⊂ R such that X + Y is not closed.

(c) Show the property (6.15) when u ∈ D′(Rn) and φ ∈ C∞
c (Rn).

(d) Give an example when the inclusion in (6.15) is not an equality.

Exercise 6.2. (1 pt) Let u ∈ D′(Rn), φ, ψ ∈ C∞
c (Rn). Show that

(u ∗ φ) ∗ ψ = u ∗ (φ ∗ ψ).

(Hint: one way is to use density of C∞
c in D′.)





CHAPTER 7

Tensor products and distributional kernels

In this chapter we discuss two topics on distributions on a product space U × V .

We first define the tensor product u⊗ v ∈ D′(U × V ) of two distributions u ∈ D′(U),

v ∈ D′(V ). We next identify continuous linear operators A : C∞
c (V ) → D′(U) with

their Schwartz kernels K ∈ D′(U × V ). We finish with a discussion of the transpose

of an operator and extending operators to distributions by duality; this section could

have been put much earlier but knowing about Schwartz kernels gives another way to

look at the transpose.

7.1. Tensor product of distributions

Let U ⊂◦ Rn, V ⊂◦ Rm. We use the letter x to denote a point in U and the letter y to

denote a point in V . If f ∈ L1
loc(U), g ∈ L1

loc(V ), then we define their tensor product

f ⊗ g ∈ L1
loc(U × V ): as follows:

(f ⊗ g)(x, y) = f(x)g(y). (7.1)

We would like to extend this definition to distributions. For that we use the following

consequence of Fubini’s Theorem valid for any f ∈ L1
loc(U), g ∈ L1

loc(V ), φ ∈ C∞
c (U),

ψ ∈ C∞
c (V ):

(f ⊗ g, φ⊗ ψ) =

∫
U×V

f(x)g(y)φ(x)ψ(y) dxdy = (f, φ)(g, ψ). (7.2)

The next theorem uses (7.2) to define tensor product of distributions:

Theorem 7.1. Let U ⊂◦ Rn, V ⊂◦ Rm, u ∈ D′(U), and v ∈ D′(V ). Then there

exists unique w ∈ D′(U × V ) such that

(w,φ⊗ ψ) = (u, φ)(v, ψ) for all φ ∈ C∞
c (U), ψ ∈ C∞

c (V ). (7.3)

We call w the tensor product of u and v and denote u⊗ v := w.

Proof. 1. We first show existence of w. If f, g are locally integrable functions,

then for any β ∈ C∞
c (U × V ) we have by Fubini’s Theorem

(f ⊗ g, β) =

∫
U

f(x)

(∫
V

g(y)β(x, y) dy

)
dx.

77
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We use the iterated integral formula above to define w in general. Let u ∈ D′(U),

v ∈ D′(V ). Take any β ∈ C∞
c (U × V ) and consider the function

(v(y), β(x, y)) = (v, β(x, •)) (7.4)

where β(x, •) ∈ C∞
c (V ) is defined by β(x, •)(y) = β(x, y). By Proposition 6.3 the

function defined in (7.4) lies in C∞(U); it is also compactly supported (since β is

compactly supported) and thus lies in C∞
c (U). Thus we can apply u to that function

and get the iterated distributional pairing, which we use as a definition of w:

(w, β) :=
(
u(x), (v(y), β(x, y))

)
for all β ∈ C∞

c (U × V ). (7.5)

The map w : C∞
c (U × V ) → C is linear. We next show that w ∈ D′(U × V ) is

a distribution, by establishing seminorm bounds (2.1). Take arbitrary K ⋐ U × V .

Then we have K ⊂ KU × KV for some KU ⋐ U , KV ⋐ V . Since u and v are both

distributions, they satisfy the bounds (2.1): there exist C,N such that

|(u, φ)| ≤ C∥φ∥CN for all φ ∈ C∞
c (U), suppφ ⊂ KU , (7.6)

|(v, ψ)| ≤ C∥ψ∥CN for all ψ ∈ C∞
c (V ), suppψ ⊂ KV . (7.7)

Take arbitrary β ∈ C∞
c (U × V ) such that supp β ⊂ K. We estimate

|(w, β)| ≤ C∥(v, β(x, •))∥CN
x (U)

= C max
|α|≤N

sup
x∈U

∣∣(v(y), ∂αxβ(x, y))∣∣
≤ C2 max

|α|≤N
sup
x∈U

∥∂αxβ(x, y)∥CN
y (V ) ≤ C2∥β∥C2N (U×V ).

Here in the first line we use (7.6). In the second line we use the formula for the x-

derivatives of (v(y), β(x, y)) from Proposition 6.3. In the third line we use (7.7). This

gives a bound of the form (2.1) for w, showing that it is indeed a distribution.

Finally, the distribution w satisfies (7.3): indeed, if β = φ⊗ψ then (v(y), β(x, y)) =

φ(x)(v, ψ) and thus (w, β) = (u, φ)(v, ψ).

We remark that we could have alternatively defined w by the formula

(w, β) :=
(
v(y), (u(x), β(x, y))

)
for all β ∈ C∞

c (U × V ) (7.8)

and until we prove uniqueness it is not clear that this gives the same distribution w

as (7.5).

2. We now show uniqueness of w; that is, if w ∈ D′(U × V ) satisfies

(w,φ⊗ ψ) = 0 for all φ ∈ C∞
c (U), ψ ∈ C∞

c (V ) (7.9)

then w = 0.

We use the proof of Theorem 6.10, choosing the functions there in tensor product

form. (To avoid a notational clash, we use the notation θk for the function called ψk
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in the proof of Theorem 6.10.) Let KU
k , K

V
k be families of compact sets exhausting U ,

V in the sense of (1.14). Put

θk := θUk ⊗ θVk ∈ C∞
c (U × V )

where θUk ∈ C∞
c (U) satisfies supp(1−θUk )∩KU

k = ∅ and θVk ∈ C∞
c (V ) satisfies supp(1−

θVk ) ∩KV
k = ∅. Next, define the function

χ := χU ⊗ χV , χU ∈ C∞
c (BRn(0, 1

2
)), χV ∈ C∞

c (BRm(0, 1
2
)),

∫
Rn

χU =

∫
Rm

χV = 1,

and define χUε ∈ C∞
c (Rn), χVε ∈ C∞

c (Rm), and χε ∈ C∞
c (Rn+m) by (6.17). As shown in

Step 2 of the proof of Theorem 6.10, for a certain sequence εk → 0 we have

(θkw) ∗ χεk → w in D′(U × V ).

For any (x, y) ∈ U × V we have

(θkw) ∗ χεk(x, y) =
(
θkw, χεk((x, y)− •)

)
= (w,φk,x ⊗ ψk,y)

where φk,x(x̃) = θUk (x̃)χ
U
εk
(x− x̃), ψk,y(ỹ) = θVk (ỹ)χ

V
εk
(y − ỹ).

If w satisfies (7.9), then (θkw) ∗ χεk = 0, which implies that w = 0. □

The formulas (7.5) and (7.8) are important, so we repeat them here for later use:

(u(x)⊗ v(y), β(x, y)) =
(
u(x), (v(y), β(x, y))

)
, (7.10)

(u(x)⊗ v(y), β(x, y)) =
(
v(y), (u(x), β(x, y))

)
. (7.11)

As an example, we compute the tensor product of two delta functions:

Proposition 7.2. Let u := δ0 ∈ D′(Rn), v := δ0 ∈ D′(Rm). Then u ⊗ v = δ0 ∈
D′(Rn+m).

Proof. It suffices to note that for all φ ∈ C∞
c (Rn), ψ ∈ C∞

c (Rm) we have

(δ0, φ⊗ ψ) = φ(0)ψ(0) = (δ0, φ)(δ0, ψ).

□

We collect various properties of tensor products in

Proposition 7.3. Let U ⊂◦ Rn, V ⊂◦ Rm, W ⊂◦ Rℓ, u ∈ D′(U), v ∈ D′(V ), and

w ∈ D′(W ). Then:

(1) supp(u⊗ v) = suppu× supp v;

(2) if uk → u in D′(U) and vk → v in D′(V ), then uk⊗ vk → u⊗ v in D′(U ×V );

(3) ∂xj(u⊗ v) = (∂xju)⊗ v and ∂yj(u⊗ v) = u⊗ (∂yjv);

(4) if a ∈ C∞(U), b ∈ C∞(V ), then (a⊗ b)(u⊗ v) = (au)⊗ (bv);

(5) (u⊗ v)⊗ w = u⊗ (v ⊗ w).
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We leave the proof as an exercise below.

We finish with a statement about exchanging pairing with a fixed distribution and

integration in a parameter. This is the integral counterpart of Proposition 6.3. Such

a statement was used before in the proof of Lemma 6.8 but the proof below relies on

existence and uniqueness of tensor product of distributions, whose proof in these notes

in turn relies on Lemma 6.8.

Proposition 7.4. Let U ⊂◦ Rn, V ⊂◦ Rm, and assume that v ∈ D′(V ) and ψ ∈
C∞

c (U × V ). Then (in the notation of Proposition 6.3)∫
U

(v, ψ(x, •)) dx =

(
v,

∫
U

ψ(x, •) dx
)
. (7.12)

Proof. Consider the constant function 1 ∈ D′(U). Then the left-hand side

of (7.12) is equal to (
1(x), (v(y), ψ(x, y))

)
,

the right-hand side of (7.12) is equal to(
v(y), (1(x), ψ(x, y))

)
,

and by (7.10), (7.11) both of these are equal to (1⊗ v, ψ). □

7.2. Distributional kernels

Let U ⊂◦ Rn, V ⊂◦ Rm. For any function K(x, y) ∈ L1
loc(U × V ), we can define the

integral operator A : L∞
c (V ) → L1

loc(U) by

Aφ(x) =

∫
V

K(x, y)φ(y) dy, φ ∈ L∞
c (V ), x ∈ U. (7.13)

We want to define an operator of the form (7.13) when K is a distribution. For all

φ ∈ C∞
c (V ) and ψ ∈ C∞

c (U) we compute by Fubini’s Theorem

(Aφ,ψ) =

∫
U×V

K(x, y)ψ(x)φ(y) dxdy = (K, ψ ⊗ φ). (7.14)

We use the identity (7.14) as the definition of A when K is a distribution:

Definition 7.5. Let K ∈ D′(U × V ). Define the linear operator A : C∞
c (V ) →

D′(U) as follows:

(Aφ,ψ) = (K, ψ ⊗ φ) for all φ ∈ C∞
c (V ), ψ ∈ C∞

c (U). (7.15)

We call K the distributional kernel or the Schwartz kernel of A.
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To check that Aφ is indeed a distribution for all φ ∈ C∞
c (V ), take any sequence

ψk → 0 in C∞
c (U). Then ψk ⊗φ→ 0 in C∞

c (U ⊗ V ) and thus (Aφ,ψk) → 0. Similarly

if ψ ∈ C∞
c (U) is fixed and φk → 0 in C∞

c (V ), then (Aφk, ψ) → 0. This shows that A

is a sequentially continuous operator C∞
c (V ) → D′(U), that is

φk → 0 in C∞
c (V ) =⇒ Aφk → 0 in D′(U). (7.16)

7.2.1. The Schwartz Kernel Theorem. The next statement shows that every

sequentially continuous operator A : C∞
c (V ) → D′(U) has the form (7.15) for a unique

choice of the kernel K. Thus we have a bijection

Operators C∞
c (V ) → D′(U) ≃ Distributions in D′(U × V ).

This is in contrast with integral operators on functions: for example the identity

operator cannot be written in the form (7.13) for any function K.

Theorem 7.6 (Schwartz Kernel Theorem). Let U ⊂◦ Rn, V ⊂◦ Rm, and A :

C∞
c (V ) → D′(U) be a sequentially continuous linear operator. Then there exists unique

K ∈ D′(U × V ) such that A has the form (7.15).

Proof. We only give a sketch of the proof, sending the reader to [Hör03, Theo-

rem 5.2.1] and [FJ98, Theorem 6.1.1] for details (we follow the latter for the sketch

below). Uniqueness of K follows immediately from the uniqueness part of Theorem 7.1:

if K satisfies (7.15) with A = 0 then K = 0. So what we really need to show is existence.

1. Let A : C∞
c (V ) → D′(U) be sequentially continuous. We can reduce to the case

when U = (0, 1)n, V = (0, 1)m are rectangles and A is compactly supported in the sense

that it is sequentially continuous C∞(V ) → E ′(U). From Proposition 4.18 (which is a

corollary of the Banach–Steinhaus Theorem in distributions) we see that

φk → 0 in C∞(V ), ψk → 0 in C∞(U) =⇒ (Aφk, ψk) → 0.

From here (arguing similarly to the proof of Proposition 2.6) we can derive the following

norm bound: there exist C,N such that

|(Aφ,ψ)| ≤ C∥φ∥CN∥ψ∥CN for all φ ∈ C∞
c (V ), ψ ∈ C∞

c (U). (7.17)

2. We now construct the kernel K as a Fourier series. Namely, for p ∈ Zn, q ∈ Zm
define the complex number

cpq := (Ae−2πi⟨y,q⟩, e−2πi⟨x,p⟩).

If A has the form (7.15) then cpq are just the Fourier series coefficients of K. Thus for

general A we define

K(x, y) :=
∑

p∈Zn, q∈Zm

cpqe
2πi⟨x,p⟩e2πi⟨y,q⟩ ∈ D′(U × V ). (7.18)
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The bound (7.17) implies that the sequence cpq is polynomially bounded in terms of p,

q, so the series (7.18) converges in D′(U × V ) similarly to Exercise 2.3.

It remains to show that A is given by (7.15) with K defined by (7.18). Take

φ ∈ C∞
c (V ), ψ ∈ C∞

c (U). Define the Fourier coefficients

ap :=

∫
U

e−2πi⟨x,p⟩ψ(x) dx, bq :=

∫
V

e−2πi⟨y,q⟩φ(y) dy.

Note that ap, bq are rapidly decaying (i.e. faster than any negative power of p, q)

as p, q → ∞. We now compute

(K, ψ ⊗ φ) =
∑

p∈Zn, q∈Zm

cpqa−pb−q

=
∑

p∈Zn, q∈Zm

apbq(Ae
2πi⟨y,q⟩, e2πi⟨x,p⟩)

=

(
A

∑
q∈Zm

bqe
2πi⟨y,q⟩,

∑
p∈Zn

ape
2πi⟨x,p⟩

)
= (Aφ,ψ)

proving (7.15). Here in the last line we use the bound (7.17) and the fact that the

Fourier series

φ(y) =
∑
q∈Zm

bqe
2πi⟨y,q⟩, ψ(x) =

∑
p∈Zn

ape
2πi⟨x,p⟩

converge in CN(V ) and CN(U) respectively. □

7.2.2. Examples and properties. As an example, we compute the Schwartz

kernel of the identity operator:

Proposition 7.7. Let U ⊂◦ Rn. Then the Schwartz kernel of the identity operator

A : C∞
c (U) → D′(U), Aφ = φ

is given by the distribution δ0(x− y) ∈ D′(U × U) defined as follows:

(δ0(x− y), β) =

∫
U

β(x, x) dx for all β ∈ C∞
c (U × U).

Proof. Let φ, ψ ∈ C∞
c (U). Then

(Aφ,ψ) = (φ, ψ) =

∫
U

φ(x)ψ(x) dx = (δ0(x− y), ψ(x)φ(y))

showing that (7.15) holds. □

Remark 7.8. Note that the support of δ0(x− y) is the diagonal {(x, x) | x ∈ U}.
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We now discuss the relation between certain properties of the Schwartz kernel K
and mapping properties of the corresponding operator A. The next lemma shows that

operators with compactly supported Schwartz kernels are exactly those that extend to

operators C∞ → E ′:

Proposition 7.9. Let A : C∞
c (V ) → D′(U) be a sequentially continuous operator

with Schwartz kernel K ∈ D′(U × V ). Then A extends to a sequentially continuous

operator Ã : C∞(V ) → E ′(U) if and only if K ∈ E ′(U × V ).

We leave the proof as an exercise below.

Another important class of operators is those that have smooth Schwartz kernels. It

turns out that these correspond exactly to smoothing operators which will be important

in later parts of the course:

Proposition 7.10. Let A : C∞
c (V ) → D′(U) be a sequentially continuous operator

with Schwartz kernel K ∈ D′(U × V ). Then A extends to a sequentially continuous

operator Ã : E ′(V ) → C∞(U) if and only if K ∈ C∞(U × V ).

Proof. We only show the more useful direction that the smoothness of K implies

that A is a smoothing operator. For the other direction see [Hör03, Theorem 5.2.6].

Let K ∈ C∞(U ×V ). We let Ã be the integral operator (7.13) where integration is

understood as distributional pairing:

Ãu(x) = (u(y),K(x, y)) for all u ∈ E ′(V ), x ∈ U.

By Proposition 6.3, we have Ãu ∈ C∞(U). Moreover, by (7.14) we see that Ãφ = Aφ

for all φ ∈ C∞
c (V ).

It remains to show that Ã is sequentially continuous. Assume that uk → 0 in E ′(V ).

We need to show that Ãuk → 0 in C∞(U), that is for anyKU ⋐ U and any multiindex α

we have

sup
x∈KU

|∂αx Ãuk(x)| → 0.

Arguing by contradiction we see that it suffices to show that for any sequence xk →
x∞ ∈ K we have

∂αx Ãuk(xk) → 0. (7.19)

By Proposition 6.3 we compute

∂αx Ãuk(xk) = (uk, ∂
α
xK(xk, •)).

We have ∂αxK(xk, •) → ∂αxK(x∞, •) in C∞(V ). Since uk → 0 in E ′(V ), Proposition 4.18

shows (7.19) which finishes the proof. □

As an example we give the Schwartz kernel of a convolution operator with a smooth

function (see §6.1). The proof is immediate from the definitions.
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Proposition 7.11. Assume that φ ∈ C∞(Rn). Define the operator

A : E ′(Rn) → C∞(Rn), Au = u ∗ φ.

Then A has the Schwartz kernel

K(x, y) = φ(x− y).

7.3. The transpose of an operator and defining operators by duality

We now study transposes of operators, which are useful in particular in defining

various operations on distributions by duality (something we have already done in §3
without using the notion of transpose explicitly).

Definition 7.12. Let U ⊂◦ Rn, V ⊂◦ Rm, and A : C∞
c (V ) → D′(U) be a sequentially

continuous linear operator. Define its transpose At : C∞
c (U) → D′(V ) by the formula

(Atψ, φ) = (Aφ,ψ) for all φ ∈ C∞
c (V ), ψ ∈ C∞

c (U). (7.20)

Note that (7.20) uniquely determines the operator At, which is sequentially con-

tinuous C∞
c (U) → D′(V ), and we have (At)t = A.

There is an easy formula for the Schwartz kernel of the transpose operator: if A

has Schwartz kernel K ∈ D′(U × V ), then the Schwartz kernel Kt ∈ D′(V × U) of At

is given by

Kt(y, x) = K(x, y), (7.21)

in the sense that for each β ∈ C∞
c (V × U) we have

(Kt, β) = (K, βt) where βt ∈ C∞
c (U × V ), βt(x, y) = β(y, x).

Remark 7.13. We can also consider the adjoint operator with respect to the

sesquilinear pairing

⟨u, φ⟩L2 := (u, φ), u ∈ D′(U), φ ∈ C∞
c (U).

If A : C∞
c (V ) → D′(U), then its adjoint A∗ : C∞

c (U) → D′(V ) is given by

⟨A∗ψ, φ⟩L2 = ⟨Aφ,ψ⟩L2 for all φ ∈ C∞
c (V ), ψ ∈ C∞

c (U). (7.22)

The Schwartz kernel of the adjoint is given by

K∗(y, x) = K(x, y).

(Here the complex conjugate u of a distribution u is defined by the identity (u, φ) =

(u, φ).)

As an example, we compute the transpose of a partial derivative operator:

Proposition 7.14. Let U ⊂◦ Rn and take A := ∂xj : C∞
c (U) → C∞

c (U). Then

At = −∂xj .
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Proof. What needs to be checked is that

(∂xjφ, ψ) = −(∂xjψ, φ) for all φ, ψ ∈ C∞
c (U)

and this follows from integration by parts, Theorem 1.17. □

The next theorem shows that if the transpose of an operator A maps smooth

functions to smooth functions, then A can be extended to an operator on distributions.

This conceptualizes the strategy used before in (3.2) and (3.6).

Theorem 7.15. Assume that U ⊂◦ Rn, V ⊂◦ Rm, and A : C∞
c (V ) → D′(U) is a

sequentially continuous linear operator. Assume furthermore that the transpose At :

C∞
c (U) → D′(V ) is a sequentially continuous operator

At : C∞
c (U) → C∞(V ). (7.23)

Then there exists unique sequentially continuous operator

Ã : E ′(V ) → D′(U)

such that Ãφ = Aφ for all φ ∈ C∞
c (V ).

Remark 7.16. Once the theorem is proved, we will identify A and Ã, saying that A

maps spaces of distributions when strictly speaking A extends to spaces of distributions.

Remark 7.17. If At has the stronger mapping property C∞
c (U) → C∞

c (V ), then

we can extend A to an operator D′(V ) → D′(U).

Proof of Theorem 7.15. 1. We first show uniqueness, which follows from the

density of C∞
c in D′. Indeed, assume that Ã : E ′(V ) → D′(U) is a sequentially

continuous operator such that Ãφ = 0 for all φ ∈ C∞
c (V ). Take arbitrary v ∈ E ′(V ).

By Theorem 6.10 (or rather its version for E ′), there exists a sequence

vk ∈ C∞
c (V ), vk → v in E ′(V ).

By the sequential continuity of Ã, we have Ãvk → Ãv in D′(U). But Ãvk = 0 for all k,

so Ãv = 0. Since v was arbitrary, we get Ã = 0.

2. We next show existence of the extension Ã. We define this extension by the

simple formula

(Ãv, ψ) = (v,Atψ) for all v ∈ E ′(V ), ψ ∈ C∞
c (U). (7.24)

Here Atψ ∈ C∞(V ) by (7.23) and thus it can be paired with the distribution v. The

rest of the proof is a routine verification:

• Ãv ∈ D′(U) for all v ∈ E ′(V ). Indeed, assume that ψk → 0 in C∞
c (U).

Then from the sequential continuity of At between the spaces (7.23) we have

Atψk → 0 in C∞(V ). It follows that (Ãv, ψk) → 0, giving by Proposition 2.6

that Ãv ∈ D′(U).
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• Ã : E ′(V ) → D′(U) is sequentially continuous. Indeed, assume that vk → 0

in E ′(V ). Then for each ψ ∈ C∞
c (U) we have (Ãvk, ψ) = (vk, A

tψ) → 0 and

thus Ãvk → 0 in D′(U).

• Ãφ = Aφ for all φ ∈ C∞
c (V ). This follows immediately from the defini-

tion (7.24) of Ã and the definition (7.20) of the transpose At. □

7.4. Notes and exercises

We largely follow [Hör03, Chapter 5]. The presentation in [FJ98, §§4.1,4.3,6.1,2.8]
is similar but with one nontrivial difference: to show uniqueness in Theorem 7.1 we

follow [Hör03] (which is why we needed to define convolution of distributions with

smooth functions before tensor products) and [FJ98] instead uses Fourier series.

Exercise 7.1. (3 = 1 + 1 + 0.5 + 0.5 pts) Prove Proposition 7.3 (1)–(4).

Exercise 7.2. (0.5 pts) Prove Proposition 7.3 (5).

Exercise 7.3. (2 pts) Assume that U ⊂ Rn, V ⊂ Rm are open, 0 ∈ U , and write

elements of Rn+m as (x, y) ∈ Rn×Rm. Show that the space of solutions w ∈ D′(U×V )

to the equations

x1w = . . . = xnw = 0

is given by distributions of the form δ0 ⊗ v where δ0 ∈ D′(U) is the delta distribution

and v ∈ D′(V ) is arbitrary.

Exercise 7.4. (1 pt) Find the Schwartz kernels of the differentiation operators

∂xj : C
∞
c (U) → C∞

c (U) and the multiplication operators u 7→ au, where a ∈ C∞(U).

Exercise 7.5. (1 pt) Let A : C∞
c (V ) → D′(U) be a sequentially continuous

operator with Schwartz kernel K ∈ D′(U × V ). Denote by ∂xj : D′(U) → D′(U),

∂yℓ : C
∞
c (V ) → C∞

c (V ) the differentiation operators. Show that the composition ∂xjA

has Schwartz kernel ∂xjK and A∂yℓ has Schwartz kernel −∂yℓK.

Exercise 7.6. (1 pt) Prove Proposition 7.9.



CHAPTER 8

Convolution II

Armed with tensor products, we now introduce convolution of two distributions

on Rn (under appropriate condition on their supports), which is itself a distribution

on Rn. This moves us one step closer to the formula (5.1) for a solution of a constant

coefficient PDE.

8.1. The case of compact supports

We first consider the technically simpler case when both distributions have compact

support. Assume first that f, g ∈ L1
c(Rn) are functions. For any φ ∈ C∞(Rn) we

compute using Fubini’s Theorem

(f ∗ g, φ) =
∫
R2n

f(x− y)g(y)φ(x) dxdy

=

∫
R2n

f(x)g(y)φ(x+ y) dxdy = (f(x)⊗ g(y), φ(x+ y)).

This motivates the following definition of convolution in terms of the distributional

tensor product introduced in §7.1:

Definition 8.1. Let u, v ∈ E ′(Rn). Define the convolution u ∗ v ∈ E ′(Rn) as

follows:

(u ∗ v, φ) = (u(x)⊗ v(y), φ(x+ y)) for all φ ∈ C∞(Rn). (8.1)

It is immediate that u ∗ v is indeed a distribution: if φk → 0 in C∞(Rn) then

φk(x+ y) → 0 in C∞(R2n) and thus (as u⊗ v ∈ E ′(R2n)) we have (u ∗ v, φk) → 0. The

resulting operation is sequentially continuous:

Proposition 8.2. Assume that uk → u and vk → v in E ′(Rn). Then

uk ∗ vk → u ∗ v in E ′(Rn).

Proof.S Take arbitrary φ ∈ C∞(Rn). By part (2) of Proposition 7.3 (or rather

its version for E ′) we have uk⊗vk → u⊗v in E ′(Rn). Thus (uk ∗vk, φ) → (u∗v, φ). □

The next statement shows that if u is a distribution and v is a smooth function,

then the convolution defined in §6.1 is the same as the convolution defined in the

present section:

87



88 8. CONVOLUTION II

Proposition 8.3. Assume that u ∈ E ′(Rn) and v ∈ C∞
c (Rn). Let u ⋆ v ∈ C∞

c (Rn)

be as in Definition 6.1, namely

u ⋆ v(x) = (u, v(x− •)) for all x ∈ Rn.

Then u ⋆ v = u ∗ v where u ∗ v ∈ E ′(Rn) is defined by (8.1).

Proof. First proof: Take arbitrary φ ∈ C∞(Rn). We need to show that

(u ⋆ v, φ) = (u(x)⊗ v(y), φ(x+ y)). (8.2)

The left-hand side is equal to

(u ⋆ v, φ) =

∫
Rn

(u, v(x− •))φ(x) dx.

Using Riemann sums similarly to the proof of Lemma 6.8 (or alternatively using a

slight modification of Proposition 7.4), we pull the pairing with u out of the integral

to get

(u ⋆ v, φ) = (u, ψ) where ψ(y) :=

∫
Rn

v(x− y)φ(x) dx, ψ ∈ C∞(Rn).

Making a change of variables, we see that

ψ(y) =

∫
Rn

v(x)φ(x+ y) dx,

thus (recalling the formula (7.10) for the distributional tensor product, or strictly

speaking, its analog for E ′)

(u ⋆ v, φ) =
(
u(y), (v(x), φ(x+ y))

)
= (u(x)⊗ v(y), φ(x+ y)).

Second proof: By Theorem 6.7 (or rather, its version for E ′) there exists a sequence

uk ∈ C∞
c (Rn) converging to u in E ′(Rn). We have uk ⋆ v = uk ∗ v since both are given

by the integral formula (1.27). By Propositions 6.5 and 8.2 we have

uk ⋆ v → u ⋆ v, uk ∗ v → u ∗ v in E ′(Rn).

Thus u ⋆ v = u ∗ v. □

We collect basic properties of convolution of two compactly supported distributions

in



8.2. THE CASE OF PROPERLY SUMMING SUPPORTS 89

Proposition 8.4. Let u, v, w ∈ E ′(Rn). Then

u ∗ v = v ∗ u, (8.3)

u ∗ (v ∗ w) = (u ∗ v) ∗ w, (8.4)

supp(u ∗ v) ⊂ suppu+ supp v, (8.5)

∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv), (8.6)

δ0 ∗ u = u. (8.7)

Proof.S All of the properties except (8.5) can be proved by approximating u, v, w

by test functions in C∞
c (Rn) (Theorem 6.7) and using that these properties hold for

test functions together with continuity of convolution (Proposition 8.2). In fact, (8.5)

can also be shown this way if we pay attention to the supports of the approximating

functions.

Below we provide more direct proofs for the sake of completeness. Let φ ∈ C∞(Rn)

be arbitrary.

(8.3): Follows immediately from (8.1) and the fact that φ(x+ y) = φ(y + x).

(8.4): Using (7.10) we see that when paired with φ, both sides are equal to

(u(x)⊗ v(y)⊗ w(z), φ(x+ y + z))

where u⊗v⊗w = (u⊗v)⊗w = u⊗(v⊗w) is well-defined thanks to Proposition 7.3(5).

(8.5): We know (see Exercise 6.1(1)) that suppu + supp v is closed. Next, if φ ∈
C∞(Rn) and suppφ ∩ (suppu+ supp v) = ∅ then by Proposition 7.3(1) we have

supp(u(x)⊗ v(y)) ∩ supp(φ(x+ y)) = ∅

and thus by Proposition 4.9 we get (u ∗ v, φ) = 0.

(8.6): It is enough to differentiate once. We compute using Proposition 7.3(3)

(∂xj(u ∗ v), φ) = −(u ∗ v, ∂xjφ) = −(u(x)⊗ v(y), (∂xjφ)(x+ y))

= −
(
u(x)⊗ v(y), ∂xj(φ(x+ y))

)
= (∂xj(u(x)⊗ v(y)), φ(x+ y))

= ((∂xju)(x)⊗ v(y), φ(x+ y)) = ((∂xju) ∗ v, φ).

(8.7): We compute using (7.10)

(δ0 ∗ u, φ) = (δ0(x)⊗ u(y), φ(x+ y)) =
(
δ0(x), (u(y), φ(x+ y))

)
= (u, φ).

□

8.2. The case of properly summing supports

We now generalize the construction of §8.1 to cases when u, v are not necessarily

compactly supported. This requires that the supports suppu, supp v sum properly in
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the sense defined below. The significance of this condition is explained in the discussion

following (8.10).

Definition 8.5. Let V1, V2 ⊂ Rn be closed subsets. We say that V1, V2 sum properly

if for each R > 0 there exists T > 0 such that for all x, y ∈ Rn

x ∈ V1, y ∈ V2, |x+ y| ≤ R =⇒ |x|, |y| ≤ T. (8.8)

In other words, if x ∈ V1, y ∈ V2 and |x| and/or |y| is large, then |x+ y| is also large.

Some basic properties of properly summing sets are collected in

Proposition 8.6. 1. If V1, V2 sum properly then their sum

V1 + V2 = {x+ y | x ∈ V1, y ∈ V2}

is a closed subset of Rn.

2. If one of V1, V2 is compact, then V1, V2 sum properly.

We leave the proof as an exercise below.

We now come back to the more general definition of convolution. Let u, v ∈ D′(Rn)

and assume that suppu, supp v sum properly. We would like to define the convolution

u ∗ v as an element of D′(Rn). Take arbitrary φ ∈ C∞
c (Rn), then, following (8.1) we

want to put

(u ∗ v, φ) := (u(x)⊗ v(y), φ(x+ y)). (8.9)

Here u ⊗ v ∈ D′(R2n) and φ(x + y) ∈ C∞(R2n) need not be compactly supported.

However, the intersection of their supports is compact:

supp(u⊗ v) ∩ supp(φ(x+ y)) ⋐ Rn. (8.10)

Indeed, since φ ∈ C∞
c (Rn), there exists R > 0 such that suppφ ⊂ B(0, R). Let

(x, y) ∈ supp(u ⊗ v) ∩ supp(φ(x + y)). By Proposition 7.3(1) we have x ∈ suppu,

y ∈ supp v. Moreover, x + y ∈ suppφ so |x + y| ≤ R. Since suppu, supp v sum

properly, we have |x|, |y| ≤ T for some fixed T > 0. Thus

supp(u⊗ v) ∩ supp(φ(x+ y)) ⊂ B(0, T )×B(0, T )

is bounded and thus compact, giving (8.10).

Given the compact intersection of supports, we can make sense of the pairing (8.9)

using the following general

Proposition 8.7. Let U ⊂◦ Rn, u ∈ D′(U), φ ∈ C∞(U), and assume that suppu∩
suppφ is compact. Define (u, φ) ∈ C as follows (see Figure 8.1):

(u, φ) := (u, χφ) where χ ∈ C∞
c (U), supp(1− χ) ∩ suppu ∩ suppφ = ∅. (8.11)

Then:
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U

suppφsuppu

Figure 8.1. An illustration of (8.11). The support of u is in blue and

the support of φ is in red. The dashed line denotes the support of χ.

(1) the value of (u, φ) does not depend on the choice of the cutoff χ;

(2) if φ ∈ C∞
c (U) or u ∈ D′(U), then (u, φ) equals to the distributional pairing

defined before (in (2.4) and §4.2);
(3) the expression (u, φ) is bilinear in u, φ;

(4) if suppu ∩ suppφ = ∅, then (u, φ) = 0.

Remark 8.8. The formula (8.11) gives the only way to extend the distributional

pairing which satisfies the above properties – see [Hör03, Theorem 2.2.5].

Proof.S (1): If χ̃ is another cutoff satisfying (8.11) then suppu∩supp((χ−χ̃)φ) =
∅ and thus (u, χφ) = (u, χ̃φ) by Proposition 4.2.

(2): if φ ∈ C∞
c (U), then take χ such that χφ = φ. If u ∈ E ′(U), then take χ such

that supp(1− χ) ∩ suppu = ∅ and use Proposition 4.9.

(3): we need to check the formula for (a1u1 + a2u2, b1φ1 + b2φ2) where aj, bj ∈ C,
and it suffices to choose χ so that (8.11) holds for each uj, φk.

(4): we may choose χ = 0. □

We can now formally give

Definition 8.9. Let u, v ∈ D′(Rn) and assume that suppu, supp v sum properly.

Define u ∗ v ∈ D′(Rn) by the formula (8.9), where the pairing is defined using Propo-

sition 8.7 and (8.10).

It is straightforward to check that u ∗ v is indeed a distribution, and that for u, v ∈
E ′(Rn) it coincides with the convolution defined in §8.1. Moreover, if R, T satisfy (8.8)

with V1 = suppu, V2 = supp v, and χ ∈ C∞
c (Rn) satisfies supp(1 − χ) ∩ B(0, T ) = ∅,

then

u ∗ v|B◦(0,R) = (χu) ∗ (χv)|B◦(0,R) (8.12)

where the right-hand side of (8.12) features the convolution of two compactly supported

distributions χu, χv.

Other properties of convolution are collected in
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Proposition 8.10.S 1. For any u ∈ D′(Rn) we have δ0 ∗ u = u.

2. If u, v ∈ D′(Rn) and suppu, supp v sum properly, then

u ∗ v = v ∗ u, (8.13)

supp(u ∗ v) ⊂ suppu+ supp v, (8.14)

∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv). (8.15)

3. If u, v, w ∈ D′(Rn) and suppu, supp v, suppw sum properly (defined similarly

to (8.8)), then u ∗ (v ∗ w) = (u ∗ v) ∗ w.
4. If u ∈ D′(Rn), φ ∈ C∞(Rn), and either u or φ is compactly supported, then the

convolution u∗φ from Definition 8.9 is the same as the convolution from Definition 6.1.

Proof. This follows routinely from the properties of convolution of distributions

in E ′(Rn) discussed in §8.1 and the formula (8.12). □

We finish with some examples illustrating the properly summing condition:

• By part 2 of Proposition 8.6, a compactly supported distribution in E ′(Rn)

can be convolved with any distribution in D′(Rn).

• The set [0,∞) ⊂ R sums properly with itself, in fact we can take T := R

in (8.8). Thus we can for example define the convolution of two Heaviside

functions H ∗H; one can compute H ∗H(x) = x1+. See Figure 8.2.

• On the other hand, the set [0,∞) does not sum properly with the set (−∞, 0].

Thus we cannot define, for example, the convolution of the Heaviside function

H with the function Ȟ(x) := H(−x). Note that the usual definition (1.27)

does not work either: we get

H ∗ Ȟ(x) =

∫
max(0,x)

dy = ∞.

8.3. Singular support and convolutions

In §4.1 we defined the support of a distribution u ∈ D′(U) as follows: a point x

does not lie in suppu if it has a neighborhood V such that u|V = 0. We now define

singular support by replacing the requirement that u|V = 0 by u|V being smooth:

Definition 8.11. Let U ⊂◦ Rn and u ∈ D′(U). We say that a point x ∈ U does

not lie in sing suppu if there exists V ⊂◦ U containing x and such that u|V ∈ C∞(V ).

Here we recall that C∞(V ) is embedded into D′(V ) by (2.2), so when we say

u|V ∈ C∞(V ) we strictly speaking mean that there exists f ∈ C∞(V ) such that

(u, φ) =

∫
V

f(x)φ(x) dx for all φ ∈ C∞
c (V ).
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x

y

Figure 8.2. An illustration of (8.12) for suppu, supp v ⊂ [0,∞). The

shaded region is the intersection (suppu×supp v)∩{(x, y) : |x+y| ≤ R}.
The dashed lines denote the boundaries of the sets {χ(x) = 1} and

{χ(y) = 1}.

Similarly to Proposition 4.2 we have

Proposition 8.12. Let u ∈ D′(U). Then u|U\sing suppu ∈ C∞(U \ sing suppu). In

particular, sing suppu = ∅ if and only if u ∈ C∞(U).

Proof.S For each x ∈ U \sing suppu, there exists an open set Vx ⊂ U \sing suppu
containing x and a smooth function vx ∈ C∞(Vx) such that u|Vx = vx. The sets Vx
cover U \ sing suppu, and we have the compatibility conditions vx|Vx∩Vy = vy|Vx∩Vy for

all x, y. Thus there exists v ∈ C∞(U \ sing suppu) such that v|Vx = vx for all x. By

the uniqueness part of Theorem 2.13 we have u|U\sing suppu = v. □

Some basic properties of singular support are collected in

Proposition 8.13. Assume that U ⊂◦ Rn, u ∈ D′(U), and a ∈ C∞(U). Then

sing supp(∂xju) ⊂ sing suppu, (8.16)

sing supp(au) ⊂ sing suppu, (8.17)

sing suppu ⊂ suppu. (8.18)

The proofs are immediate.

A somewhat harder to establish property, used crucially in the proof of elliptic

regularity in §9.2 below, is the behavior of singular support under convolution:

Proposition 8.14. Assume that u, v ∈ D′(Rn) and suppu, supp v sum properly.

Then

sing supp(u ∗ v) ⊂ sing suppu+ sing supp v. (8.19)

Remark 8.15. Note that (8.19) is nontrivial even if one of the sets sing suppu,

sing supp v is empty: in this case it states that the convolution of a smooth function

with a distribution is smooth. This special case is used as a step in the proof below.
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Proof. 1. We first assume that u, v ∈ E ′(Rn). We write u as the sum of two

pieces: one whose support is in a small neighborhood of the singular support of u and

another one which is smooth. Namely, fix ε > 0 and take a cutoff function

ψu ∈ C∞
c (Rn), suppψu ⊂ sing suppu+B(0, ε), supp(1− ψu) ∩ sing suppu = ∅.

Then we write u = ψuu+ (1− ψu)u where

supp(ψuu) ⊂ sing suppu+B(0, ε), (1− ψu)u ∈ C∞
c (Rn).

In the same way we write v = ψvv + (1− ψv)v where

supp(ψvv) ⊂ sing supp v +B(0, ε), (1− ψv)v ∈ C∞
c (Rn).

We now decompose

u ∗ v = (ψuu) ∗ (ψvv) + (ψuu) ∗ ((1− ψv)v) + ((1− ψu)u) ∗ v.

We have by (8.18) and (8.5)

sing supp
(
(ψuu) ∗ (ψvv)

)
⊂ supp(ψuu) + supp(ψvv)

⊂ sing suppu+ sing supp v +B(0, 2ε)

where we used that B(0, ε)+B(0, ε) ⊂ B(0, 2ε). On the other hand, (ψuu)∗((1−ψv)v)
and ((1−ψu)u)∗v are convolutions of a distribution in E ′(Rn) and a function in C∞

c (Rn),

thus by Proposition 8.3 they lie in C∞
c (Rn). It follows that

sing supp(u ∗ v) ⊂ sing suppu+ sing supp v +B(0, 2ε).

Since this is true for any ε > 0 and sing suppu+ sing supp v is closed, we get (8.19).

2. We now consider the general case, when u, v ∈ D′(Rn) and suppu, supp v sum

properly. It suffices to show that for each R > 0, we have

(sing suppu ∗ v) ∩B◦(0, R) ⊂ sing suppu+ sing supp v. (8.20)

The left-hand side of (8.20) is the singular support of u ∗ v|B◦(0,R), and by (8.12)

u ∗ v|B◦(0,R) = (χu) ∗ (χv)|B◦(0,R)

for a correct choice of the cutoff χ ∈ C∞
c (Rn). Applying Step 1 of the present proof to

χu, χv ∈ E ′(Rn), we have

(sing suppu ∗ v) ∩B◦(0, R) ⊂ sing supp(χu) + sing supp(χv)

⊂ sing suppu+ sing supp v

giving (8.20). □



8.4. NOTES AND EXERCISES 95

8.4. Notes and exercises

Our presentation mostly follows [FJ98, §5.1–5.3 and Lemma 8.6.1]. The presenta-

tion in [Hör03, §4.2] is different because it comes before the definition of the tensor

product of distributions.

Exercise 8.1. (1 = 0.5 + 0.5 pts) Prove Proposition 8.6.

Exercise 8.2. (1 pt) Assume that Re a,Re b > 0. Show that xa−1
+ ∗ xb−1

+ =

B(a, b)xa+b−1
+ where B denotes the beta function. (You can use the standard integral

formula for convolution, no need to do things distributionally here. Note: using ana-

lytic continuation one can show that the same formula actually holds for all a, b ∈ C,
but you don’t have to do this.)

Exercise 8.3. (1 pt) Denote elements in Rn (where n ≥ 2) by x = (x1, x
′) where

x′ ∈ Rn−1. Define the set Ω := {x : x1 ≥ |x′|}. Show that Ω+Ω = Ω. Show also that Ω

sums properly with the set {x1 ≥ 0}. Does the set {x1 ≥ 0} sum properly with itself?





CHAPTER 9

Fundamental solutions and elliptic regularity

In this chapter we show the formula (5.1) for a solution to a constant coefficient

partial differential equation. We give several basic examples and then prove the first

version of Elliptic Regularity, for constant coefficient operators which have fundamental

solutions with singular support at the origin.

9.1. Fundamental solutions

9.1.1. Basic properties. We first give the general definition of a linear differen-

tial operator (with smooth coefficients):

Definition 9.1. Let U ⊂◦ Rn and m ∈ N0. A differential operator of order m on U

is an expression of the form

P =
∑
|α|≤m

aα(x)∂
α
x (9.1)

where aα ∈ C∞(U) are called the coefficients of P . Denote by

Diffm(U) (9.2)

the space of all differential operators on U . For P ∈ Diffm(U) we say that P has

constant coefficients if each of the functions aα is constant.

Here are some basic properties of differential operators:

• each P ∈ Diffm(U) maps each of the spaces C∞
c (U), C∞(U), E ′(U), D′(U) to

itself;

• if P ∈ Diffm(U), Q ∈ Diffℓ(U), then their composition PQ is a differential

operator in Diffm+ℓ(U);

• if P ∈ Diffm(U), then the transpose P t (see Definition 7.12) also lies in

Diffm(U), in fact if P is given by (9.1) then P t is given by the formula

P tu =
∑
|α|≤m

(−1)|α|∂αx (aαu) for all u ∈ D′(U) (9.3)

as we can see from Proposition 7.14.

97
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• if P ∈ Diffm(U) and u ∈ D′(U) then

supp(Pu) ⊂ suppu, (9.4)

sing supp(Pu) ⊂ sing suppu. (9.5)

In this chapter we study differential operators with constant coefficients. For such

operators a key object is a fundamental solution:

Definition 9.2. Let P be a differential operator with constant coefficients. A

distribution E ∈ D′(Rn) is called a fundamental solution of P if it solves the differential

equation

PE = δ0. (9.6)

Remark 9.3. For any u ∈ D′(Rn) and φ ∈ C∞
c (Rn) we have

(Pu, φ) = (u, P tφ)

where P t is the transpose of P . Thus E is a fundamental solution of P if and only if

(E,P tφ) = φ(0) for all φ ∈ C∞
c (Rn).

Fundamental solutions are important because they give a way of describing (some)

solutions of the more general equation Pu = f where f is a distribution. To state this

we use the notion of convolution of distributions from §8.2.

Theorem 9.4. Let P be a differential operator with constant coefficients and E be

a fundamental solution of P . Then:

(1) if u ∈ D′(Rn) and suppu, suppE sum properly then u = E ∗ (Pu);
(2) if f ∈ D′(Rn) and supp f, suppE sum properly then P (E ∗ f) = f .

Proof. From (8.15) we see that for any v, w ∈ D′(Rn) such that supp v, suppw

sum properly we have

P (v ∗ w) = (Pv) ∗ w = v ∗ (Pw). (9.7)

To show part (1) of the theorem, we apply this statement to u and E, getting

E ∗ (Pu) = (PE) ∗ u = δ0 ∗ u = u.

For part (2) of the theorem, we apply (9.7) to f and E, getting

P (E ∗ f) = (PE) ∗ f = δ0 ∗ f = f.

□

Remark 9.5. The proper sum condition always holds if one of the sets is compact

(see Proposition 8.6). Thus we have in particular:

(1) if u ∈ E ′(Rn) solves the equation Pu = f then u = E ∗ f (one can think of

this as a uniqueness statement for the equation Pu = f);
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(2) if f ∈ E ′(Rn) and we define u := E ∗ f , then u solves the equation Pu = f

(one can think of this as an existence statement).

However, these statements come with a very serious restriction that u or f be compactly

supported. As an example, the Laplace equation ∆u = 0 has no nontrivial compactly

supported solutions but it does have plenty of non-compactly supported ones (e.g. u ≡
1). This also shows that in part (1) of Theorem 9.4 it is important that suppE sums

properly with suppu, not just with supp(Pu). See §9.1.3 below for why this is needed

on a simple example.

9.1.2. Examples of fundamental solutions. We now give a few examples of

fundamental solutions for important constant coefficient operators. We start with the

Laplace operator:

Proposition 9.6. A fundamental solution of the Laplace operator ∆ = ∂2x1 + · · ·+
∂2xn on Rn is given by the locally integrable function

E(x) =


1
2
|x|, n = 1,
1
2π

log |x|, n = 2,

−cn|x|2−n, n ≥ 3.

(9.8)

Here cn = 1
(n−2) vol(Sn−1)

and vol(Sn−1) is the area of the unit sphere in Rn.

Remark 9.7. Note that, except for n = 2, the function E is homogeneous of

degree 2− n. Thus ∆E is homogeneous of degree −n, which matches the degree of ho-

mogeneity of the delta function. This, and the fact that E is invariant under rotations

(i.e. orthogonal changes of variables), explains why we would expect a fundamental

solution to have the form (9.8).

Proof. We just consider the case n = 2, with the case of general n proved similarly.

By Remark 9.3, and since ∆ is its own transpose, it suffices to show that for each φ ∈
C∞

c (R2) we have ∫
R2

E(x)∆φ(x) dx = φ(0). (9.9)

This is done similarly to Exercise 1.1. For x ∈ R2 \ {0} we compute

∂xjE(x) =
xj

2π|x|2
, ∂2xjE(x) =

|x|2 − 2x2j
2π|x|4

, ∆E(x) = 0.

Since E ∈ L1
loc(R2) we have∫
R2

E(x)∆φ(x) = lim
ε→0+

Iε where Iε :=

∫
R2\B(0,ε)

E(x)∆φ(x) dx.
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Integrating by parts twice (using (1.39)) and using that ∆E = 0 on R2 \ {0} and

φ ∈ C∞
c (R2) we write Iε as a surface integral:

Iε =

∫
∂B(0,ε)

E(x)(n⃗(x) · ∇φ(x)) dS(x)−
∫
∂B(0,ε)

φ(x)(n⃗(x) · ∇E(x)) dS(x). (9.10)

Here dS is the length measure on the circle ∂B(0, ε) and n⃗(x) is the unit normal on

the circle which points inside the circle, i.e. outside of the region R2 \B(0, ε). We have

for x ∈ ∂B(0, ε)

n⃗(x) = − x

|x|
, ∇E(x) = x

2π|x|2
, n⃗(x) · ∇E(x) = − 1

2πε
.

Now, the first term on the right-hand side of (9.10) is O(ε log(1/ε)) which goes to 0

as ε→ 0+. The second term is

1

2πε

∫
∂B(0,ε)

φ(x) dS(x) → φ(0) as ε→ 0 + .

Thus we obtain (9.9) which finishes the proof. □

One can similarly obtain a fundamental solution for the Cauchy–Riemann operator

∂z̄ :=
1
2
(∂x + i∂y) on R2

x,y. We leave the proof as an exercise below.

Proposition 9.8. A fundamental solution of ∂z̄ is given by the locally integrable

function

E(x, y) =
1

π(x+ iy)
.

We next consider the heat operator ∂t−∆x on Rn+1 = Rt×Rn
x. The proof is again

left as an exercise below.

Proposition 9.9. A fundamental solution of ∂t −∆x is given by the locally inte-

grable function

E(t, x) =

{
(4πt)−

n
2 e−

|x|2
4t , t > 0,

0, t ≤ 0.
(9.11)

Remark 9.10. One can show that sing suppE = {0}, that is E is smooth on

Rn+1 \ {0}, similarly to the bump function (1.26).

We now discuss the wave operator ∂2t −∆x on Rt×Rn
x. The situation is more com-

plicated here since in general fundamental solutions are not locally integrable function.

For now we just consider the case n = 1 (in §10.2 below we handle the case n = 3):

Proposition 9.11. A fundamental solution for the operator ∂2t − ∂2x on R2
t,x is

given by the locally integrable function

E(t, x) =

{
1
2
, t > |x|,

0, t < |x|
(9.12)
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x

t

Figure 9.1. The support (shaded) and the singular support (the bold

lines) of the fundamental solution (9.12).

Proof. We change variables to

y1 = t+ x, y2 = t− x

which transforms the wave operator to a multiple of ∂y1∂y2 and the function E to a

multiple of H(y1)H(y2), where H is the Heaviside function.

Since we have not introduced pullbacks of distributions yet, we argue on the side

of test functions. Take arbitrary φ ∈ C∞
c (R2). Denote □ = ∂2t − ∂2x and define

ψ ∈ C∞
c (R2) by putting φ(t, x) = ψ(t+ x, t− x). We compute∫

R2

E(t, x)□φ(t, x) dxdt = 4

∫
R2

E(t, x)∂y1∂y2ψ(t+ x, t− x) dxdt

=

∫
R2

H(y1)H(y2)∂y1∂y2ψ(y1, y2) dy1dy2

=
(
∂y1∂y2(H(y1)⊗H(y2)), ψ(y1, y2)

)
= ψ(0, 0) = φ(0, 0).

which shows that □E = δ0 by Remark 9.3, since □ is its own transpose. In the last

line above we used that

∂y1∂y2(H(y1)⊗H(y2)) = δ0(y1)⊗ δ0(y2) = δ0(y1, y2)

which follows from the properties of tensor product (see Propositions 7.2 and 7.3) and

the fact that H ′ = δ0 (see (3.4)). □

Remark 9.12. Note that suppE = {t ≥ |x|} and sing suppE = {t = |x|}, see

Figure 9.1.

We finish this section with the following general

Theorem 9.13 (Malgrange–Ehrenpreis Theorem). Let P ̸= 0 be a differential

operator with constant coefficients. Then P has a fundamental solution.
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We do not give the proof here, sending a curious reader to [Hör03, Theorem 7.3.10]

or [FJ98, Theorem 10.4.1].

9.1.3. A negative exampleX. We now give a simple example illustrating why

in part 1 of Theorem 9.4 it is important that the supports of E and u sum properly,

going through the construction of distributional convolution in §8 in this particular

case. This section is optional for reading.

Our example is as follows: on R we have

Pu = 0 where P = ∂x, u ≡ 1,

and a fundamental solution of P is given by the Heaviside function:

E(x) = H(x).

Clearly we do not have u = E ∗Pu, even though the convolution E ∗Pu makes perfect

sense (and equals 0). There is no contradiction with Theorem 9.4 since the supports

of E, u do not sum properly. But what if we were to repeat the proof of that theorem

while ignoring the support issue?

Looking at the proof of Theorem 9.4, we see that what fails is the identity

(∂xH) ∗ 1 = H ∗ (∂x1),

and properties of convolution do not apply here since suppH, supp 1 do not sum prop-

erly, so the convolution H ∗ 1 cannot be defined. Let us look a bit more into the proof

of this property of convolution to see what goes wrong. Take arbitrary φ ∈ C∞
c (R),

then if we ignore the support issue then

((∂xH) ∗ 1, φ) = (∂xH(x)⊗ 1(y), φ(x+ y)) = −(H(x)⊗ 1(y), φ′(x+ y)),

(H ∗ (∂x1), φ) = (H(x)⊗ ∂y1(y), φ(x+ y)) = −(H(x)⊗ 1(y), φ′(x+ y)),

which indicates that the two expressions are equal. However, in the second equality

in each line above we used the definition of distributional derivative which does not

apply since H(x)⊗ 1(y) cannot be paired with φ(x+ y) as their supports do not have

compact intersection. More concretely, we could try to write

(H(x)⊗ 1(y), φ′(x+ y)) =

∫
{x>0}

φ′(x+ y) dxdy

and compute it by Fubini’s Theorem in two ways (which corresponds to the iterated

tensor product formulas (7.10) and (7.11)) as∫
{x>0}

φ′(x+ y) dxdy =

∫ ∞

0

(∫
R
φ′(x+ y) dy

)
dx =

∫
R

(∫ ∞

0

φ′(x+ y) dx

)
dy

But the function φ′(x+ y) is not integrable on {x > 0}, so Fubini’s Theorem does not

apply. While the two iterated integrals above both converge, their values are different:

the first one is equal to 0 and the second one is equal to −
∫
R φ(y) dy.



9.2. ELLIPTIC REGULARITY I 103

9.2. Elliptic regularity I

We now give the first version of elliptic regularity, which is one of the main results

in this course. Further versions will be proved in §§12.2,14 below. Recall the notion of

singular support defined in §8.3.

Theorem 9.14 (Elliptic Regularity I). Assume that P is a differential operator

with constant coefficients on Rn and that there exists a fundamental solution E of P

such that

sing suppE = {0}. (9.13)

Let U ⊂◦ Rn and u ∈ D′(U). Then

sing suppu = sing supp(Pu). (9.14)

In particular, we have

Pu ∈ C∞(U) =⇒ u ∈ C∞(U). (9.15)

Remark 9.15. Theorem 9.14 is not a completely satisfactory result since to apply

it we need to find a fundamental solution of P with singular support at the origin.

Still, looking at the examples in §9.1.2 we get elliptic regularity for the Laplace opera-

tor, the Cauchy–Riemann operator, and the heat operator. On the other hand, for the

wave operator elliptic regularity fails; in the case of 1 spatial dimension this follows

from Proposition 9.11 since the fundamental solution E does not satisfy sing suppE ⊂
sing supp□E. Also, strictly speaking Theorem 9.14 should be called hypoelliptic regu-

larity since it applies to some operators which are not elliptic, such as the heat opera-

tor – see §12.2.

Proof. We have sing supp(Pu) ⊂ sing suppu by (8.16), so we need to show that

sing suppu ⊂ sing supp(Pu).

1. Fix arbitrary x0 ∈ U such that x0 /∈ sing supp(Pu); we need to show that x0 /∈
sing suppu. Fix a cutoff function

χ ∈ C∞
c (U), x0 /∈ supp(1− χ).

Consider the product

χu ∈ E ′(U)

and extend it by 0 (using Proposition 4.7) to an element of E ′(Rn), which we still

denote by χu.

By part 1 of Theorem 9.4 we have

χu = E ∗ (Pχu).

Since sing suppE = {0}, by Proposition 8.14 we have

sing supp(χu) ⊂ sing supp(Pχu).
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It thus suffices to show that

x0 /∈ sing supp(Pχu). (9.16)

Indeed, then x0 /∈ sing supp(χu) and thus, as χ = 1 near x0, we have x0 /∈ sing suppu

as needed.

2. We compute

Pχu = [P, χ]u+ χPu.

Here [P, χ] = Pχ−χP is the commutator of P with the multiplication operator by χ. It

is a differential operator with variable coefficients, and (as χ = 1 near x0 and [P, 1] = 0)

these coefficients are supported away from x0. Thus x0 /∈ supp([P, χ]u) and thus

x0 /∈ sing supp([P, χ]u). Since x0 /∈ sing supp(Pu), we also have x0 /∈ sing supp(χPu).

Adding these together we get x0 /∈ sing supp(Pχu), giving (9.16) and finishing the

proof. □

9.3. Notes and exercises

Our presentation largely follows [Hör03, §4.4]; see also [FJ98, §5.4] for an alter-

native presentation of the material of §9.1. For a detailed introduction to the general

theory of differential operators with constant coefficients see [Hör05].

Exercise 9.1. (1 pt) Prove Proposition 9.8.

Exercise 9.2. (1.5 pts) Prove Proposition 9.9. (Hint: first check that (∂t−∆x)E =

0 for t > 0. Then compute the integral in Remark 9.3 as an iterated integral dxdt,

integrate by parts in the integral dx, and use the Fundamental Theorem of Calculus

in t to write the integral in Remark 9.3 as a limit as t → 0+. Finally compute this

limit by a change of variables x = 2
√
ty and the Dominated Convergence Theorem,

using also the value of the Gaussian integral.)

Exercise 9.3. (0.5 pt) Using the fact that the Heaviside function is a fundamental

solution for ∂x, show that for u ∈ D′(R), if suppu ⊂ [a,∞) and supp(∂xu) ⊂ [b,∞)

for some a ≤ b, then suppu ⊂ [b,∞).

Exercise 9.4. (2.5 = 1 + 0.5 + 1 + 0.5 + 0.5 pts)

This exercise studies solutions to the initial value problem for the wave operator

on R2, □ := ∂2t − ∂2x. Assume that

□u = f, u(0, x) = g0(x), ∂tu(0, x) = g1(x).

Here u ∈ C2(R2) is the solution, f ∈ C0(R2) is the forcing term, and g0 ∈ C2(R), g1 ∈
C1(R) are the initial data.
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(a) Define v(t, x) = H(t)u(t, x) ∈ L1
loc(R2) where H is the Heaviside function. Show

that, with derivatives in the sense of distributions,

□v = δ′0(t)⊗ g0(x) + δ0(t)⊗ g1(x) +H(t)f.

(b) Using that supp v ⊂ {t ≥ 0} show that v = E ∗□v where E is defined in (9.12).

(c) Assume that w ∈ D′(R2) and suppw ⊂ {t ≥ 0}. Show that for each φ ∈ C∞
c (R2)

we have

(E ∗ w,φ) = (w,ψ)

for some ψ ∈ C∞
c (R2) such that

ψ(t, x) =
1

2

∫
|y|<s

φ(t+ s, x+ y) dsdy, t ≥ 0.

(d) Assume that f = 0 and supp g0, supp g1 ⊂ [−R,R]. Show that

suppu ∩ {t > 0} ⊂ {|x| ≤ t+R}.

(This is called ‘finite speed of propagation’.)

(e) Assume that g0 = g1 = 0 and supp f ⊂ {t > 0}. Show that singularities propagate

at unit speed: namely, if (t, x) ∈ sing suppu and t > 0, then we have (t, x) = (s, y) +

(τ,−τ) or (t, x) = (s, y) + (τ, τ) for some τ ≥ 0 and (s, y) ∈ sing supp f .

Exercise 9.5. (1.5 pts) Using the previous exercise, show d’Alembert’s formula:

for t > 0

u(t, x) =
1

2
(g0(x+ t) + g0(x− t)) +

1

2

∫ x+t

x−t
g1(s) ds

+
1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)
f(τ, s) dsdτ.

(9.17)

(This would need a fair amount of computation.)





CHAPTER 10

Pullbacks by smooth maps

In this chapter we define the composition of a distribution with a C∞ map, under

appropriate conditions on the map. As an application, we find a fundamental solution

of the wave operator in 3+1 dimensions.

10.1. Defining pullback

10.1.1. Pullback of functions. We first review the classical concept of pullback

of smooth functions. Assume that U ⊂◦ Rn, V ⊂◦ Rm, and Φ : U → V is a C∞ map.

For f ∈ C∞(V ), define the pullback of f by Φ as

Φ∗f := f ◦ Φ ∈ C∞(U). (10.1)

This gives a linear sequentially continuous operator

Φ∗ : C∞(V ) → C∞(U). (10.2)

The pullback operator acts on locally integrable functions:

Φ∗ : L1
loc(V ) → L1

loc(U) (10.3)

provided thats Φ satisfies the following condition: for each K ⋐ U there exists a

constant CK so that

vol(K ∩ Φ−1(Ω)) ≤ CK vol(Ω) for all measurable Ω ⊂ V. (10.4)

A basic example of when this condition fails is the following map:

Φ : R → R, Φ(x) = 0 for all x. (10.5)

In this case pullback does not make sense on locally integrable functions already be-

cause of identification of functions which are equal almost everywhere: there exist

functions f on R which satisfy f = 0 almost everywhere but Φ∗f is not equal to 0

almost everywhere (e.g. take f to be the indicator function of the set {0}).
Note that pullback is contravariant, namely if we have two C∞ maps

U
Φ2−→ V

Φ1−→ W,

then the pullback by Φ1 ◦ Φ2 : U → W satisfies

(Φ1 ◦ Φ2)
∗ = Φ∗

2Φ
∗
1. (10.6)

107
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10.1.2. Pullback on distributions. The counterexample (10.5) shows that we

do not expect to be able to define the pullback of an arbitrary distribution by an

arbitrary smooth map Φ. Instead we restrict to Φ satisfying the following condition:

Definition 10.1. Let U ⊂◦ Rn, V ⊂◦ Rm. A C∞ map Φ : U → V is called a

submersion if

dΦ(x) : Rn → Rm is surjective for all x ∈ U.

Note that we necessarily have n ≥ m. Moreover, any submersion satisfies the

condition (10.4) (for example, one can see this by following the proof of Theorem 10.2

below).

The main result of this section is

Theorem 10.2. Assume that U ⊂◦ Rn, V ⊂◦ Rm, and Φ : U → V is a C∞

submersion. Then there exists a sequentially continuous linear operator

Φ∗ : D′(V ) → D′(U) (10.7)

such that for any f ∈ L1
loc(V ), Φ∗f ∈ L1

loc(U) is the classical pullback defined in (10.1).

Remark 10.3. Since C∞(V ) is dense in D′(V ) (by Theorem 6.10), such an ex-

tension of Φ∗ to distributions is unique. Since C∞(V ) is also dense in L1
loc(V ) (by

Theorem 1.14), it suffices to construct Φ∗ such that Φ∗f = f ◦ Φ for any f ∈ C∞(V )

(rather than for any f ∈ L1
loc(V )).

Remark 10.4.X The requirement that Φ be a submersion is almost necessary to

define Φ∗ with the properties in Theorem 10.2 – see [Hör03, Theorem 6.1.1] and the

paragraph following it.

We prove Theorem 10.2 in steps, treating first two special cases and then writing

a general submersion as a composition of those cases.

10.1.3. Case 1: diffeomorphism. We start with the case when n = m and

Φ : U → V is a C∞ diffeomorphism, that is Φ is bijective and the inverse Φ−1 : V → U

is a C∞ map. (By the Inverse Mapping Theorem, this is equivalent to Φ being bijective

and the differential dΦ(x) being an invertible linear map for each x ∈ U .) We will use

the following standard result from multivariable calculus/Lebesgue integral theory:

Theorem 10.5 (Change of variables formula).R Assume that Φ : U → V is a C1

diffeomorphism. Define the Jacobian

JΦ ∈ C0(U), JΦ(x) = | det dΦ(x)|.

Let f : V → C be a measurable function. Then f ∈ L1(V ) if and only if the function

(Φ∗f)JΦ lies in L1(U), and in this case∫
V

f(y) dy =

∫
U

f(Φ(x))JΦ(x) dx. (10.8)
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For the proof, see for example [Rud87, Theorem 8.26] or [Str11, Theorem 5.2.2].

We now define the pullback operator Φ∗ : D′(V ) → D′(U), we use the general

extension by duality procedure of Theorem 7.15. All that we need is to show that the

transpose operator (Φ∗)t is sequentially continuous on test functions,

(Φ∗)t : C∞
c (U) → C∞

c (V ). (10.9)

We take arbitrary φ ∈ C∞(V ), ψ ∈ C∞
c (U) and compute using Theorem 10.5

((Φ∗)tψ, φ) = (Φ∗φ, ψ) =

∫
U

φ(Φ(x))ψ(x) dx =

∫
V

φ(y)ψ(Φ−1(y))JΦ−1(y) dy.

It follows that

(Φ∗)tψ(y) = ψ(Φ−1(y))JΦ−1(y), y ∈ V, ψ ∈ C∞
c (U).

This gives the mapping property (10.9) and shows that the operator Φ∗ extends to

distributions by the formula

(Φ∗v, ψ) = (v, (Φ∗)tψ) for all v ∈ D′(V ), ψ ∈ C∞
c (U).

We discuss two important examples. One is the pullback of a delta function:

Proposition 10.6. Assume that Φ : U → V is a C∞ diffeomorphism and y0 ∈ V .

Then

Φ∗δy0 = JΦ−1(y0)δΦ−1(y0). (10.10)

Proof.S We compute for any ψ ∈ C∞
c (U)

(Φ∗δy0 , ψ) = (δy0 , (Φ
∗)tψ) = (Φ∗)tψ(y0) = JΦ−1(y0)ψ(Φ

−1(y0))

which gives the needed identity. □

Another one is the relation to homogeneous distributions defined in §5.1.2. Define
the diffeomorphism λt : Rn → Rn, λt(x) = tx, t > 0, so that Λt = λ∗t .

Proposition 10.7. Let u ∈ D′(Rn). Then u is homogeneous of degree a ∈ C if

and only if λ∗tu = tau for all t > 0.

Proof.S We compute for any ψ ∈ C∞
c (Rn)

(λ∗tu, ψ) = (u, t−nΛ−1
t ψ).

Thus (λ∗tu, ψ) = ta(u, ψ) if and only if (u,Λ−1
t ψ) = tn+a(u, ψ). □
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10.1.4. Case 2: projection. We now consider the case of a projection map

Φ : U → V, Φ(x′, x′′) = x′

where n ≥ m, we write elements of Rn as x = (x′, x′′) with x′ ∈ Rm, x′′ ∈ Rn−m, and

U ⊂◦ Rn, V ⊂◦ Rm satisfy U ⊂ V × Rn−m.

If f ∈ L1
loc(V ), then we can write the pullback Φ∗f ∈ L1

loc(U) as the restriction of

a tensor product: (Φ∗f)(x′, x′′) = f(x′), thus Φ∗f = (f ⊗ 1)|U where 1 is treated as a

constant function on Rn−m, so that f ⊗ 1 ∈ L1
loc(V × Rn−m).

Same definition works for distributions: for v ∈ D′(V ) put

Φ∗v := (v ⊗ 1)|U ∈ D′(U) (10.11)

and this defines an operator satisfying the conditions in Theorem 10.2.

10.1.5. The general case. We now give the proof of Theorem 10.2 in the case

when U ⊂◦ Rn, V ⊂◦ Rm, and Φ : U → V is an arbitrary C∞ submersion. The following

lemma shows that locally Φ is the composition of a diffeomorphism and a projection:

Lemma 10.8. Assume that Φ : U → V is a C∞ submersion. Fix x0 ∈ U . Then

there exist open sets Ux0 ⊂◦ U , Wx0 ⊂◦ V × Rn−m, x0 ∈ Ux0, and a C∞ diffeomorphism

κx0 : Ux0 → Wx0 such that

Φ(x) = y′ for all x ∈ Ux0 where (y′, y′′) := κx0(x). (10.12)

Proof. Since Φ is a submersion, the linear map dΦ(x0) : Rn → Rm is surjective.

Thus there exists a linear map Ψ : Rn → Rn−m such that the linear map

v ∈ Rn 7→ (dΦ(x0)v,Ψ(v))

is invertible. For x ∈ U , define

κx0(x) = (Φ(x),Ψ(x)) ∈ V × Rn−m,

then dκx0(x0) is invertible. By the Inverse Mapping Theorem there exist open neigh-

borhoods Ux0 ,Wx0 of x0,κx0(x0) such that κx0 : Ux0 → Wx0 is a diffeomorphism. From

the definition of κx0 we see that it satisfies (10.12). □

Coming back to the proof of Theorem 10.2, take arbitrary x0 ∈ U and let Ux0 ,Wx0 ,κx0
be given by Lemma 10.8. Then we can write

Φ|Ux0
= πx0 ◦ κx0

where πx0 : Wx0 → V is defined by πx0(y
′, y′′) = y′. Define the pullback operator

(Φ|Ux0
)∗ := κ∗

x0
π∗
x0

: D′(V ) → D′(Ux0) (10.13)
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where κ∗
x0

: D′(Wx0) → D′(Ux0) is defined in §10.1.3 and π∗
x0

: D′(V ) → D′(Wx0)

is defined in §10.1.4. Then (Φ|Ux0
)∗ satisfies the conditions of Theorem 10.2 for the

map Φ|Ux0
.

We now glue the different operators (Φ|Ux0
)∗ together to get the global operator Φ∗.

If x0, x1 ∈ U then the pullback operators (Φ|Ux0
)∗ and (Φ|Ux1

)∗ agree on Ux0 ∩ Ux1 ,

that is for all v ∈ D′(V ) we have

(Φ|Ux0
)∗v|Ux0∩Ux1

= (Φ|Ux1
)∗v|Ux0∩Ux1

. (10.14)

Indeed, this is immediate for v ∈ C∞(V ) (as both sides are equal to the classical

pullback (v ◦ Φ)|Ux0∩Ux1
) and follows for general v since C∞(V ) is dense in D′(V ) by

Theorem 6.10.

Applying the sheaf property of distributions (Theorem 2.13) for the covering U =⋃
x0∈U Ux0 , we see that for each v ∈ D′(V ) there exists unique Φ∗v ∈ D′(U) such that

(Φ∗v)|Ux0
= (Φ|Ux0

)∗v for all x0 ∈ U. (10.15)

It it straightforward to check that this defines an operator Φ∗ : D′(V ) → D′(U)

satisfying the conditions of Theorem 10.2, finishing its proof.

Remark 10.9. Recalling the constructions in §§10.1.3–10.1.4, we get the following

concrete expression for (Φ|Ux0
)∗: for all v ∈ D′(V ) and ψ ∈ C∞

c (Ux0)

((Φ|Ux0
)∗v, ψ) = (v ⊗ 1, (κ∗

x0
)Tψ) = (v, ψ̃)

where ψ̃(y′) =

∫
Rn−m

Jκ−1
0
(y′, y′′)ψ(κ−1

x0
(y′, y′′)) dy′′.

10.1.6. Properties of pullback. We now discuss properties of the pullback op-

erator on distributions. We start with

Proposition 10.10 (Chain Rule). Assume that U ⊂◦ Rn, V ⊂◦ Rm, Φ : U →
V is a C∞ submersion, and v ∈ D′(V ). Denote Φ(x) = (Φ1(x), . . . ,Φm(x)) where

Φ1, . . . ,Φm : U → R. Then we have for all j = 1, . . . , n

∂xj(Φ
∗v) =

m∑
k=1

(∂xjΦk) Φ
∗(∂ykv). (10.16)

Remark 10.11. Writing v(Φ(x)) in place of Φ∗v(x), we see that (10.16) takes the

more familiar form

∂xj
(
v(Φ1(x), . . . ,Φm(x))

)
=

m∑
k=1

∂xjΦk(x)∂ykv(Φ1(x), . . . ,Φm(x)).

Proof. This follows from the usual Chain Rule when v ∈ C∞(V ), and is true in

general since C∞(V ) is dense in D′(V ) (by Theorem 6.10). □
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As an application of Proposition 10.10 we compute the pullback of the delta func-

tion δ0 ∈ D′(R) by a submersion Φ, which produces a delta function on the hypersur-

face Φ−1(0). See Proposition 13.2 for a review of the concept of embedded submanifold

(more specifically, a hypersurface) used below. The surface measure used below coin-

cides with the Riemannian volume density induced by the restriction of the Euclidean

metric to Σ (see §13.1.7).

Proposition 10.12. Let U ⊂◦ Rn and Φ : U → R be a submersion (that is,

the gradient dΦ is nonzero everywhere); in particular, then Σ := Φ−1(0) ⊂ U is a

hypersurface. Define the distribution δΣ ∈ D′(U) by integration with respect to the

surface measure dS on Σ:

(δΣ, φ) :=

∫
Σ

φ(x) dS(x) for all φ ∈ C∞
c (U). (10.17)

Then

Φ∗δ0(x) =
1

|dΦ(x)|
δΣ(x). (10.18)

Proof. Denote by H ∈ L1
loc(R) the Heaviside function. Then Φ∗H = 1Ω is the

indicator function of the set

Ω := {x ∈ U | Φ(x) ≥ 0}.

By Proposition 10.10 and since H ′ = δ0 by (3.4) we have for each j = 1, . . . , n

∂xj(Φ
∗H) = (∂xjΦ)Φ

∗δ0. (10.19)

Now, by the Divergence Theorem (see (1.38), where we effectively have ∂Ω = Σ since

suppφ ⋐ U) we compute for each φ ∈ C∞
c (U)

(∂xj(Φ
∗H), φ) = −

∫
Ω

∂xjφdx = −
∫
Σ

φνj dS(x).

Here ν⃗(x) = (ν1(x), . . . , νn(x)) is the normal vector to Σ at x ∈ Σ pointing outside

of Ω. We have

ν⃗(x) = − dΦ(x)

|dΦ(x)|
,

thus we get the identity

∂xj(Φ
∗H) =

∂xjΦ

|dΦ|
δΣ. (10.20)

Together (10.19) and (10.20) show that for each j

(∂xjΦ)

(
Φ∗δ0 −

1

|dΦ|δΣ

)
= 0

which gives (10.18) since dΦ ̸= 0 everywhere on U . □
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We finally state several more properties of pullbacks. The proofs are left as exercises

below.

Proposition 10.13. Assume that U ⊂◦ Rn, V ⊂◦ Rm, Φ : U → V is a submersion,

v ∈ D′(V ), and a ∈ C∞(V ). Then

Φ∗(av) = (Φ∗a)(Φ∗v), (10.21)

supp(Φ∗v) = Φ−1(supp v), (10.22)

sing supp(Φ∗v) = Φ−1(sing supp v). (10.23)

Moreover, the contravariant property (10.6) holds on distributions.

10.2. Application to the wave equation

10.2.1. Construction of a fundamental solution. We now come back to the

question of constructing a fundamental solution for the wave operator, started in

Proposition 9.11. The theorem below gives the existence of what is known as ad-

vanced, or future, fundamental solution:

Theorem 10.14. The operator □ = ∂2t −∆x on Rt×Rn
x has a fundamental solution

E ∈ D′(Rn+1) with the following properties:

suppE ⊂ {(t, x) : t ≥ |x|}, (10.24)

sing suppE = {(t, x) : t = |x|}. (10.25)

We only prove Theorem 10.14 for n = 3, that is in the case of 3 spatial dimensions.

See [Hör03, Theorem 6.2.3] for the case of general n. We break the proof into several

steps.

1. We first construct the restriction Ẽ+ = E+|R4\{0} as a pullback of the delta function

on R. (For other values of n, one has to instead pull back the homogeneous distribution

χa+ defined in (5.19) with a := 1−n
2
.) Consider the function

Φ : R4 \ {0} → R, Φ(t, x) = t2 − |x|2.

In special relativity, this is known as the interval between (t, x) and the origin. Just

like the function |x| featured in the fundamental solution of the Laplace operator

(Proposition 9.6) is invariant under rotations, the function Φ is invariant under the

Lorentz group O(1, 3) which also leaves the wave equation invariant.

The map Φ is a submersion, so we may define the pullback

Ẽ := Φ∗δ0 ∈ D′(R4 \ {0}).

We claim that

□Ẽ = 0. (10.26)



114 10. PULLBACKS BY SMOOTH MAPS

This follows from the Chain Rule (Proposition 10.10): we compute for any v ∈ D′(R)
and j = 1, 2, 3

∂t(Φ
∗v) = 2tΦ∗v′,

∂2t (Φ
∗v) = 2Φ∗v′ + 4t2Φ∗v′′,

∂xj(Φ
∗v) = −2xjΦ

∗v′,

∂2xj(Φ
∗v) = −2Φ∗v′ + 4x2jΦ

∗v′′.

This gives

□(Φ∗v) = 8Φ∗v′ + 4ΦΦ∗v′′ = Φ∗w where w(s) := 8v′(s) + 4sv′′(s).

The distribution δ0 ∈ D′(R) is homogeneous of degree −1, so δ′0 is homogeneous of

degree −2. Then Euler’s equation (see part 2 of Proposition 5.5; of course this can also

be checked directly in this case e.g. by differentiating the identity sδ0(s) = 0 twice)

shows that sδ′′0(s) = −2δ′0(s). Thus if v = δ0 above, then w = 0, and we obtain (10.26).

By Proposition 10.12, we see that

Ẽ =
1

|dΦ|
δC

where the light cone C := Φ−1(0) consists of two parts:

C = C+ ⊔ C−, C± := {(t, x) ∈ R4 \ {0} : ± t > 0}.

We now define

Ẽ± :=
1

|dΦ|
δC± ∈ D′(R4 \ {0}),

so that

Ẽ = Ẽ+ + Ẽ−, supp Ẽ± ⊂ C±.

By (10.26) we have □Ẽ+ + □Ẽ− = 0, but the supports of □Ẽ± do not intersect each

other, thus

□Ẽ± = 0. (10.27)

2. We now extend Ẽ+ through the origin. This can be done using homogeneity: since

δ0 is homogeneous of degree −1 and Φ is homogeneous of degree 2, one can check

that Ẽ+ is homogeneous of degree −2 and thus by Theorem 5.6 there exists a unique

extension of Ẽ+ to a distribution E+ ∈ D′(R4) which is homogeneous of degree −2.

However, we can also argue directly by obtaining a more explicit formula for Ẽ+.

Let us parametrize C+ by x ∈ R3 \ {0} as the graph t = |x|, then the surface element

dS is given by

dS =

√
1 +

∣∣∣∣d|x|dx

∣∣∣∣2 dx =
√
2 dx.
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Next, dΦ(t, x) = 2(t,−x), so |dΦ| = 2
√
2|x| on C+. Thus we have for each φ ∈

C∞
c (R4 \ {0})

(Ẽ+, φ) =

∫
C+

φ

|dΦ|
dS =

∫
R3\{0}

φ(|x|, x)
2|x|

dx.

The integral above still converges if suppφ is allowed to contain the origin, so we define

the distribution E+ ∈ D′(R4) by

(E+, φ) :=

∫
R3

φ(|x|, x)
2|x|

dx for all φ ∈ C∞
c (R4). (10.28)

We have E+|R4\{0} = Ẽ+. Moreover, recalling Definition 5.3 we see that E+ is homo-

geneous of degree −2. We also have

suppE+ = sing suppE+ = {(t, x) ∈ R4 : t = |x|}. (10.29)

3. We finally compute □E+, which is a distribution in D′(R4). By (10.27) we have

□E+|R4\{0} = □Ẽ+ = 0. Thus supp□E+ ⊂ {0}. By Theorem 4.19, □E+ is a linear

combination of δ0 and its derivatives. On the other hand, by part 1 of Proposition 5.5

we see that □E+ is homogeneous of degree −4, and ∂αδ0 is homogeneous of degree

−4− |α|. Arguing similarly to (5.8) we see that □E+ is a multiple of δ0:

□E+ = cδ0 for some c ∈ C. (10.30)

To compute the constant c, we pair □E+ with a function of the form ψ(t) where

ψ ∈ C∞
c (R) satisfies ψ(0) = 1. This is possible by Proposition 8.7 since the intersection

of (suppψ)× R3 with suppE+ is compact. We have

c = (□E+, ψ(t)) = (E+,□ψ(t)) = (E+, ψ
′′(t)) =

∫
R3

ψ′′(|x|)
2|x|

dx

= 2π

∫ ∞

0

rψ′′(r) dr = 2π.

where in the last line we used spherical coordinates and then integrated by parts.

It remains to put

E :=
1

2π
E+ ∈ D′(R4)

to obtain a fundamental solution of □ satisfying the conditions of Theorem 10.14.

Recalling (10.28) we obtain the following explicit expression for E:

(E,φ) =

∫
R3

φ(|x|, x)
4π|x|

dx for all φ ∈ C∞
c (R4). (10.31)



116 10. PULLBACKS BY SMOOTH MAPS

10.2.2. The Cauchy problem. We now use the fundamental solution E of □
on R×Rn

x from Theorem 10.14 to obtain a few partial results on the forward Cauchy

problem

□u(t, x) = f(t, x), t ≥ 0,

u(0, x) = g0(x),

∂tu(0, x) = g1(x).

(10.32)

See [Hör03, Theorem 6.2.4] for a more comprehensive treatment.

Assume that u is a classical solution to (10.32):

u ∈ C2([0,∞)t × Rn
x), g0 ∈ C2(Rn), g1 ∈ C1(Rn).

Using the Heaviside function H, define

v(t, x) := H(t)u(t, x), v ∈ L1
loc(R4).

Arguing in the same way as for Exercise 9.4(a) we compute

□v = δ′0(t)⊗ g0(x) + δ0(t)⊗ g1(x) +H(t)f. (10.33)

By Exercise 8.3, suppE and supp v ⊂ {t ≥ 0} sum properly, thus part 1 of Theorem 9.4

gives

v = E ∗□v. (10.34)

This gives uniqueness for the Cauchy problem (10.32): if f = 0 and g0 = g1 = 0 then

□v = 0 and thus v = 0, implying that u = 0.

Arguing similarly to Exercise 9.4(d,e) we obtain finite speed of propagation:

suppu ⊂{(t, x) | ∃y ∈ supp g0 ∪ supp g1, |x− y| ≤ t}
∪ {(t, x) | ∃(s, y) ∈ supp f, |x− y| ≤ t− s}

(10.35)

and a weak version of propagation of singularities : if g0 = g1 = 0 and supp f ⊂ {t > 0}
then

sing suppu ⊂ {(t, x) | ∃(s, y) ∈ sing supp f, |x− y| = t− s}. (10.36)

10.3. Notes and exercises

Our presentation largely follows [Hör03, §§6.1–6.2] and [FJ98, Chapter 7].

Exercise 10.1. (2.5 = 0.5 + 1 + 1 pts) Let Φ : U → V be a submersion and

v ∈ D′(V ).

(a) Show that if Ũ ⊂◦ U , Ṽ ⊂◦ V , and Φ(Ũ) ⊂ Ṽ , then (Φ∗v)|Ũ = (Φ|Ũ)∗(v|Ṽ ), where
Φ|Ũ : Ũ → Ṽ .
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(b) Show that if Φ is surjective (that is, Φ(U) = V ), then

Φ∗v = 0 =⇒ v = 0, (10.37)

Φ∗v ∈ C∞(U) =⇒ v ∈ C∞(V ). (10.38)

(You might need to review the construction of the extension Φ∗ in §§10.1.3–10.1.5.)

(c) Prove (10.22) and (10.23). (You might find the previous two parts of the exercise

useful.)

Exercise 10.2. (0.5 pt) Prove the properties (10.6) and (10.21) for pullback on

distributions.

Exercise 10.3. (1 pt) Let Φ : R → R be given by Φ(x) = x2. Show that the pullback

operator Φ∗ : C∞(R) → C∞(R) does not extend to a sequentially continuous operator

D′(R) → D′(R). (Hint: let χ ∈ C∞
c (R) be equal to 1 near 0, put χε(x) := ε−1χ(x/ε),

and look at the limit of (Φ∗χε, χ).)

Exercise 10.4. (2 = 1 + 1 pts) Compute the transposes (Φ∗)t : C∞
c (U) → D′(V )

of pullbacks by the following two maps Φ : U → V . In each case decide whether (Φ∗)t

maps C∞
c (U) to C∞

c (V ) (which would allow to extend Φ∗ to distributions):

(a) Φ : R2 → R, Φ(x1, x2) = x1;

(b) Φ : R → R2, Φ(x1) = (x1, 0).

Exercise 10.5. (2 = 1+1 pts) Assume that W ⊂ Rn is open and F : W → Rm is

a C∞ map. Define the submersion Φ : W × Rm → Rm by Φ(x, y) = y − F (x).

(a) Show that for each v ∈ D′(Rm) the distribution Φ∗v ∈ D′(W × Rm) is given by

(Φ∗v, φ) =

(
v(y),

∫
W

φ(x, y + F (x)) dx

)
for all φ ∈ C∞

c (W × Rm). (10.39)

(b) Show that the Schwartz kernel of the pullback operator F ∗ : C∞(Rm) → C∞(W )

is given by K(x, y) = δ0(y − F (x)) where δ0(y − F (x)) is defined as Φ∗δ0. (In the

special case when F is the identity map we see that the Schwartz kernel of the identity

operator is given by δ0(y − x) = δ0(x− y).)

Exercise 10.6. (1 pt) Check that the distribution E given in (10.31) satisfies

□E = δ0 directly, without appealing to the classification of distributions supported at

the origin. To do this, introduce the spherical coordinates x = rθ where θ ∈ S2. You

may use the formula

∆x = ∂2r +
2

r
∂r +

1

r2
∆θ

where ∆θ : C
∞(S2) → C∞(S2) is the Laplace–Beltrami operator for the standard metric

on the 2-sphere. You may also use that ∆θf integrates to 0 on S2 for all f ∈ C∞(S2).

After getting rid of ∆θ, you might find it useful to write everything in terms of the

function ψ(u, v, θ) = φ(u+ v, (u− v)θ) where φ ∈ C∞
c (R4) and u, v ∈ R, θ ∈ S2.
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Exercise 10.7. (1 = 0.5 + 0.5 pt) Let E ∈ D′(R4) be defined in (10.31).

(a) Assume that w ∈ D′(R4) and suppw ⊂ {t ≥ 0}. Show that for each φ ∈ C∞
c (R4)

we have

(E ∗ w,φ) = (w,ψ)

for some ψ ∈ C∞
c (R4) such that

ψ(t, x) =
1

4π

∫
R3

φ(t+ |y|, x+ y)

|y|
dy, t ≥ 0.

(b) Using part (a) and (10.33), show the following version of Kirchhoff’s formula: if

u ∈ C2({t ≥ 0}) is the solution to

□u(t, x) = 0, u(0, x) = 0, ∂tu(0, x) = g1(x),

then we have for all t ≥ 0 and x ∈ R3

u(t, x) =
t

4π

∫
S2
g1(x+ tθ) dS(θ).

That is, the value of the solution at time t and space x is equal to t times the average

of the initial data g1 over the sphere of radius t centered at x.



CHAPTER 11

Fourier transform I

In this chapter we define the Fourier transform on distributions, which is a powerful

tool in the study of PDEs in particular because it turns constant coefficient differential

operators into multiplication operators.

11.1. Fourier transform on Schwartz functions

11.1.1. Fourier transform on L1. We start by defining Fourier transform on

functions. For two vectors x, ξ ∈ Rn, denote by x · ξ their usual Euclidean inner

product, that is

x · ξ :=
n∑
j=1

xjξj.

Definition 11.1. Let f ∈ L1(Rn). Define the Fourier transform

f̂ = F(f) ∈ L∞(Rn)

by the formula

f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx. (11.1)

Note that f̂(0) is the integral of f .

It is immediate to see that F : L1(Rn) → L∞(Rn) is a bounded linear operator, in

fact we have from its definition

∥f̂∥L∞(Rn) ≤ ∥f∥L1(Rn) for all f ∈ L1(Rn). (11.2)

Moreover, f̂ is a continuous function:

Proposition 11.2. Assume that f ∈ L1(Rn). Then f̂ ∈ C0(Rn).

Proof. We have for any ξ ∈ Rn

f̂(η) =

∫
Rn

e−ix·ηf(x) dx →
∫
Rn

e−ix·ξf(x) dx = f̂(ξ) as η → ξ

by the Dominated Convergence Theorem, since |e−ix·ηf(x)| = |f(x)|, f ∈ L1(Rn), and

e−ix·η → e−ix·ξ as η → ξ for all x ∈ Rn. □

119
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11.1.2. Schwartz functions. The operator F : L1 → L∞ is very far from in-

vertible. It is highly desirable to have spaces on which the Fourier transform is an

isomorphism. One of such spaces is given by Schwartz functions :

Definition 11.3. We say that φ ∈ C∞(Rn) is a Schwartz function if for all

multiindices α, β we have

sup
x∈Rn

|xα∂βxφ(x)| <∞. (11.3)

Denote by S (Rn) the space of all Schwartz functions on Rn. For a sequence φj ∈
S (Rn), we say it converges to φ ∈ S (Rn) in S (Rn) if for all α, β we have

sup
x∈Rn

|xα∂βx (φj − φ)| → 0 as j → ∞.

Remark 11.4. We think of S (Rn) as a space of test functions which is well suited

to study the Fourier transform. We sometimes call elements of this space rapidly

decreasing functions, since for φ ∈ S (Rn) every derivative ∂βxφ is O((1 + |x|)−N) for
all N .

Remark 11.5. We have the inclusions

C∞
c (Rn) ⊂ S (Rn) ⊂ C∞(Rn). (11.4)

Correspondingly, convergence of sequences in C∞
c (Rn) is stronger than in S (Rn),

which in turn is stronger than in C∞(Rn). The space C∞
c (Rn) is dense in S (Rn),

see Exercise 11.1 below.

Note however that unlike C∞
c (U) and C∞(U), which are defined for any U ⊂◦ Rn,

the Schwartz space is only defined for functions on the entire Rn.

A family of seminorms on S (Rn) is given by

∥φ∥N,M := max
|α|≤N, |β|≤M

sup
Rn

|xα∂βxφ|, N,M ∈ N0. (11.5)

We have φn → 0 in S ′(Rn) if and only if ∥φn∥N,M → 0 for all N,M . In fact, it is

enough to require that ∥φn∥N,N → 0 for all N . The collection of seminorms ∥ • ∥N,N
makes S (Rn) into a Fréchet space similarly to §4.3.1.

From the definition of the above seminorms we see immediately that the multipli-

cation operators xj and the differentiation operators ∂xj are sequentially continuous

S (Rn) → S (Rn), in fact for all all N,M there exists a constant C such that for all

φ ∈ C∞
c (Rn) we have

∥xjφ∥N,M ≤ C∥φ∥N+1,M , ∥∂xjφ∥N,M ≤ C∥φ∥N,M+1. (11.6)

The Schwartz space S (Rn) is contained in L1(Rn). In fact, if φ ∈ S (Rn), then

|φ(x)| ≤ Cn∥φ∥n+1,0(1 + |x|)−n−1 for some constant Cn depending only on n, so

∥φ∥L1(Rn) ≤ Cn∥φ∥n+1,0. (11.7)
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11.1.3. Fourier transform acts on Schwartz functions. For any φ ∈ S (Rn),

we can use (11.1) to define the Fourier transform φ̂ ∈ L∞(Rn), and (11.2) and (11.7)

together show that

∥φ̂∥L∞(Rn) ≤ Cn∥φ∥n+1,0. (11.8)

A remarkable property of the space S (Rn) is that the Fourier transform of a Schwartz

function is again a Schwartz function:

Theorem 11.6. For each φ ∈ S (Rn), F(φ) = φ̂ also lies in S (Rn). Moreover,

the operator F : S (Rn) → S (Rn) is sequentially continuous.

The proof of Theorem 11.6 relies on the fact that Fourier transform intertwines

differentiation and multiplication. To state it we introduce the modified differentiation

operators

Dxj := −i∂xj . (11.9)

For a multiindex α, we have

Dα
x = Dα1

x1
. . . Dαn

xn = (−i)|α|∂αx .

Proposition 11.7. Let φ ∈ S (Rn). Then φ̂ ∈ C1(Rn) and

D̂xjφ(ξ) = ξjφ̂(ξ), (11.10)

x̂jφ(ξ) = −Dξj φ̂(ξ). (11.11)

Proof. 1. To show (11.10), we integrate by parts:

D̂xjφ(ξ) =

∫
Rn

e−ix·ξDxjφ(x) dx = −
∫
Rn

(Dxje
−ix·ξ)φ(x) dx

=

∫
Rn

ξje
−ix·ξφ(x) dx = ξjφ̂(ξ).

Here to justify integration by parts, we can first integrate on the ball B(0, R) and then

let R → ∞; the boundary terms will go to 0 since φ is rapidly decreasing.

2. To show (11.11), we differentiate under the integral sign:

−Dξj φ̂(ξ) =

∫
Rn

(−Dξje
−ix·ξ)φ(x) dx =

∫
Rn

xje
−ix·ξφ(x) dx = x̂jφ(ξ). (11.12)

To justify differentiation under the integral sign, denote by ej the jth coordinate vector

on Rn and write for any ξ ∈ Rn and t ∈ R \ {0}

φ̂(ξ + tej)− φ̂(ξ)

t
=

∫
Rn

e−ix·(ξ+tej) − e−ix·ξ

t
φ(x) dx. (11.13)

Applying the inequality |eiα − 1| ≤ |α| with α := −txj, we see that∣∣∣e−ix·(ξ+tej) − e−ix·ξ

t
φ(x)

∣∣∣ = ∣∣∣e−itxj − 1

t
φ(x)

∣∣∣ ≤ |xjφ(x)|.
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Since φ is a Schwartz function, we have xjφ ∈ L1(Rn). Thus we can pass to the limit

t → 0 under the integral in (11.13), which means that we can differentiate under the

integral in (11.12). □

Remark 11.8. The above proof shows that (11.11) holds for all φ ∈ L1(Rn) such

that xjφ ∈ L1(Rn). Together with Proposition 11.2 this implies that for each k ∈ N0

(1 + |x|)kf(x) ∈ L1(Rn) =⇒ f̂ ∈ Ck(Rn). (11.14)

We can now give

Proof of Theorem 11.6. Assume that φ ∈ S (Rn). Applying Proposition 11.7

iteratively and using that the operators xj, ∂xj map S (Rn) to itself, we see that φ̂ ∈
C∞(Rn) and for any multiindices α, β

ξαDβ
ξ φ̂ = (−1)|β|D̂α

xx
βφ. (11.15)

Here Dα
xx

βφ ∈ S (Rn) ⊂ L1(Rn) and thus (11.15) is a bounded function on Rn. Since

α, β are chosen arbitrary, we see that φ̂ ∈ S (Rn). The continuity of Fourier transform

on S (Rn) follows from the estimates (where C depends only on N,M, n)

∥φ̂∥N,M ≤ C∥φ∥M+n+1,N

which are an immediate corollary of (11.15), (11.2), (11.7), and (11.6). □

11.1.4. Properties of Fourier transform. We now give some properties of the

Fourier transform. We first show that Fourier transform is its own transpose in the

sense of §7.3. Similarly to (2.3) we use the notation (f, g) to denote the integral of fg,

where f, g are functions on Rn and fg ∈ L1(Rn).

Proposition 11.9. Let f, g ∈ L1(Rn). Then

(f̂ , g) = (f, ĝ). (11.16)

Proof.S By Fubini’s theorem both sides are equal to∫
R2n

e−ix·ξf(x)g(ξ) dxdξ.

□

We next give the relation between Fourier transform, convolution, and multipli-

cation. Note that if f, g ∈ L1(Rn), then by Fubini’s Theorem the convolution f ∗ g
(defined by the integral (1.27) which converges for almost every x) is in L1(Rn).

Proposition 11.10. Let f, g ∈ L1(Rn). Then

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ). (11.17)
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Proof.S By Fubini’s theorem and the change of variables x = y + z we have

f̂ ∗ g(ξ) =
∫
R2n

e−ix·ξf(y)g(x− y) dxdy

=

∫
R2n

e−iy·ξe−iz·ξf(y)g(z) dydz = f̂(ξ)ĝ(ξ).

□

We give three more properties. The proofs are left as exercises below.

Proposition 11.11. Assume that f ∈ L1(Rn) and g ∈ L1(Rm). Then

f̂ ⊗ g = f̂ ⊗ ĝ. (11.18)

Proposition 11.12. Assume that A : Rn → Rn is an invertible linear map and

f ∈ L1(Rn). Then

Â∗f(ξ) = | detA|−1f̂(A−T ξ) (11.19)

where A−T denotes the inverse of the transpose of A.

Proposition 11.13. Let f ∈ L1(Rn) and f be the complex conjugate of f , i.e.

f(x) = f(x). Then

F(f)(ξ) = (Ff)(−ξ). (11.20)

We finally compute the Fourier transform of the Gaussian function

G(x) = e−
|x|2
2 , x ∈ Rn. (11.21)

Note that G ∈ S (Rn), since for any α, β the function xα∂βxG is the product of G with

a polynomial and thus is bounded on Rn.

Proposition 11.14. If G is given by (11.21), then

Ĝ(ξ) = (2π)
n
2 e−

|ξ|2
2 , (11.22)

that is Ĝ = (2π)
n
2G.

Proof. It suffices to consider the case of dimension n = 1. Indeed, if Gn is the

Gaussian in Rn, then Gn+m = Gn⊗Gm, so the formula for Ĝn+m can be deduced from

the ones for Ĝn and Ĝm by Proposition 11.11.

First proof: The function G(x) satisfies the linear first order ODE

∂xG(x) = −xG(x). (11.23)

Taking the Fourier transform of both sides and using (11.10) and (11.11), we see that

Ĝ satisfies the same ODE (11.23). From standard theory of linear ODEs we see that

Ĝ(ξ) = cG(ξ)
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for some constant c ∈ R. To compute c, we take ξ = 0, then

c = Ĝ(0) =

∫
R
e−

x2

2 dx =
√
2π

is the Gaussian integral.

Second proof: We write down the integral for Ĝ(ξ) and complete the square:

Ĝ(ξ) =

∫
R
e−

x2

2
−ixξ dx =

∫
R
e−

(x+iξ)2

2
− ξ2

2 dx.

We write this as a complex integral:

Ĝ(ξ) = e−
ξ2

2

∫
R+iξ

e−
z2

2 dz.

Since F (z) := e−
z2

2 is holomorphic in z ∈ C and satisfies F (x + iξ) → 0 as |x| → ∞
locally uniformly in ξ, we can deform the contour above from R+ iξ back to R (more

precisely, use Cauchy’s integral theorem on the boundary of the domain [−R,R]+[0, ξ]

and let R → ∞) and get

Ĝ(ξ) = e−
ξ2

2

∫
R
e−

x2

2 dx =
√
2πe−

ξ2

2

where we again used the Gaussian integral. □

11.1.5. Fourier inversion formula. We are now ready to prove one of the most

magical properties of the Fourier transform, which is a formula for its inverse:

Theorem 11.15. Assume that φ ∈ S (Rn). Then we have for all x ∈ Rn,

φ(x) = (2π)−n
∫
Rn

eix·ξφ̂(ξ) dξ. (11.24)

Remark 11.16. It follows from Theorem 11.15 that the operator F : S (Rn) →
S (Rn) is invertible and its inverse is given by the formula

F−1ψ(x) = (2π)−n
∫
Rn

eix·ξψ(ξ) dξ. (11.25)

Note that F−1 maps S (Rn) to itself by Theorem 11.6, since F−1ψ(x) = (2π)−nψ̂(−x).

Remark 11.17.X An interpretation of Theorem 11.15 is as follows: φ̂(ξ) is the L2

inner product ⟨φ, eξ⟩L2(Rn) between φ and the complex exponential wave at frequency

ξ defined as eξ(x) = eix·ξ. We can think of φ̂(ξ) as the (complex) amplitude of the

function φ at frequency ξ. Now the inversion formula (11.24) can be rewritten as

φ = (2π)−n
∫
Rn

φ̂(ξ)eξ dξ.

We can interpret this as φ being reconstructed from the basic waves eξ as an integral

(which is analogous to a linear combination) with φ̂(ξ) giving the coefficients. In a



11.1. FOURIER TRANSFORM ON SCHWARTZ FUNCTIONS 125

way this formula is similar to writing an element of a Hilbert space in terms of its

coefficients in an orthonormal basis. Of course this is only a heuristic – the functions eξ
do not lie in L2 and the argument above does not explain the factor (2π)−n.

Proof of Theorem 11.15. We can write the right-hand side of (11.24) as an

iterated integral:

(2π)−n
∫
Rn

eix·ξ
(∫

Rn

e−iy·ξφ(y) dy

)
dξ.

However, Fubini’s theorem does not apply here since the function ei(x−y)·ξφ(y) is not

integrable on R2n.

To fix this issue, we regularize the integral using the Gaussian G defined in (11.21),

which is a useful function because we have previously computed its Fourier transform

in (11.22). Since φ̂ ∈ S (Rn) ⊂ L1(Rn) and G(0) = 1, by the Dominated Convergence

Theorem we see that the right-hand side of (11.24) is equal to

lim
ε→0+

(2π)−n
∫
Rn

eix·ξG(εξ)φ̂(ξ) dξ = lim
ε→0+

(2π)−n
∫
R2n

ei(x−y)·ξG(εξ)φ(y) dydξ

= lim
ε→0+

(2πε)−n
∫
R2n

e
i(x−y)·η

ε G(η)φ(y) dydη

= lim
ε→0+

(2πε)−n
∫
Rn

Ĝ
(y − x

ε

)
φ(y) dy

= lim
ε→0+

(2π)−n
∫
Rn

Ĝ(w)φ(x+ εw) dw.

(11.26)

Here in the first line we use Fubini’s theorem (which applies now since G ∈ L1(Rn)).

In the second line we make the change of variables ξ = η/ε. In the third line we use

Fubini’s theorem again to integrate out η, and in the last line we make the change of

variables y = x+ εw.

Since Ĝ ∈ L1(Rn), we can use the Dominated Convergence Theorem, the explicit

formula (11.22) for Ĝ, and the Gaussian integral to compute the limit on the last line

of (11.26) as

(2π)−n
∫
Rn

Ĝ(w)φ(x) dw = φ(x)

which finishes the proof. □

As an application, we obtain the formula for the Fourier transform of a product.

Note that for two Schwartz functions, their product and convolution are still Schwartz

functions (see Exercise 11.8 for the latter).

Proposition 11.18. Assume that φ, ψ ∈ S (Rn). Then

φ̂ψ = (2π)−nφ̂ ∗ ψ̂. (11.27)
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Proof. Similarly to (11.17) we have for each f, g ∈ L1(Rn)

F−1(f ∗ g) = (2π)nF−1(f)F−1(g).

It remains to apply this with f := φ̂, g := ψ̂. □

11.2. Fourier transform on tempered distributions

In this section we extend the Fourier transform from L1(Rn) to the much larger

space of tempered distributions.

11.2.1. Tempered distributions. We first define tempered distributions as the

dual space to S (Rn), similarly to the spaces D′ and E ′:

Definition 11.19. Let u : S (Rn) → C be a linear functional. We say that u is

a tempered distribution if for each sequence φk → 0 in S (Rn) we have (u, φk) → 0.

Denote by S ′(Rn) the space of all tempered distributions on Rn.

For a sequence uk ∈ S (Rn), we say that uk → u in S ′(Rn) if (uk, φ) → (u, φ) for

all φ ∈ S (Rn).

Remark 11.20.S Similarly to Proposition 2.6, a linear functional u on S (Rn) lies

in S ′(Rn) if and only if there exist C,N,M such that

|(u, φ)| ≤ C∥φ∥N,M for all φ ∈ S (Rn) (11.28)

where the seminorm ∥ • ∥N,M was defined in (11.5).

Remark 11.21.S There is a natural version of the Banach–Steinhaus Theorem for

the space S ′(Rn) which is proved in the same way as Theorem 4.14. In particular, we

have the following analog of Proposition 4.18:

uk → u in S ′(Rn), φk → φ in S (Rn) =⇒ (uk, φk) → (u, φ). (11.29)

The space S ′(Rn) is fairly large, in particular for any N we have

(1 + |x|)NL1(Rn) ⊂ S ′(Rn).

More precisely, if f : Rn → C is a function such that (1 + |x|)−Nf ∈ L1(Rn) for

some N , then we treat f as an element of S ′(Rn) by defining the pairing (f, φ) for

φ ∈ S (Rn) as the integral (2.3). In particular, the space Lp(Rn) embeds into S ′(Rn)

for any p ∈ [1,∞] and any polynomial function lies in S ′(Rn).

Similarly to the inclusion E ′ ⊂ D′ (see (4.2)) we have the inclusions

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn), (11.30)

since C∞
c (Rn) ⊂ S (Rn) ⊂ C∞(Rn), C∞

c (Rn) is dense in S (Rn) (see Exercise 11.1),

and S (Rn) contains C∞
c (Rn) which is dense in C∞(Rn). Moreover, C∞

c (Rn) is dense

in S ′(Rn) (see Exercise 11.2).
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We now briefly discuss how previously defined operations on distributions act on

the space S ′(Rn), viewed as a subspace of D′(Rn). All the operations below are

sequentially continuous on the indicated spaces. The first property is straightforward

to verify and the rest are assigned as exercises below.

(1) If u ∈ S ′(Rn), then its distributional derivative ∂xju ∈ D′(Rn) also lies

in S ′(Rn) and satisfies

(∂xju, φ) = −(u, ∂xjφ) for all φ ∈ S (Rn).

(2) If u ∈ S ′(Rn) and a ∈ C∞(Rn) has polynomially bounded derivatives, i.e. for

each α there exists N such that ∂αxa(x) = O((1 + |x|)N), then au ∈ D′(Rn)

lies in S ′(Rn). In particular, this applies if a is a polynomial or a ∈ S (Rn).

(3) If u ∈ S ′(Rn) and v ∈ S ′(Rm) then u⊗ v ∈ D′(Rn+m) lies in S ′(Rn+m).

(4) If A : Rn → Rn is an invertible linear map and u ∈ S ′(Rn) then A∗u ∈ D′(Rn)

lies in S ′(Rn).

(5) If u ∈ S ′(Rn) and φ ∈ S (Rn), then the convolution

u ∗ φ(x) = (u, φ(x− •)), x ∈ Rn (11.31)

is a smooth function on Rn with polynomially bounded derivatives, and thus

in particular lies in S ′(Rn).

(6) If u ∈ S ′(Rn) and v ∈ E ′(Rn), then the convolution u ∗ v ∈ D′(Rn) lies

in S ′(Rn).

11.2.2. Extending Fourier transform to tempered distributions. We now

define Fourier transform of tempered distributions. As with many other operations

before, we use duality. Recall from Proposition 11.9 that for all f, g ∈ L1(Rn) we have

(f̂ , g) = (f, ĝ). (11.32)

This motivates the following

Definition 11.22. Let u ∈ S ′(Rn). Define the Fourier transform Fu = û ∈
S ′(Rn) by the formula

(û, φ) := (u, φ̂) for all φ ∈ S (Rn). (11.33)

Since F : S (Rn) → S (Rn) is sequentially continuous by Theorem 11.6, we see that

û is indeed a tempered distribution. Moreover, the operator F : S ′(Rn) → S ′(Rn)

defined in (11.33) is sequentially continuous. By (11.32), if u ∈ L1(Rn) then the

distribution û defined in (11.33) agrees with the classical Fourier transform of u defined

in (11.1).

Having defined the Fourier transform on S ′(Rn), we give two important examples:
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Proposition 11.23. On Rn, we have

δ̂0 = 1, (11.34)

1̂ = (2π)nδ0. (11.35)

Proof. (11.34): We compute for each φ ∈ S (Rn)

(δ̂0, φ) = (δ0, φ̂) = φ̂(0) =

∫
Rn

φ(x) dx = (1, φ).

(11.35): We compute for each φ ∈ S (Rn)

(1̂, φ) = (1, φ̂) =

∫
Rn

φ̂(ξ) dξ = (2π)nφ(0) = (2π)n(δ0, φ)

where we use Fourier Inversion Formula (Theorem 11.15) with x := 0. □

Remark 11.24. In PDE papers, (11.35) is often written as∫
Rn

e−ix·ξ dx = (2π)nδ0(ξ)

despite the fact that the integral does not converge. (One could actually make sense of

an integral here by repeated integration by parts, see for example [Hör03, §7.8].) If we

formally substitute ξ = 0, we obtain the nonsensical statement∫
Rn

dx = (2π)nδ0(0).

We now discuss some properties of Fourier transform on tempered distributions. We

start with the Fourier inversion formula. The inverse Fourier transform operator F−1 :

S (Rn) → S (Rn) defined in (11.25) extends to a sequentially continuous operator

S ′(Rn) → S ′(Rn), since we have F−1u(x) = (2π)−n û(−x). Since S (Rn) is dense

in S ′(Rn), the operators F and F−1 are still inverses of each other when acting

on S ′(Rn).

A similar argument using the density of S in S ′ shows that the identities (11.10)

and (11.11) hold on S ′. Iterating these, we see that for all u ∈ S ′(Rn) and α

D̂α
xu(ξ) = ξαû(ξ), (11.36)

x̂αu(ξ) = (−1)|α|Dα
ξ û(ξ). (11.37)

Arguing again by density, we also get the distributional analogues of the formu-

las (11.18) and (11.19): if u ∈ S ′(Rn) and v ∈ S ′(Rm) then

û⊗ v = û⊗ v̂, (11.38)

and if u ∈ S ′(Rn) and A : Rn → Rn is an invertible linear map, then

Â∗u = | detA|−1(A−T )∗û. (11.39)
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We also give a version of the convolution formula:

Proposition 11.25. Assume that u ∈ S ′(Rn) and φ ∈ S (Rn). Then

û ∗ φ = û φ̂, (11.40)

ûφ = (2π)−n û ∗ φ̂. (11.41)

Proof. (11.40): We first review why both sides of the formula make sense. Since

u ∈ S ′(Rn) and φ ∈ S (Rn), we can define their convolution u∗φ ∈ S ′(Rn) by (11.31).

The product ûφ̂ lies in S ′(Rn) (see Exercise 11.3).

We now argue by density. All the operations used are sequentially continuous on

appropriate spaces, so if uk → u in S ′(Rn), then

ûk ∗ φ→ û ∗ φ, ûk φ̂→ û φ̂ in S ′(Rn).

Since S (Rn) is dense in S ′(Rn), we can choose uk ∈ S (Rn) converging in S ′(Rn) to

any given u ∈ S ′(Rn). The formula (11.40) holds for uk, φ by (11.17) and it remains

to pass to the limit.

(11.41): This is proved in the same way, using the identity (11.27). □

11.2.3. Fourier transform of compactly supported distributions. We pre-

viously saw that each u ∈ E ′(Rn) also lies in S ′(Rn). The Fourier transform of u is a

smooth function given by a simple formula:

Proposition 11.26. Let u ∈ E ′(Rn). Then û ∈ C∞(Rn) has polynomially bounded

derivatives and

û(ξ) = (u(x), e−ix·ξ) for all ξ ∈ Rn. (11.42)

Here we can pair u with e−ξ(x) := e−ix·ξ since u ∈ E ′(Rn) and e−ξ ∈ C∞(Rn).

Proof. 1. Define v(ξ) := (u(x), e−ix·ξ) following (11.42). By Proposition 6.3 we

see that v ∈ C∞(Rn) and for all α

∂αξ v(ξ) = (u(x), ∂αξ e
−ix·ξ) = (−i)|α|(u(x), xαe−ix·ξ).

Since u ∈ E ′(Rn), by Proposition 4.12 there exist K ⋐ Rn and constants C,N such

that for all ξ

|∂αξ v(ξ)| ≤ C∥xαe−ξ∥CN (Rn,K) = C max
|β|≤N

sup
x∈K

|∂βx (xαe−ix·ξ)|.

Thus v has polynomially bounded derivatives, more precisely for each α there exists

Cα such that

|∂αξ v(ξ)| ≤ Cα(1 + |ξ|)N for all ξ ∈ Rn. (11.43)

2. It remains to show that û = v. One way to see is this by approximation: this is true

when u ∈ C∞
c (Rn), both û and v depend continuously on u ∈ E ′(Rn), and C∞

c (Rn) is

dense in E ′(Rn) similarly to Theorem 6.7.
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We give here a more direct way. Fix φ ∈ S (Rn), then we need to show that

(u, φ̂) = (v, φ). (11.44)

This is proved as follows:

(u, φ̂) =

(
u(x),

∫
Rn

e−ix·ξφ(ξ) dξ

)
=

∫
Rn

(u(x), e−ix·ξφ(ξ)) dξ

=

∫
Rn

v(ξ)φ(ξ) dξ = (v, φ).

Here in the second line we use that the integral
∫
Rn e

−ix·ξφ(ξ) dξ converges in C∞(Rn)

in the x variable, so one can exchange the integral with the pairing with u ∈ E ′(Rn)

similarly to the proof of Lemma 6.8. □

Remark 11.27.X The function û is in fact real analytic – see Theorem 11.31 below.

If u ∈ S ′(Rn) and v ∈ E ′(Rn), then the convolution u∗v lies in S ′(Rn) by item (6)

at the end of §11.2.1. By Exercise 11.3, the product û v̂ lies in S ′(Rn). The two are

related by a convolution formula:

Proposition 11.28. Assume that u ∈ S ′(Rn) and v ∈ E ′(Rn). Then

û ∗ v = û v̂. (11.45)

Proof. One possibility is to argue using the density of C∞
c (Rn) in both S ′(Rn)

and E ′(Rn). Here we present a more direct proof.

1. We first consider the case when both u, v lie in E ′(Rn). In this case û, v̂ are

smooth functions and the proof is simple: denoting eξ(x) = eix·ξ we have (recalling the

definition of convolution in §8.1)

û ∗ v(ξ) = (u(x)⊗ v(y), e−ξ(x+ y))

= (u(x)⊗ v(y), e−ξ(x)⊗ e−ξ(y))

= (u(x), e−ξ(x))(v(y), e−ξ(y)) = û(ξ)v̂(ξ).

2.X We now consider the general case when u ∈ S ′(Rn) and v ∈ E ′(Rn). Using the

definition of convolution in §8.2 we have for each φ ∈ S (Rn)

(û ∗ v, φ) = (u ∗ v, φ̂) =
(
u(x), (v(y), φ̂(x+ y))

)
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where (v(y), φ̂(x+ y)) ∈ S (Rn) (see Exercise 11.9). We now compute

(v(y), φ̂(x+ y)) =

(
v(y),

∫
Rn

e−ix·ξe−iy·ξφ(ξ) dξ

)
=

∫
Rn

(v(y), e−iy·ξ)e−ix·ξφ(ξ) dξ

=

∫
Rn

v̂(ξ)e−ix·ξφ(ξ) dξ = ̂̂v φ(x).
Here in the second line we use that the integral

∫
Rn e

−ix·ξe−iy·ξφ(ξ) dξ converges in

C∞(Rn) in the y variable, so one can exchange the integral with the pairing with

v ∈ E ′(Rn) similarly to the proof of Lemma 6.8. We now have

(û ∗ v, φ) = (u, ̂̂v φ) = (û, v̂ φ) = (û v̂, φ),

giving (11.45). □

11.2.4. Fourier transform on L2. The next theorem shows that the Fourier

transform acts as a unitary operator on the space L2(Rn) ⊂ S ′(Rn) (up to a constant).

It is key in the Fourier transform characterization of Sobolev spaces and gives one more

reason why the space L2 is the best for many applications to PDEs.

Theorem 11.29. Assume that f ∈ L2(Rn). Then the Fourier transform f̂ , defined

by (11.33), also lies in L2(Rn) and we have

∥f̂∥L2(Rn) = (2π)
n
2 ∥f∥L2(Rn). (11.46)

Similarly we have F−1(f) ∈ L2(Rn), so F : L2(Rn) → L2(Rn) is an invertible linear

operator.

Proof. 1. We first show the identity

∥φ̂∥L2(Rn) = (2π)
n
2 ∥φ∥L2(Rn) for all φ ∈ S (Rn). (11.47)

To do this, we apply (11.27) to the function φ and its complex conjugate φ:

|̂φ|2 = φ̂φ = (2π)−nφ̂ ∗ φ̂.

Evaluating both sides at 0 and using (11.20) we get

∥φ∥2L2(Rn) = |̂φ|2(0) = (2π)−n
∫
Rn

φ̂(ξ)φ̂(ξ) dξ = (2π)−n∥φ̂∥2L2(Rn)

which gives (11.47).

2. Now take arbitrary f ∈ L2(Rn). By Theorem 1.14, there exists a sequence φk ∈
S (Rn) converging to f in L2(Rn). In particular, φk is a Cauchy sequence in L2(Rn).

By (11.47) we have

∥φ̂k − φ̂ℓ∥L2(Rn) = (2π)
n
2 ∥φk − φℓ∥L2(Rn).
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Thus φ̂k is also a Cauchy sequence in L2(Rn). Since L2(Rn) is a complete space, the

sequence φ̂k converges in L2(Rn) to some g ∈ L2(Rn), with

∥g∥L2(Rn) = lim
k→∞

∥φ̂k∥L2(Rn) = (2π)
n
2 lim
k→∞

∥φk∥L2(Rn) = (2π)
n
2 ∥f∥L2(Rn).

Since the convergence in L2(Rn) is stronger than in S ′(Rn), and the Fourier transform

is sequentially continuous on S ′(Rn), we see that

φ̂k → f̂ , φ̂k → g in S ′(Rn).

Thus f̂ = g. □

Remark 11.30. Following the proof of Theorem 11.29 we also see that for all

f, g ∈ L2(Rn)

⟨f̂ , ĝ ⟩L2(Rn) = (2π)n⟨f, g⟩L2(Rn), (11.48)

(f, g) = (2π)−n
∫
Rn

f̂(ξ)ĝ(−ξ) dξ. (11.49)

11.2.5. Paley–Wiener theoremX. We saw in Proposition 11.26 that when u ∈
E ′(Rn), the Fourier transform û is a smooth function. In fact, this function is real

analytic and one can characterize the space E ′(Rn) in terms of the properties of the

holomorphic extension of û:

Theorem 11.31 (Paley–Wiener theorem). Let R ≥ 0. Then:

1. If u ∈ E ′(Rn) and suppu ⊂ B(0, R) then û ∈ C∞(Rn) extends to a holomorphic

function U : Cn → C and there exist constants C,N such that

|U(ζ)| ≤ C(1 + |ζ|)NeR| Im ζ| for all ζ ∈ Cn. (11.50)

2. Conversely, if U is a holomorphic function on Cn satisfying the bound (11.50)

for some C,N then there exists u ∈ E ′(Rn) such that suppu ⊂ B(0, R) and U |Rn = û.

For the proof, see [Hör03, Theorem 7.3.1] or [FJ98, Theorem 10.2.2]. Here we

just give some informal explanations:

• Recall from Proposition 11.26 that û(ξ) = (u(x), e−ix·ξ). We define the ex-

tension of û by U(ζ) := (u(x), e−ix·ζ) for ζ ∈ Cn and U is holomorphic. The

bound (11.50) can be verified by following the proof of Proposition 11.26.

• For part 2, let us consider the case when (11.50) is replaced by the following

stronger estimate: for each N there exists CN such that

|U(ζ)| ≤ CN(1 + |ζ|)−NeR| Im ζ| for all ζ ∈ Cn. (11.51)

The function U |Rn is Schwartz (as follows from (11.51) and Cauchy estimates

for derivatives of holomorphic functions), thus there exists u ∈ S (Rn) such

that û = U |Rn .
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• It remains to show that suppu ⊂ B(0, R). Fix x ∈ Rn with |x| > R. Then

there exists η ∈ Rn such that |η| = 1 and x · η > R (e.g. take η = x/|x|). By
the Fourier inversion formula (Theorem 11.15) we write

u(x) = (2π)−n
∫
Rn

eix·ξU(ξ) dξ.

Since U is holomorphic, using the estimate (11.51) we can deform the contour

of integration to get

u(x) = (2π)−n
∫
Rn

eix·(ξ+itη)U(ξ + itη) dξ for all t ∈ R.

Using the estimate (11.51) with N = n+ 1 we get

|u(x)| ≤ (2π)−n
∫
Rn

e−tx·η|U(ξ + itη)| dξ ≤ Ce−tx·η+R|t|.

Letting t→ ∞ we see that u(x) = 0 as needed.

11.2.6. Poisson summation formulaX. We finally state a formula for the Fourier

transform of the delta function on a periodic lattice:

Theorem 11.32 (Poisson summation formula). Define u ∈ S ′(Rn) by

u :=
∑
k∈Zn

δk,

that is for each φ ∈ S (Rn) we have

(u, φ) =
∑
k∈Zn

φ(k).

Then

û = (2π)n
∑
ℓ∈Zn

δ2πℓ. (11.52)

Equivalently, we have ∑
k∈Zn

eik·x = (2π)n
∑
ℓ∈Zn

δ2πℓ(x). (11.53)

Here the series converge in S ′(Rn), that is for all φ ∈ S (Rn)∑
k∈Zn

φ̂(k) = (2π)n
∑
ℓ∈Zn

φ(2πℓ). (11.54)

For the proof, see [Hör03, Theorem 7.2.1] or [FJ98, Theorem 8.5.1]. Here we just

give some informal explanations for how Theorem 11.32 is related to Fourier series:
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• Denote by Tn := Rn/2πZn the n-torus. Each ψ ∈ C∞(Tn) is the sum of its

Fourier series

ψ(x) =
∑
k∈Zn

ψke
ik·x where ψk := (2π)−n

∫
Tn

e−ik·xψ(x) dx. (11.55)

We can think of ψ as a 2πZn-periodic function in C∞(Rn). The integral

in (11.55) can then be computed by

ψk = (2π)−n
∫
[0,2π]n

e−ik·xψ(x) dx. (11.56)

• An alternative to (11.56), which is better for applications to distributions, is

as follows. Fix χ ∈ C∞
c (Rn) whose translates form a partition of unity:∑

ℓ∈Zn

χ(x− 2πℓ) = 1 for all x ∈ Rn.

Then we can write

ψk = (2π)−n
∫
Rn

e−ik·xχ(x)ψ(x) dx. (11.57)

We have ψk = (2π)−nχ̂ψ(k), so (11.54) for the function φ := χψ is the same

as (11.55) with x = 0.

• Here is a way to derive (11.54) (and thus Theorem 11.32) from (11.55). Take

arbitrary φ ∈ S (Rn) and define ψ ∈ C∞(Tn) as the symmetrization of φ:

ψ(x) :=
∑
ℓ∈Zn

φ(x+ 2πℓ) for all x ∈ Rn.

Using (11.57) we compute the Fourier coefficients of ψ:

ψk = (2π)−n
∫
Rn

∑
ℓ∈Zn

e−ik·xχ(x)φ(x+ 2πℓ) dx

= (2π)−n
∑
ℓ∈Zn

∫
Rn

e−ik·xχ(x− 2πℓ)φ(x) dx = (2π)−nφ̂(k).

Using (11.55) at x = 0, we get

(2π)−n
∑
k∈Zn

φ̂(k) = ψ(0) =
∑
ℓ∈Zn

φ(2πℓ),

giving (11.54).

• Another way to interpret Poisson summation formula in terms of Fourier series

is to show that (11.55) actually holds for any 2πZn-periodic distribution ψ ∈
D′(Rn), with the series converging in D′(Rn) and ψk defined by (11.57) with
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the integral replaced by distributional pairing. If we now take ψ to be the

delta function at 0 ∈ Tn, that is

ψ =
∑
ℓ∈Zn

δ2πℓ,

then ψk = (2π)−n for all k, so (11.55) implies (11.53).

11.3. Notes and exercises

Our presentation follows [Hör03, §§7.1–7.3] and [FJ98, §§8.1–8.5,9.2,10.2]. Our

proof of Theorem 11.15 follows a direct route by regularizing the double integral;

there is an alternative proof by using the intertwining relations of Proposition 11.7,

see [Hör03, Theorem 7.1.5].

Exercise 11.1. (1 pt) This exercise shows that C∞
c (Rn) is dense in S (Rn). Let

φ ∈ S (Rn) and ψ ∈ C∞
c (Rn) satisfy ψ(0) = 1. Put φε(x) := ψ(εx)φ(x) for ε > 0.

Show that φε → φ in S (Rn) as ε→ 0+.

Exercise 11.2. (1 pt) Show that C∞
c (Rn) is dense in S ′(Rn). (Hint: show that for

an appropriate choice of ψ, χ ∈ C∞
c (Rn) and each u ∈ S ′(Rn), we have (ψεu)∗χε → u

in S ′(Rn) as ε→ 0+ where ψε(x) := ψ(εx), χε(x) := ε−nχ(x/ε). To do that, you can

follow part of the proof of Theorem 6.10. You can use without proof that Lemma 6.8

applies when u ∈ E ′(Rn) and φ ∈ C∞(Rn).)

Exercise 11.3. (1 = 0.5 + 0.5 pt) Assume that a ∈ C∞(Rn) has polynomially

bounded derivatives, i.e. for each α there exists N such that ∂αxa(x) = O((1 + |x|)N).
Show that:

(a) multiplication by a is a sequentially continuous operator S (Rn) → S (Rn);

(b) if u ∈ S ′(Rn), then the product au ∈ D′(Rn) lies in S ′(Rn) and the map u 7→ au

is sequentially continuous on S ′(Rn).

Exercise 11.4. (0.5 pt) Prove Proposition 11.13.

Exercise 11.5. (1.5 = 0.5+1 pts) This exercise shows the relation between Fourier

transform and tensor product.

(a) Show that if φ ∈ S (Rn), ψ ∈ S (Rm) then φ ⊗ ψ ∈ S (Rn+m) and prove Propo-

sition 11.11.

(b) Show that if u ∈ S ′(Rn), v ∈ S ′(Rm) then the distributional tensor product

u⊗ v ∈ D′(Rn+m) (defined in §7.1) lies in S ′(Rn+m) and û⊗ v = û⊗ v̂.

Exercise 11.6. (1.5 = 0.5+0.5+0.5 pts) This exercise shows the relation between

Fourier transform and pullback by an invertible linear map A : Rn → Rn.
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(a) Show then A∗ is a sequentially continuous operator S (Rn) → S (Rn) and prove

Proposition 11.12.

(b) Show that if u ∈ S ′(Rn), then the distributional pullback A∗u ∈ D′(Rn) (defined

in §10.1.3) lies in S ′(Rn) and the Fourier transform formula (11.19) holds.

(c) Assume that u ∈ S ′(Rn) is homogeneous of degree a ∈ C. Show that û is homo-

geneous and compute its degree of homogeneity. You may use Proposition 10.7.

Exercise 11.7. (1 = 0.5 + 0.5 pt) For w ∈ Rn, define the following operators

on C∞(Rn):

τwf(x) = f(x− w), σwf(x) = eix·wf(x).

(a) Show that τw, σw define sequentially continuous operators on S (Rn). Use this to

show that for u ∈ S ′(Rn), the distributional pullback and product τwu, σwu ∈ D′(Rn)

lie in S ′(Rn).

(b) Show that for each u ∈ S ′(Rn)

τ̂wu = σ−wû, σ̂wu = τwû.

Exercise 11.8. (2 = 1 + 1 pts) This exercise studies the properties of convolution

on Schwartz functions and tempered distributions.

(a) Assume that φ, ψ ∈ S (Rn). Show that the convolution φ ∗ ψ, defined by (1.27),

lies in S (Rn). (Hint: you can use the Leibniz Rule for convolutions, which states that

xj(φ ∗ ψ) = (xjφ) ∗ ψ + φ ∗ (xjψ).)
(b) Assume that u ∈ S ′(Rn) and φ ∈ S (Rn). Show that the convolution u∗φ, defined
by (11.31), is a smooth function on Rn with polynomially bounded derivatives.

Exercise 11.9. (1 pt) Assume that u ∈ S ′(Rn) and v ∈ E ′(Rn). Show that the

convolution u ∗ v ∈ D′(Rn), defined in §8.2, lies in S ′(Rn). (Hint: use (8.9), (7.10),

and show that for each φ ∈ S (Rn) the function x 7→ (v(y), φ(x+ y)) lies in S (Rn).)

Exercise 11.10. (1 pt) Let φ ∈ S (Rn). For t > 0 and x ∈ Rn, define

u(t, x) = (4πt)−
n
2

∫
Rn

e−
|x−y|2

4t φ(y) dy. (11.58)

Using Proposition 11.10, show that u solves the heat equation ∂tu = ∆xu in (0,∞)t×Rn

and that u(t, •) → φ as t → 0+ in S (Rn). (We can think of u as the convolution of

δ0(t)⊗φ(x) with the fundamental solution to the heat equation given in (9.11), but for

this problem it is useful to apply Proposition 11.10 in the x variable only for fixed t.

You don’t need to rigorously justify being able to exchange ∂t with taking the Fourier

transform in the x variable.)

Exercise 11.11. (3 = 1 + 1 + 1 pts) This exercise gives a method to compute

Fourier transforms of certain distributions using analytic continuation.
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(a) Assume that u ∈ S ′(R) and suppu ⊂ [a,∞) for some a ∈ R. Take a cutoff

χ ∈ C∞(R) such that χ = 1 near [a,∞) and suppχ ⊂ [a − 1,∞), and define the

function

F (η) := (u(x), χ(x)e−ixη), η ∈ C, Im η < 0.

Explain why F (η) is well-defined and independent of χ and show that it is holomorphic

in {Im η < 0}.
(b) Show that F (ξ− iε) → û(ξ) in S ′(R) as ε→ 0+. (Hint: F (ξ− iε) is the Fourier

transform of e−εxu(x) but you should justify your arguments carefully.)

(c) Assume that a ∈ C and Re a > −1. Show that the Fourier transform of xa+ is

given by e−iπ(a+1)/2Γ(a + 1)(ξ − i0)−a−1 where Γ is the Euler Gamma function and

(ξ− i0)−a−1 was defined in Exercise 5.4. In particular, compute the Fourier transform

of the Heaviside function. (Hint: use parts (a)–(b), computing F (η) for η = −is, s > 0

and then arguing by analytic continuation in η. The result actually holds for all a ∈ C
by analytic continuation in a.)





CHAPTER 12

Fourier transform II

In this chapter we explore applications of Fourier transform. We first define Sobolev

spaces and establish their fundamental properties. We next proving the second version

of Elliptic Regularity, applying to elliptic constant coefficient differential operators.

12.1. Sobolev spaces

12.1.1. A simple case. The Sobolev space Hs(Rn) is the subspace of S ′(Rn)

whose elements are thought of as ‘having derivatives up to order s lying in L2’. This is

an informal definition since s can be any real number (integer or non-integer, positive

or negative). The easiest formal definition of these spaces for us is on the Fourier

transform side. To prepare for this, we consider first the simplest case when s is a

nonnegative integer:

Proposition 12.1. Let u ∈ S ′(Rn) and k ≥ 0 be an integer. Then the following

are equivalent:

(1) u has derivatives up to order k in L2(Rn), that is

∂αxu ∈ L2(Rn) for all α, |α| ≤ k. (12.1)

(Here as before, ∂αxu is defined in the sense of distributions.)

(2) the Fourier transform û (defined a priori as an element of S ′(Rn)) is a locally

integrable function such that

(1 + |ξ|)k û(ξ) ∈ L2(Rn). (12.2)

Proof. Since the Fourier transform on S ′(Rn) maps L2(Rn) onto itself (by The-

orem 11.29), either condition (1) or (2) above implies that û ∈ L2(Rn).

Since the Fourier transform also intertwines differentiation with multiplication

(by (11.36)), we have for any multiindex α

∂αxu ∈ L2(Rn) ⇐⇒ ∂̂αxu ∈ L2(Rn) ⇐⇒ ξαû(ξ) ∈ L2(Rn).

Thus (12.1) is equivalent to the statement

ξαû(ξ) ∈ L2(Rn) for all α, |α| ≤ k

139
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which is equivalent to (12.2) since

C−1(1 + |ξ|)k ≤ 1 +
n∑
j=1

|ξj|k ≤
∑
|α|≤k

|ξα| ≤ C(1 + |ξ|)k

for some constant C depending only on n, k. □

Remark 12.2. For ξ bounded, the condition (12.2) does not depend on k, it just

states that û(ξ) lies in L2 (locally). The difference for different k is only in the as-

ymptotic behavior of û(ξ) as |ξ| → ∞. This is a basic example of the general principle

that regularity of a distribution u is related to the decay of its Fourier transform û(ξ)

as |ξ| → ∞.

12.1.2. General definition and basic properties. We now define general Sobolev

spaces following (12.2). For convenience we define the function

⟨ξ⟩ :=
√
1 + |ξ|2, ξ ∈ Rn (12.3)

which is smooth on Rn and satisfies for some constant C depending only on n

C−1(1 + |ξ|) ≤ ⟨ξ⟩ ≤ C(1 + |ξ|).

Definition 12.3. Let s ∈ R. Define the Sobolev space of order s

Hs(Rn) := {u ∈ S ′(Rn) : ⟨ξ⟩sû(ξ) ∈ L2(Rn)}. (12.4)

Here are some basic properties of Sobolev spaces:

(1) Each Hs(Rn) is a Hilbert space, with the norm customarily defined by

∥u∥Hs(Rn) := ∥⟨ξ⟩sû(ξ)∥L2(Rn), u ∈ Hs(Rn). (12.5)

This follows from the fact that Hs(Rn) is isometric to the weighted L2 space

⟨ξ⟩−sL2(Rn).

(2) We have the containment Hs(Rn) ⊂ H t(Rn) whenever s ≥ t.

(3) If s = k is a nonnegative integer, then Hk(Rn) consists of all functions

u ∈ L2(Rn) satisfying the equivalent conditions of Proposition 12.1, and the

norm (12.5) is equivalent to the alternative Hilbert norm( ∑
|α|≤k

∥∂αxu∥2L2(Rn)

) 1
2

.

In particular, H0(Rn) = L2(Rn).

(4) We have the containments

S (Rn) ⊂ Hs(Rn) ⊂ S ′(Rn) (12.6)

and convergence in S is stronger than convergence in Hs, which in turn is

stronger than convergence in S ′. Moreover, S (Rn) is dense in Hs(Rn), since
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the space S (Rn) is dense in the weighted L2 space ⟨ξ⟩−sL2(Rn) (by Theo-

rem 1.14) and the Fourier transform maps S (Rn) onto itself. In fact, C∞
c (Rn)

is dense in Hs(Rn) as well, since any Schwartz function can be approximated

by elements of C∞
c (Rn) in Hs norm.

(5) The differential operator ∂xj on Rn restricts to a bounded operator

∂xj : H
s+1(Rn) → Hs(Rn). (12.7)

Indeed, if u ∈ Hs+1(Rn), then by (11.36) we have

∥∂xju∥Hs(Rn) = ∥⟨ξ⟩sξjû(ξ)∥L2(Rn) ≤ ∥⟨ξ⟩s+1û(ξ)∥L2(Rn) = ∥u∥Hs+1(Rn).

12.1.3. Characterization of Sobolev spaces. The definition (12.4) is conve-

nient because it immediately works for all values of s. However, it is useful to have a

characterization of Sobolev spaces which does not feature the Fourier transform. (We

will in particular use it in the proof of Proposition 12.15 below.)

We start with a characterization of Hs+1 in terms of Hs which generalizes Propo-

sition 12.1:

Proposition 12.4. For any s ∈ R we have

Hs+1(Rn) = {u ∈ Hs(Rn) : ∂xju ∈ Hs(Rn), j = 1, . . . , n} (12.8)

with the corresponding norm equivalence: there exists a constant C such that for all

u ∈ Hs+1(Rn)

C−1∥u∥Hs+1(Rn) ≤ ∥u∥Hs(Rn) +
n∑
j=1

∥∂xju∥Hs(Rn) ≤ C∥u∥Hs+1(Rn). (12.9)

Proof.S If u ∈ Hs+1(Rn), then ∂xju ∈ Hs(Rn) by (12.7). On the other hand, if

u ∈ Hs(Rn), then we estimate

∥u∥Hs+1(Rn) = ∥⟨ξ⟩s+1û(ξ)∥L2(Rn) ≤ ∥⟨ξ⟩sû(ξ)∥L2(Rn) +
n∑
j=1

∥⟨ξ⟩sξjû(ξ)∥L2(Rn)

= ∥u∥Hs(Rn) +
n∑
j=1

∥∂xju∥Hs(Rn).

□

We next consider the special case s ∈ (0, 1) and characterize Hs in terms of con-

vergence of a double integral (reminding one of Hölder continuity but with sup-norm

replaced by square-integral):
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Proposition 12.5. Fix s ∈ (0, 1). Assume that u ∈ L2(Rn). Define the integral

Is(u) :=

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy ∈ [0,∞]. (12.10)

Then u ∈ Hs(Rn) if and only if Is(u) <∞. Moreover, we have the norm equivalence

C−1∥u∥Hs(Rn) ≤ ∥u∥L2(Rn) +
√
Is(u) ≤ C∥u∥Hs(Rn). (12.11)

Remark 12.6. If u ∈ L2(Rn) and s > 0, then by Fubini’s Theorem we have for

any ε > 0∫
{|x−y|≥ε}

|u(x)− u(y)|2

|x− y|n+2s
dxdy ≤ 4

∫
{|x−y|≥ε}

|u(x)|2

|x− y|n+2s
dxdy

≤ Cε∥u∥2L2(Rn).

(12.12)

Therefore, the convergence of Is(u) is a question about the neighborhood of the diagonal

{|x− y| ≤ ε}.

Proof. 1. Making the change of variables y = x+ w, we write

Is(u) =

∫
R2n

|u(x+ w)− u(x)|2

|w|n+2s
dxdw.

We first compute the integral∫
Rn

|u(x+ w)− u(x)|2 dx = ∥τ−wu− u∥2L2(Rn) (12.13)

where τ−wu(x) := u(x+ w). By Exercise 11.7, we have

F(τ−wu− u)(ξ) = (eiw·ξ − 1)û(ξ),

thus by Theorem 11.29 the integral (12.13) is equal to

(2π)−n
∫
Rn

|eiw·ξ − 1|2 |û(ξ)|2 dξ.

It follows that

Is(u) = (2π)−n
∫
R2n

|eiw·ξ − 1|2

|w|n+2s
|û(ξ)|2 dwdξ. (12.14)

2. We now integrate out w. For ξ ∈ Rn, define

F (ξ) := (2π)−n
∫
Rn

|eiw·ξ − 1|2

|w|n+2s
dw, (12.15)

so that

Is(u) =

∫
Rn

F (ξ)|û(ξ)|2 dξ. (12.16)

The integral (12.15) converges: on {|w| ≥ 1} this follows from the fact that s > 0 and

on {|w| ≤ 1} this follows from the bound |eiw·ξ − 1| ≤ |ξ| · |w| and the fact that s < 1.
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Moreover, this integral only depends on |ξ| (since |w| is invariant under orthogonal

transformations) and we have for all t > 0, making the change of variables w = v/t

F (tξ) = (2π)−n
∫
Rn

|eitw·ξ − 1|2

|w|n+2s
dw

= (2π)−nt2s
∫
Rn

|eiv·ξ − 1|2

|v|n+2s
dv = t2sF (ξ).

It follows that F (ξ) = c|ξ|2s for some constant c > 0. Thus, recalling (12.16), we have

Is(u) = c

∫
Rn

|ξ|2s · |û(ξ)|2 dξ.

Since û ∈ L2(Rn), we see that

Is(u) <∞ ⇐⇒ |ξ|sû(ξ) ∈ L2(Rn) ⇐⇒ ⟨ξ⟩sû(ξ) ∈ L2(Rn) ⇐⇒ u ∈ Hs(Rn).

The bound (12.12) follows directly from the proof. □

Together Propositions 12.4 and 12.5 (and the fact that H0 = L2) characterize the

spaces Hs(Rn) for s ≥ 0. To handle the case s < 0, we use the following proposition,

whose proof is left as an exercise below.

Proposition 12.7. Fix s ∈ R. Then the space H−s(Rn) is dual to Hs(Rn) in the

following sense:

1. There exists a unique bilinear pairing

u ∈ Hs(Rn), v ∈ H−s(Rn) 7→ (u, v) ∈ C (12.17)

which coincides with the usual pairing (2.3) when u, v ∈ S (Rn) and is continuous

in the sense that whenever uk → u in Hs(Rn) and vk → v in H−s(Rn) we have

(uk, vk) → (u, v).

2. Let v ∈ S ′(Rn). Then v ∈ H−s(Rn) if and only if there exists a constant Cv
such that

|(v, φ)| ≤ Cv∥φ∥Hs(Rn) for all φ ∈ S (Rn). (12.18)

Moreover, there exists a constant C depending only on n, s such that for each v ∈
H−s(Rn) we have

C−1∥v∥H−s(Rn) ≤ Cv ≤ C∥v∥H−s(Rn) (12.19)

where Cv is the smallest constant such that the inequality (12.18) holds.

Remark 12.8. Since Hs(Rn), Riesz Representation Theorem (Theorem 1.4) shows

that any bounded linear functional F : Hs(Rn) → C has the form

F (v) = ⟨w, v⟩Hs(Rn) for some w ∈ Hs(Rn). (12.20)

On the other hand, Proposition 12.7 shows that

F (v) = (u, v) for some u ∈ H−s(Rn). (12.21)
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There is no contradiction between (12.20) and (12.21) since the former features the

inner product ⟨•, •⟩Hs and the latter uses the standard pairing (•, •) which is related

to the L2 inner product. A more proper way to explain Proposition 12.7 is to say that

it shows that H−s is dual to Hs with respect to the L2 pairing.

12.1.4. Multiplication by Schwartz functions. Since we defined Sobolev spaces

using Fourier transform, it is not immediately clear that they are invariant under mul-

tiplication by smooth functions (except when the order is a nonnegative integer, where

one can use Proposition 12.1 and the Leibniz rule). The next proposition shows that

Sobolev spaces are invariant under multiplication by Schwartz functions a. Since we

will typically use local Sobolev spaces, the restriction that a decays rapidly at infinity

will not be too strong; in fact, we will typically the statement below for a ∈ C∞
c (Rn).

Proposition 12.9. Assume that s ∈ R and a ∈ S (Rn). Then there exists a

constant Cs,a such that for each u ∈ Hs(Rn), the product au also lies in Hs(Rn) and

∥au∥Hs(Rn) ≤ Cs,a∥u∥Hs(Rn). (12.22)

The proof will write the Fourier transform of au in terms of the convolution of the

Fourier transforms of a and u. It will use the following

Lemma 12.10 (Young’s convolution inequality, special case). Assume that f ∈
L2(Rn) and g ∈ L1(Rn)∩L2(Rn), and define f ∗ g by (1.27). Then f ∗ g ∈ L2(Rn) and

∥f ∗ g∥L2(Rn) ≤ ∥f∥L2(Rn)∥g∥L1(Rn). (12.23)

Remark 12.11. The requirement that g ∈ L2(Rn) is just to make the integral (1.27)

converge at every point; it is not necessary but we do not want to do the extra work to

remove it here.

Proof. Take any ξ ∈ Rn. We estimate

|f ∗ g(ξ)|2 =
∣∣∣∣ ∫

Rn

f(ξ − η)g(η) dη

∣∣∣∣2
≤

(∫
Rn

(
|f(ξ − η)| ·

√
|g(η)|

)√
|g(η)| dη

)2

≤
(∫

Rn

|f(ξ − η)|2|g(η)| dη
)(∫

Rn

|g(η)| dη
)

Here in the last line we use the Cauchy–Schwartz inequality. Integrating in ξ we get

∥f ∗ g∥2L2(Rn) ≤
(∫

R2n

|f(ξ − η)|2|g(η)| dξdη
)
∥g∥L1(Rn)

= ∥f∥2L2(Rn)∥g∥2L1(Rn).

□
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We now give

Proof of Proposition 12.9. 1. By (11.41) we have âu = (2π)−n û ∗ â. Since

u ∈ Hs(Rn), the Fourier transform û is a function and, recalling (11.31), we have

(2π)nâu(ξ) =

∫
Rn

â(ξ − η)û(η) dη.

Define the functions on Rn

v(η) := ⟨η⟩sû(η), w(ξ) := (2π)n⟨ξ⟩sâu(ξ),

then

w(ξ) =

∫
Rn

⟨ξ⟩s

⟨η⟩s
â(ξ − η)v(η) dη (12.24)

and we need to show that if v ∈ L2(Rn) then w ∈ L2(Rn) and

∥w∥L2(Rn) ≤ Cs,a∥v∥L2(Rn). (12.25)

2. Since a ∈ S (Rn), we have â ∈ S (Rn). Looking at (12.24), we see that â(ξ − η)

is small unless ξ − η is bounded, and when ξ − η is bounded the ratio ⟨ξ⟩s/⟨η⟩s is

bounded. This observation motivates the use of the following inequality (where Cs is

a constant depending only on s):

⟨ξ⟩s

⟨η⟩s
≤ Cs⟨ξ − η⟩|s|. (12.26)

To show (12.26), we recall the definition (12.3), which implies the inequality

⟨ξ⟩2 = 1 + |η + (ξ − η)|2 ≤ 1 + 2|η|2 + 2|ξ − η|2 ≤ 2⟨η⟩2⟨ξ − η⟩2.

Switching the roles of ξ and η, we also get the inequality ⟨η⟩2 ≤ 2⟨ξ⟩2⟨ξ − η⟩2. Taking
these inequalities to the power |s|, we get (12.26).

Recalling (12.24) we see that

|w(ξ)| ≤ Cs

∫
Rn

⟨ξ − η⟩|s||â(ξ − η)| · |v(η)| dη. (12.27)

The right-hand side of (12.27) is the convolution of |v| ∈ L2(Rn) with the function

⟨ζ⟩|s||â(ζ)| ∈ L1(Rn) ∩ L2(Rn). By Lemma 12.10 we have

∥w∥L2(Rn) ≤ Cs∥⟨ζ⟩|s|â(ζ)∥L1(Rn) · ∥v∥L2(Rn) (12.28)

giving (12.25) and finishing the proof. □
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12.1.5. Further properties. We defined Sobolev spaces on the whole Rn. One

can localize these to obtain spaces of locally Sobolev distributions and compactly

supported Sobolev distributions on any open subset of Rn:

Definition 12.12. Let U ⊂◦ Rn and s ∈ R. Define the spaces of locally Hs

distributions and compactly supported Hs distributions

Hs
loc(U) ⊂ D′(U), Hs

c (U) ⊂ E ′(U)

as follows:

• for u ∈ E ′(U), we say that u ∈ Hs
c (U) if the extension of u by zero to an

element of E ′(Rn) (see Proposition 4.7) lies in Hs(Rn);

• for u ∈ D′(U), we say that u ∈ Hs
loc(U) if for each χ ∈ C∞

c (U) we have

χu ∈ Hs
c (U).

Note that Proposition 12.9 implies that

Hs
c (U) = Hs

loc(U) ∩ E ′(U). (12.29)

We define convergence of sequences in the newly introduced spaces as follows:

• we say that uk → u in Hs
c (U) if there exists K ⋐ U such that suppuk ⊂ K

for all k, and ∥uk − u∥Hs(Rn) → 0 where we identify uk − u ∈ E ′(U) with its

extension by zero to the entire Rn;

• we say that uk → u in Hs
loc(U) if for each χ ∈ C∞

c (U) we have ∥χ(uk −
u)∥Hs(Rn) → 0, where we again identify χ(uk − u) ∈ E ′(U) with its extension

by zero to Rn.

We list below some properties of the spaces Hs
c , H

s
loc. We leave the proof as an exercise

below.

Proposition 12.13.S Let U ⊂◦ Rn and s ∈ R. Then:

(1) for any a ∈ C∞(U), multiplication by a is a sequentially continuous operator

Hs
c (U) → Hs

c (U) and H
s
loc(U) → Hs

loc(U);

(2) for any a ∈ C∞
c (U), multiplication by a is a sequentially continuous operator

Hs
loc(U) → Hs

c (U);

(3) the differentiation operator ∂xj is sequentially continuous Hs+1
c (U) → Hs

c (U)

and Hs+1
loc (U) → Hs

loc(U);

(4) the space C∞
c (U) is dense in Hs

c (U) and in Hs
loc(U).

Similarly to Proposition 12.7, the spaces Hs
loc(U) and H−s

c (U) are dual to each

other. We again leave the proof as an exercise below.
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Proposition 12.14.S Let U ⊂◦ Rn and s ∈ R.
1. There exists a unique sequentially continuous bilinear pairing

u ∈ Hs
loc(U), v ∈ H−s

c (U) 7→ (u, v) ∈ C (12.30)

which coincides with the usual pairing (2.3) when u ∈ C∞(U), v ∈ C∞
c (U).

2. For u ∈ D′(U) we have u ∈ Hs
loc(U) if and only if (u, φk) → 0 for any sequence

φk ∈ C∞
c (U) converging to 0 in H−s

c (U).

3. For v ∈ E ′(U) we have v ∈ H−s
c (U) if and only if (v, ψk) → 0 for any sequence

ψk ∈ C∞(U) converging to 0 in Hs
loc(U).

A more difficult property to establish (but still left as an exercise below) is invari-

ance of Sobolev spaces under pullback by diffeomorphisms:

Proposition 12.15. Assume that U, V ⊂◦ Rn and Φ : U → V is a C∞ diffeomor-

phism. Fix s ∈ R. Then the pullback operator Φ∗ (defined on distributions in §10.1.3)
is a sequentially continuous operator Hs

c (V ) → Hs
c (U) and H

s
loc(V ) → Hs

loc(U).

We finish this section with one case of Sobolev embedding, which allows us to convert

Sobolev regularity (at a loss in the number of derivatives) to classical Ck regularity.

The proof is left as an exercise below.

Theorem 12.16. Assume that s ∈ R, k ∈ N0, and s > n
2
+ k. Then for any

U ⊂◦ Rn

Hs
loc(U) ⊂ Ck(U) (12.31)

and if uj → 0 in Hs
loc(U) then uj → 0 in Ck(U) (i.e. uniformly on compact subsets

with k derivatives).

12.2. Elliptic regularity II

In this section we present the second version of elliptic regularity. For the first

version, see §9.2 above. The conclusion is the same as for the first version, but the

assumption is different, featuring the coefficients of the operator rather than requiring

existence of a fundamental solution with a particular property.

12.2.1. Symbols of operators. We start by making the definitions needed to

state the theorem. Let P be a constant coefficient differential operator of orderm ∈ N0

on Rn (see Definition 9.1). We write it in the form

P =
∑
|α|≤m

aαD
α
x , Dα

x = (−i)|α|∂αx (12.32)

for some constants aα ∈ C.
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Definition 12.17. Let P be given by (12.32). Define the full symbol of P as the

following polynomial on Rn:

p(ξ) =
∑
|α|≤m

aαξ
α. (12.33)

Define the principal symbol as consisting of order m terms in the full symbol:

p0(ξ) =
∑
|α|=m

aαξ
α. (12.34)

We say that P is an elliptic differential operator if

p0(ξ) ̸= 0 for all ξ ∈ Rn \ {0}. (12.35)

The presence of powers of i in (12.32) compared to (9.1) is convenient because of

the relation to the Fourier transform. More precisely, from (11.36) we get that the

Fourier transform conjugates P to multiplication by the full symbol p:

P̂ u(ξ) = p(ξ) û(ξ) for all u ∈ S ′(Rn). (12.36)

As an example, we compute the full and principal symbols of the Laplace operator,

the Cauchy–Riemann operator, the heat operator, and the wave operator (see §9.1.2):

P = ∆ =⇒ p(ξ) = p0(ξ) = −|ξ|2, (12.37)

P = 1
2
(∂x + i∂y) =⇒ p(ξ, η) = p0(ξ, η) =

i
2
(ξ + iη), (12.38)

P = ∂t −∆x =⇒ p(τ, ξ) = iτ + |ξ|2, p0(τ, ξ) = |ξ|2, (12.39)

P = ∂2t −∆x =⇒ p(τ, ξ) = p0(τ, ξ) = −τ 2 + |ξ|2. (12.40)

12.2.2. Statement of elliptic regularity. We are now ready to state

Theorem 12.18 (Elliptic regularity II). Assume that P is an order m constant

coefficient differential operator on Rn which is elliptic in the sense of Definition 12.17.

Then for any U ⊂◦ Rn and u ∈ D′(U) we have

sing suppu = sing supp(Pu). (12.41)

Remark 12.19. Looking at (12.37)–(12.40), we see that the Laplace operator ∆ and

the Cauchy–Riemann operator 1
2
(∂x + i∂y) are elliptic, and the heat operator ∂t −∆x

and the wave operator ∂2t − ∆x are not elliptic. The ellipticity condition is sufficient

but not necessary for (12.41) to hold, since the heat operator satisfies the assumptions

of Elliptic Regularity I (Theorem 9.14).

Following the proof of Theorem 12.18 below we obtain the following analog in

Sobolev spaces. The proof is left as an exercise below.
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Theorem 12.20. Under the assumptions of Theorem 12.18 we have for each s ∈ R

Pu ∈ Hs
loc(U) =⇒ u ∈ Hs+m

loc (U) (12.42)

where m is the order of the elliptic operator P .

As an example, if ∆u ∈ L2
loc(U) then u ∈ H2

loc(U).

12.2.3. Kohn–Nirenberg symbols. The proof of Theorem 12.18 uses Kohn–

Nirenberg symbols, which also play an important role in the proof of Elliptic Regular-

ity III in §14 below. Here we introduce these symbols and study their basic properties.

Definition 12.21. Let m ∈ R and a ∈ C∞(Rn). We say that a is a Kohn–

Nirenberg symbol of order m if for each multiindex α there exists a constant Cα such

that

|∂αξ a(ξ)| ≤ Cα⟨ξ⟩m−|α| for all ξ ∈ Rn. (12.43)

Denote by Sm(Rn) the space of all Kohn–Nirenberg symbols of order m.

The condition (12.43) can be interpreted as follows: a(ξ) = O(⟨ξ⟩m) and each

differentiation makes a one order smaller as |ξ| → ∞.

From the definition and using the Leibniz rule one can check that

a ∈ Sm(Rn), b ∈ Sℓ(Rn) =⇒ ab ∈ Sm+ℓ(Rn), (12.44)

a ∈ Sm(Rn) =⇒ ∂xja ∈ Sm−1(Rn). (12.45)

A fundamental example of a Kohn–Nirenberg symbol is the symbol of a differential

operator:

Proposition 12.22. Assume that m ∈ N0 and p(ξ) is a polynomial of degree m

in ξ. Then p ∈ Sm(Rn).

Proof.S The derivative ∂αp is a polynomial of degree m− |α| (and is equal to 0

if |α| > m) which implies the bounds (12.43). □

We next prove two properties of the class Sm which will be used in the next subsec-

tion to prove Theorem 12.18. The first one is that inverses of elliptic Kohn–Nirenberg

symbols are also Kohn–Nirenberg symbols:

Proposition 12.23. Assume that p ∈ Sm(Rn) and there exists a constant c > 0

such that

|p(ξ)| ≥ c⟨ξ⟩m for all ξ ∈ Rn. (12.46)

Define q := 1/p ∈ C∞(Rn). Then q ∈ S−m(Rn).
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Proof. By induction on |α|, we see that for any multiindex α the derivative ∂αξ q

is a linear combination with constant coefficients of expressions of the form

∂α1
ξ p(ξ) · · · ∂

αk
ξ p(ξ)

p(ξ)k+1
(12.47)

where |α1|, . . . , |αk| ≥ 1 and α1 + · · · + αk = α. Since p satisfies the bounds (12.43)

and (12.46), we see that (12.47) is

O
(
⟨ξ⟩m−|α1| · · · ⟨ξ⟩m−|αk|

|p(ξ)|k+1

)
= O(⟨ξ⟩−m−|α|)

which shows that q ∈ S−m(Rn). □

Remark 12.24. The same proof shows that if (12.46) holds for all |ξ| ≥ T and

some fixed T , and q ∈ C∞(Rn) satisfies p(ξ)q(ξ) = 1 for all |ξ| ≥ T , then q ∈ S−m(Rn).

The second property concerns the Fourier transform of a symbol. Note that each

a ∈ Sm(Rn) has polynomially bounded derivatives and in particular lies in S ′(Rn).

Proposition 12.25. Assume that a ∈ Sm(Rn) for some m, and let â ∈ S ′(Rn) be

the Fourier transform of a. Then

sing supp â ⊂ {0}. (12.48)

Remark 12.26. An example is when a is a polynomial, then â is a derivative of

the delta function δ0 by (11.35) and (11.37).

Proof. 1. For any multiindex α, we have by (11.36)

xαâ(x) = D̂α
ξ a(x). (12.49)

By (12.43) we have Dα
ξ a(ξ) = O(⟨ξ⟩m−|α|). Thus

Dα
ξ a ∈ L1(Rn) when |α| > m+ n.

By Proposition 11.2 we see that

xαâ(x) ∈ C0(Rn) when |α| > m+ n.

In particular, if we take N ∈ N0 large enough so that 2N > m + n then |x|2N â(x) ∈
C0(Rn) which implies that

â|Rn\{0} ∈ C0(Rn \ {0}).

2. A modification of the above argument shows that a is in C∞ away from the origin.

Namely, fix k ∈ N0 and choose N ∈ N0 large enough so that 2N > k +m + n. Then

for each α with |α| = 2N we have

Dα
ξ a ∈ ⟨ξ⟩−kL1(Rn).
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By (11.14) and (12.49) we see that

xαâ(x) ∈ Ck(Rn).

This shows that |x|2N â(x) ∈ Ck(Rn), implying that a|Rn\{0} lies in Ck. Since this is

true for all k, we see that a|Rn\{0} ∈ C∞(Rn \ {0}). Thus sing supp â ⊂ {0}. □

12.2.4. Proof of elliptic regularity. We now prove Theorem 12.18.

1. We first construct an elliptic parametrix, which is a distribution E ∈ D′(Rn) such

that

R := δ0 − PE ∈ C∞(Rn), sing suppE ⊂ {0}. (12.50)

We can think of E as a fundamental solution of P modulo smooth functions: instead

of PE = δ0 we require that δ0 − PE be smooth.

Let p be the full symbol of P and p0 be its principal symbol (see Definition 12.17).

Since P is elliptic, the restriction of p0 to the unit sphere Sn−1 ⊂ Rn is a nonvanishing

continuous function, so there exists a constant c > 0 such that |p0(ξ)| ≥ c for all

ξ ∈ Sn−1. Since the function p0 is homogeneous of degree m, we have

|p0(ξ)| ≥ c|ξ|m for all ξ ∈ Rn. (12.51)

The difference p − p0 is a polynomial of degree m − 1, so p(ξ) = p0(ξ) + O(⟨ξ⟩m−1).

Therefore there exists T > 0 such that

|p(ξ)| ≥ c
2
⟨ξ⟩m for all ξ, |ξ| ≥ T.

Fix a function

q ∈ C∞(Rn), q(ξ) =
1

p(ξ)
for |ξ| ≥ T. (12.52)

For example, we can put q := (1 − χ)/p where χ ∈ C∞
c (B◦(0, T )) satisfies χ = 1

near p−1(0).

By Proposition 12.23 and Remark 12.24 the function q is a Kohn–Nirenberg symbol:

q ∈ S−m(Rn).

We now define the distribution E ∈ S ′(Rn) as the inverse Fourier transform of q:

E := F−1(q), Ê = q. (12.53)

By Proposition 12.48 (which applies to the inverse Fourier transform since E(x) =

(2π)−nq̂(−x)) we have sing suppE ⊂ {0}.
It remains to show that R := δ0 − PE ∈ C∞(Rn). By (12.36) and (11.34) we

compute the Fourier transform

R̂(ξ) = 1− p(ξ)q(ξ).
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Recalling (12.52) we see that R̂ is a smooth compactly supported function, and thus

in particular in S (Rn). Since the inverse Fourier transform maps S (Rn) to itself, we

see that R ∈ S (Rn), so in particular it lies in C∞(Rn).

2. We now argue similarly to the proof of Theorem 9.14. Fix arbitrary x0 ∈ U \
sing suppPu and take a cutoff function

χ ∈ C∞
c (U), x0 /∈ supp(1− χ).

Treating χu as an element of E ′(Rn) and using (9.7) we see that

χu = δ0 ∗ (χu) = (PE +R) ∗ (χu) = E ∗ (Pχu) +R ∗ (χu).

Since sing suppE ⊂ {0}, by Proposition 8.14 we have sing suppE∗(Pχu) ⊂ sing supp(Pχu).

Since R ∈ C∞(Rn), by Theorem 6.4 we have R ∗ (χu) ∈ C∞(Rn). Therefore

sing supp(χu) ⊂ sing supp(Pχu).

Arguing as in the proof of Theorem 9.14 we see that x0 /∈ sing supp(Pχu), thus x0 /∈
sing supp(χu) which implies that x0 /∈ sing suppu. Since x0 was arbitrary this shows

that sing suppu ⊂ sing suppPu and finishes the proof.

12.3. Notes and exercises

Our presentation mostly follows [Hör03, §7.9] and [FJ98, §§8.6,9.3]. The book

of Sobolev [Sob91], first published in 1950, is a nice introduction to Sobolev spaces

and their applications for anyone interested in the history of their development before

Schwartz.

A simple explanations for how Sobolev spaces appear in the study of hyperbolic

equations is as follows: if u solves the wave equation (∂2t −∆x)u = 0, then the energy

Eu(t) =
1

2

∫
Rn

|∂tu(t, x)|2 + |∂xu(t, x)|2 dx

is a conserved quantity. However, this energy controls the H1 norm of u, rather than

the C2 norm which would be needed to make sense of u as a classical solution.

The theory of Sobolev spaces extends considerably past what is presented here. In

particular, one can define Sobolev spaces based on Lp rather than L2, as well as Sobolev

spaces on domains with boundary. The latter are important in solving boundary value

problems for elliptic equations (such as the Poisson equation ∆u = f) and the Hilbert

theory of these spaces underlies the finite element method of solving such equations

numerically. See [Tay11a, Eva10] for more information.

Exercise 12.1. (1 = 0.5+0.5 pt) For the distributions below, find out for which s

they lie in Hs(Rn):

(a) δ0;



12.3. NOTES AND EXERCISES 153

(b) the indicator function of the some interval [a, b] ⊂ R (here n = 1).

Exercise 12.2. (0.5 pt) Let u ∈ E ′(Rn). Show that there exists s ∈ R such that

u ∈ Hs(Rn). (Hint: use Proposition 11.26.)

Exercise 12.3. (1.5 = 0.5 + 1 pts) Prove Proposition 12.7. (Hint: use (11.49)

and Exercise 2.1.)

Exercise 12.4. (1 pt) Prove Proposition 12.13. (Hint: to show density of C∞
c (U)

in Hs
loc(U), take arbitrary u ∈ Hs

loc(U), consider a sequence of functions χk ∈ C∞
c (U)

defined in (4.4) and take φk ∈ C∞
c (U) such that ∥χku− φk∥Hs(Rn) ≤ 1/k. Then show

that φk → u in Hs
loc(U).)

Exercise 12.5. (1 pt) Prove Proposition 12.14.

Exercise 12.6. (2.5 pts) Prove Proposition 12.15. (Hint: use the results of §12.1.3,
considering first the case s = 0, then 0 < s < 1, then using these to treat the case of

general s ≥ 0, and finally using duality to treat the case s < 0.)

Exercise 12.7. (1 pt) Prove Theorem 12.16. (Hint: use (11.14).)

Exercise 12.8. (1 = 0.5 + 0.5 pts) This exercise extends the previous one by

comparing Sobolev spaces with Hölder spaces. Assume that 0 < γ < 1. Define the

Hölder space Cγ(Rn) ⊂ C0(Rn) consisting of all functions f such that for each K ⋐ Rn

there exists a constant CK such that for all x, y ∈ K we have |f(x)−f(y)| ≤ CK |x−y|γ.
Denote by Cγ

c (Rn) the set of compactly supported functions in Cγ(Rn).

(a) Show that Cγ
c (Rn) ⊂ Hs(Rn) for each s < γ. (Hint: use Proposition 12.5.)

(b) Show that Hs(Rn) ⊂ Cγ(Rn) for each s > γ+ n
2
. (Hint: write each u ∈ Hs(Rn) in

terms of û using the Fourier inversion formula, and use the inequality |eix·ξ − eiy·ξ| =
|ei(x−y)·ξ − 1| ≤ Cγ|x− y|γ|ξ|γ.)

Exercise 12.9. (1.5 pts) This exercise forms the basis for the theorem about re-

stricting elements of Sobolev spaces to hypersurfaces, which is important for the study

of boundary value problems. We write elements of Rn as (x1, x
′) where x′ ∈ Rn−1, and

consider the restriction operator to {x1 = 0},

T : S (Rn) → S (Rn−1), Tφ(x′) = φ(0, x′).

Show that when s > 1
2
, there exists a constant C such that we have the bound

∥Tφ∥
Hs− 1

2 (Rn−1)
≤ C∥φ∥Hs(Rn) for all φ ∈ S (Rn).

Thus by Continuous Linear Extension T extends to a bounded operator Hs(Rn) →
Hs− 1

2 (Rn−1). (Hint: use Fourier Inversion Formula to write the Fourier transform of

Tφ in terms of the integral of φ̂ in the ξ1 variable. Next, if v ∈ L2(Rn), then we can

use Cauchy–Schwartz to estimate
∫
R⟨ξ⟩

−sv(ξ1, ξ
′) dξ1 in terms of the L2 norms of the
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functions ξ1 7→ (1 + |ξ1|2 + |ξ′|2)−s/2 and ξ1 7→ v(ξ1, ξ
′). It remains to show that the

first of these norms is bounded by C⟨ξ′⟩ 1
2
−s.)

Exercise 12.10. (1 pt) Prove Theorem 12.20. (Hint: show first that if E is defined

in (12.53), then for any v ∈ Hs
c (Rn) we have E ∗ v ∈ Hs+m(Rn). You might want to

choose arbitrary ψ ∈ C∞
c (U) and show that ψu ∈ Hs+m by taking χ ∈ C∞

c (U) in the

proof of Theorem 12.18 such that supp(1−χ)∩suppψ = ∅. You can freely use anything

in the proof of Theorem 12.18.)



CHAPTER 13

Manifolds and differential operators

In this chapter we discuss manifolds, distributions on manifolds, and differential

operators. One of the advantages of manifolds for us is the existence of compact

manifolds, which are the setting of several of the most interesting applications of the

material of this course (see Theorems 15.13, 16.1, 17.15 below).

A lot of definitions and proofs can be transferred from open subsets of Rn to a

manifold (often via pushforwards by charts), and we try to give the list of statements

that are true and the new details of the proofs compared to the case of open subsets

of Rn, but skip the more technical details which can hopefully be worked out by a

dedicated reader and would potentially add many more pages to this chapter without

making it any easier to read.

13.1. ManifoldsR

In this section we briefly review some concepts from the theory of smooth manifolds.

We skip a lot of definitions and almost all the proofs, referring the reader to [Lee13,

Chapters 1–3,10,11,13,16] for details. For a more gentle introduction to some of the

topics below, see alternatively [Spi65]. On the other end of the spectrum, [Hör03,

§§6.3–6.4] provides a very fast introduction to the theory of manifolds.

13.1.1. Basics. A manifold is informally thought of as a space which is locally

diffeomorphic to Rn. More precisely, for us an n-dimensional manifold is:

• a Hausdorff topological space M which is second countable (there exists a

countable basis of the topology of M),

• and a collection of homeomorphisms U → V where U ⊂◦ M, V ⊂◦ Rn, which

we call charts,

so that the following properties hold:

• the domains U of the given charts cover the entire M;

• if κ : U → V is a chart, then for any nonempty W ⊂◦ U the restriction

κ|W : W → κ(W ) is also a chart;

• if κ1 : U → V1 and κ2 : U → V2 are two charts, then the transition map

κ2 ◦ κ−1
1 is a diffeomorphism V1 → V2.

155
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Remark 13.1.X One can show that every manifold has metrizable topology. The

second countability and Hausdorff property above are for correctness sake, we will not

be using them directly in these notes.

We denote the manifold above by just M, suppressing the smooth structure (i.e.

the choice of the collection of charts on M) in the notation. It is actually better to

define the manifold as having a complete atlas, which is a collection of charts which

includes any chart compatible with all the charts in it (in the sense of smoothness of

transition maps).

We think of charts as local coordinate systems: if κ : U → V is a chart, then κ(x)
is the coordinate vector of a point x ∈ U . The inverse κ−1 : V → U is called the

parametrization map.

13.1.2. Examples. A fundamental example of an n-dimensional manifold is Rn

itself, with charts given e.g. by identity maps I : U → U for all nonempty U ⊂ Rn.

An open subset of a manifold is a manifold itself, so any open subset of Rn is an

n-dimensional manifold. (We purposely avoid the question about whether the empty

set is a manifold.)

A more nontrivial example is given by

Proposition 13.2. Assume that U ⊂◦ RN and F : U → Rm is a C∞ map, with

N ≥ m. Fix y0 ∈ Rm and assume that for each x ∈ F−1(y0), the differential dF (x) is

a surjective linear map. Then F−1(y0) is an N −m dimensional manifold.

The proof of Proposition 13.2 uses the Inverse Mapping Theorem. Arguing the

same way as in the proof of Lemma 10.8 we see that for each x0 ∈ F−1(y0) we can

find a local system of coordinates y on RN near x0 in which F (y′, y′′) = y′ where

y′ ∈ Rm, y′′ ∈ RN−m. Then F−1(y0) is an open subset of the N −m dimensional affine

subspace {y′ = y0} ⊂ RN and a chart on F−1(y0) near x0 is given by the map x 7→ y′′.

An important example of a manifold constructed this way is the sphere

Sn := {x ∈ Rn+1 : |x| = 1}. (13.1)

Another commonly used manifold is the torus

Tn := S1 × · · · × S1︸ ︷︷ ︸
n times

(13.2)

which is also often thought of as the quotient Tn = Rn/Zn.

13.1.3. Functions and maps. For a manifold M and a function f : M → C,
we say that f is smooth, and write

f ∈ C∞(M)
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if for each chart κ : U → V , the pushforward of f by κ,

κ∗f := f ◦ κ−1 : V → C (13.3)

lies in C∞(V ). The pushforward here is just the pullback by κ−1, but it will be

notationally convenient for us to write κ∗ rather than (κ−1)∗.

We define C∞
c (M) to be the space of compactly supported functions in C∞(M),

with support of f defined to be the closure of {x ∈ M | f(x) ̸= 0}. If N ⊂◦ M, then

we have the natural restriction operator C∞(M) → C∞(N ) and the extension by zero

operator C∞
c (N ) → C∞

c (M). The partition of unity Theorem 1.15 still applies to

manifolds.

The notions of convergence in C∞
c (from Definition 2.5) and in C∞ (from Defini-

tion 4.4) make sense on a manifold:

Definition 13.3. We say that a sequence uk ∈ C∞(M) converges to u in C∞(M)

if for each chart κ : U → V we have κ∗(uk − u) → 0 in C∞(V ) in the sense of Defi-

nition 4.4. A sequence uk ∈ C∞
c (M) converges to u in C∞

c (M) if uk → u in C∞(M)

and there exists K ⋐ M such that suppuk ⊂ K for all k.

Similarly to the spaces C∞ and C∞
c , we can define the spaces Lploc(M), Lpc(M). The

key observation, just like with smooth functions, is that pullbacks by diffeomorphisms

preserve the spaces Lploc on open subsets of Rn, so it does not matter what chart

κ : U → V we choose to determine whether f ∈ Lploc(U) for U ⊂◦ M.

More generally one can define smooth maps between two manifolds, Φ : M → N .

Such a smooth map is called a diffeomorphism if the inverse Φ−1 is also a smooth map.

13.1.4. Tangent bundle and vector fields. If M is an n-dimensional manifold

and x ∈ M, then the tangent space TxM is an n-dimensional (real) vector space.

Elements of TxM are called tangent vectors to M at x. There are several ways to

define it (derivations at x on the space of smooth functions, or equivalence classes of

paths through x) but neither is particularly fast to describe so we will just have to

refer to [Lee13, Chapter 3] for a proper definition.

In the example M = F−1(y0) given by Proposition 13.2, the tangent space at

x ∈ M is the following N −m-dimensional subspace of RN :

TxF
−1(y0) = {v ∈ RN | dF (x)v = 0}. (13.4)

If Φ : M → N is a smooth map between two manifolds, then its differential is a

linear map of tangent spaces:

dΦ(x) : TxM → TΦ(x)N , x ∈ M,
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and we have a version of the Chain Rule: if M Φ1−→ N Φ2−→ L are smooth maps then

d(Φ2 ◦ Φ1)(x) = dΦ2(Φ1(x))dΦ1(x), x ∈ M.

If V ⊂◦ Rn, then the tangent space to V at each point is just Rn. Thus if κ : U → V ,

U ⊂◦ M, is a chart, then we have the linear isomorphisms

dκ(x) : TxM → Rn, x ∈ U . (13.5)

The tangent bundle of M is the set of all tangent vectors:

TM := {(x, v) | x ∈ M, v ∈ TxM} (13.6)

and it is a 2n-dimensional smooth manifold. More precisely, any chart κ : U → V

on M induces the following chart on TM:

(x, v) 7→ (κ(x), dκ(x)v) ∈ R2n, x ∈ U, v ∈ TxM.

If M = F−1(y0) is the example of Proposition 13.2, then the tangent bundle of M is

TM = {(x, v) ∈ U × RN | F (x) = y0, dF (x)v = 0}

which is again a manifold of the type given by Proposition 13.2. In particular, if M is

the sphere defined in (13.1) then

TSn = {(x, v) ∈ R2n+2 : |x| = 1, x · v = 0},

so for example

TS2 = {(x1, x2, x3, v1, v2, v3) ∈ R6 : x21 + x22 + x23 = 1, x1v1 + x2v2 + x3v3 = 0}.

A C∞ vector field on M is a map

X : x ∈ M 7→ X(x) ∈ TxM

so that the map x ∈ M 7→ (x,X(x)) ∈ TM is smooth. Denote by C∞(M;TM) the

space of all C∞ vector fields on M.

If κ : U → V is a chart on M, then the pushforward of a vector field X ∈
C∞(M;TM) by κ is the vector field κ∗X on V defined by

κ∗X(κ(x)) = dκ(x)X(x), x ∈ U. (13.7)

A vector field on V ⊂◦ Rn is just a smooth map V → Rn, so we can write

κ∗X =
n∑
j=1

Xj(x)∂xj (13.8)

where ∂x1 , . . . , ∂xn denotes the canonical basis of Rn and Xj ∈ C∞(V ;R).
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Remark 13.4. Note that we should have used a different letter instead of x in (13.8);

indeed, x in (13.7) is a point in U ⊂◦ M and in (13.8) it is a point in V ⊂◦ Rn. We

denote both by the same letter, which is a common abuse of notation in differential

geometry. In fact, we often suppress the pushforward κ∗ in the notation and just say

that in the chart κ, we have X =
∑n

j=1Xj(x)∂xj . This takes some time to get used

to, but it saves a lot of time and ink later. Same applies to forms, densities, and

Riemannian metrics studied below.

A vector field X ∈ C∞(M;TM) defines an operator X : C∞(M) → C∞(M) as

follows:

Xf(x) = df(x)X(x) for all f ∈ C∞(M), x ∈ M. (13.9)

If κ : U → V is a chart in which X =
∑n

j=1Xj(x)∂xj for some Xj ∈ C∞(V ) then in

this chart

Xf(x) =
n∑
j=1

Xj(x)∂xjf(x). (13.10)

Here we push forward both Xf and f to V by κ, so strictly speaking (13.10) should

be stated as

κ∗X =
n∑
j=1

Xj(x) ∂xj =⇒ κ∗(Xf)(x) =
n∑
j=1

Xj(x)∂xj(κ∗f)(x). (13.11)

13.1.5. Cotangent bundle and 1-forms. If M is a manifold and x ∈ M, the

cotangent space T ∗
xM is the dual of the tangent space, that is the space of linear maps

TxM → R. Similarly to the tangent spaces, one can put cotangent spaces together to

form the cotangent bundle

T ∗M = {(x, ξ) | x ∈ M, ξ ∈ T ∗
xM}. (13.12)

If Φ : M → N is a smooth map, then we can define the transpose differential

dΦ(x)T : T ∗
Φ(x)N → T ∗

xM, x ∈ M (13.13)

by the formula

dΦ(x)Tη(v) = η(dΦ(x)v) for all η ∈ T ∗
Φ(x)N , v ∈ TxM.

If Φ is a diffeomorphism, then we can define the inverse-transpose

dΦ(x)−T := (dΦ(x)T )−1 : T ∗
xM → T ∗

Φ(x)N . (13.14)

Similarly to vector fields, we define 1-forms on M as maps

ω : x ∈ M 7→ ω(x) ∈ T ∗
xM

such that the map x ∈ M 7→ (x, ω(x)) ∈ T ∗M is smooth. Denote by C∞(M;T ∗M)

the space of all 1-forms on M.
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If κ : U → V is a chart, we define the pushforward of a 1-form ω ∈ C∞(M;T ∗M)

by κ to be the following 1-form on V :

κ∗ω(κ(x)) = dκ(x)−Tω(x), x ∈ U. (13.15)

A 1-form on V ⊂◦ Rn is the same as a smooth map ω from V to the dual of Rn, which

is canonically identified with Rn, so we can write

κ∗ω =
n∑
j=1

ωj(x) dxj (13.16)

where dxj : Rn → R is the j-th coordinate map on Rn and ωj ∈ C∞(V ;R).
If f : M → R is a smooth function, then the differential df is naturally a 1-form,

since for each x ∈ M, df(x) is a linear map from TxM to R. In any chart κ : U → V

this 1-form is given by

df =
n∑
j=1

(∂xjf) dxj. (13.17)

For a vector field X ∈ C∞(M;TM) and a 1-form ω ∈ C∞(M;T ∗M), we can define

the pairing ω(X) ∈ C∞(M;R) by

(ω(X))(x) = ω(x)(X(x)), x ∈ M,

so that Xf = df(X).

13.1.6. Riemannian metrics. A Riemannian metric g on a smooth manifoldM
is a smooth choice of a (positive definite) inner product on tangent spaces to M. That

is, for each x ∈ M, g(x) is an inner product on TxM (we also denote this inner product

by ⟨•, •⟩g(x)) and the norm-squared

|v|2g(x) := ⟨v, v⟩g(x), (x, v) ∈ TM

is a smooth function on TM.

A Riemannian metric g defines also an inner product on cotangent spaces, so that

for each (x, ξ) ∈ T ∗M the corresponding norm is

|ξ|g(x) = max{ξ(v) : v ∈ TxM, |v|g(x) = 1}.

If Φ : M → N is a diffeomorphism, and h is a metric on N , then the pullback metric

Φ∗h on M is defined by

⟨v, w⟩Φ∗h(x) = ⟨dΦ(x)v, dΦ(x)w⟩h(Φ(x)), x ∈ M, v, w ∈ TxM.

If g is a metric on M, we say that Φ : (M, g) → (N , h) is an isometry if Φ∗h = g.

If κ : U → V is a chart, we define the pushforward of a metric g on M to be the

pullback of g by κ−1:

κ∗g = (κ−1)∗g
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which is a metric on V . A metric on V ⊂◦ Rn is the same as a smooth map from V to

the space of positive definite matrices, so we can write

κ∗g =
n∑

j,k=1

gjk(x) dxjdxk (13.18)

where G(x) = (gjk(x))
n
j,k=1 is a real symmetric positive definite n×n matrix depending

smoothly on x ∈ V and for v, w ∈ Rn

⟨v, w⟩κ∗g(x) =
n∑

j,k=1

gjk(x)vjwk.

Note that if ξ =
∑n

j=1 ξj dxj, η =
∑n

k=1 ηk dxk are two vectors in the dual space to Rn,

then their inner product with respect to κ∗g is

⟨ξ, η⟩κ∗g(x) =
n∑

j,k=1

gjk(x)ξjηk

where

G−1(x) = (gjk(x))nj,k=1 (13.19)

is the inverse of the matrix G(x), which is again a positive definite matrix.

If M = Φ−1(y0) is the example from Proposition 13.2, then a Riemannian metric

on M can be defined by restricting the Euclidean inner product on RN to tangent

spaces of M. For example, in the case of the sphere Sn−1 defined in (13.1) this

produces the standard metric known as the round metric on the sphere.

As an example of computation in coordinates, if g is the round metric on S2, and

we consider the spherical coordinate chart κ : U → V with

U = S2 \ {y ∈ R3 | y1 ≥ 0, y2 = 0}, V = (0, π)θ × (0, 2π)φ,

κ−1(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)
(13.20)

then the pushforward κ∗g has the form

κ∗g = dθ2 + sin2 θ dφ2. (13.21)

13.1.7. Integration of densities. Let M be a manifold and a ∈ L1
c(M). We

would like to define the integral of a on M but this is not possible: the resulting

definition cannot be invariant under diffeomorphisms of manifolds since the change of

variables formula (Theorem 10.5) features multiplication by the Jacobian. To fix this

problem, we introduce a different kind of object on M, called density, which can be

integrated in a coordinate independent way.

We start with a bit of linear algebra:



162 13. MANIFOLDS AND DIFFERENTIAL OPERATORS

Definition 13.5. Let V be an n-dimensional real vector space. A density on V
is a map ω : Vn → C such that for any linear map A : V → V and any vectors

v1, . . . , vn ∈ V we have

ω(Av1, . . . , Avn) = | detA|ω(v1, . . . , vn). (13.22)

Denote by Den(V) the set of all densities on V. A density ω is called positive if

ω(v1, . . . , vn) > 0 whenever v1, . . . , vn form a basis of V.

It is immediate from the definition that Den(V) is a vector space. It is at most

one-dimensional since (13.22) implies that ω is determined by ω(e1, . . . , en) for any

fixed choice of basis e1, . . . , en of V . On Rn we have the canonical positive density

|dx| = dx1 . . . dxn defined as follows:

|dx|(v1, . . . , vn) =
∣∣ det[v1 . . . vn]∣∣ for all v1, . . . , vn ∈ Rn (13.23)

where [v1 . . . vn] is the matrix with columns v1, . . . , vn. This shows that for general V
the space of densities is nontrivial and thus one-dimensional.

Coming back to the manifold M, define for each x ∈ M

|Ω|x := Den(TxM).

In particular, an element of |Ω|x is a map from (TxM)n to R. A (rough) density on M
is then a map

ω : x ∈ M 7→ ω(x) ∈ |Ω|x.
If Φ : M → N is a diffeomorphism, and ω is a density on N , then the pullback Φ∗ω

is the density on M defined as follows: for all x ∈ M and v1, . . . , vn ∈ TxM

Φ∗ω(x)(v1, . . . , vn) = ω(Φ(x))(dΦ(x)v1, . . . , dΦ(x)vn). (13.24)

If κ : U → V is a chart on M, then the pushforward of a density ω on M by κ is just

the pullback of ω by κ−1:

κ∗ω := (κ−1)∗ω

which is a density on V . We can write

κ∗ω = ω(x)|dx| (13.25)

where ω : V → C and |dx| is the standard density defined in (13.23).

We say that a density ω on M is smooth if for any chart κ : U → V the function

ω(x) from (13.25) lies in C∞(V ). Denote by C∞(M; |Ω|) the space of all smooth

densities on M. Similarly one can define the spaces C∞
c (M; |Ω|), Lploc(M; |Ω|), and

Lpc(M; |Ω|).
We now describe how to integrate densities on manifolds. If κ : U → V is a chart

on M and ω ∈ L1
c(M; |Ω|) is supported inside U , then we define∫

M
ω :=

∫
V

ω(x) dx (13.26)
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where the right-hand side is the integral with respect to Lebesgue measure and ω(x) is

defined in (13.25). Using the change of variables formula we see that this integral does

not depend on the choice of the chart; we leave the verification of this as an exercise

below.

For general ω ∈ L1
c(M; |Ω|) we take a partition of unity 1 = χ1 + · · · + χN near

suppω, where each χℓ is supported in the domain of a single chart, and define∫
M
ω :=

N∑
ℓ=1

∫
M
χℓ ω (13.27)

where the integrals on the right-hand side are defined by (13.26). The resulting integral

is independent of the choice of parition of unity (something we again leave as an exercise

below). Moreover, we have the following invariance under pullback: if Φ : M → N is

a diffeomorphism and ω ∈ L1
c(N ; |Ω|) then∫

M
Φ∗ω =

∫
N
ω. (13.28)

Given a Riemannian metric g on M, then we can define the Riemannian volume

density d volg ∈ C∞(M; |Ω|) as follows: for x ∈ M and v1, . . . , vn ∈ TxM we put

d volg(x)(v1, . . . , vn) =
√

| detB| where B = (bjk)
n
j,k=1, bjk = ⟨vj, vk⟩g(x). (13.29)

(We leave the fact that d volg is indeed a density as an exercise below.) In any chart

κ : U → V we have (using the notation (13.18))

κ∗d volg =
√

| detG(x)| |dx|, G(x) = (gjk(x))
n
j,k=1. (13.30)

Since each manifold has a Riemannian metric, and since d volg is positive, we see that

each manifold has a positive C∞ density. Denoting one such density by ω0, we can

identify densities ω on M with functions f by the formula ω = fω0. Under this

identification, the integral (13.27) of ω is just the integral of f with respect to the

measure on M induced by the density ω0.

As an example of (13.30), in the spherical coordinate chart on S2 given by (13.20)

the Riemannian volume density for the round metric g is given by

κ∗d volg = sin θ dθdφ

which corresponds to the integration in spherical coordinates formula from multivari-

able calculus.

13.1.8. Vector bundles. We finally introduce general vector bundles, several

particular cases of which (the tangent bundle, the cotangent bundle, and the bundle

of densities) have already appeared above.
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The idea of a vector bundle over a manifold M is to fix a vector space E (x) for

each point x ∈ M, in a way which in some sense is smooth in x. More precisely, a

smooth m-dimensional real vector bundle over an n-dimensional manifold M is a

• smooth n+m-dimensional manifold E , called the total space of the bundle,

• a surjective smooth map π : E → M, with each preimage

E (x) := π−1(x), x ∈ M

called the fiber of E at x,

• a structure of a real m-dimensional vector space on each fiber E (x),

• and a collection of diffeomorphisms (called trivializations of E )

Θ : π−1(U) → U × Rm

where U ⊂◦ M, such that for each x ∈ U , Θ maps the fiber E (x) to {x}×Rm,

and this restricted map is a linear isomorphism with respect to the vector

space structure fixed on E (x) and the standard vector space structure on

{x} × Rm ≃ Rm,

• so that the domains U of trivializations cover the whole M and the restriction

of a trivialization Θ to π−1(W ) for any W ⊂◦ U is again a trivialization.

We have transition maps between different trivializations: if Θ1,Θ2 : π
−1(U) → U×Rm

are trivializations then

Θ2 ◦Θ−1
1 (x,w) = (x,A(x)w) for all x ∈ U, w ∈ Rm (13.31)

where A(x) : Rm → Rm is a family of linear isomorphisms depending smoothly on x ∈
U .

A basic example of a vector bundle is the trivial bundle

E := M× Rm, π(x, v) = x,

with trivializations given by identity maps. More interesting examples are given by

• the n-dimensional tangent bundle E = TM, where for each chart κ : U → V

on M we have a trivialization

Θκ(x, v) = (x, dκ(x)v) ∈ U × Rn, x ∈ U, v ∈ TxM, (13.32)

• the n-dimensional cotangent bundle E = T ∗M, where for each chart κ : U →
V on M we have a trivialization

Θκ(x, ξ) = (x, dκ(x)−T ξ) ∈ U × Rn, x ∈ U, ξ ∈ T ∗
xM, (13.33)

with dκ(x)−T defined in (13.14),
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• and the 1-dimensional bundle of (real) densities E = {(x, ω) | x ∈ M, ω ∈
Den(TxM)}, where for each chart κ : U → V on M we have a trivialization

Θκ(x, ω) = (x, ω(dκ(x)−1e1, . . . , dκ(x)−1en)), x ∈ U, ω ∈ Den(TxM) (13.34)

where e1, . . . , en is the canonical basis of Rn.

If E is a vector bundle over M, then a smooth section of E is a map

β : x ∈ M 7→ β(x) ∈ E (x)

such that x 7→ (x, β(x)) is a smooth map M → E . Denote by C∞(M;E ) the space

of all smooth sections of E . Note that sections of the tangent bundle, the cotangent

bundle, and the density bundle are respectively vector fields, 1-forms, and densities.

On the other hand, sections of the trivial bundle M× Rm are just smooth functions

M → Rm.

An equivalent characterization of the map β being smooth is the following: for any

trivialization Θ : π−1(U) → U × Rm the map βΘ : U → Rm defined by

Θ(β(x)) = (x, βΘ(x)) for all x ∈ U (13.35)

is smooth. We call βΘ the representation of β in the trivialization Θ. Using these

representations, we can define the space of locally Lp sections Lploc(M;E ); here we

use that the transition maps (13.31) preserve the space of locally Lp maps M →
Rm. Restricting to compactly supported sections we get the spaces C∞

c (M;E ) and

Lpc(M;E ).

Building on Definition 13.3 we give

Definition 13.6.S We say that βk ∈ C∞(M;E ) converges to β in C∞(M;E ) if

for each trivialization Θ of E , with the representations βk,Θ, βΘ : U → Rm defined

by (13.35), we have βk,Θ → βΘ in C∞(U ;Rm). We say that βk ∈ C∞
c (M;E ) converges

to β in C∞
c (M;E ) if βk → β in C∞(M;E ) and there exists K ⋐ M such that

supp βk ⊂ K for all k.

If E ,F are two vector bundles over the same manifold M, then a bundle homo-

morphism is a smooth map

B : E → F (13.36)

such that for each x ∈ M, B maps the fiber E (x) to the fiber F (x), and the corre-

sponding map is linear (with respect to the vector space structures on E (x), F (x)).

We can think of bundle homomorphisms as sections of the homomorphism bundle

Hom(E → F ) over M defined by

Hom(E → F )(x) = {A : E (x) → F (x) linear map}.

Thus we denote the space of all bundle homomorphisms E → F by

C∞(M; Hom(E → F )).
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For a section ω ∈ C∞(M;E ), we can apply B to ω to yield a section Bω ∈ C∞(M;F ).

The resulting operators B : C∞(M;E ) → C∞(M;F ) are generalizations of multipli-

cation by smooth functions to sections of vector bundles.

13.2. Distributions on a manifold

13.2.1. Basic properties. As discussed in (2.6), if U ⊂◦ Rn then a distribution

u ∈ D′(U) is determined by specifying the ‘integrals’
∫
U
uφ dx for all test functions

φ ∈ C∞
c (U). If M is a manifold, then there is no canonical way to integrate functions

on M; instead, as explained in §13.1.7 we can integrate densities. The product of

a function and a density is a density, so if u is a function on M and ω is a density

on M, then the integral
∫
M uω makes invariant sense. Thus on manifolds, we should

revise (2.6) to make a distribution u on U answer the question

For any test density ω ∈ C∞
c (M; |Ω|), what is the integral

∫
M
u(x)ω(x) ? (13.37)

This means that the space D′(M) of distributions on M should be defined as the

dual space to C∞
c (M; |Ω|) and the space E ′(M) of compactly supported distributions

should be defined as the dual to C∞(M; |Ω|):

Definition 13.7. Let M be a manifold and |Ω| be the bundle of densities on M.

A linear functional u : C∞
c (M; |Ω|) → C is called a distribution on M if for each ωk

converging to 0 in C∞
c (M; |Ω|) in the sense of Definition 13.6 we have (u, ωk) → 0.

Denote by D′(M) the space of distributions on M.

We similarly define the class of distributions E ′(M) as the space of sequentially

continuous linear functionals on C∞(M; |Ω|).

As in Proposition 2.3 and the discussion following it, we denote by (u, ω) the result

of applying a distribution u ∈ D′(M) to a density ω ∈ C∞
c (M; |Ω|) and we embed

L1
loc(M) into D′(M) by putting

(f, ω) :=

∫
M
fω for all f ∈ L1

loc(M), ω ∈ C∞
c (M; |Ω|). (13.38)

A lot of the fundamental theory of distributions that we established before works

on manifolds, with essentially the same proofs. This includes:

• the notion of weak convergence of distributions (see Definitions 2.7 and 4.8);

• restriction of distributions to open subsets and the sheaf property (see §2.3),
since partitions of unity still exist on manifolds;

• multiplication of distributions by functions in C∞(M) (see §3.2.1);
• the notion of support suppu ⊂ M of a distribution u ∈ D′(M) and the iden-

tification of E ′(M) with the space of compactly supported elements of D′(M)

(see §§4.1–4.2);
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• the notion of singular support sing suppu ⊂ M of a distribution u ∈ D′(M)

(see §8.3);
• Banach–Steinhaus theorems (see §4.3) where to define the Fréchet space struc-
ture on C∞(M; |Ω|) we take a countable partition of unity 1 =

∑
ℓ χℓ, with

each χℓ compactly supported in the domain Uℓ of some chart κℓ : Uℓ → Vℓ,

and taking for ω ∈ C∞(M; |Ω|) the seminorms ∥(κ−1
ℓ )∗(χℓω)∥CN for all ℓ,N .

We can also differentiate distributions, extending to them the action of vector fields on

smooth functions defined in (13.9). Let X ∈ C∞(M;TM) be a vector field, considered

as an operator on C∞(M). Then there exists the transpose operatorX t on C∞
c (M; |Ω|)

such that in terms of the pairing defined by (13.38)

(Xf, ω) = (f,X tω) for all f ∈ C∞(M), ω ∈ C∞
c (M; |Ω|), (13.39)

and moreover supp(X tω) ⊂ suppω.

To show the existence ofX t, take a chart κ : U → V , in which κ∗X =
∑n

j=1Xj(x)∂xj .

Recalling (13.26) we see that (13.39) holds for any f ∈ C∞(M), ω ∈ C∞
c (U ; |Ω|) if

and only if ∫
V

κ∗(Xf)κ∗ω =

∫
V

κ∗f κ∗(X
tω)

which by Theorem 1.17 gives the following formula for κ∗(X
tω):

κ∗(X
tω) = −

n∑
j=1

∂xj(Xj(x)ω(x))|dx| where κ∗ω = ω(x)|dx|. (13.40)

One can now check for any ω ∈ C∞
c (M; |Ω|), the formula (13.40) defines the same

density X tω|U for any choice of chart κ : U → V , and use the sheaf property for

C∞(M; |Ω|) to piece (13.40) together to a global density X tω ∈ C∞
c (M; |Ω|).

Now we can define the result of applying a vector field X to a distribution as

follows:

(Xu, ω) = (u,X tω) for all u ∈ D′(M), ω ∈ C∞
c (M; |Ω|). (13.41)

This gives a sequentially continuous operator X : D′(M) → D′(M). The Leibniz Rule

(Proposition 3.4) takes the form

X(au) = (Xa)u+ a(Xu) for all a ∈ C∞(M), u ∈ D′(M).

13.2.2. Pushforwards by charts and further properties. We previously de-

fined pushforwards of functions, vector fields, 1-forms, Riemannian metrics, and densi-

ties by charts, which allowed us to locally view these as corresponding objects on open

subsets of Rn. We now do the same with distributions.
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Let M be a manifold and κ : U → V be a chart. For u ∈ D′(M), define the

pushforward κ∗u ∈ D′(V ) of u by κ as follows:

(κ∗u, φ) = (u,κ∗(φ|dx|)) for all φ ∈ C∞
c (V ) (13.42)

where the pullback κ∗(φ|dx|) is a density in C∞
c (U ; |Ω|) ⊂ C∞

c (M; |Ω|). If u ∈
L1
loc(M), then the pushforward κ∗u as a distribution coincides with the usual push-

forward κ∗u = u ◦ κ−1 ∈ L1
loc(V ), as follows from (13.26) and (13.38).

If κ : U → V is a chart and W ⊂◦ U , then the pushforward of u by the restricted

chart κ|W is equal to κ∗u|κ(W ). Moreover, if κ1 : U → V1, κ2 : U → V2 are two charts,

then

κ1∗u = (κ2 ◦ κ−1
1 )∗κ2∗u (13.43)

where κ2 ◦ κ−1
1 : V1 → V2 is the transition diffeomorphism and we use the notion of

the pullback of a distribution from §10.1.3. Conversely, using the sheaf property for

distributions we see that if for each chart κ : U → V we are given a distribution

uκ ∈ D′(V ) and the compatibility conditions above are satisfied, then there exists

unique u ∈ D′(M) such that uκ = κ∗u for all κ.
Using pushforwards and previously proved results on distributions on open subsets

of Rn, we can establish the following properties of distributions on manifolds:

• The space C∞
c (M) is dense in D′(M) and in E ′(M). To show this, fix a

countable partition of unity

1 =
∞∑
ℓ=1

χℓ, χℓ ∈ C∞
c (Uℓ) (13.44)

such that each Uℓ ⊂◦ M is the domain of a chart κℓ : Uℓ → Vℓ, and the

partition (13.44) is locally finite in the sense that any K ⋐ M intersects only

finitely many of the sets Uℓ. (See for example [Lee13, Theorem 2.23] for a

proof of existence of such a partition.)

Take arbitrary u ∈ D′(M). For each ℓ there exists a sequence φkℓ ∈
C∞

c (Uℓ) such that φkℓ → χℓu as k → ∞ in D′(M). Indeed, it suffices to use

Theorem 6.10 to construct a sequence of functions in C∞
c (Vℓ) converging to

κℓ∗(χℓu) in E ′(Vℓ), and pull these functions back to Uℓ by κℓ. Now put

φk :=
∑
ℓ≤k

φkℓ ∈ C∞
c (M) (13.45)

Take arbitrary ω ∈ C∞
c (M; |Ω|). Then there exists ℓ0 > 0 such that for all

ℓ > ℓ0 and k we have Uℓ ∩ suppω = ∅. We have for all k ≥ ℓ0

(u, ω) =
∑
ℓ≤ℓ0

(χℓu, ω), (φk, ω) =
∑
ℓ≤ℓ0

(φkℓ, ω),
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which implies that (φk, ω) → (u, ω) as k → ∞ and thus φk → u in D′(M).

The same argument shows density of C∞
c (M) in E ′(M).

• IfM,N are two manifolds and u ∈ D′(M), v ∈ D′(N ), then one can define the

tensor product u⊗ v ∈ D′(M×N ) satisfying the conditions of Theorem 7.1.

Here the tensor product of a (smooth) density on M and a density on N
is a density on M × N . Note that if κ′ : U ′ → V ′ is a chart on M and

κ′′ : U ′′ → V ′′ is a chart on N , then the pushforward of u ⊗ v by the chart

κ′ × κ′′ : U ′ × U ′′ → V ′ × V ′′ is equal to the tensor product (κ′
∗u)⊗ (κ′′

∗v).

• If M,N are two manifolds, then sequentially continuous operators C∞
c (N ) →

D′(M) are in 1-to-1 correspondence with the corresponding Schwartz kernels

on M × N , but the presence of densities makes this more cumbersome to

state. For example, if K ∈ D′(M×N ), then (7.15) gives the corresponding

operator which maps C∞
c (N ; |Ω|) → D′(M).

• If Φ : M → N is a smooth submersion, then the pullback operator Φ∗ :

C∞(N ) → C∞(M) extends to an operator D′(N ) → D′(M), which can be

seen by following the construction in §10.1.
• On the other hand, the concepts of homogeneity, convolution, tensor prod-

uct, constant coefficient differential operator, or fundamental solution do not

extend to general manifolds.

If E is a vector bundle over M, then we can define the space of distributions on M
with values in E , denoted by D′(M;E ), as the dual to the space of smooth compactly

supported sections C∞
c (M; Hom(E → |Ω|)), with |Ω| denoting the bundle of densities

over M. Indeed, for each f ∈ L1
loc(M;E ) and ω ∈ C∞

c (M; Hom(E → |Ω|)) the

product ωf lies in L1
c(M; |Ω|) and thus can be integrated in an invariant way, yielding

the pairing (f, ω).

A representation of u ∈ D′(M;E ) in a trivialization Θ : π−1(U) → U × Rm

(see (13.35)) is a distribution on U with values in Rm, which is the same as an element

of the direct sum of m copies of D′(U). We leave it to the reader to fill in the technical

details of the construction of such local representations.

A particular case is when E = |Ω|, with the space D′(M; |Ω|) being the dual to the

space of (scalar) functions C∞
c (M). (Note that since |Ω| is a one-dimensional vector

bundle, the homomorphism bundle Hom(|Ω| → |Ω|) is canonically isomorphic to the

trivial bundle M×R.) This space of density-valued distributions includes in particular

the delta function δy for any y ∈ M, defined by

(δy, φ) = φ(y) for all φ ∈ C∞
c (M). (13.46)



170 13. MANIFOLDS AND DIFFERENTIAL OPERATORS

13.2.3. Sobolev spaces. We now introduce Sobolev spaces on a manifold:

Definition 13.8. Assume that M is a manifold and s ∈ R. Define the spaces

Hs
loc(M) ⊂ D′(M), Hs

c (M) := Hs
loc(M) ∩ E ′(M)

as follows: a distribution u ∈ D′(M) lies in Hs
loc(M) if and only if for any chart

κ : U → V the pushforward κ∗u ∈ D′(V ) lies in the local Sobolev space Hs
loc(V ) (see

Definition 12.12).

This definition makes sense since for any two charts κ1 : U → V1, κ2 : U → V2, we

have κ1∗u ∈ Hs
loc(V1) if and only if κ2∗u ∈ Hs

loc(V2), as follows from Proposition 12.15

and (13.43). See Exercise 13.3 below for more information.

We say that a sequence uk ∈ Hs
loc(M) converges to u in Hs

loc(M) if for any chart

κ : U → V the pushforward κ∗uk converges to κ∗u in Hs
loc(V ). Convergence in Hs

c (M)

is defined by requiring convergence in Hs
loc(M) and all the supports being contained

in a fixed compact subset of M.

An important special case is when M is a compact manifold. Then Hs
loc(M) =

Hs
c (M), and we denote this space by just Hs(M). One can make Hs(M) naturally

into a Hilbert space, convergence in which corresponds to Hs
loc (or equivalently Hs

c )

convergence. See Exercise 13.4 below for details.

Coming back to the case of general M, the properties in §12.1.5 still hold on

manifolds, in particular:

• if a ∈ C∞(M), then multiplication by a is a continuous operator on Hs
loc(M)

and on Hs
c (M);

• if X is a smooth vector field on M, then it defines a continuous operator

Hs+1
loc (M) → Hs

loc(M) and Hs+1
c (M) → Hs

c (M);

• the space C∞
c (M) is dense in both Hs

loc(M) and Hs
c (M) (for the case of

Hs
loc(M) one can argue similarly to (13.45)).

One can also define Sobolev spacesHs(M;E ) inside the spaces of distributions with

values in a vector bundle E . We leave to the reader to work out the technical details,

noting that the transition maps (13.31) preserve the spaces Hs
loc(U ;Rm) ≃ ⊕mHs

loc(U)

since multiplication by smooth functions preserves Hs
loc(U).

The spaces Hs
loc(M;E ) and H−s

c (M; Hom(E → |Ω|)) are dual to each other in the

same sense as Proposition 12.14. In particular, Hs
loc(M) is dual to H−s

c (M; |Ω|).

13.3. Differential operators

We now introduce the notion of the principal symbol of a general differential oper-

ator and study its basic properties.
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13.3.1. The case of Rn. We start with the case of U ⊂◦ Rn. Recall from §9.1.1 the
definition of the algebra of differential operators Diffm(U), where m ∈ N0 is the order

of the operator. The key object associated to a differential operator is its principal

symbol, defined as follows:

Definition 13.9. Let U ⊂◦ Rn and consider an operator P ∈ Diffm(U) given by

P =
∑
|α|≤m

aα(x)D
α
x , aα ∈ C∞(U), Dα

x := (−i)|α|∂αx . (13.47)

Define the principal symbol of P to be the function

p ∈ C∞(U × Rn), p(x, ξ) =
∑
|α|=m

aα(x)ξ
α, x ∈ U, ξ ∈ Rn. (13.48)

We use the notation σm(P ) := p.

Here are a few basic properties of the principal symbol:

• σm(P ) is a homogeneous polynomial of degree m in ξ ∈ Rn with coefficients

that are smooth functions of x ∈ U ;

• if P has constant coefficients then the definition of principal symbol that we

just gave agrees with the one given before in (12.34) (note that there we

denoted the principal symbol by p0 rather than p);

• σm(P ) = 0 if and only if P ∈ Diffm−1(U).

We will sometimes suppress the subscript m and just denote the principal symbol of P

by σ(P ), when the order of P is understood from the context.

The principal symbol has several important algebraic properties. We do not use

them in the course but list them in the following proposition. The proof is left as an

exercise below.

Proposition 13.10. Let U ⊂◦ Rn, A ∈ Diffm(U), and B ∈ Diffℓ(U). Then:

1. (Product Rule) The principal symbol of the composition AB ∈ Diffm+ℓ(U) is

σm+ℓ(AB) = σm(A)σℓ(B). (13.49)

2. (Commutator Rule) The principal symbol of the commutator [A,B] := AB−BA
is

σm+ℓ−1([A,B]) = −i{σm(A), σℓ(B)} (13.50)

where [A,B] ∈ Diffm+ℓ−1(U) since σm+ℓ([A,B]) = 0 by (13.49), and the Poisson

bracket {•, •} is defined by

{a, b} =
n∑
j=1

(∂ξja)(∂xjb)− (∂xja)(∂ξjb), a, b ∈ C∞(U × Rn). (13.51)
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3. (Adjoint Rule) The principal symbol of the adjoint A∗ ∈ Diffm(U) (see (7.22))

is given by

σm(A
∗)(x, ξ) = σm(A)(x, ξ). (13.52)

In preparation for defining the principal symbol of a differential operator on a

manifold, we need to understand how principal symbols change under conjugation by

diffeomorphisms. To do this, we first prove the following preliminary statement, which

is interesting in its own right:

Lemma 13.11. Assume that U ⊂◦ Rn, P ∈ Diffm(U), and we are given two functions

φ ∈ C∞(U ;R), b ∈ C∞(U ;C).

(One commonly calls φ the phase and b the amplitude.) Denote p := σm(P ). Then

we have for all λ ∈ R

P
(
eiλφ(x)b(x)

)
= eiλφ(x)

(
p(x, dφ(x))b(x)λm + r(x, λ)

)
(13.53)

where r(x, λ) is a polynomial of degree m − 1 in λ with coefficients in C∞(U) and

dφ(x) denotes the vector (∂x1φ(x), . . . , ∂xnφ(x)).

Remark 13.12. An important special case is when b ≡ 1 and φ(x) = x · ξ for some

fixed ξ ∈ Rn. In this case we recover the full symbol of P :

P (eiλx·ξ) = eiλx·ξ
∑
|α|≤m

aα(x)ξ
αλ|α|

where aα ∈ C∞(U) are the coefficients of P , see (13.47).

Proof. Consider the conjugated operator e−iλφPeiλφ defined by

e−iλφPeiλφf(x) = e−iλφ(x)P (eiλφ(x)f(x)) for all f ∈ C∞(U).

We compute

e−iλφDxje
iλφ = Dxj + λ∂xjφ.

Therefore for a general differentiation operator Dα
x = Dα1

x1
. . . Dαn

xn we have

e−iλφDα
xe

iλφ = (Dx + λdφ)α = (Dx1 + λ∂x1φ)
α1 . . . (Dxn + λ∂xnφ)

αn .

It follows that, using the formula (13.47) for P ,

P (eiλφ(x)b(x)) = eiλφ(x)
∑
|α|≤m

aα(x)(Dx + λdφ)αb(x). (13.54)

The sum on the right-hand side is a polynomial of degree m in λ with coefficients in

C∞(U). The coefficient of λm in this polynomial is equal to∑
|α|=m

aα(x)dφ(x)
αb(x) = p(x, dφ(x))b(x),

which gives (13.53). □
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Remark 13.13. An a concrete example, if P = ∆ is the Laplacian, then

e−iλφ(x)P (eiλφ(x)a(x)) = −|dφ(x)|2a(x)λ2 + (2dφ(x) · da(x) + (∆φ(x))a(x))iλ+∆a(x).

The principal part as λ→ ∞ is given by (13.53); the other parts are harder to under-

stand (though they come up in several advanced topics such as Carleman estimates or

Witten Laplacians).

We now give the promised formula for how the principal symbol behaves under

changes of variables:

Proposition 13.14. Let U, V ⊂◦ Rn and Φ : U → V be a diffeomorphism. Assume

that P ∈ Diffm(V ) and define the pullback of P by Φ as the operator Φ∗P : C∞(U) →
C∞(U) given by

(Φ∗P )(u) = Φ∗(P (Φ−∗u)) for all u ∈ C∞(U) (13.55)

where Φ−∗ is the pullback operator by Φ−1. Then Φ∗P ∈ Diffm(U) and

σm(Φ
∗P )(x, ξ) = σm(P )(Φ(x), dΦ(x)

−T ξ) for all x ∈ U, ξ ∈ Rn (13.56)

where dΦ(x)−T denotes the inverse of the transpose of dΦ(x) : Rn → Rn.

Proof. The fact that Φ∗P ∈ Diffm(U) follows from the Chain Rule. One can also

use the Chain Rule to get (13.56), but we instead give a proof relying on Lemma 13.11.

Take arbitrary φ ∈ C∞(U ;R). By Lemma 13.11, we have as λ→ ∞

(Φ∗P )(eiλφ(x)) = eiλφ(x)
(
σm(Φ

∗P )(x, dφ(x))λm +O(λm−1)
)
. (13.57)

Denote ψ := φ ◦ Φ−1 ∈ C∞(V ;R). Then, denoting p := σm(P ), we have

(Φ∗P )(eiλφ(x)) = Φ∗(P (eiλψ(y)))

= Φ∗(eiλψ(y)(p(y, dψ(y))λm +O(λm−1)
))

= eiλφ(x)
(
p(Φ(x), dψ(Φ(x)))λm +O(λm−1)

)
.

(13.58)

Here in the first equality we used (13.55) and in the second equality we again used

Lemma 13.11. By the Chain Rule we have dψ(Φ(x)) = dΦ(x)−Tdφ(x). Compar-

ing (13.57) and (13.58) we get

σm(Φ
∗P )(x, dφ(x)) = p(Φ(x), dΦ(x)−Tdφ(x)).

Since φ can be chosen arbitrary, we get (13.56). □
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13.3.2. The case of manifolds and examples. We now introduce differential

operators on manifolds. As in §§13.1.4–13.1.7, we use pushfowards by charts.

Definition 13.15. Let M be a manifold. We say that an operator P : C∞(M) →
C∞(M) is a differential operator of order m ∈ N0 if for any chart κ : U → V , there

exists a differential operator κ∗P ∈ Diffm(V ), called the pushforward of P by κ, such
that

κ∗(Pu) = (κ∗P )(κ∗u) for all u ∈ C∞(M). (13.59)

Denote by Diffm(M) the space of all differential operators of order m on M.

Each P ∈ Diffm(M) is sequentially continuous on C∞(M) and on C∞
c (M), and

satisfies the locality property

supp(Pu) ⊂ suppu for all u ∈ C∞(M).

Next, we define the principal symbol of a differential operator on a manifold, which

is a function on its cotangent bundle:

Proposition 13.16. Assume that M is a manifold and P ∈ Diffm(M). Then

there exists unique function p ∈ C∞(T ∗M) such that for each chart κ : U → V we

have

p(x, ξ) = σm(κ∗P )(κ(x), dκ(x)−T ξ) for all x ∈ U, ξ ∈ T ∗
xM. (13.60)

where σm(κ∗P ) is defined in (13.48). We call p the principal symbol of P and denote

σm(P ) := p.

The proof of Proposition 13.16, left as an exercise below, relies on Proposition 13.14,

which shows that it is natural to consider the principal symbol of a differential operator

on V ⊂◦ Rn as a function on the cotangent bundle of V (which is canonically identified

with V × Rn).

Remark 13.17.X Proposition 13.10 can be extended to differential operators on

manifolds. The Product Rule and the Commutator Rule there are the same as for open

subsets of Rn, though some work is needed to see why the Poisson bracket makes invari-

ant sense on functions on T ∗M (for this one typically uses the canonical symplectic

form on M, but we do not develop this here). The Adjoint Rule also holds but one has

to be careful since the adjoint of an operator A : C∞(M) → C∞(M) is an operator

on densities, A∗ : C∞(M; |Ω|) → C∞(M; |Ω|); see §13.3.3 below for the definition of

such an operator.

We now give several important examples of differential operators on manifolds and

compute their principal symbols:
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• Let a ∈ C∞(M). Then the multiplication operator Pu = au lies in Diff0(M)

and we have

σ0(P )(x, ξ) = a(x) for all (x, ξ) ∈ T ∗M. (13.61)

• Let X ∈ C∞(M;TM) be a vector field and consider it as an operator us-

ing (13.9). Then the operator P := −iX lies in Diff1(M) and we have

σ1(P )(x, ξ) = ξ(X(x)) for all (x, ξ) ∈ T ∗M. (13.62)

This gives a simple explanation for why the principal symbol of a differential

operator should be a function on the cotangent bundle (rather than, say, the

tangent bundle): the vector X(x) defines a linear function on the cotangent

space T ∗
xM.

• Let g be a Riemannian metric on M. The Laplace–Beltrami operator ∆g is

characterized by the identity

−
∫
M
(∆gf)φd volg =

∫
M
⟨df(x), dφ(x)⟩g(x) d volg(x)

for all f ∈ C∞(M), φ ∈ C∞
c (M).

(13.63)

If κ : U → V is a chart and κ∗g =
∑n

j,k=1 gjk(x) dxjdxk, then the pushforward

κ∗∆g has the form

(κ∗∆g)f(x) =
1√

| detG(x)|

n∑
j,k=1

∂xj
(√

| detG(x)| gjk(x)∂xkf(x)
)

(13.64)

where G(x) = (gjk(x))
n
j,k=1 and G−1(x) = (gjk(x))nj,k=1. The operator ∆g lies

in Diff2(M) and its principal symbol is given by

σ2(∆g)(x, ξ) = −⟨ξ, ξ⟩g(x) for all (x, ξ) ∈ T ∗M. (13.65)

13.3.3. Vector bundles. We finally discuss differential operators acting on sec-

tions of vector bundles over manifolds. We start with the trivial bundles. Let ℓ, ℓ′ ∈ N.
An operator P : C∞(M;Cℓ′) → C∞(M;Cℓ) is the same as a matrix of operators(

Pkk′ : C
∞(M) → C∞(M)

)
1≤k≤ℓ, 1≤k′≤ℓ′ ,

with the action of P given by

P(u1, . . . , uℓ′) = (v1, . . . , vℓ) with vk =
ℓ′∑

k′=1

Pkk′uk′ . (13.66)

If each Pkk′ is a differential operator in Diffm(M), then we say that P is a differential

operator of order m, and write

P ∈ Diffm(M;Cℓ′ → Cℓ).
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Now, let E ,F be two vector bundles of dimensions ℓ′, ℓ over a manifold M. To keep

the theory consistent we should complexify E ,F (i.e. consider the bundle EC with

EC(x) = C⊗R E (x) for all x) but we suppress this complexification in the notation.

Definition 13.18. We say that a sequentially continuous operator P : C∞(M;E ) →
C∞(M;F ) is a differential operator of order m ∈ N0, and write

P ∈ Diffm(M;E → F )

if for any trivializations ΘE : π−1
E (U) → U × Cℓ′, ΘF : π−1

F (U) → U × Cℓ, where

U ⊂◦ M and πE : E → M, πF : F → M are the projection maps, there exists a

differential operator P̃ ∈ Diffm(M;Cℓ′ → Cℓ) which is the representation of P in the

trivializations ΘE , ΘF in the following sense:

(Pβ)ΘF
= P̃βΘE

for all β ∈ C∞(M;E ) (13.67)

where βΘE
∈ C∞(U ;Cℓ′), (Pβ)ΘF

∈ C∞(U ;Cℓ) are defined in (13.35).

Note that P is sequentially continuous on the spaces C∞ and C∞
c and supp(Pβ) ⊂

supp β for all β ∈ C∞(M;E ). Moreover, Diff0(M;E → F ) is just the space of bundle

homomorphisms E → F defined in (13.35) above.

An important example of a differential operator on bundles is the first order differ-

ential operator (see (13.17))

d : C∞(M) → C∞(M;T ∗M). (13.68)

We now define the principal symbol of a differential operator on vector bundles. In

case of trivial bundles, the principal symbol of an operator P ∈ Diffm(M;Cℓ′ → Cℓ)

given by (13.66), is the matrix of the principal symbols of the operators Pkk′ . It is

useful to think of this matrix as a linear map of the fibers Cℓ′ ,Cℓ: if (x, ξ) ∈ T ∗M
then σm(P)(x, ξ) : Cℓ′ → Cℓ is the linear map given by

σm(P)(x, ξ)(w1, . . . , wℓ′) =

( ℓ′∑
k′=1

σm(Pkk′)(x, ξ)wk′

)ℓ

k=1

. (13.69)

Next, if E ,F are two vector bundles over M and P ∈ Diffm(M;E → F ) then we

define the principal symbol σm(P) as follows: for each (x, ξ) ∈ T ∗M, the value of

σm(P) at (x, ξ) is a linear map

σm(P)(x, ξ) : E (x) → F (x) (13.70)

such that for any trivializations ΘE ,ΘF and with P̃ given by (13.67) we have for all

x ∈ U , ξ ∈ T ∗
xM, and w ∈ E (x)

ΘF (σm(P)(x, ξ)w) = (x, σm(P̃)(x, ξ)w̃) where ΘE (w) = (x, w̃). (13.71)

This definition does not depend on the choice of trivializations, as one can show that

the symbol defined in (13.69) is equivariant under the transition maps (13.31); we skip
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the details. The resulting symbol σm(P) is a section of the bundle π∗Hom(E → F )

over T ∗M, which is the pullback of the homomorphism bundle Hom(E → F ) by the

projection map π : T ∗M → M; more precisely,

π∗Hom(E → F )(x, ξ) = Hom(E → F )(x) for all (x, ξ) ∈ T ∗M. (13.72)

As an example, if d is the differential operator from (13.68) then we compute the

principal symbol of −id:

σ1(−id)(x, ξ)w = wξ for all (x, ξ) ∈ T ∗M, w ∈ C.

which follows from (13.17).

One application of differential operators on vector bundles is extension of differ-

ential operators to distributions by duality. Namely, if A ∈ Diffm(M), then we can

extend it to a sequentially continuous operator on D′(M) by the formula

(Au, ω) = (u,Atω) for all u ∈ D′(M), ω ∈ C∞
c (M; |Ω|) (13.73)

where the transpose operator At lies in Diffm(M; |Ω| → |Ω|). We omit the details

since they are quite similar to what was done for vector fields in (13.41).

13.4. Notes and exercises

The material in §13.1 can be found in most differential geometry textbooks such

as [Lee13]. The presentation in §13.2 partially follows [Hör03, §6.3], and the presen-

tation in §13.3 partially follows the first half-page of [Hör03, §8.3].

Exercise 13.1. (1 = 0.5 + 0.5 pt) This exercise proves coordinate invariance of

the integral of a density, introduced in §13.1.7. Let M be a manifold.

(a) Assume that κ1 : U1 → V1 and κ2 : U2 → V2 are charts on M and ω ∈ L1
c(M; |Ω|)

is supported inside U1 ∩ U2. Show that the integrals
∫
M ω defined by (13.26) using the

charts κ1 and κ2 are equal to each other. (Hint: use Theorem 10.5 for the transition

map between κ1 and κ2.)

(b) Assume that ω ∈ L1
c(M; |Ω|). Show that the integral

∫
M ω defined in (13.27) does

not depend on the choice of partition of unity.

Exercise 13.2. (1 pt) Let (M, g) be a Riemannian manifold. Show that the ex-

pression d volg defined in (13.29) is a density, that is for each x ∈ M the function

d volg(x) : (TxM)n → R satisfies (13.22). (Hint: reduce to the case when v1, . . . , vn is

a basis of TxM use the matrix of the linear map A in this basis.)

Exercise 13.3. (1 pt) This exercise shows in particular that Sobolev spaces on

manifolds are nontrivial, by constructing elements of these spaces from charts. Let M
be a manifold, κ : U → V be a chart on M, s ∈ R, and v ∈ Hs

c (V ). Take the pullback

κ∗v ∈ E ′(U) and extend it by zero to an element of E ′(M). Show that κ∗v ∈ Hs
c (M),
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and if vk → 0 in Hs
c (V ) then κ∗vk → 0 in Hs

c (M). (You may freely use properties of

pullback of distributions on manifolds.)

Exercise 13.4. (2 = 1+1 pts) Let M be a compact manifold. Fix a finite collection

of charts κℓ : Uℓ → Vℓ, ℓ = 1, . . . , N , such that M =
⋃N
ℓ=1 Uℓ, and a partition of unity

1 =
N∑
ℓ=1

χℓ, χℓ ∈ C∞
c (Uℓ).

Let s ∈ R and denote Hs(M) := Hs
loc(M) = Hs

c (M). For u ∈ Hs(M), define the

norm ∥u∥Hs(M) as follows:

∥u∥2Hs(M) =
N∑
ℓ=1

∥κℓ∗(χℓu)∥2Hs(Rn) (13.74)

where each κℓ∗(χℓu) is a distribution in Hs
c (Vℓ) and thus in Hs(Rn). (It is easy to see

that ∥ • ∥ is a norm on Hs(M) induced by an inner product – you do not need to show

this explicitly.)

(a) Show that for each sequence uk ∈ Hs(M), we have ∥uk∥Hs(M) → 0 if and only

if uk → 0 in Hs
loc(M) as defined in §13.2.3. (Hint: use Exercise 13.4, the decom-

position u =
∑N

ℓ=1 χℓu, and the fact that χℓu is the extension by 0 of the pullback

κ∗
ℓκℓ∗(χℓu).) This in particular implies that a different choice of the charts κℓ and the

cutoff functions χℓ yields an equivalent norm (13.74).

(b) Show that Hs(M) with the norm (13.74) is complete and thus a Hilbert space.

(Hint: let uk be a Cauchy sequence in Hs(M). Use completeness of Hs(Rn) to show

that for each ℓ, we have χℓuk → vℓ as k → ∞ in Hs
loc(M) for some vℓ ∈ Hs

c (Uℓ).

Conclude that uk →
∑N

ℓ=1 vℓ in H
s
loc(M).)

Exercise 13.5. (2 = 1 + 1 pts) Prove parts 1 and 3 of Proposition 13.10. (For

part 3, you can use (9.3) and the relation between transpose and adjoint.)

Exercise 13.6. (1 pt) Prove part 2 of Proposition 13.10.

Exercise 13.7. (0.5 pt) Prove Proposition 13.16.

Exercise 13.8. (2.5 = 0.5+1+1 pts) Let Sn be the n-sphere defined in (13.1), with

n ≥ 2, endowed with the round metric g (i.e. the one coming from the ambient space

Rn+1). In this exercise you compute the eigenvalues of the operator −∆g, namely the

numbers λ ∈ R such that there exist nonzero u ∈ C∞(Sn;R) solving the eigenfunction

equation

−∆gu = λu.

(a) Show that each eigenvalue λ has to satisfy λ ≥ 0. (Hint: compute the integral∫
Sn(∆gu)u d volg using the defining property of the Laplace–Beltrami operator.)
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(b) Let a ≥ 0. Denote by ∆0 the usual Laplace operator on Rn+1. Show that the

equation

∆0v = 0 on Rn+1 \ {0} (13.75)

has a nonzero solution v ∈ C∞(Rn+1 \ {0}) which is homogeneous of degree a if and

only if a is a (nonnegative) integer. (Hint: show that v is a locally integrable function

on Rn+1 and defines a tempered distribution in S ′(Rn+1), which we denote ṽ. Arguing

similarly to the proof of (10.30), show that ∆0ṽ = 0. Now pass to the Fourier transform

of ṽ and show that it is supported at a single point; deduce from here that ṽ is a

polynomial.)

(c) The pullback of the operator ∆0 by the polar coordinate diffeomorphism

Φ : (0,∞)× Sn → Rn+1 \ {0}, Φ(r, θ) := rθ

is equal to the operator ∂2r +
n
r
∂r +

1
r2
∆g, with the spherical Laplacian ∆g acting in the

θ variable. (This can be checked by noting that this operator has to be the Laplace–

Beltrami operator of the pullback by Φ of the Euclidean metric, but you don’t need to

do this computation here.) Using this, show that the eigenvalues of −∆g are given by

k(k + n − 1) where k runs over nonnegative integers. (Hint: if u is an eigenfunction

of −∆g then define v(rθ) = rau(θ) in polar coordinates for a right choice of a so that

∆0v = 0.) The eigenfunctions of −∆g are called spherical harmonics.





CHAPTER 14

Elliptic operators with variable coefficients

In this chapter we prove the third (and last) version of elliptic regularity, for elliptic

differential operators on manifolds. (See §§9.2,12.2 for the previous versions.) To state

it, we make the following

Definition 14.1. Let M be a manifold and P ∈ Diffm(M) be a differential op-

erator. Denote by p := σm(P ) the principal symbol of P (see Proposition 13.16). We

say that P is an elliptic differential operator if

p(x, ξ) ̸= 0 for all (x, ξ) ∈ T ∗M, ξ ̸= 0. (14.1)

Note that for constant coefficient differential operators on Rn, this definition of

ellipticity coincides with the one given in (12.35) above. An example of an elliptic

differential operator is the Laplace–Beltrami operator ∆g ∈ Diff2(M) associated to a

Riemannian metric, see §13.3.2.

We can now state the main result of this chapter:

Theorem 14.2 (Elliptic Regularity III). Let M be a manifold and P ∈ Diffm(M)

be an elliptic differential operator. Then for each u ∈ D′(M) we have

sing suppu = sing supp(Pu). (14.2)

A version for vector bundles is given by Theorem 14.23 below. One can replace

C∞ regularity by Sobolev regularity, see Theorem 15.1 below.

14.1. Pseudodifferential operators

Our proof of Theorem 14.2 relies on the construction of an elliptic parametrix,

which is a generalization to the variable coefficient case of the convolution operator

with the distribution E used in the proof of Theorem 12.18. This elliptic parametrix

will be a pseudodifferential operator, and in this section we take some time to introduce

pseudodifferential operators and establish some of their properties. For our purposes

it will be enough to study pseudodifferential operators on open subsets of Rn.

14.1.1. Kohn–Nirenberg symbols revisited. We start by revisiting the Kohn–

Nirenberg symbols introduced in §12.2.3, allowing for dependence on x in addition to ξ:

181
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Definition 14.3. Let U ⊂◦ Rn. A function a ∈ C∞(U × Rn) is called a Kohn–

Nirenberg symbol of order m ∈ R, if for each K ⋐ U and multiindices α, β there exists

a constant CαβK such that

|∂αx∂
β
ξ a(x, ξ)| ≤ CαβK⟨ξ⟩m−|β| for all (x, ξ) ∈ K × Rn. (14.3)

Denote by Sm(U × Rn) the space of all Kohn–Nirenberg symbols of order m.

Remark 14.4. The bounds (14.3) can be interpreted as follows: we have a(x, ξ) =

O(⟨ξ⟩m), each differentiation in x keeps the bound the same but each differentiation

in ξ makes a one order smaller, and the constants in the bounds are locally uniform

in x ∈ U .

We have Sℓ(U ×Rn) ⊂ Sm(U ×Rn) whenever ℓ ≤ m. We will also use the residual

class (whose elements are called rapidly decaying symbols)

S−∞(U × Rn) :=
⋂
m∈R

Sm(U × Rn) (14.4)

which can be characterized as follows: a function a ∈ C∞(U×Rn) lies in S−∞(U×Rn)

if and only if for each K ⋐ U , multiindices α, β, and N ∈ N there exists a constant

CαβKN such that

|∂αx∂
β
ξ a(x, ξ)| ≤ CαβKN⟨ξ⟩−N for all (x, ξ) ∈ K × Rn. (14.5)

Informally, this means that a(x, ξ) = O(⟨ξ⟩−∞) locally uniformly in x with all deriva-

tives.

Similarly to (12.44) and (12.45) we have

a ∈ Sm(U × Rn), b ∈ Sℓ(U × Rn) =⇒ ab ∈ Sm+ℓ(U × Rn), (14.6)

a ∈ Sm(U × Rn) =⇒ ∂xja ∈ Sm(U × Rn), ∂ξja ∈ Sm−1(U × Rn). (14.7)

We also have the following generalizations of Propositions 12.22 and 12.23:

Proposition 14.5. Assume that p(x, ξ) =
∑

|α|≤m aα(x)ξ
α is a polynomial of de-

gree m in ξ ∈ Rn with coefficients aα ∈ C∞(U). Then p ∈ Sm(U × Rn).

Proof.S The derivative ∂αx∂
β
ξ p is a polynomial of degree m− |β| in ξ with coeffi-

cients smooth in x (and it is equal to 0 if |β| > m), which gives the bounds (14.3). □

Proposition 14.6. Assume that p ∈ Sm(U ×Rn) and for each K ⋐ U there exists

a constant cK > 0 such that

|p(x, ξ)| ≥ cK |ξ|m for all x ∈ K, ξ ∈ Rn, |ξ| ≥ 1. (14.8)

Let q ∈ C∞(U × Rn) be such that q(x, ξ) = 1/p(x, ξ) for all x ∈ U , |ξ| ≥ 1. Then

q ∈ S−m(U × Rn).
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Proof.S By induction in |α|+|β| we see that for all multiindices α, β and all x ∈ U ,

ξ ∈ Rn with |ξ| ≥ 1, ∂αx∂
β
ξ q(x, ξ) is a linear combination with constant coefficients of

expressions of the form

(∂α1
x ∂

β1
ξ p(x, ξ)) · · · (∂αk

x ∂βkξ p(x, ξ))

p(x, ξ)k+1
(14.9)

where |α1|+ |β1|, . . . , |αk|+ |βk| ≥ 1 and α1 + · · ·+ αk = α, β1 + · · ·+ βk = β. Using

the bounds (14.3) and (14.8) we see that for each K ⋐ U there exists a constant CK
so that (14.9) is bounded in absolute value by CK |ξ|−m−|β| for all x ∈ K, |ξ| ≥ 1. This

gives the bounds (14.3) for q, showing that it lies in S−m(U × Rn). □

14.1.2. Asymptotic sums and Borel’s Theorem. In preparation for the con-

struction of elliptic parametrix in §14.2.1 below we now introduce asymptotic sums of

Kohn–Nirenberg symbols:

Definition 14.7. Assume that U ⊂◦ Rn, m ∈ R, and we are given symbols

a ∈ Sm(U × Rn); ak ∈ Sm−k(U × Rn), k ∈ N0.

We say that a is asymptotic to
∑∞

k=0 ak, and write

a ∼
∞∑
k=0

ak

if for each N ∈ N0 we have

a−
N−1∑
k=0

ak ∈ Sm−N(U × Rn). (14.10)

Remark 14.8. It is important to distinguish between asymptotic sums and conver-

gent series. As we see in Theorem 14.9 below, any sequence of symbols in the right

classes has an asymptotic sum. The corresponding series
∑∞

k=0 ak(x, ξ) may converge

for all (x, ξ). This is similar to the difference between Taylor formula and Taylor se-

ries. See Exercise 14.2 below for a version of Theorem 14.9 for Taylor expansions of

functions of one variable.

The main result about asymptotic sums is that they always exist:

Theorem 14.9 (Borel’s Theorem). Given any sequence ak ∈ Sm−k(U × Rn), k ∈
N0, there exists a ∈ Sm(U×Rn) such that a ∼

∑∞
k=0 ak in the sense of Definition 14.7.

Moreover, any two such symbols a differ by an element of S−∞(U × Rn).

Proof. 1. Fix a cutoff function

χ ∈ C∞
c (Rn), χ = 1 on B(0, 1).
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We have

1− χ(εξ) → 0 in S1(Rn) as ε→ 0+, (14.11)

where convergence is understood in the sense of the seminorms coming from (14.3).

(The convergence (14.11) holds in Sδ for all δ > 0, but not in S0.) To see (14.11), we

first observe that |1− χ(ξ)| ≤ C|ξ| for all ξ and thus

sup
ξ∈Rn

⟨ξ⟩−1|(1− χ(εξ))| ≤ C sup
ξ∈Rn

ε⟨ξ⟩−1|ξ| ≤ Cε→ 0.

Next, for any multiindex β with |β| ≥ 1 we have

sup
ξ∈Rn

⟨ξ⟩|β|−1
∣∣∂βξ (1− χ(εξ))

∣∣ = ε|β| sup
ξ∈Rn

⟨ξ⟩|β|−1
∣∣(∂βξ χ)(εξ)∣∣

≤ ε|β| sup
|ξ|≤R/ε

⟨ξ⟩|β|−1 ≤ Cε→ 0

where we fixed R > 0 such that suppχ ⊂ B(0, R). This shows (14.11).

Using the Leibniz Rule similarly to (14.6), we see that (14.11) and the fact that

ak ∈ Sm−k(U × Rn) implies that for each k

(1− χ(εξ))ak(x, ξ) → 0 in Sm−k+1(U × Rn). (14.12)

2. Take a sequence of compact sets Kk ⋐ Kk+1 exhausting U in the sense of (1.14).

Using (14.12), choose εk > 0 small enough so that

|∂αx∂
β
ξ bk(x, ξ)| ≤ 2−k⟨ξ⟩m−k+1−|β| for all |α|, |β| ≤ k, (x, ξ) ∈ Kk × Rn

where bk(x, ξ) := (1− χ(εkξ))ak(x, ξ).
(14.13)

We now put

a(x, ξ) :=
∞∑
k=0

bk(x, ξ). (14.14)

The series (14.14) converges to a function a ∈ C∞(U × Rn) since for any given (x, ξ)

only finitely many terms are nonzero.

We claim that for each M ∈ N0 there exists a constant CM so that∣∣∣∣∂αx∂βξ(a(x, ξ)− M−1∑
k=0

ak(x, ξ)

)∣∣∣∣ ≤ CM⟨ξ⟩m−M+1−|β|

for all |α|, |β| ≤M, (x, ξ) ∈ KM × Rn.

(14.15)

Note that on the surface, (14.15) appears weaker than (14.10) since we lose a power

of ⟨ξ⟩ and restrict the α, β,K that we can take depending on M . However, in Step 3

of the proof we will show that (14.15) implies (14.10), since we access more and more

of the symbol space seminorms as M grows.
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To show (14.15) we write

a(x, ξ)−
M−1∑
k=0

ak(x, ξ) = −
M−1∑
k=0

χ(εkξ)ak(x, ξ) +
∞∑

k=M

bk(x, ξ).

Since χ is compactly supported, the first sum on the right-hand side lies in S−∞(U ×
Rn) and in particular satisfies the estimate (14.13). To bound the second sum, we

use (14.13) to estimate for all |α|, |β| ≤M and (x, ξ) ∈ KM × Rn∣∣∣∣∂αx∂βξ ∞∑
k=M

bk(x, ξ)

∣∣∣∣ ≤ ∞∑
k=M

|∂αx∂
β
ξ bk(x, ξ)|

≤
∞∑

k=M

2−k⟨ξ⟩m−M+1−|β| ≤ 21−M⟨ξ⟩m−M+1−|β|

finishing the proof of (14.15).

3. We now show that a ∼
∑∞

k=0 ak in the sense of Definition 14.7. Take arbitrary

N ∈ N0. We need to show that a−
∑N−1

k=0 ak ∈ Sm−N(U ×Rn), that is for any K ⋐ U

and α, β there exists C such that∣∣∣∣∂αx∂βξ(a(x, ξ)− N−1∑
k=0

ak(x, ξ)

)∣∣∣∣ ≤ C⟨ξ⟩m−N−|β| for all (x, ξ) ∈ K × Rn. (14.16)

Take M ≥ N + 1 such that K ⊂ KM and |α|, |β| ≤M . We write

a(x, ξ)−
N−1∑
k=0

ak(x, ξ) =

(
a(x, ξ)−

M−1∑
k=0

ak(x, ξ)

)
+

M−1∑
k=N

ak(x, ξ).

The first term on the right-hand side satisfies the bound (14.16) by (14.15). The second

term lies in Sm−N(U × Rn) and thus satisfies the bound (14.16) as well.

4. Finally, if a, b ∈ Sm(U ×Rn) are such that a, b ∼
∑∞

k=0 ak, then from (14.10) we see

that a− b ∈ Sm−N(U × Rn) for all N , which implies that a− b ∈ S−∞(U × Rn). □

14.1.3. Pseudodifferential operators and quantization. We now develop a

quantization procedure which lets us turn symbols in Sm(U × Rn) into operators on

functions on U . The term ‘quantization’ is used because this procedure is related to

the map from classical to quantum observables in quantum mechanics.

Definition 14.10. Let U ⊂◦ Rn, m ∈ R, and a ∈ Sm(U × Rn). For φ ∈ C∞
c (U),

define the function Op(a)φ : U → C as follows:

Op(a)φ(x) = (2π)−n
∫
Rn

eix·ξa(x, ξ)φ̂(ξ) dξ, x ∈ U. (14.17)
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where φ̂ ∈ S (Rn) is the Fourier transform of the extension of φ by 0 to C∞
c (Rn), and

the integral converges absolutely since a(x, ξ) is polynomially bounded in ξ and φ̂ is

rapidly decaying.

An example of quantization, which justifies the prefactor (2π)−n, is given by

Proposition 14.11. Op(1) is the identity operator C∞
c (U) → C∞

c (U).

Proof. This follows immediately from the Fourier Inversion Formula, namely The-

orem 11.15. □

More generally, if a is a polynomial in ξ then Op(a) is a differential operator – see

Exercise 14.3 below. This is the reason why operators of the form Op(a) are called

pseudodifferential operators. (If a ∈ S0(U × Rn), pseudodifferential operators are also

related to singular integral operators studied in harmonic analysis.)

Another example is given by symbols which depend only on ξ, in which case Op(a)

is a convolution operator:

Proposition 14.12. Assume that a ∈ Sm(Rn) (see Definition 12.21) and consider

a(x, ξ) = a(ξ) as a symbol in Sm(Rn × Rn). Then

Op(a)φ = (F−1a) ∗ φ for all φ ∈ C∞
c (Rn)

where F−1a ∈ S ′(Rn) is the inverse Fourier transform of a, defined in §11.2.2.

Proof. From (14.17) and using (11.40) we see that

Op(a)φ = F−1(aφ̂) = F−1(F̂−1(a)φ̂) = F−1(a) ∗ φ.

□

We now establish the basic mapping properties of the operator Op(a), starting with

Proposition 14.13. Assume that a ∈ Sm(U × Rn). Then Op(a) is a sequentially

continuous operator C∞
c (U) → C∞(U).

Proof.S Let φ ∈ C∞
c (U). Since φ̂(ξ) ∈ S (Rn) and all the x-derivatives of a(x, ξ)

are polynomially bounded in ξ, we can differentiate under the integral sign in (14.17)

similarly to the proof of (11.11) to get that Op(a)φ ∈ C∞(U). The sequential conti-

nuity is straightforward to verify. □

We next extend Op(a) to a sequentially continuous operator on distributions:

Op(a) : E ′(U) → D′(U). (14.18)
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To show existence of such an extension, we use Theorem 7.15. What one needs to

show is that the transpose Op(a)t is a sequentially continuous operator

Op(a)t : C∞
c (U) → C∞(U) (14.19)

and we leave this as an exercise below. Note that since Op(a) : C∞
c (U) → C∞(U), the

transpose Op(a)t acts E ′(U) → D′(U) as well.

Let us now consider the case when a lies in the residual class S−∞ defined in (14.4).

In this case Op(a) is a smoothing operator:

Proposition 14.14. Assume that a ∈ S−∞(U × Rn). Then Op(a) extends to a

sequentially continuous operator E ′(U) → C∞(U).

Proof. Since a(x, ξ) is rapidly decaying in ξ, by Fubini’s Theorem we see that

Op(a) is an integral operator:

Op(a)φ(x) =

∫
U

Ka(x, y)φ(y) dy for all φ ∈ C∞
c (U), x ∈ U

where the Schwartz kernel Ka is given by

Ka(x, y) = (2π)−n
∫
Rn

ei(x−y)·ξa(x, ξ) dξ, x, y ∈ U. (14.20)

Since a(x, ξ) and all its x-derivatives are rapidly decaying in ξ, similarly to the proof

of (11.11) we can differentiate under the integral sign to see that

Ka ∈ C∞(U × U).

Now Proposition 7.10 shows that Op(a) extends to a sequentially continuous operator

E ′(U) → C∞(U). □

For general a ∈ Sm(U ×Rn), the operator Op(a) is not smoothing (see e.g. Propo-

sition 14.11). However, it is pseudolocal in the following sense:

Proposition 14.15. Let a ∈ Sm(U × Rn). Then:

1. If Ka ∈ D′(U × U) is the Schwartz kernel of Op(a) (see §7.2) then its singular

support is contained in the diagonal:

sing suppKa ⊂ {(x, x) | x ∈ U}. (14.21)

2. We have for all u ∈ E ′(U)

sing supp(Op(a)u) ⊂ sing suppu, (14.22)

sing supp(Op(a)tu) ⊂ sing suppu. (14.23)

Remark 14.16. In the special case when a = a(ξ), the operator Op(a) is the convo-

lution operator with E := F−1(a) as shown in Proposition 14.12. By Proposition 12.25

we know that sing suppE ⊂ {0}, which gives the pseudolocality property by (8.19).
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Proof. We roughly follow the proof by Proposition 12.25, showing that for any k,

if |α| is large enough depending on k then (y − x)αKa(x, y) is in C
k(U × U).

1. Assume first that a ∈ Sm(U×Rn) andm < −n. From (14.3) we see that the function

ξ 7→ a(x, ξ) lies in L1(Rn), with a norm bound locally uniform in x. By (14.17) and

Fubini’s Theorem, the Schwartz kernel Ka has the form (14.20):

Ka(x, y) = (2π)−n
∫
Rn

ei(x−y)·ξa(x, ξ) dξ, x, y ∈ U. (14.24)

We have Ka ∈ C0(U × U) similarly to Proposition 11.2.

Next, if k ∈ N0 and m < −n − k then we can differentiate k times in x under

the integral sign in (14.24). Each differentiation of the integrand either gives one

more power of ξ or differentiates a in x, so the integral still converges by (14.3).

Differentiation under the integral sign is justified similarly to the proof of (11.11).

This shows that

a ∈ Sm(U × Rn), m < −n− k =⇒ Ka ∈ Ck(U × U). (14.25)

2. We next show the identity

(yj − xj)Ka(x, y) = KDξj
a(x, y). (14.26)

For a ∈ S−∞(U × Rn) this can be seen from (14.20) by integrating by parts:

(yj − xj)Ka(x, y) = (2π)−n
∫
Rn

(yj − xj)e
i(x−y)·ξa(x, ξ) dξ

= −(2π)−n
∫
Rn

(
Dξje

i(x−y)·ξ)a(x, ξ) dξ
= (2π)−n

∫
Rn

ei(x−y)·ξDξja(x, ξ) dξ = KDξj
a(x, y).

For general a ∈ Sm(U × Rn), from the definition (7.15) of the Schwartz kernel of

an operator we see that (yj − xj)Ka(x, y) is the Schwartz kernel of the commutator

[Op(a), xj] where xj : C∞(U) → C∞(U) is a multiplication operator; indeed, for all

φ, ψ ∈ C∞
c (U) we have(

(yj − xj)Ka(x, y), ψ(x)⊗φ(y)
)
= (Op(a)xjφ, ψ)− (Op(a)φ, xjψ) = ([Op(a), xj]φ, ψ).

Next, for all φ ∈ C∞
c (U) and x ∈ U we compute

[Op(a), xj]φ(x) = −(2π)−n
∫
Rn

eix·ξa(x, ξ)
(
Dξj φ̂(ξ) + xjφ̂(ξ)

)
dξ

= −(2π)−n
∫
Rn

a(x, ξ)Dξj

(
eix·ξφ̂(ξ)) dξ

= (2π)−n
∫
Rn

eix·ξ(Dξja(x, ξ))φ̂(ξ) dξ = OpDξj
a φ(x).
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Here the first equality follows from the definition (14.17) and the formula (11.11). In

the third equality we integrate by parts, which is justified similarly to (11.10) since

φ̂(ξ) is rapidly decaying and a(x, ξ) is polynomially bounded in ξ. Thus the operator

[Op(a), xj] has Schwartz kernel KDξj
a(x, y), giving (14.26).

3. Iterating (14.26), we see that for any multiindex β

(y − x)βKa(x, y) = KDβ
ξ a
(x, y). (14.27)

Assume that a ∈ Sm(U ×Rn). Then Dβ
ξ a ∈ Sm−|β| by (14.7), we see from (14.25) that

|β| > m+ n+ k =⇒ (y − x)βKa(x, y) ∈ Ck(U × U).

In particular, if we choose N ∈ N0 such that 2N > m+n+ k then |y−x|2NKa(x, y) ∈
Ck(U × U), which implies that Ka ∈ Ck({(x, y) ∈ U × U | x ̸= y}). Since k can be

taken arbitrarily large, we see that Ka is smooth on U × U away from the diagonal,

giving (14.21).

4. We now show that (14.21) implies (14.22). (The statement (14.23) follows in a

similar way, since the Schwartz kernel of Op(a)t is equal to Ka(y, x) by (7.21).) Let

u ∈ E ′(U) and x0 ∈ U \ sing suppu. We need to show that

x0 /∈ sing supp(Op(a)u). (14.28)

Fix cutoff functions χ1, χ2 ∈ C∞
c (U) such that

χ1(x0) ̸= 0, supp(1− χ2) ∩ sing suppu = ∅, suppχ1 ∩ suppχ2 = ∅.

We write

χ1Op(a)u = χ1Op(a)χ2u+ χ1Op(a)(1− χ2)u.

The Schwartz kernel of the operator χ1Op(a)χ2 is given by (χ1(x) ⊗ χ2(y))Ka(x, y)

which lies in C∞
c (U × U) since supp(χ1(x) ⊗ χ2(y)) = suppχ1 × suppχ2 does not

intersect the diagonal of U , which by (14.21) contains sing suppKa. Thus by Proposi-

tion 7.10 we have

χ1Op(a)χ2u ∈ C∞
c (U). (14.29)

Next, we have (1− χ2)u ∈ C∞
c (U), so by Proposition 14.13 we get

χ1Op(a)(1− χ2)u ∈ C∞
c (U). (14.30)

Adding (14.29) and (14.30) we see that χ1Op(a)u ∈ C∞
c (U), which implies (14.28)

and finishes the proof. □
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14.2. Proof of Elliptic Regularity III

14.2.1. Elliptic parametrix. The proof of Theorem 14.2, given below, relies on

the existence of elliptic parametrices which is important in its own right:

Theorem 14.17 (Elliptic parametrix). Let U ⊂◦ Rn and assume that P ∈ Diffm(U)

is an elliptic differential operator. Then there exist sequentially continuous operators

Q, Q̃ : E ′(U) → D′(U)

such that

(1) Q, Q̃ are sequentially continuous C∞
c (U) → C∞(U);

(2) Q, Q̃ are pseudolocal in the sense that

sing supp(Qu), sing supp(Q̃u) ⊂ sing suppu for all u ∈ E ′(U); (14.31)

(3) the operators I−PQ and I−Q̃P are smoothing in the sense that their Schwartz

kernels are in C∞(U×U) and thus (by Proposition 7.10) they are sequentially

continuous

I − PQ, I − Q̃P : E ′(U) → C∞(U). (14.32)

Remark 14.18. We call Q, Q̃ right, respectively left, parametrices of P , where the

word ‘parametrix’ stands for an explicitly constructed operator which is a (one-sided)

inverse to P modulo smoothing operators. One could actually take Q = Q̃ but we do

not prove this here.

Before proceeding with the proof of Theorem 14.17, we present one more prop-

erty of pseudodifferential operators, computing the composition P Op(b) where P is a

differential operator:

Lemma 14.19. Let U ⊂◦ Rn, P ∈ Diffm(U), and b ∈ Sℓ(U × Rn). Denote by

p := σm(P ) ∈ Sm(U × Rn) the principal symbol of P . Then

P Op(b) = Op(P#b) (14.33)

for some symbol P#b ∈ Sm+ℓ(U × Rn), depending linearly on b, whose leading part is

just the product pb:

P#b− pb ∈ Sm+ℓ−1(U × Rn). (14.34)

Remark 14.20. In the special case when b(x, ξ) is a polynomial in ξ and thus

Op(b) is a differential operator, Lemma 14.19 follows from the Product Rule in Propo-

sition 13.10. See Exercise 14.5 below for an explicit example of the computation of

P#b.
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Proof. Similarly to Proposition 14.13, we can differentiate under the integral sign

in (14.17) to get for all φ ∈ C∞
c (U)

P Op(b)φ(x) = (2π)−n
∫
Rn

P (eix·ξb(x, ξ))φ̂(ξ) dξ. (14.35)

Now, similarly to (13.54) we see that, writing P =
∑

|α|≤m aα(x)D
α
x ,

P (eix·ξb(x, ξ)) = eix·ξ(P#b)(x, ξ)

where (P#b)(x, ξ) =
∑
|α|≤m

aα(x)(Dx + ξ)αb(x, ξ). (14.36)

Here for a multiindex α = (α1, . . . , αn), we define (Dx + ξ)α = (Dx1 + ξ1)
α1 . . . (Dxn +

ξn)
αn . By the Leibniz Rule we get the formula (where α! = α1! · · ·αn!)

P#b(x, ξ) =
∑
|α|≤m

aα(x)
∑

β+γ=α

α!

β!γ!
ξβDγ

xb(x, ξ). (14.37)

By (14.6) and (14.7) we have ξβDγ
xb ∈ Sℓ+|β|(U×Rn). It follows that P#b ∈ Sm+ℓ(U×

Rn). Moreover, the term in the sum (14.37) corresponding to β+γ = α is in Sm+ℓ−1(U×
Rn) unless |α| = m and β = α. The terms with |α| = m and β = α together give∑

|α|=m

aα(x)ξ
αb(x, ξ) = p(x, ξ)b(x, ξ)

which shows (14.34). Finally, (14.35) and (14.36) show that P Op(b)φ = Op(P#b)φ

for all φ ∈ C∞
c (U), which (since C∞

c (U) is dense in E ′(U)) implies that P Op(b) =

Op(P#b) as operators E ′(U) → D′(U). □

We are now ready for

Proof of Theorem 14.17. 1. We first construct the operator Q, taking it in

the form

Q := Op(q) for some q ∈ S−m(U × Rn).

Any such Q is sequentially continuous C∞
c (U) → C∞(U) (by Proposition 14.13) as well

as E ′(U) → D′(U) (by (14.18)), and it is pseudolocal (by Proposition 14.15). Thus it

remains to construct q such that I − PQ is a smoothing operator.

By Lemma 14.19 and since I = Op(1) by Proposition 14.11, we see that

I − PQ = Op(1− P#q).

By Proposition 14.14, I − PQ is a smoothing operator if we construct q such that

1− P#q ∈ S−∞(U × Rn). (14.38)

Henceforth in this proof we denote the spaces S•(U × Rn) by just S•.
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2. We construct a solution q to (14.38) by an iteration procedure. We start by finding

q0 ∈ S−m such that r1 := 1− P#q0 ∈ S−1. (14.39)

Denote by p := σm(P ) ∈ Sm the principal symbol of P . By (14.34) we see that

P#q0 − pq0 ∈ S−1. Therefore (14.39) is equivalent to

1− pq0 ∈ S−1. (14.40)

It is time for us to use the fact that P is an elliptic operator. The principal symbol

p(x, ξ) is a homogeneous polynomial of degree m in ξ, and since P is elliptic (recalling

Definition 14.1), we have p(x, ξ) ̸= 0 for all x ∈ U and ξ ̸= 0. Similarly to (12.51), we

see that for each K ⋐ U there exists cK > 0 such that

|p(x, ξ)| ≥ cK |ξ|m for all (x, ξ) ∈ K × Rn. (14.41)

Take any function

q0 ∈ C∞(U × Rn), q0(x, ξ) =
1

p(x, ξ)
for all x ∈ U, ξ ∈ Rn, |ξ| ≥ 1. (14.42)

For example, we can put q0(x, ξ) := (1−χ(ξ))/p(x, ξ) where χ ∈ C∞
c (B◦(0, 1)) satisfies

χ = 1 near 0. By Proposition 14.6 we see that (14.41) implies

q0 ∈ S−m. (14.43)

The symbol 1− pq0 ∈ C∞(U × Rn) is supported in {|ξ| ≤ 1} and thus lies in S−∞. It

follows that q0 solves (14.40) and thus (14.39).

3. We next add a correction term to q0 to improve the remainder in (14.39) from S−1

to S−2. More precisely, we construct

q1 ∈ S−m−1 such that r2 := 1− P#(q0 + q1) ∈ S−2. (14.44)

Let r1 ∈ S−1 be the remainder term from (14.39) and q0 be defined in (14.42). We put

q1 := q0r1, q1(x, ξ) =
r1(x, ξ)

p(x, ξ)
for x ∈ U, |ξ| ≥ 1. (14.45)

From (14.43) and (14.6) we have q1 ∈ S−m−1. Then by (14.34) we have P#q1 − pq1 ∈
S−2. Since pq1 − r1 ∈ S−∞ by (14.45), we get

1− P#(q0 + q1) = r1 − P#q1 ∈ S−2,

giving (14.44).

4. Iterating Step 3 of the proof, we construct symbols

qk ∈ S−m−k, k ∈ N0,

such that for all k ∈ N0

rk+1 := 1− P#
k∑
ℓ=0

qℓ ∈ S−k−1. (14.46)
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Indeed, q0 and q1 were already constructed in the previous two steps of the proof. If

k ≥ 2, then we let rk be defined by (14.46) for k − 1 and put

qk := q0rk ∈ S−m−k. (14.47)

Arguing as in Step 3 above, we see that (14.46) holds for k.

5. Having constructed all the symbols qk, we use Borel’s Theorem 14.9 to see that

there exists

q ∈ S−m, q ∼
∞∑
k=0

qk.

We claim that q solves (14.38). Indeed, for any N ∈ N we have q −
∑N−1

k=0 qk ∈
S−m−N . Thus by Lemma 14.19 we have P#(q−

∑N−1
k=0 qk) ∈ S−N . By (14.46) we have

1 − P#
∑N−1

k=0 qk ∈ S−N as well. It follows that 1 − P#q ∈ S−N . Since this is true

for all N , we get 1 − P#q ∈ S−∞ as needed. This finishes the construction of the

operator Q satisfying the conclusions in the theorem.

6. It remains to construct the operator Q̃. Let P t ∈ Diffm(U) be the transpose of P .

By (9.3) we get the following formula for the principal symbol of P t:

σm(P
t)(x, ξ) = σm(P )(x,−ξ) = (−1)mσm(P )(x, ξ). (14.48)

Since P is elliptic, we see that P t is also elliptic. Thus by Steps 1–5 above there exists

q̃ ∈ S−m(U × Rn) such that I − P tOp(q̃) is smoothing. Define Q̃ to be the transpose

of Op(q̃) : C∞
c (U) → C∞(U):

Q̃ := Op(q̃)t : E ′(U) → D′(U). (14.49)

Then Q̃ also maps C∞
c (U) → C∞(U) by (14.19), and it is pseudolocal by Proposi-

tion 14.15. We now have

I − Q̃P = (I − P tOp(q̃))t.

Since I−P tOp(q̃) is smoothing, so is I− Q̃P (see the beginning of Step 4 of the proof

of Proposition 14.15). □

Remark 14.21.X It is possible to get by without invoking Borel’s Theorem. Indeed,

for each ℓ ∈ N0 we can take q :=
∑N

k=0 qk in Theorem 14.17 for N large enough

depending on ℓ to get the operator I − P Op(q) to have Schwartz kernel in Cℓ. Since

ℓ can be taken arbitrarily large, this is enough to show elliptic regularity. However, it

is conceptually cleaner to construct a single q such that I − P Op(q) is smoothing.

Remark 14.22.X Theorem 14.17 features both a right parametrix Q and a left

parametrix Q̃. The reason is as follows: it is easier for us to construct a right

parametrix because of the formula for P Op(q) given in Lemma 14.19. An analog

of this lemma for Op(q)P is harder to prove, so we construct the left parametrix Q̃ as

the transpose of the right parametrix for the operator P t. However, the proof of elliptic

regularity in the next subsection needs a left parametrix. This is a technical point made
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necessary by our refusal to develop a proper calculus of pseudodifferential operators

(which would in particular show that the transpose Op(q)t has the form Op(qt) for

some symbol qt, modulo a smoothing operator).

14.2.2. Proof of Elliptic Regularity. We are now ready to give the proof of

Theorem 14.2. We have sing supp(Pu) ⊂ sing suppu for any differential operator P ,

so we need to show that sing suppu ⊂ sing supp(Pu).

1. We first note that it is enough to consider the setting of differential operators on

open subsets of Rn. Indeed, assume that M is a general manifold, P ∈ Diffm(M) is

an elliptic differential operator, u ∈ D′(M), and x0 ∈ M satisfies x0 /∈ sing supp(Pu).

Take a chart κ : U0 → V0 such that x0 ∈ U0, and let κ∗u ∈ D′(V0) be the pushforward

defined in (13.42). In terms of the operator κ∗P defined in (13.59), we have

(κ∗P )(κ∗u) = κ∗(Pu).

Since x0 /∈ sing supp(Pu), we have κ(x0) /∈ sing suppκ∗(Pu). The operator κ∗P ∈
Diffm(V0) is elliptic as follows from (13.60). Therefore, the version of Theorem 14.2

for V0 ⊂◦ Rn shows that κ(x0) /∈ sing supp(κ∗u), which implies that x0 /∈ sing suppu.

2. From now on we assume that U ⊂◦ Rn, P ∈ Diffm(U) is an elliptic differential

operator, u ∈ D′(U), and x0 ∈ U satisfies x0 /∈ sing supp(Pu). We need to show that

x0 /∈ sing suppu.

Fix a cutoff function

χ ∈ C∞
c (U), x0 /∈ supp(1− χ).

Let Q̃ be the left elliptic parametrix constructed in Theorem 14.17. Then by (14.32)

I = Q̃P + R̃ where R̃ : E ′(U) → C∞(U). (14.50)

Applying this to χu ∈ E ′(U), we get

χu = Q̃Pχu+ R̃χu. (14.51)

By the pseudolocality property (14.31) for Q̃, and since R̃χu ∈ C∞(U), we see that

sing supp(χu) ⊂ sing supp(Pχu).

Similarly to the proof of Theorem 9.14, since Pχu = χPu+[P, χ]u and x0 /∈ sing supp(Pu),

x0 /∈ supp[P, χ]u, we see that x0 /∈ sing supp(Pχu). Thus x0 /∈ sing supp(χu), which

implies that x0 /∈ sing suppu, finishing the proof.

14.2.3. The case of vector bundles. We finally give the analog of Theorem 14.2

for operators acting on vector bundles:

Theorem 14.23 (Elliptic Regularity III′). Assume that M is a manifold, E ,F are

(complex) vector bundles of the same dimension over M, and P ∈ Diffm(M;E → F )

is a differential operator (see §13.3.3). Assume that P is elliptic in the following sense:
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for each (x, ξ) ∈ T ∗M with ξ ̸= 0, the principal symbol σm(P)(x, ξ) : E (x) → F (x) is

a linear isomorphism. Then we have for all u ∈ D′(M;E )

sing suppu = sing supp(Pu). (14.52)

The proof of Theorem 14.23 is similar to that of Theorem 14.2, so we just give

a brief outline here. Similarly to Step 1 in §14.2.2, we can reduce to the case when

M = U ⊂◦ Rn and E = F = U ×Cℓ are trivial vector bundles. The operator P is then

given by a matrix of differential operators (see (13.66)):

P = (Pjj′ ∈ Diffm(U))ℓj,j′=1.

Following the proof of Theorem 14.17, we construct pseudolocal operators

Q, Q̃ : C∞
c (U ;Cℓ) → C∞(U ;Cℓ), E ′(U ;Cℓ) → D′(U ;Cℓ)

such that I −PQ, I − Q̃P are smoothing:

I −PQ, I − Q̃P : E ′(U ;Cℓ) → C∞(U ;Cℓ). (14.53)

The operator Q is a matrix of pseudodifferential operators. More precisely, we con-

struct a matrix of symbols

q = (qjj′)
ℓ
j,j′=1, qjj′ ∈ S−m(U × Rn),

and put Q = Op(q) where

Op(q) := (Op(qjj′))
ℓ
j,j′=1 : E ′(U ;Cℓ) → D′(U ;Cℓ).

The matrix-valued symbol q ∈ S−m(U × Rn; Hom(Cℓ → Cℓ)) is constructed as an

asymptotic sum:

q ∼
∞∑
k=0

qk, qk ∈ S−m−k(U × Rn; Hom(Cℓ → Cℓ))

where for each k ∈ N0 we have

I −POp

( k∑
s=0

qk

)
= Op(rk+1) for some rk+1 ∈ S−k−1. (14.54)

Let p := σm(P) ∈ Sm(U × Rn; Hom(Cℓ → Cℓ)) be the principal symbol of P. From

Lemma 14.19 we see that

POp(a) = Op(P#a) for any a ∈ Sr(U × Rn; Hom(Cℓ → Cℓ))

where P#a ∈ Sm+r(U × Rn; Hom(Cℓ → Cℓ)), P#a− pa ∈ Sm+r−1

and pa is defined using multiplication of ℓ× ℓ matrices.

Now, in Step 2 of the proof of Theorem 14.17 in place of (14.42) we should take

q0(x, ξ) ∈ C∞(U × Rn; Hom(Cℓ → Cℓ)) to be the (matrix) inverse of p:

q0(x, ξ) = p(x, ξ)−1 : Cℓ → Cℓ, x ∈ U, |ξ| ≥ 1.
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Since P is elliptic and thus p(x, ξ) : Cℓ → Cℓ is invertible for ξ ̸= 0, one can follow

the proof of Proposition 14.6 to see that q0 ∈ S−m, where (14.9) now looks more

complicated and features matrix multiplication. (Alternatively one can apply Cramer’s

Rule and use that the scalar symbol detp(x, ξ) is homogeneous of degree mℓ in ξ and

nonvanishing for ξ ̸= 0.)

Next, Steps 3–4 of the proof of Theorem 14.17 adapt to the setting of matrix-

valued symbols to construct the symbols q1,q2, . . . such that (14.54) holds. Here in

place of (14.47) we put qk := q0rk, defined by matrix multiplication. Step 5 of the

proof applies as well, showing that Q := Op(q) satisfies (14.53), and Step 6 works as

before to construct Q̃.

Finally, Step 2 of the proof of Theorem 14.2 in §14.2.2 applies (with Q̃ taking the

place of Q̃) to give the conclusion of Theorem 14.23.

14.3. Notes and exercises

The modern theory of pseudodifferential operators, in the form quite similar to what

we present in §14.1, goes back to the work of Kohn and Nirenberg [KN65]. See also

the slightly later paper of Hörmander [Hör65] which shows coordinate invariance of

pseudodifferential operators and has a form of elliptic regularity [Hör65, Theorem 4.7]

identical to Theorem 15.1 below.

The theory of pseudodifferential operators has at least two precursors: the the-

ory of singular integral operators, which are essentially pseudodifferential operators

whose symbols are homogeneous of degree 0 in ξ, and the theory of quantum/classical

correspondence in quantum mechanics developed in the early XXth century (in par-

ticular, by Hermann Weyl who introduced Weyl quantization, which is an alternative

to (14.17)). See the introduction to [KN65] and the notes to [Hör07, Chapter 18] for

more on the history of the subject.

We treat pseudodifferential operators here as a means to an end and prove the

bare minimum needed for the proof of Theorem 14.2. A proper treatment of pseu-

dodifferential operators (including the analogues of Propositions 13.10 and 13.14 and

the notion of pseudodifferential operator on a manifold) is a part of the field called

microlocal analysis (in MIT, it is taught in 18.157). A curious reader is welcome to

look at [Hör07, Section 18.1] or [GS94, Chapter 3] for a comprehensive introduction

to pseudodifferential calculus.

The presentation in this chapter was partially inspired by [Mel, Chapter 4].

Exercise 14.1. (2 = 1 + 0.5 + 0.5 pts) Let U ⊂◦ Rn and m ∈ R.
(a) Assume that a ∈ C∞(U × Rn). For t ≥ 1, define the dilated function

Λta ∈ C∞(U × Rn), Λta(x, ξ) = a(x, tξ).
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Show that a ∈ Sm(U × Rn) if and only if for all K̃ ⋐ U × (Rn \ {0}) and α, β there

exists a constant CαβK̃ such that

|∂αx∂
β
ξ (Λta)(x, ξ)| ≤ CαβK̃t

m for all (x, ξ) ∈ K̃, t ≥ 1. (14.55)

(This can be used to show that the class Sm is invariant under changes of variables

appearing in (13.56) and thus one can define invariantly the class Sm(T ∗M) where M
is a manifold. It can also be used to give an alternative proof of Proposition 14.6.)

(b) Assume that a ∈ C∞(U × Rn) has the following homogeneity property:

a(x, tξ) = tma(x, ξ) for all x ∈ U, |ξ| ≥ 1, t ≥ 1. (14.56)

Show that a ∈ Sm(U × Rn).

(c) Let ⟨ξ⟩ be defined in (12.3). Show that the function a(ξ) := ⟨ξ⟩m lies in Sm(Rn).

Exercise 14.2. (1 = 0.5+0.5 pt) In this exercise you show the following version of

Borel’s Theorem 14.9: for any sequence ak ∈ C, k = 0, 1, . . . , there exists f ∈ C∞(R)
such that f (k)(0)/k! = ak for all k.

(a) Fix χ ∈ C∞
c (R) such that χ = 1 near 0. Show that there exists a sequence εk > 0,

k = 0, 1, . . . , such that εk → 0 and

max
0≤j<k

sup
x

|∂jxgk(x)| ≤ 2−k where gk(x) := χ
( x
εk

)
akx

k.

(b) Show that the series

f(x) :=
∞∑
k=0

gk(x)

converges in Cj
c (R) for every j to a function f ∈ C∞

c (R) and f (j)(0)/j! = aj for all j.

Exercise 14.3. (1 pt) Assume that a(x, ξ) =
∑

|α|≤m aα(x)ξ
α is a polynomial of

degree m in ξ with coefficients aα(x) which are smooth functions on U ⊂◦ Rn. Show

that Op(a) is a differential operator:

Op(a)φ(x) =
∑
|α|≤m

aα(x)D
α
xφ(x).

Exercise 14.4. (1 pt) Show that if a ∈ Sm(U × Rn), then Op(a)t : E ′(U) →
D′(U) restricts to a sequentially continuous operator C∞

c (U) → C∞(U), giving (14.19).

(Hint: write Op(a)tφ = B̂φ where B is a certain integral operator. Then show that if

φ ∈ C∞
c (U) then Bφ(ξ) = O(⟨ξ⟩−∞), either by using Fourier transform or directly by

repeated integration by parts.)

Exercise 14.5. (1.5 = 0.5+1 pts) This exercise carries out the elliptic parametrix

construction (Theorem 14.17) for a one-dimensional Schrödinger operator on R

P := −∂2x + V (x) = D2
x + V (x) where V ∈ C∞(R). (14.57)
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(a) Let b ∈ Sm(R× R). Show that the symbol P#b from Lemma 14.19 is given by

P#b(x, ξ) = ξ2b(x, ξ) + 2ξDxb(x, ξ) + (D2
x + V (x))b(x, ξ).

(b) Find q ∈ S−2(R × R) such that 1 − P#q ∈ S−4(R × R). Please give an explicit

formula for q(x, ξ) for |ξ| ≥ 1 and do not use Borel’s Theorem.



CHAPTER 15

Elliptic operators and Sobolev spaces

In the previous chapter we established regularity for elliptic differential operators

P ∈ Diffm (Theorem 14.2): if u is a distribution and Pu ∈ C∞ then u ∈ C∞ as well.

We now turn our attention to elliptic operators acting on Sobolev spaces.

We first show an analog of Theorem 12.20: if Pu ∈ Hs
loc then u ∈ Hs+m

loc (Theo-

rem 15.1). We also prove the corresponding elliptic estimate (Proposition 15.6, The-

orem 15.7). We next show the Rellich–Kondrachov Theorem on compact embeddings

of Sobolev spaces (Theorems 15.8, 15.10).

We finally restrict to the case of compact manifolds and use the elliptic estimate

and the Rellich–Kondrachov Theorem to show that P : Hs+m → Hs is a Fredholm

operator (Theorem 15.13). The Fredholm mapping property means that P is invertible

modulo finite dimensional spaces; under additional assumptions one can show that P

is invertible, which means that the problem Pu = f is well-posed in Sobolev spaces.

One of the consequences of the Fredholm property is that one can study the index

of P , which can be computed by the Atiyah–Singer index theorem – we mention this

at the end of this chapter but do not state the theorem itself.

15.1. Elliptic regularity in Sobolev spaces

Let M be a manifold and P ∈ Diffm(M) be a differential operator (see §13.3.2).
Then P defines a sequentially continuous operator on the local/compactly supported

Sobolev spaces from §13.2.3:

P : Hs+m
loc (M) → Hs

loc(M), Hs+m
c (M) → Hs

c (M) for all s ∈ R. (15.1)

This follows from Definition 13.8 and the fact that for each chart κ : U → V on M,

the pushforward κ∗P is an order m differential operator on V and thus is sequentially

continuous Hs+m
loc (V ) → Hs

loc(V ) by Proposition 12.13.

In this section we assume that P is elliptic and establish various regularity results

on P in Sobolev spaces. The simplest one to state is

Theorem 15.1. Assume that P ∈ Diffm(M) is an elliptic differential operator.

Then we have for all u ∈ D′(M) and s ∈ R

Pu ∈ Hs
loc(M) =⇒ u ∈ Hs+m

loc (M). (15.2)

199
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As an example, if g is a Riemannian metric on M and ∆g is the corresponding

Laplace–Beltrami operator, then ∆gu ∈ L2
loc(M) implies that u ∈ H2

loc(M).

Remark 15.2. Theorem 15.1, as well as Theorems 15.7 and 15.13 below, ap-

plies also to elliptic differential operators acting on sections of vector bundles, defined

in §14.2.3. The proofs are exactly the same (generalizing the elliptic parametrix con-

struction to the setting of matrices of operators as explained in §14.2.3), so to keep

notation simple we state the results in the scalar setting.

15.1.1. Pseudodifferential operators acting on Sobolev spaces. To show

Theorem 15.1, we revisit the proof of Elliptic Regularity III in §14.2.2. We need to

show that the operators Q, Q̃ constructed in Theorem 14.17 have the right mapping

properties on Sobolev spaces; this is given by

Proposition 15.3 (Continuity of pseudodifferential operators on Sobolev spaces).

Assume that U ⊂◦ Rn, s,m ∈ R, and a ∈ Sm(U × Rn). Let Op(a),Op(a)t : E ′(U) →
D′(U) be defined in §14.1.3. Then Op(a) and its transpose restrict to sequentially

continuous operators

Op(a),Op(a)t : Hs+m
c (U) → Hs

loc(U). (15.3)

Remark 15.4. A special case of Proposition 15.3 is when m ∈ N0 and a(x, ξ) is a

polynomial in ξ, so that Op(a) is a differential operator – see Exercise 14.3 and (15.1).

In particular, for m = 0 we get continuity of multiplication by smooth functions on

Sobolev spaces, which was previously established as a corollary of Proposition 12.9.

Our proof of Proposition 15.3 follows the scheme of proof of Proposition 12.9 above.

We first establish the following analog of Young’s convolution inequality (Lemma 12.10):

Lemma 15.5 (Schur’s bound). Assume that K ∈ L∞(R2n) and define the integral

operator A : L1(Rn) → L∞(Rn) by

Af(ξ) =

∫
Rn

K(ξ, η)f(η) dη, f ∈ L1(Rn), ξ ∈ Rn. (15.4)

Assume that the following constants are finite:

C1 := sup
ξ∈Rn

∫
Rn

|K(ξ, η)| dη, C2 := sup
η∈Rn

∫
Rn

|K(ξ, η)| dξ. (15.5)

Then we have for any f ∈ L1(Rn) ∩ L2(Rn)

∥Af∥L2(Rn) ≤
√
C1C2 ∥f∥L2(Rn). (15.6)
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Proof. For any ξ ∈ Rn, we estimate

|Af(ξ)|2 =
∣∣∣∣ ∫

Rn

K(ξ, η)f(η) dη

∣∣∣∣2
≤

(∫
Rn

|K(ξ, η)| dη
)(∫

Rn

|K(ξ, η)| · |f(η)|2 dη
)

≤ C1

∫
Rn

|K(ξ, η)| · |f(η)|2 dη.

Here in the second line we write |K(ξ, η)f(η)| =
√

|K(ξ, η)| · (
√
|K(ξ, η)| · |f(η)|) and

use Cauchy–Schwarz. Integrating in ξ and using Fubini’s Theorem we get

∥Af∥2L2(Rn) ≤ C1

∫
Rn

(∫
Rn

|K(ξ, η)| dξ
)
|f(η)|2 dη

≤ C1C2∥f∥2L2(Rn)

which gives (15.6). □

We now give

Proof of Proposition 15.3. 1. Fix χ ∈ C∞
c (U). We will show the following

bound: there exists a constant C depending on χ, a, s such that

∥χOp(a)φ∥Hs(Rn) ≤ C∥φ∥Hs+m(Rn) for all φ ∈ C∞
c (U). (15.7)

Recalling the definition (12.5) of the norm on Hs(Rn), we have

∥φ∥Hs+m(Rn) = ∥v∥L2(Rn), ∥χOp(a)φ∥Hs(Rn) = ∥w∥L2(Rn)

where v(η) := ⟨η⟩s+mφ̂(η), w(ξ) = ⟨ξ⟩sF(χOp(a)φ)(ξ)
(15.8)

By (14.17) and Fubini’s Theorem we compute

w(ξ) =

∫
Rn

K(ξ, η)v(η) dη where

K(ξ, η) := (2π)−n
⟨ξ⟩s

⟨η⟩s+m

∫
U

eix·(η−ξ)a(x, η)χ(x) dx.

(15.9)

2. We write

K(ξ, η) = (2π)−n
⟨ξ⟩s

⟨η⟩s+m
F (ξ − η, η) where F (ζ, η) :=

∫
U

e−ix·ζa(x, η)χ(x) dx.

Integrating by parts in x, we see that for each multiindex α

ζαF (ζ, η) =

∫
U

e−ix·ζDα
x

(
a(x, η)χ(x)

)
dx.
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Since a ∈ Sm(U × Rn), from (14.3) we see that this is bounded by some constant

times ⟨η⟩m. Since α can be taken arbitrary, we see that for each N there exists a

constant CN such that

|F (ζ, η)| ≤ CN⟨ζ⟩−N⟨η⟩m for all ζ, η ∈ Rn.

Combining this with (12.26) we see that for each N there exists a constant C ′
N such

that

|K(ξ, η)| ≤ C ′
N⟨ξ − η⟩−N for all ξ, η ∈ Rn.

Taking N := n+ 1, we see that

sup
ξ∈Rn

∫
Rn

|K(ξ, η)| dη <∞, sup
η∈Rn

∫
Rn

|K(ξ, η)| dξ <∞.

By Lemma 15.5, and recalling (15.8) and (15.9), we get the bound (15.7).

3. Arguing similarly to the proof of Theorem 11.29, using the bound (15.7), density of

C∞
c (U) in Hs+m

c (U), and completeness of Hs(Rn), we see that for each u ∈ Hs+m
c (U)

and χ ∈ C∞
c (U), the distribution χOp(a)u lies in Hs

c (U) and we have the norm bound

∥χOp(a)u∥Hs(Rn) ≤ C∥u∥Hs+m(Rn) (15.10)

where the constant C depends on χ, a, s, but not on u. This shows that Op(a) :

Hs+m
c (U) → Hs

loc(U) is sequentially continuous. Finally, sequential continuity of

Op(a)t follows from here by duality, using Proposition 12.14; we leave the details

as an exercise below. □

15.1.2. Elliptic estimate. We now show regularity results for elliptic operators

on Sobolev spaces. We start with

Proof of Theorem 15.1. We follow the proof of Theorem 14.2 in §14.2.2. As

in Step 1 in that proof, we can reduce to the case of operators on U ⊂◦ Rn. Take

arbitrary ψ ∈ C∞
c (U) and fix χ ∈ C∞

c (U) such that supp(1− χ) ∩ suppψ = ∅. Let Q̃
be the left elliptic parametrix for P constructed in Theorem 14.17. Multiplying both

sides of (14.51) by ψ, we get

ψu = ψQ̃χPu+ ψ(Q̃[P, χ] + R̃χ)u. (15.11)

By (14.49), we have Q̃ = Op(q̃)t where q̃ ∈ S−m(U × Rn). Therefore, by Proposi-

tion 15.3 (with m replaced by −m) and since Pu ∈ Hs
loc(U) and thus χPu ∈ Hs

c (U)

we have

ψQ̃χPu ∈ Hs+m
c (U). (15.12)

Next, the operator ψ(Q̃[P, χ] + R̃χ) is smoothing:

ψ(Q̃[P, χ] + R̃χ) : D′(U) → C∞
c (U). (15.13)
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This uses pseudolocality of Q̃ (Proposition 14.15). Indeed, recall that suppψ∩supp(1−
χ) = ∅ and the coefficients of [P, χ] are supported on suppχ∩ supp(1− χ) ⋐ U . Take

χ′ ∈ C∞
c (U) such that

[P, χ] = χ′[P, χ], suppχ′ ∩ suppψ = ∅.

Then ψQ̃[P, χ] = ψQ̃χ′[P, χ], but ψQ̃χ′ is smoothing similarly to (14.29). Thus

ψQ̃[P, χ] is smoothing. We also know that R̃ is smoothing. Together these give (15.13).

Putting together (15.12) and (15.13) and using that C∞
c (U) ⊂ Hs+m

c (U), we see

that ψu ∈ Hs+m
c (U). Since this holds for any ψ ∈ C∞

c (U), we get u ∈ Hs+m
loc (U),

finishing the proof. □

From the proof above we get the following quantitative version of Theorem 15.1:

Proposition 15.6 (Elliptic estimate on open subsets of Rn). Assume that U ⊂◦ Rn

and P ∈ Diffm(U) is an elliptic differential operator. Take any ψ, ψ̃ ∈ C∞
c (U) such

that supp(1− ψ̃)∩ suppψ = ∅. Then for each s,N there exists a constant C such that

for all u ∈ Hs+m
loc (U) we have

∥ψu∥Hs+m(Rn) ≤ C∥ψ̃Pu∥Hs(Rn) + C∥ψ̃u∥H−N (Rn). (15.14)

Proof. Fix a cutoff

χ ∈ C∞
c (U), supp(1− ψ̃) ∩ suppχ = supp(1− χ) ∩ suppψ = ∅.

We write ψu in the form (15.11); since ψ̃ = 1 near suppχ, we have

ψu = Qψ̃Pu+Rψ̃u, Q := ψQ̃χ, R := ψ(Q̃[P, χ] + R̃χ)

Since Q̃ = Op(q̃)t for some q̃ ∈ S−m(U × Rn), by Exercise 15.1 below the operator Q
is bounded Hs(Rn) → Hs+m(Rn).

As in (15.13), the operator R is smoothing, more precisely its Schwartz kernel

lies in C∞
c (U × U). Thus this operator is bounded H−N(Rn) → Hs+m(Rn). Indeed, if

∥vk∥H−N (Rn) → 0, then vk → 0 in D′(Rn). SinceR is smoothing and its Schwartz kernel

is compactly supported, we have Rvk → 0 in C∞
c (Rn), which implies that Rvk → 0 in

Hs+m(Rn). This implies the needed boundedness statement on R.

We now have

∥ψu∥Hs+m(Rn) ≤ ∥Q∥Hs(Rn)→Hs+m(Rn)∥ψ̃Pu∥Hs(Rn)+∥R∥H−N (Rn)→Hs+m(Rn)∥ψ̃u∥H−N (Rn)

giving the estimate (15.14). □

From Proposition 15.6 we get the following statement, which is used crucially in this

and the next chapter to establish mapping and spectral properties of elliptic operators

on compact manifolds. We will use this estimate as a black box, so the reader does

not need to follow all the details of its proof to understand how it is applied later.
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Theorem 15.7 (Elliptic estimate on compact manifolds). Assume that M is a

compact manifold, P ∈ Diffm(M) is an elliptic differential operator, and fix s,N ∈ R.
Then there exists a constant C such that for all u ∈ Hs+m(M) we have

∥u∥Hs+m(M) ≤ C∥Pu∥Hs(M) + C∥u∥H−N (M). (15.15)

Here the norm on Sobolev spaces is defined in Exercise 13.4.

Proof.S Recalling Exercise 13.4, take a finite collection of charts κℓ : Uℓ → Vℓ,

ℓ = 1, . . . , N and a partition of unity

1 =
N∑
ℓ=1

ψℓ, ψℓ ∈ C∞
c (Uℓ).

Choose cutoffs

ψ̃ℓ ∈ C∞
c (Uℓ), supp(1− ψ̃ℓ) ∩ suppψℓ = ∅.

Applying Proposition 15.6 to the elliptic operator κℓ∗P ∈ Diffm(Vℓ) and the distribu-

tion κℓ∗u with the cutoffs κℓ∗ψℓ, κℓ∗ψ̃ℓ we get for each ℓ and some constant C (whose

value will change from place to place in the argument)

∥κℓ∗(ψℓu)∥Hs+m(Rn) ≤ C∥κℓ∗(ψ̃ℓPu)∥Hs(Rn) + C∥κℓ∗(ψ̃ℓu)∥H−N (Rn). (15.16)

We have

∥κℓ∗(ψ̃ℓv)∥Hs(Rn) ≤ C∥v∥Hs(M) for all v ∈ Hs(M). (15.17)

Indeed, if ∥vk∥Hs(M) → 0 then (by Exercise 13.4) the sequence vk converges to 0

in Hs
loc(M), thus (recalling the discussion following Definition 13.8) we have κℓ∗vk → 0

in Hs
loc(Vℓ) and thus ∥κℓ∗(ψ̃ℓv)∥Hs(Rn) → 0. This shows (15.17). The same estimate

holds for the space H−N , so (15.16) implies that

∥κℓ∗(ψℓu)∥Hs+m(Rn) ≤ C∥Pu∥Hs(M) + C∥u∥H−N (M).

Adding these estimates for all ℓ and recalling the definition (13.74) of the norm

∥u∥Hs+m(M), we get (15.15). □

15.2. Compact embedding in Sobolev spaces

We are almost ready to combine Theorem 15.7 with an argument from functional

analysis to get the Fredholm mapping property on Sobolev spaces for elliptic differ-

ential operators on compact manifolds. The remaining ingredient is the fact that for

a compact manifold M, the space Hs(M) is precompact inside H t(M) when s > t,

and this is what we establish in this section. We start with the case of Sobolev spaces

on Rn:
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Theorem 15.8 (Rellich–Kondrachov Theorem on Rn). Assume that s, t ∈ R, s > t,

uk ∈ Hs
c (Rn) is a sequence, and there exist constants C0, R such that for all k

suppuk ⊂ B(0, R), (15.18)

∥uk∥Hs(Rn) ≤ C0. (15.19)

Then there exists a subsequence ukℓ which converges in H t(Rn).

Remark 15.9. We cannot completely get rid of (15.18): if χ ∈ C∞
c (R) then the

sequence uk(x) = χ(x − k) satisfies (15.19) for any s but it does not have a limit

in L2(R). We cannot get rid of (15.19) either: the sequence uk(x) =
√
kχ(kx) sat-

isfies (15.18) and is bounded in L2(R) but does not converge in this space. However,

with more work one can replace conditions (15.18) and (15.19) by the weaker assump-

tion that ∥⟨x⟩δuk(x)∥Hs(Rn) ≤ C0 for some δ > 0. One can summarize this statement

informally as

improved regularity + improved decay at infinity =⇒ precompactness.

Proof. 1. We carry out an Arzelà–Ascoli type argument on the side of the Fourier

transform. Recall from Proposition 11.26 that, since uk ∈ E ′(Rn), we have ûk ∈
C∞(Rn).

We first show that ûk is locally bounded and Lipschitz continuous uniformly in k,

namely for each T > 0 there exists a constant CT such that for all k

|ûk(ξ)| ≤ CT for all ξ ∈ B(0, T ), (15.20)

|ûk(ξ)− ûk(η)| ≤ CT |ξ − η| for all ξ, η ∈ B(0, T ). (15.21)

Fix N ∈ N0 such that s+N ≥ 0 and take a cutoff function χ ∈ C∞
c (Rn) which is equal

to 1 near B(0, R). For each multiindex α and ξ ∈ Rn we compute (with the constant

Cα depending on α,C0, χ but not on k)

|∂αξ ûk(ξ)| = |(uk(x), xαχ(x)e−ix·ξ)|
≤ Cα∥xαχ(x)e−ix·ξ∥HN (Rn)

≤ Cα∥xαχ(x)e−ix·ξ∥CN (Rn)

≤ Cα⟨ξ⟩N .

(15.22)

Here in the first line we use Proposition 11.26 and the support condition (15.18). In

the second line we use Proposition 12.7 and the bound (15.19). In the third line we

use Proposition 12.1 and the fact that χ ∈ C∞
c (Rn).

Taking (15.22) with α = ∅ we get (15.20). Taking (15.22) with |α| = 1 we estimate

|dûk(ξ)| which gives the bound (15.21).
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2.R We now use (15.20)–(15.21) and the Arzelà–Ascoli theorem to see that there exists

a subsequence ukℓ such that for some v ∈ C0(Rn) we have as ℓ→ ∞

ûkℓ(ξ) → v(ξ) locally uniformly in ξ ∈ Rn. (15.23)

Here ‘locally uniformly’ means ‘uniformly on each compact subset of Rn’. Since the

version of the Arzelà–Ascoli theorem that we use is not the one most commonly stated

in a real analysis course, we briefly review how the proof goes.

Let ξm ∈ Rn be a sequence of points which is dense in Rn (e.g. one can take

all the points with rational coordinates, which form a countable set). By (15.20) we

know that for each fixed m, the sequence ûk(ξm) is bounded. Then there exists a

sequence kℓ,1 → ∞ such that ûkℓ,1(ξ1) → v1 for some v1 ∈ C, and we can iteratively

construct sequences kℓ,m → ∞ for m ≥ 2 such that kℓ,m is a subsequence of kℓ,m−1 and

ûkℓ,m(ξm) → vm for some vm ∈ C. Take the diagonal sequence kℓ := kℓ,ℓ, then

ûkℓ(ξm) → vm as ℓ→ ∞ for all m.

We next claim that ûkℓ(ξ) is a Cauchy sequence locally uniformly in ξ, that is for each

T > 0 we have

sup
ℓ,ℓ′≥r

sup
ξ∈B(0,T )

|ûkℓ(ξ)− ûkℓ′ (ξ)| → 0 as r → ∞. (15.24)

This can be shown using the fact that for each ε > 0 there exists mε so that each point

ξ ∈ B(0, T ) is ε-close to one of the points ξm with m ≤ mε. Now |ûkℓ(ξm)− ûkℓ′ (ξm)|
for m ≤ mε is estimated using (15.23) and |ûkℓ(ξ) − ûkℓ(ξm)| (as well as the similar

quantity for ℓ′) is estimated by the Lipschitz bound (15.21).

Finally, (15.24) implies the local convergence statement (15.23) (since the space of

continuous functions on B(0, T ) with the uniform norm is complete).

3. By Fatou’s Lemma and the Sobolev norm bound (15.19) we have∫
Rn

⟨ξ⟩2s|v(ξ)|2 dξ ≤ lim inf
ℓ→∞

∫
Rn

⟨ξ⟩2s|ûkℓ(ξ)|2 dξ <∞.

Thus ⟨ξ⟩sv(ξ) ∈ L2(Rn), so there exists

u ∈ Hs(Rn), û = v.

It remains to show that for t < s we have the convergence

∥ukℓ − u∥Ht(Rn) → 0,

which is equivalent to ∫
Rn

⟨ξ⟩2t|ûkℓ(ξ)− v(ξ)|2 dξ → 0. (15.25)
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Take arbitrary T > 1. We have∫
Rn\B(0,T )

⟨ξ⟩2t|ûkℓ(ξ)− v(ξ)|2 dξ ≤ 2T 2(t−s)
∫
Rn

⟨ξ⟩2s
(
|ûkℓ(ξ)|2 + |v(ξ)|2

)
dξ

≤ CT 2(t−s)
(15.26)

where the constant C is independent of ℓ and T . Here in the second line we use the

uniform Sobolev bound (15.19) and the fact that ⟨ξ⟩sv(ξ) ∈ L2(Rn). It follows that∫
Rn

⟨ξ⟩2t|ûkℓ(ξ)− v(ξ)|2 dξ ≤ CT 2(t−s) +

∫
B(0,T )

⟨ξ⟩2t|ûkℓ(ξ)− v(ξ)|2 dξ.

The second term on the right-hand side converges to 0 as ℓ→ ∞ by (15.23). It follows

that

lim sup
ℓ→∞

∫
Rn

⟨ξ⟩2t|ûkℓ(ξ)− v(ξ)|2 dξ ≤ CT 2(t−s).

Since this is true for all T , and t < s, we get the convergence statement (15.25),

finishing the proof. □

We now give the version on compact manifolds:

Theorem 15.10 (Rellich–Kondrachov Theorem on compact manifolds). Assume

that M is a compact manifold and s > t. Then Hs(M) embeds compactly into H t(M),

in the following sense: if uk ∈ Hs(M) is a sequence such that ∥uk∥Hs(M) is bounded,

then there exists a subsequence ukℓ which converges in H t(M).

Proof.S Recalling Exercise 13.4, take a finite collection of charts κm : Um → Vm,

m = 1, . . . , N and a partition of unity

1 =
N∑
m=1

χm, χm ∈ C∞
c (Um).

For each m, the sequence κm∗(χmuk) ∈ Hs
c (Vm) is supported in κm(suppχm) ⋐ Vm

and is uniformly bounded in Hs norm. Applying Theorem 15.8 N times, we see that

there exists a subsequence ukℓ such that for each m, we have as ℓ→ ∞

κm∗(χmukℓ) → wm in H t
c(Vm) for some wm ∈ H t

c(Vm).

By Exercise 13.3, we see that χmukℓ → κ∗
mwm in H t

loc(M), where κ∗
mwm ∈ E ′(Um) is

extended by 0 to an element of H t(M). Summing over m and using Exercise 13.4, we

see that

∥ukℓ − u∥Ht(M) → 0 where u :=
N∑
m=1

κ∗
mwm

finishing the proof. □
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15.3. Fredholm theory

15.3.1. Fredholm property of elliptic operators on compact manifolds.

We now combine the elliptic estimate (Theorem 15.7) with Rellich–Kondrachov The-

orem 15.10 to show that elliptic differential operators on compact manifolds have the

Fredholm property on Sobolev spaces.

We first give the definition of a Fredholm operator:

Definition 15.11. Let H1,H2 be Banach spaces and P : H1 → H2 be a bounded

linear operator. We say that P is a Fredholm operator if all of the following conditions

are satisfied:

(1) the kernel kerP := {u ∈ H1 | Pu = 0} is finite dimensional;

(2) the range ranP := {Pu | u ∈ H1} is a closed subspace of H2;

(3) the range ranP has finite codimension in the sense that the quotient H2/ ranP

is a finite dimensional space.

If P is a Fredholm operator, then we define its index as the integer

ind(P ) := dim(kerP )− dim(H2/ ranP ). (15.27)

Remark 15.12.X The property (2) above is actually unnecessary: one can show

that (1) + (3) ⇒ (2). However, a typical proof of the property (3), such as the one for

elliptic operators given below, establishes property (2) along the way.

Now, let M be a compact manifold and P ∈ Diffm(M) be a differential operator.

By (15.1), the operator P : D′(M) → D′(M) restricts to bounded operators

Ps : H
s+m(M) → Hs(M), s ∈ R. (15.28)

The transpose P t is a differential operator in Diffm(M; |Ω| → |Ω|), where |Ω| is the

bundle of densities over M (see (13.73)), and it restricts to bounded operators

P t
s : H

s+m(M; |Ω|) → Hs(M; |Ω|), s ∈ R. (15.29)

We have the identity (which is immediate from the definition of P t for u, v ∈ C∞ and

extends to general u, v by a density argument, with the pairing defined similarly to

Proposition 12.14)

(Psu, v) = (u, P t
−s−mv) for all u ∈ Hs+m(M), v ∈ H−s(M; |Ω|). (15.30)

Note that we can fix a smooth positive density ω0 on M which identifies sections of

|Ω| with functions, and consider P t
s as a scalar operator. In this case (15.30) is valid

for all u ∈ Hs+m(M), v ∈ H−s(M) and the pairing (•, •) extends to Sobolev spaces

the integral (f, g) :=
∫
M fg ω0.
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If the differential operator P is elliptic, then by Theorem 14.2 the kernels of the

operators Ps, P
t
s are independent of s:

kerPs = kerP := {u ∈ C∞(M) : Pu = 0},
kerP t

s = kerP t := {v ∈ C∞(M; |Ω|) : P tv = 0}.
(15.31)

We are now ready to present the main result of this section:

Theorem 15.13 (Fredholm property of elliptic operators). Let M be a compact

manifold and P ∈ Diffm(M) be an elliptic differential operator. Then for each s ∈ R,
the operator Ps defined in (15.28) has the Fredholm property. Moreover, the range of

Ps is characterized as follows:

ranPs = {w ∈ Hs(M) : for all v ∈ kerP t we have (w, v) = 0}. (15.32)

Remark 15.14. A standard application of (15.32) is the following existence theo-

rem: if g is a Riemannian metric on a compact connected manifold M and ∆g is the

corresponding Laplace–Beltrami operator (see (13.63)) then for each w ∈ Hs(M) we

have

w = ∆gu for some u ∈ Hs+2(M) ⇐⇒
∫
M
w d volg = 0. (15.33)

We leave the proof of (15.33) as an exercise below.

Remark 15.15.X Even though the space kerP consists of smooth functions, to

show that this space is finite dimensional one needs to use spaces with fixed regularity

(such as Sobolev spaces) and compact embedding (such as Theorem 15.10).

Proof. We follow a classical argument from functional analysis, using Theo-

rems 15.7 and 15.10 as black boxes.

1. We first show that kerPs = kerP is finite dimensional. We argue by contradiction.

Assume that kerP is infinite dimensional. Fix N > −s−m. Using the Gram–Schmidt

process, we construct a countable orthonormal system

uk ∈ kerP, ⟨uk, uk′⟩H−N (M) =

{
1, k = k′,

0, otherwise.
(15.34)

By Theorem 15.7 there exists a constant C such that for all k

∥uk∥Hs+m(M) ≤ C∥uk∥H−N (M) = C.

Using the compact embedding Hs+m(M) ⊂ H−N(M) given by Theorem 15.10, we

see that uk has a subsequence which converges in H−N(M). However, this contra-

dicts (15.34) since ∥uk − uk′∥H−N (M) =
√
2 and thus no subsequence of uk can be a

Cauchy sequence in H−N(M). This shows that kerP is finite dimensional.
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2. We next show that ranPs = {Pu | u ∈ Hs+m(M)} is a closed subspace of Hs(M).

Assume that w lies in the closure of ranPs in H
s(M). Then there exists a sequence

uk ∈ Hs+m(M), ∥Puk − w∥Hs(M) → 0. (15.35)

We would like to find a subsequence of uk which converges to some u in Hs+m(M),

which would show that w = Pu lies in ranPs. This proceeds in three steps:

(a) We can add an element of kerP to any uk without changing (15.35). Thus we

replace uk by its projection to the orthogonal complement of kerP inHs+m(M),

so that

⟨uk, f⟩Hs+m(M) = 0 for all f ∈ kerP. (15.36)

(b) We claim that the sequence uk is bounded in Hs+m(M). We argue by con-

tradiction. If uk is not bounded, then we can pass to a subsequence to make

∥uk∥Hs+m(M) → ∞. Put

ũk :=
uk

∥uk∥Hs+m(M)

, ∥ũk∥Hs+m(M) = 1. (15.37)

By (15.35) we have

∥Pũk∥Hs(M) → 0. (15.38)

Using the compact embeddingHs+m(M) ⊂ H−N(M) given by Theorem 15.10,

we can pass to a further subsequence to make ũk converge in H−N(M). By

Theorem 15.7 applied to ũk − ũk′ , there exists a constant C such that for

all k, k′

∥ũk − ũk′∥Hs+m(M) ≤ C∥Pũk − Pũk′∥Hs(M) + C∥ũk − ũk′∥H−N (M). (15.39)

Since Pũk is a Cauchy sequence in Hs(M) by (15.38) and ũk is a Cauchy

sequence in H−N(M), we see that the right-hand side of (15.39) converges

to 0 as k, k′ → ∞. Thus ũk is a Cauchy sequence in Hs+m(M). Since

Hs+m(M) is complete, we have

∥ũk − ũ∥Hs+m(M) → 0 for some ũ ∈ Hs+m(M). (15.40)

Passing to the limit in (15.36), (15.37), and (15.38), we see that

⟨ũ, f⟩Hs+m(M) = 0 for all f ∈ kerP, ∥ũ∥Hs+m(M) = 1, P ũ = 0.

Thus ũ ∈ kerP . Taking f := ũ above, we get a contradiction.

(c) Now that the sequence uk is bounded in Hs+m(M), we use the compact em-

bedding Hs+m(M) ⊂ H−N(M) given by Theorem 15.10 to pass to a subse-

quence and make uk converge in H−N(M). Since Puk is a Cauchy sequence

in Hs(M) by (15.35), we argue in the same way as for the proof of (15.40) to

see that

∥uk − u∥Hs+m(M) → 0 for some u ∈ Hs+m(M).
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Passing to the limit in (15.35), we see that w = Pu and thus w lies in ranPs.

This shows that ranPs is a closed subspace of Hs(M).

3. We now show the characterization (15.32) of the range ranPs. First of all, if

w ∈ ranPs and v ∈ kerP t then we write w = Pu for some u ∈ Hs+m(M) and

compute by (15.30)

(w, v) = (Pu, v) = (u, P tv) = 0.

It remains to show that if w ∈ Hs(M) and (w, v) = 0 for all v ∈ kerP t, then

w ∈ ranPs. We argue by contradiction. Assume that w /∈ ranPs. Since ranPs is a

closed subspace of Hs(M), there exists a bounded linear functional

F : Hs(M) → C, F |ranPs = 0, F (w) ̸= 0.

For example, one can use the Orthogonal Complement Theorem 1.3 to find nonzero

w̃ ∈ Hs(M) such that w − w̃ ∈ ranPs and w̃ is orthogonal to ranPs (with respect to

the Hs inner product), and put F (h) := ⟨h, w̃⟩Hs(M) for all h ∈ Hs(M).

Similarly to Proposition 12.14, there exists v ∈ H−s(M; |Ω|) such that the func-

tional F has the form

F (h) = (h, v) for all h ∈ Hs(M).

Since F |ranPs = 0, we have for all u ∈ Hs+m(M)

0 = (Pu, v) = (u, P tv)

where we used (15.30). In particular, this is true for all u ∈ C∞(M), which (similarly

to Theorem 1.16) shows that P tv = 0. Thus v ∈ kerP t. But we also have (w, v) =

F (w) ̸= 0, which gives a contradiction.

(As a side remark, we could have avoided Proposition 12.14 and (15.30) by restrict-

ing F to C∞(M; |Ω|) and constructing v as a distribution in D′(M). We did not do

this to produce a more robust proof which applies to other, potentially non-elliptic,

situations.)

4.S Denote by (kerP t)′ the space of linear functionals on kerP t. Note that kerP t is

finite dimensional by Step 1 of this proof applied to the elliptic operator P t. The map

T : Hs(M) → (kerP t)′, T (w)(v) = (w, v)

is surjective. Indeed, if v ∈ kerP t ⊂ C∞(M; |Ω|) is such that T (w)(v) = 0 for all

w ∈ Hs(M), then in particular (w, v) = 0 for all w ∈ C∞(M) which (similarly to

Theorem 1.16) gives v = 0. Since any proper subspace of (kerP t)′ annihilates some

nonzero v ∈ kerP t, we see that the range of T is the entire (kerP t)′.

By (15.32), the kernel of T is equal to ranPs. Thus T induces an isomorphism

Hs(M)/ ranPs ≃ (kerP t)′. (15.41)
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This shows that ranPs has finite codimension and completes the proof of the Fredholm

property. □

15.3.2. General Fredholm theoryR. We now give a brief review of general

properties of Fredholm operators. We refer the reader to [Hör07, §19.1] and [Lax02,

§21.1,24.1–24.2] for the proofs.

We first define the notion of a compact operator:

Definition 15.16. Let H1,H2 be Banach spaces and A : H1 → H2 be a bounded

linear operator. We say that A is a compact operator if the image of the ball B(0, 1)

in H1 under A is precompact in H2, that is for any bounded sequence uk ∈ H1 the

sequence Auk ∈ H2 has a convergent subsequence.

Some standard properties of compact operators are collected in

Proposition 15.17. The set of compact operators is a closed ideal in the space of

bounded operators, namely:

(1) linear combinations of compact operators are compact operators;

(2) if H1
A−→ H2

B−→ H3 are bounded operators and one of the operators A,B is

compact, then the composition BA : H1 → H3 is a compact operator;

(3) if Ak : H1 → H2 is a sequence of compact operators and A : H1 → H2 is a

bounded operator such that ∥Ak−A∥H1→H2 → 0, then A is a compact operator.

We next give standard properties of Fredholm operators and their index.

Proposition 15.18. 1. The set of Fredholm operators is open in the space of

bounded operators and the index is a locally constant function on this set, namely for

each Fredholm operator P : H1 → H2 there exists ε > 0 such that for any bounded

operator Q : H1 → H2 with ∥P − Q∥H1→H2 < ε, the operator Q has the Fredholm

property and indP = indQ.

2. Fredholm operators are stable under compact perturbations: if P : H1 → H2 is a

Fredholm operator and W : H1 → H2 is a compact operator, then P +W is a Fredholm

operator and ind(P +W ) = indP .

3. If H1
P−→ H2

Q−→ H3 are two Fredholm operators, then their composition QP is

also a Fredholm operator and ind(QP ) = indP + indQ.

15.3.3. A touch of index theory. We now very briefly discuss index theory of

elliptic operators. Let M be a compact manifold, E ,F be two vector bundles over M
and P ∈ Diffm(M;E → F ) be an elliptic differential operator (see §14.2.3). We use

operators on vector bundles since the index of a scalar differential operator is always

equal to 0, see Exercise 15.5 below.
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The operator P acts on Sobolev spaces similarly to (15.1), and the version of

Theorem 15.13 for vector bundles shows that the index of P on each of these spaces is

given by (recalling (15.41))

indP = dimkerP− dimkerPt. (15.42)

We give here some basic properties of this index. We start with the statement that

the index only depends on the principal symbol:

Proposition 15.19. Assume that P,Q ∈ Diffm(M;E → F ) and σm(P) =

σm(Q). Then indP = indQ.

Proof. Take any s ∈ R. The operator P − Q lies in Diffm−1(M;E → F ) and

thus is bounded Hs+m(M;E ) → Hs+1(M;F ). Now, the inclusion Hs+1(M;F ) →
Hs(M;F ) is a compact operator by Theorem 15.10, thus by Proposition 15.17(2) we

see that Ps − Qs : H
s+m(M;E ) → Hs(M;F ) is a compact operator. By part 2 of

Proposition 15.18, we have indPs = indQs. □

Given Proposition 15.19, we can define the index associated to a symbol: for a

degree m homogeneous polynomial p ∈ C∞(T ∗M; π∗Hom(E → F )) (see (13.72))

which is elliptic in the sense of Theorem 14.23, define

indp ∈ Z

to be the index of any P ∈ C∞(T ∗M;E → F ) such that σm(P) = p.

We remark that indp is homotopy invariant: if pr, 0 ≤ r ≤ 1 is a continuous family

of elliptic symbols, then indpr is independent of r. Indeed, we can choose the family

of corresponding differential operators P(r), σm(P(r)) = pr, depending continuously

on r. Then the function r 7→ indP(r) = indpr is locally constant, and thus constant.

Indeed, fix r ∈ [0, 1] and take some s ∈ R. We have

∥P(r′) −P(r)∥Hs+m(M;E )→Hs(M;F ) → 0 as r′ → r.

Therefore, by part 1 of Proposition 15.18 there exists ε > 0 such that for |r′ − r| < ε

we have indP(r′) = indP(r).

There is a general formula for the index of any elliptic differential operator, known

as the Atiyah–Singer index theorem. It states that the index indp is the integral of

the product of the Chern character of p (which is a cohomology class with compact

support on T ∗M) with a certain cohomology class on M pulled back to T ∗M . It

takes considerable effort to define the two objects above, so we refrain from stating the

index theorem here. We instead refer the reader to [Hör07, Chapter 19] and [Tay11b,

Theorem 10.5.1] for details. See also [Mel93] whose focus is the case of manifolds with

boundary.
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One application of the Atiyah–Singer index theorem is to the Gauss–Bonnet the-

orem for Riemannian surfaces, where the Euler characteristic of the surface appears

as the index of the even-to-odd Dirac operator (d + d∗)even : C∞(M; Ω0 ⊕ Ω2) →
C∞(M; Ω1), see Proposition 17.20 below for a bit more information and [Tay11b,

§10.7] for a detailed presentation (which includes the case of general even dimensions,

known as the Chern–Gauss–Bonnet theorem). Another application is the Riemann–

Roch theorem on Riemann surfaces, see [Tay11b, §10.9].

15.4. Notes and exercises

Our presentation partially follows [Hör07, §19.1–19.2] and [Mel, Chapter 6].

The Fredholm property of Theorem 15.13 holds for elliptic differential operators

on compact manifolds with boundary, if we incorporate the boundary conditions into

the operator and assume that they satisfy what is known as the Lopatinski–Shapiro

condition. See [Hör07, §20.1] for a general treatment. An important special case is

that of the Dirichlet boundary value problem for the Laplace–Beltrami operator: if

(M, g) is a compact connected Riemannian manifold with nonempty boundary ∂M,

then the operator

u ∈ H
2
(M) 7→ (∆gu, u|∂M) ∈ L2(M)⊕H

3
2 (M)

is invertible. Here H
2
(M) is a Sobolev space on M as a manifold with boundary, de-

fined by requiring that ∂αu ∈ L2(M) for |α| ≤ 2. The boundary restriction operator

u 7→ u|∂M can be defined following Exercise 12.9. One does not need the machin-

ery of general elliptic differential operators to solve the Dirichlet problem, there is a

much simpler approach using the Dirichlet principle – see for example [Tay11b, §5.1],
[Eva10, Chapter 6], or [Hör07, pp.28–29].

Exercise 15.1. (0.5 pt) Assume that U ⊂◦ Rn, m, s ∈ R, a ∈ Sm(U × Rn), and

χ, ψ ∈ C∞
c (U). Show that ψOp(a)tχ is a bounded operator Hs+m(Rn) → Hs(Rn), and

thus Op(a)t is a sequentially continuous operator Hs+m
c (U) → Hs

loc(U). (Hint: use

the mapping property of Op(a) proved in Proposition 15.3 and the duality statement,

Proposition 12.7.)

Exercise 15.2. (1 pt) Show that the following elliptic estimate for the Laplacian

∆ on R2,

∥ψu∥H2(R2) ≤ C∥χ∆u∥L2(R2) + C∥χu∥L2(R2)

does not hold when ψ = χ. (You may choose χ ∈ C∞
c (R2) as you want. Hint: try to

construct a sequence of solutions to ∆u = 0 of the form f(x1)g(x2).)

Exercise 15.3. (1.5 pts) Let a ∈ R. Fix χ ∈ C∞
c (R) such that

∫
R χ(x) dx = 1

and put uk(x) = kaχ(kx) for k ∈ N. For which s ∈ R is the sequence uk bounded

in Hs(R)? For which s does it have a limit in Hs(R), and what is this limit?
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Exercise 15.4. (1 pt) Show (15.33). (Hint: use (13.63) to understand the kernel

of ∆g, and note that ∆g is its own transpose with respect to the density d volg.)

Exercise 15.5. (1 pt) Let M be a compact manifold and P ∈ Diffm(M) be an

elliptic differential operator. Show that indP = 0. (Hint: fixing a smooth positive

density, we can think of the transpose P t as an operator in Diffm(M). What is its

principal symbol?)

Exercise 15.6. (1 pt) This exercise gives a basic example of a 0th order pseudo-

differential operator on the circle S1 = R/2πZ which has nonzero index. Consider the

operators Π± on L2(S1) defined using Fourier series as follows:

Π±
(∑

k∈Z

cke
ikx

)
=

∑
k∈Z

±k>0

cke
ikx

for any sequence (ck) ∈ ℓ2(Z). Let ℓ ∈ Z and define the operator P on L2(S1) by

Pf(x) = eiℓxΠ+f(x) + Π−f(x), f ∈ L2(S1).

Show that P is a Fredholm operator of index −ℓ. (With more knowledge of microlocal

analysis, one could actually show that this is true with eiℓx replaced by any nonvanishing

function a ∈ C∞(S1), and indP = − 1
2π

∫
S1

a′(x)
a(x)

dx is minus the winding number of the

curve a : S1 → C about the origin – this is a ‘baby index theorem’.)





CHAPTER 16

Spectral theory

In this chapter we study the spectral theory of elliptic self-adjoint operators on

compact manifolds. The main result is Theorem 16.1 which shows that the spectrum

is given by a sequence of eigenvalues going to infinity and there is a Hilbert basis of

corresponding eigenfunctions. The proof uses the Fredholm property (Theorem 15.13),

the Rellich–Kondrachov Theorem 15.10, and the Hilbert–Schmidt Theorem 16.3 below.

16.1. Spectral theorem for self-adjoint elliptic operators

16.1.1. Self-adjoint operators and statement of the spectral theorem. We

first introduce adjoints of differential operators. Let M be a compact manifold. We

fix a positive density (see §13.1.7)

ω0 ∈ C∞(M; |Ω|), ω0 > 0.

For two functions f, g ∈ L2(M), define their inner product by

⟨f, g⟩L2(M;ω0) :=

∫
M
fg ω0. (16.1)

The resulting space L2(M;ω0) is a separable Hilbert space.

If P ∈ Diffm(M) is a differential operator, then the adjoint P ∗ ∈ Diffm(M) with

respect to the density ω0 is defined by the identity

⟨Pf, g⟩L2(M;ω0) = ⟨f, P ∗g⟩L2(M;ω0) for all f, g ∈ C∞(M). (16.2)

Using the density ω0 to identify densities on M with functions, we view the transpose

P t (see (13.73)) as an operator in Diffm(M). Then P ∗ and P t are related by the

formula

P ∗u = P tu for all u ∈ D′(M). (16.3)

For s ∈ R, let Ps : Hs+m(M) → Hs(M) be the action of the operator P on Sobolev

spaces, see (15.28). The spectrum of Ps is defined as follows:

Spec(Ps) := {λ ∈ C | Ps − λ is not invertible}. (16.4)

Here by Banach’s bounded inverse theorem, if Ps−λ : Hs+m(M) → Hs(M) is invert-

ible, then the inverse is a bounded operator Hs(M) → Hs+m(M).

217
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We are now ready to state the main result of this chapter. We use the term ‘formally

self-adjoint’ to keep in line with general spectral theory, see §16.3 below.

Theorem 16.1 (Spectral Theorem). Assume that M is a compact manifold with a

given positive density ω0, m ≥ 1, and P ∈ Diffm(M) is an elliptic differential operator.

Assume that P is formally self-adjoint on L2(M;ω0) in the sense that P ∗ = P where

P ∗ is defined in (16.2). Then there exist sequences indexed by k ∈ N

uk ∈ C∞(M), λk ∈ R, |λk| → ∞,

such that uk is an eigenfunction of P with eigenvalue λk:

Puk = λkuk,

and {uk} is a Hilbert basis of L2(M;ω0), namely it is an orthonormal system in L2(M;ω0)

and the span of {uk} is dense in L2(M;ω0). Moreover, the spectrum of Ps for any s

is given by

Spec(Ps) = Spec(P ) = {λk | k ∈ N}. (16.5)

Remark 16.2.X Theorem 16.1 does not hold for m = 0. In this case P is a multi-

plication operator: Pu = au for some a ∈ C∞(M;R). The spectrum of P is the range

of a, which is typically an interval in R, and is not a discrete set unlike (16.5). The-

orem 16.1 also does not apply to noncompact manifolds: for example, the spectrum of

the Laplacian ∆ on Rn is the half-line (−∞, 0], since the Fourier transform conjugates

∆ to the multiplication operator by −|ξ|2. See Exercise 16.1 below for another concrete

example.

The standard example of an operator to which Theorem 16.1 applies is the Laplace–

Beltrami operator ∆g ∈ Diff2(M) associated to a Riemannian metric g on M. Here

we put ω0 := d volg and formal self-adjointness of ∆g follows from (13.63). We discuss

more advanced results on the eigenvalues and eigenfunctions of ∆g in §16.2 below.

As a consequence of Theorem 16.1, we can write any f ∈ L2(M) as the sum of a

generalized Fourier series

f =
∞∑
k=1

fkuk where fk ∈ C,
∞∑
k=1

|fk|2 <∞. (16.6)

This makes it possible to write down solutions for the heat and the wave equation

on Rt × Mx. For example, if {uk} is a Hilbert basis of eigenfunctions of −∆g with

eigenvalues λk ≥ 0 (see §16.2 below), then the solution to the initial value problem for

the heat equation

(∂t −∆g)u(t, x) = 0, t ≥ 0, x ∈ M,

u(0, x) = f(x)
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is given by the Fourier series

u(t, x) =
∞∑
k=1

e−tλkfkuk(x) where f(x) =
∞∑
k=1

fkuk(x).

Using this, one can show for example that, assuming that M is connected, we have

exponential convergence to equilibrium

u(t, •) = 1

volg(M)

∫
M
f d volg +O(e−δt)L2(M)

where δ > 0, sometimes called the spectral gap of M, is the smallest positive eigenvalue

of −∆g.

The proof of Theorem 16.1 below generalizes to the case of an elliptic formally

self-adjoint operator P ∈ Diffm(M;E → E ) acting on sections of a complex vector

bundle E (see Remark 15.2). Here to make sense of the adjoint P∗, in addition to ω0 we

fix an Hermitian inner product ⟨•, •⟩E (x) on each fiber E (x) which depends smoothly

on x ∈ M. Then we put

⟨f, g⟩L2(M;E ) :=

∫
M
⟨f(x), g(x)⟩E (x) ω0 for all f, g ∈ L2(M;E ) (16.7)

and define P∗ similarly to (16.2). The standard examples of formally self-adjoint oper-

ators on vector bundles are the Hodge Laplacian and the Dirac operator on differential

forms, see §17.3.3 below.

16.1.2. Compact self-adjoint operatorsR. The proof of Theorem 16.1 uses the

following general statement from functional analysis on Hilbert spaces:

Theorem 16.3 (Hilbert–Schmidt Theorem). Assume that H is a Hilbert space and

A : H → H, A ̸= 0, is a compact self-adjoint operator (see Definition 15.16). Then A

has a nonzero real eigenvalue, that is there exist µ ∈ R \ {0} and v ∈ H, v ̸= 0, such

that Av = µv.

Remark 16.4.X The full Hilbert–Schmidt theorem states that there exists an or-

thonormal basis of eigenvectors of A. We do not give this part of the statement because

we do not use it in the proof of Theorem 16.1 below.

Proof. 1. We first use self-adjointness of A to show the following identity:

∥A∥H→H = r where r := sup
u∈H, u ̸=0

|⟨Au, u⟩|
∥u∥2H

. (16.8)
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The ≥ inequality in (16.8) follows from Cauchy–Schwarz. To show the ≤ inequality,

we estimate for all u, v ∈ H
4Re⟨Au, v⟩H = ⟨A(u+ v), u+ v⟩H − ⟨A(u− v), u− v⟩H

≤ r
(
∥u+ v∥2H + ∥u− v∥2H

)
= 2r

(
∥u∥2H + ∥v∥2H

)
.

Here in the first line we used that A is self-adjoint and thus ⟨Av, u⟩H = ⟨v,Au⟩H.
Putting v := tAu, we see that for all t ≥ 0

4t∥Au∥2H ≤ 2r
(
∥u∥2H + t2∥Au∥2H

)
.

Assuming that Au ̸= 0 and putting t := ∥u∥H/∥Au∥H, we get from here that ∥Au∥H ≤
r∥u∥H, finishing the proof of (16.8).

2. Since A ̸= 0, we know from (16.8) that r > 0. Take a sequence

uk ∈ H, ∥uk∥H = 1, |⟨Auk, uk⟩H| → r.

Note that ⟨Au, u⟩H is always real. Thus we may assume that ⟨Auk, uk⟩H converges to

either r or −r. Without loss of generality (replacing A with −A if necessary) we then

assume that

⟨Auk, uk⟩H → r. (16.9)

Since A is a compact operator and ∥uk∥H is bounded, we can pass to a subsequence

to make

Auk → v in H for some v ∈ H.
We claim that v is an eigenvector of A with eigenvalue r. To show this, we bound

∥Auk − ruk∥2H = ∥Auk∥2H − 2r⟨Auk, uk⟩H + r2∥uk∥2H
≤ 2r2 − 2r⟨Auk, uk⟩H → 0.

(16.10)

Here in the inequality we used (16.8) and in the limiting statement we used (16.9).

Since Auk → v in H, (16.10) implies that

ruk → v in H.

Therefore ∥v∥H = r > 0. Moreover, rAuk = Aruk converges to both rv and Av in H,

thus Av = rv. This shows that v is an eigenvector of A with eigenvalue r. □

16.1.3. Proof of the spectral theorem. We now prove Theorem 16.1. The

proof proceeds in several steps. To simplify notation, we denote L2(M) := L2(M;ω0).

1. We first show that the spectrum of Ps is real, independent of s, and consists only

of eigenvalues:

Spec(Ps) = {λ ∈ R | ∃u ∈ C∞(M), u ̸= 0, Pu = λu}. (16.11)
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To see this, let λ ∈ C. Since P ∈ Diffm(M) andm ≥ 1, the operator P−λ ∈ Diffm(M)

has the same principal symbol as P . In particular, since P is an elliptic differential

operator, so is P −λ. By Theorem 15.13, Ps−λ : Hs+m(M) → Hs(M) is a Fredholm

operator, and we have

λ /∈ Spec(Ps) ⇐⇒ ker(P − λ) = ker(P t − λ) = 0 (16.12)

where ker(P−λ), ker(P t−λ) ⊂ C∞(M) are defined in (15.31) and we use the density ω0

to identify densities on M with functions. Since P is formally self-adjoint, by (16.3)

we see that ker(P t − λ) is the complex conjugate of the vector space ker(P − λ̄), so in

particular

ker(P t − λ) = 0 ⇐⇒ ker(P − λ̄) = 0. (16.13)

Assume that λ ∈ C \ R. Then for each u ∈ ker(P − λ) we compute

(Imλ)∥u∥2L2(M) = Im⟨Pu, u⟩L2(M) = 0

where in the last equality we used that P is formally self-adjoint, so by (16.2) with

f = g = u we have ⟨Pu, u⟩L2(M) = ⟨u, Pu⟩L2(M) = ⟨Pu, u⟩L2(M). It follows that

ker(P − λ) = 0. Similarly we have ker(P − λ̄) = 0, so by (16.12) and (16.13) we have

λ /∈ Spec(Ps). We have thus shown that the spectrum Spec(Ps) is contained inside R.
Assume now that λ ∈ R. Then by (16.12) and (16.13) we see that λ /∈ Spec(Ps) if

and only if ker(P − λ) = 0. This finishes the proof of (16.11).

Henceforth we denote for each λ ∈ R the eigenspace

Eλ := ker(P − λ) ⊂ C∞(M),

which by (16.11) is nontrivial if and only if λ ∈ Spec(P ) = Spec(Ps). Since Ps − λ is

a Fredholm operator, each space Eλ is finite dimensional.

2. We next claim that the spectrum Spec(P ) is a discrete subset of R. Fix λ0 ∈
Spec(P ); we need to show that there exists ε > 0 such that λ /∈ Spec(P ) for all λ ∈ R
such that 0 < |λ− λ0| < ε.

Define the L2-orthogonal complements

L2
⊥ := {u ∈ L2(M) | for all v ∈ Eλ0 we have ⟨u, v⟩L2(M) = 0},

Hm
⊥ := L2

⊥ ∩Hm(M).

We have

L2(M) = L2
⊥ ⊕ Eλ0 , Hm(M) = Hm

⊥ ⊕ Eλ0 (16.14)

where the latter statement follows from the fact that the orthogonal projector L2(M) →
L2
⊥ maps Hm(M) → Hm

⊥ since Eλ0 ⊂ C∞(M).

The operator P0 − λ0 : Hm(M) → L2(M) has range equal to L2
⊥ by (15.32) and

the discussion preceding (16.13). Its restriction to Hm
⊥ ,

P⊥ − λ0 : H
m
⊥ → L2

⊥
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is an invertible operator. Indeed, the kernel of P⊥ − λ0 is given by Hm
⊥ ∩ Eλ0 = {0},

and the range of P⊥−λ0 is equal to ran(P0−λ0) = L2
⊥. By Banach’s Bounded Inverse

Theorem, P⊥ − λ0 has bounded inverse.

For any λ ∈ R, we can write the operator P0 − λ : Hm(M) → L2(M) in block-

diagonal form with respect to the decompositions (16.14):

P0 − λ =

(
P⊥ − λ 0

0 λ0 − λ

)
.

Since P⊥ − λ0 has bounded inverse, there exists ε > 0 such that if |λ − λ0| < ε then

P⊥ − λ is invertible. If additionally λ ̸= λ0, then we see that P0 − λ is invertible, that

is λ /∈ Spec(P ). This finishes the proof of discreteness of Spec(P ).

3. The spaces Eλ are orthogonal to each other for different λ. Indeed, if λ ̸= λ′ and

u ∈ Eλ, u
′ ∈ Eλ′ then we compute

λ⟨u, u′⟩L2(M) = ⟨Pu, u′⟩L2(M) = ⟨u, Pu′⟩L2(M) = λ′⟨u, u′⟩L2(M),

implying that ⟨u, u′⟩L2(M) = 0.

Putting together orthonormal bases of all the spaces Eλ, λ ∈ Spec(P ), we arrive

to an L2-orthonormal system

uk ∈ C∞(M), k ∈ K , (16.15)

and a collection of numbers λk ∈ R such that Puk = λkuk. Here the index set K is

at most countable, in fact since each Eλ is finite dimensional and the set Spec(P ) is

discrete we have

#{k ∈ K : |λk| ≤ R} <∞ for all R ∈ R. (16.16)

However, at this stage in the argument we have not excluded the possibility that K
is finite or even empty.

4. We now show that the system uk constructed in (16.15) is a Hilbert basis, that is

the span of this system is dense in L2(M). Since L2(M) is infinite dimensional1 this

implies that the index set K is infinite, so we can just take K = N. The sequence

λk satisfies |λk| → ∞ by (16.16), so the Hilbert basis property finishes the proof of

Theorem 16.1.

To show the Hilbert basis property, it suffices to prove that the orthogonal com-

plement of the span of {uk}, given by

H := {u ∈ L2(M) | for all λ ∈ Spec(P ), v ∈ Eλ we have ⟨u, v⟩L2(M) = 0},

is equal to {0}. We argue by contradiction. Assume that H ̸= {0}. Since H is a closed

subspace in L2(M), it is a Hilbert space.

1For a particularly pedantic reader, we should have assumed in the statement of Theorem 16.1

that the manifold M has positive dimension and is nonempty.
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Since Spec(P ) is discrete, we can fix some λ∅ ∈ R \ Spec(P ). Consider the inverse

Q := (P0 − λ∅)
−1 : L2(M) → Hm(M).

Then Q is a compact operator L2(M) → L2(M), since Hm(M) embeds compactly

into L2(M) by Theorem 15.10. Moreover, Q is a self-adjoint operator on L2(M) since

for each u, v ∈ L2(M) we have

⟨Qu, v⟩L2(M) = ⟨Qu, (P − λ∅)Qv⟩L2(M) = ⟨(P − λ∅)Qu,Qv⟩L2(M) = ⟨u,Qv⟩L2(M)

where the second equality above follows from (16.2), the formal self-adjointness of P ,

and the fact that C∞(M) is dense in Hm(M).

The operator Q maps the space H into itself. Indeed, assume that u ∈ H. Then

we have for all λ ∈ Spec(P ) and v ∈ Eλ

⟨Qu, v⟩L2(M) = ⟨u,Qv⟩L2(M) = 0

since Qv = (λ− λ∅)
−1v. Thus Qu ∈ H.

The discussion above shows that the restriction A := Q|H is a compact self-adjoint

operator on the Hilbert space H. We also have A ̸= 0 since H ̸= {0} and for any

v ∈ H we have (P − λ∅)Av = v. Now Theorem 16.3 applies and shows that A has an

eigenvalue, more precisely there exist

v ∈ H \ {0}, µ ∈ R \ {0}, Av = µv.

We have (P − λ∅)µv = v, which implies that v ∈ Eλ with λ := λ∅ + µ−1. This gives

a contradiction with the fact that v ∈ H and finishes the proof that {uk} is a Hilbert

basis of L2(M).

16.2. Advanced results on Laplacian eigenvalues and eigenfunctions

We now discuss various classical and recent results on the spectrum of the Laplace–

Beltrami operator ∆g.

16.2.1. Basics and examples. Let (M, g) be a compact Riemannian manifold.

We assume that M is connected. It will be convenient for us to use the operator −∆g

instead of ∆g. One advantage is that, as follows from (13.63) (taking both f, g there

to be equal to an eigenfunction) the spectrum of −∆g is contained in [0,∞), and the

eigenspace at λ = 0 consists of constant functions. Ordering the numbers λk from

Theorem 16.1 in increasing order, we get sequences

0 = λ1 < λ2 ≤ λ3 ≤ . . . , λk → ∞,

uk ∈ C∞(M), −∆guk = λkuk, ∥uk∥L2(M) = 1.
(16.17)
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It is generally impossible to give a formula for the eigenfunctions and eigenvalues of

the Laplacian on a given Riemannian manifold. However, it is possible to explicitly de-

scribe the Laplacian spectrum for the torus and for the sphere. We give this description

in dimension 2 to simplify the formulas, but it generalizes to any dimension.

The case of torus corresponds to Fourier series:

Proposition 16.5. Assume that M = T2 = R2/Z2 is the two-dimensional torus,

and g is the metric induced by the Euclidean metric on R2. Then a Hilbert basis of

eigenfunctions of −∆g is given by

λk = 4π2(k21 + k22), k = (k1, k2) ∈ Z2, uk(x1, x2) = e2πik·x. (16.18)

The spectrum of the Laplacian on the 2-sphere was studied in Exercise 13.8 above.

Examining the solution to this exercise we can also compute the multiplicities of eigen-

values, yielding

Proposition 16.6. Assume that M = S2 and g is the round metric. Then the

spectrum of −∆g is given by

λk = k(k + 1), k ∈ N0, with multiplicity 2k + 1. (16.19)

The corresponding eigenfunctions are the restrictions to S2 ⊂ R3 of polynomials U

on R3 which are homogeneous of degree k and harmonic (that is, ∆0U = 0 where ∆0

is the Euclidean Laplacian).

From this point on, no proofs are provided in this section, instead we give references

to various articles on the topics covered.

16.2.2. Weyl LawX. We first discuss asymptotic behavior of eigenvalues: once

you have an infinite discrete set of numbers, it is hard to resist counting them. Let λk
be given by (16.17). For R > 0, define the counting function

N (R) := {k ∈ N | λk ≤ R2}.

Let n := dimM; denote by ωn the volume of the Euclidean unit ball in Rn and by

volg(M) =
∫
M d volg the Riemannian volume of M. Then the asymptotic behavior

of N (R) is given by

Theorem 16.7 (Weyl Law). We have as R → ∞

N (R) = (2π)−nωn volg(M)Rn +O(Rn−1). (16.20)

The reader is encouraged to check that Theorem 16.7 holds in the special cases in

Propositions 16.5 and 16.6.

Theorem 16.7 with an o(Rn) remainder was first proved by Weyl [Wey12] in the

related case of Dirichlet eigenfunctions for domains in Rn. The O(Rn−1) remainder
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Figure 16.1. Eigenvalue counting function for the sphere S2, the

torus T2, and a hyperbolic surface. The latter uses data provided by

Alexander Strohmaier and computed using the method in Strohmaier–

Uski [SU13]. Top: a plot of the function Ñ (R) := N (R)/c where

c := (2π)−nωn volg(M). Middle: A zoomed in version of the top plot.

Bottom: a plot of the maximum of the error |Ñ (R) − R2| in the Weyl

law over the interval [0, R], as a function of R.
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is due to Levitan [Lev53] and Avakumovič [Ava56]. Other proofs can be found for

example in [Hör09, §29.1] and [Zwo12, Theorem 14.11].

A natural question is whether the O(Rn−1) remainder in (16.20) can be improved:

• In general this is not possible since on the sphere S2, the high multiplicity of

the spectrum (see Proposition 16.6) means that remainder is not o(Rn−1).

• However, for most manifolds the remainder can be improved. More precisely,

Duistermaat–Guillemin [DG75] showed that if the volume of the set of peri-

odic geodesics (considered as a subset of the sphere bundle SM) is equal to 0,

then (16.20) holds with remainder o(Rn−1).

• There are quantitative forms of the remainder under various assumptions on

the geodesic flow, see for example [CG22] for a review of the literature. In

particular, Bérard [Bér77] showed that on manifolds without conjugate points

(which includes manifolds of nonpositive sectional curvature) the remainder

is O(Rn−1/ logR).

• It is a folk conjecture that on negatively curved manifolds (a prime example

of which is given by hyperbolic surfaces, which have Gauss curvature −1),

the remainder in (16.20) should be O(Rn−1−δ) for some δ > 0. This is widely

open.

• For the 2-torus, by (16.18) the function N (R), up to rescaling, is just the

number of integer points in the disk of radius R. The question about the

remainder is known as the Gauss circle problem. It is conjectured that the

remainder is O(R
1
2
+ε) for any ε > 0, and the best known upper bound to date

is O(R
131
208

+ε), due to Huxley [Hux03].

See Figure 16.1 for a numerical illustration of the Weyl law.

16.2.3. Nodal sets. For this topic we will restrict to real eigenfunctions uk, which

is not an issue since −∆g has real coefficients. (So for example, the formula (16.18)

would have to be replaced with one featuring sines and cosines.)

The nodal set of an eigenfunction uk is defined to be its zero set:

u−1
k (0) = {x ∈ M | uk(x) = 0}. (16.21)

We will present here some results on the area of nodal sets. Generically we expect the

nodal set to be a smooth submanifold of M of codimension 1. In this case, define

Area(u−1
k (0)) ≥ 0 (16.22)

to be the Riemannian volume of u−1
k (0) (with respect to the restriction of the metric g

to u−1
k (0)). In general, Area(u−1

k (0)) is defined as the (n − 1)-dimensional Hausdorff

measure of u−1
k (0).
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Figure 16.2. Left: an eigenfunction on S2 with the sets {uk > 0}
and {uk < 0} separated by the nodal set. Source: https://www.

pngwing.com/en/free-png-sooby. Right: a high energy (λ ≈ 5000)

eigenfunction on a hyperbolic surface. Here the surface is a quotient of

the Poincaré disk model of the hyperbolic space by a group of isometries,

and the eigenfunction is drawn on a fundamental domain of this group

action. The thin lines are the nodal sets. Picture courtesy of Alexander

Strohmaier, computed using the method in Strohmaier–Uski [SU13].

In 1982 Shing-Tung Yau made the following conjecture: for each compact Rie-

mannian manifold there exist constants 0 < c ≤ C such that we have for all k ≥ 2

c
√
λk ≤ Area(u−1

k (0)) ≤ C
√
λk. (16.23)

While the upper bound in the conjecture is still open, there have been many significant

results on it. We list here only two such results, referring the reader to [LM20] for a

comprehensive review of the history of the conjecture:

• Donnelly–Fefferman [DF88]: the conjecture (16.23) holds if the metric g is

real analytic;

• Logunov [Log18a, Log18b]: for any C∞ metric we have the bounds

c
√
λk ≤ Area(u−1

k (0)) ≤ CλNk (16.24)

where N is a large constant depending only on the dimension of the mani-

fold M. This in particular settles the lower bound in Yau’s conjecture.

See Figure 16.2 for numerical illustrations of nodal sets.

https://www.pngwing.com/en/free-png-sooby
https://www.pngwing.com/en/free-png-sooby
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16.2.4. Macroscopic behavior of eigenfunctions. We finally discuss Quan-

tum Ergodicity and related results. To state these we use the notion of weak limits

from probability:

Definition 16.8. Assume that ukℓ is a sequence of Laplacian eigenfunctions. We

say that it converges weakly to a probability measure µ on M, if∫
M
a(x)|ukℓ(x)|2 d volg(x) →

∫
M
a dµ as ℓ→ ∞ for all a ∈ C0(M). (16.25)

Note that here we first fix the observable a and then let ℓ→ ∞, which is why this

is a macroscopic limit.

We now assume that (M, g) has negative sectional curvature. This has the con-

sequence that the geodesic flow on M has strongly chaotic behavior, see for exam-

ple [Kli95, Theorem 3.9.1]. A fundamental example is given by hyperbolic surfaces,

see the right half of Figure 16.2. (The theorems below actually apply under various

weaker conditions.) We refer the reader to the author’s reviews [Dya21a, Dya21b]

for more information.

• The Quantum Ergodicity theorem of Shnirelman [Shn74a, Shn74b], Zelditch

[Zel87], and Colin de Verdière [CdV85] states that there exists a density 1

sequence of eigenfunctions ukℓ which converges weakly to the volume mea-

sure d volg / volg(M). This means that in the high energy macroscopic limit,

eigenfunctions equidistribute.

• The Quantum Unique Ergodicity conjecture of Rudnick–Sarnak [RS94] states

that the entire sequence of eigenfunctions converges weakly to the volume

measure. It is widely open except for Hecke eigenfunctions in arithmetic

cases, see Lindenstrauss [Lin06].

• The entropy bounds of Anantharaman and Nonnenmacher [Ana08, AN07]

show that eigenfunctions cannot concentrate too much. For example, no se-

quence of eigenfunctions can converge weakly to the delta measure on a geo-

desic (settling a conjecture of Colin de Verdière [CdV85]).

• The lower bounds on mass of Dyatlov–Jin–Nonnenmacher [DJN21] show that

in dimension 2, for any nonempty open set U ⊂◦ M there exists a constant

cU > 0 such that for all k

∥1Uuk∥L2(M;d volg) ≥ cU . (16.26)

This also shows that no sequence of eigenfunctions can converge weakly to

the delta measure on a closed geodesic; in fact, it shows that each weak limit

of a sequence of eigenfunctions is a measure of full support. Proving the

bound (16.26) in dimensions higher than 2 is currently an open problem.
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16.3. Notes and exercises

Our presentation in §16.1 partially follows [Mel, §6.5]. We only invoke the theory

of bounded compact operators on Hilbert spaces at the end of the proof, in the form of

Theorem 16.3. Other proofs reduce to this theory earlier on, often by taking (P +1)−1

which is possible if P is nonnegative, e.g. P = −∆g, but would not work for the Dirac

operator studied in §17.3.3 below; see for example [Eva10, §6.5].

A differential operator P of positive order does not map L2(M) to itself. The

right abstract theory to study these operators is the spectral theory of unbounded

self-adjoint operators. In this theory we have a Hilbert space H, a dense subspace

D ⊂ H, and a linear operator P : D → H whose graph is a closed subspace of H×H.

The operator P is called formally self-adjoint if

⟨Pu, v⟩H = ⟨u, Pv⟩H for all u, v ∈ D.

There is a stronger property called self-adjointness, which is equivalent to additionally

requiring that both operators P±i : D → H be invertible. (If P is a bounded operator,

i.e. D = H, then self-adjointness follows from formal self-adjointness.) For self-adjoint

operators there is a spectral theorem which shows that they are unitarily conjugated

to a multiplication operator on the space L2 with respect to some measure; the latter

is related to the spectral measure of the operator P .

In our setting, P ∈ Diffm(M) is a differential operator on a compact manifold

without boundary, H = L2(M;ω0), and D = Hm(M). We assumed formal self-

adjointness of P and we established actual self-adjointness in Step 1 of the proof of

Theorem 16.1. The operator P has compact resolvent, which is why the spectrum is

purely discrete. In more general settings, the situation might be different. For example,

if M has a boundary, then one has many choices of the domain of P on which it will be

self-adjoint (the two common choices correspond to Dirichlet and Neumann boundary

conditions), and if M is not compact, then the spectrum may no longer be discrete

(in fact, typically one would expect that P has no eigenvalues). We refer to the book

of Davies [Dav95] for details.

Exercise 16.1. (1.5 pts) This exercise gives an example of a self-adjoint operator

with non-discrete spectrum. Consider the following multiplication operator on L2(S1)

where S1 = R/2πZ:
Pf(x) = (cos x)f(x), f ∈ L2(S1).

Compute the spectrum Spec(P ) (see (16.4)). For λ ∈ Spec(P ), does the operator

P −λ : L2(S1) → L2(S1) have a nontrivial kernel? Is the range of this operator closed?

(We could actually take any other generic real function in place of cosx. However,

one nice thing about cosx is that using Fourier series, one can see that the operator P

is unitarily conjugated to a shifted discrete Laplacian.)





CHAPTER 17

Differential forms and Hodge theory

In this chapter we discuss differential forms and develop Hodge theory. Most of

the material here belongs to differential geometry (differential forms, the operators

of Hodge theory) and algebraic topology (de Rham cohomology, Hodge’s Theorem).

However, the key ingredient bringing de Rham cohomology and Hodge theory together

relies on the Fredholm property for elliptic operators (Theorem 15.13). This is why

this ingredient, while indispensable to Hodge theory, is often missing from textbooks

on it.1 We also give an application of pullbacks of distributions to degree theory.

17.1. Differential formsR

We first briefly review the standard theory of differential forms and operations on

them such as wedge product, differentiation, and integration. We give few details,

referring the reader to [Lee13, Chapters 14–16] for a comprehensive treatment.

17.1.1. Exterior powers of vector spaces. We start by defining the ℓ-th exte-

rior power of a vector space V , which is the space of all antisymmetric maps Vℓ → R:

Definition 17.1. Let V be a finite dimensional real vector space and ℓ ∈ N0. We

say that a multilinear map u : Vℓ → R is antisymmetric if for each v1, . . . , vℓ ∈ V and

a permutation γ on {1, . . . , ℓ} of sign sgn γ ∈ {1,−1} we have

u(vγ(1), . . . , vγ(ℓ)) = (sgn γ)u(v1, . . . , vℓ). (17.1)

Denote by ∧ℓV∗ the space of all antisymmetric maps Vℓ → R.

Note that we put ∧0V∗ = R by definition, and ∧1V∗ = V∗ is the space of linear

functionals V → R.
All the spaces ∧ℓV∗ are finite dimensional. More precisely, if dimV = n then

1Chern [Che56, p.128] writes ‘This is the main theorem and we shall not give a proof as the details

would take too much time.’. Huybrechts [Huy05, p.285] writes ‘The following however requires some

hard, but by now standard, analysis.’. Voisin [Voi07] refers to Demailly [BDIP02], who in turn

reviews the material of our §§12.1,14,15 on 5 pages, replacing most of the details by the comment ‘We

will need the following fundamental facts, that the reader will be able to find in many of the specialized

works devoted to the theory of partial differential equations’ not followed by any references. Other

books such as Warner [War71] do give an earnest proof of the theorem.

231
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• for ℓ ≤ n, the dimension of ∧ℓV∗ is equal to the binomial coefficient
(
n
ℓ

)
;

• for ℓ > n, the space ∧ℓV∗ is trivial.

This can be seen by fixing a basis on V to identify it with Rn. Then for ℓ ≤ n, we have

the following basis of ∧ℓ(Rn)∗, indexed by size ℓ subsets of {1, . . . , n}:

dxI ∈ ∧ℓ(Rn)∗ where I = {i1, . . . , iℓ} ⊂ {1, . . . , n}, i1 < i2 < . . . < iℓ,

dxI(v1, . . . , vℓ) = det
(
(dxij(vr))

ℓ
j,r=1

)
for all v1, . . . , vℓ ∈ Rn

(17.2)

where dxi(v) denotes the i-th coordinate of v ∈ Rn. We often denote dx∅ = 1.

The space ∧n(Rn)∗ is one-dimensional, spanned by the element dx1...n defined by

dx1...n(v1, . . . , vn) = det([v1 . . . vn]) (17.3)

where [v1 . . . vn] is the matrix with columns v1, . . . , vn. It follows that for any n-

dimensional space V and any linear map A : V → V we have

u(Av1, . . . , Avn) = (detA)u(v1, . . . , vn) for all u ∈ ∧nV∗, v1, . . . , vn ∈ V . (17.4)

As an example, we describe ∧ℓ(R3)∗ for ℓ = 1, 2, 3:

• a basis of ∧1(R3)∗ = (R3)∗ is given by dx1, dx2, dx3 where dxj(u) = uj is the

j-th coordinate of u ∈ R3;

• a basis of ∧2(R3)∗ is given by dx12, dx13, dx23 where for u, v ∈ R3

dx12(u, v) = det

(
u1 v1
u2 v2

)
,

dx13(u, v) = det

(
u1 v1
u3 v3

)
,

dx23(u, v) = det

(
u2 v2
u3 v3

)
;

(17.5)

• a basis of ∧3(R3)∗ is given by dx123 where for u, v, w ∈ R3

dx123(u, v, w) = det

u1 v1 w1

u2 v2 w2

u3 v3 w3

 .

One can define the wedge product

u ∈ ∧ℓV∗, v ∈ ∧mV∗ 7→ u ∧ v ∈ ∧ℓ+mV∗ (17.6)

with the following properties:

• u ∧ v is bilinear in u,v;

• (u ∧ v) ∧w = u ∧ (v ∧w);

• v ∧ u = (−1)ℓmu ∧ v where u ∈ ∧ℓV∗ and v ∈ ∧mV∗;
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• on Rn, we have

dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxiℓ where I = {i1, . . . , iℓ}, i1 < . . . < iℓ.

So for example, on R3 we have

dx1 ∧ dx2 = −dx2 ∧ dx1 = dx12, dx1 ∧ dx1 = 0, dx13 ∧ dx2 = dx2 ∧ dx13 = −dx123.

It will often be convenient for us to consider the total exterior algebra (where n =

dimV)

∧•V∗ :=
n⊕
ℓ=0

∧ℓV∗ (17.7)

which is a 2n-dimensional space. A basis of ∧•Rn is given by dxI where I ranges

over all subsets of {1, . . . , n}. One can think of the wedge product as a bilinear map

∧•V∗ × ∧•V∗ → ∧•V∗.

17.1.2. Differential forms and exterior derivative. LetM be an n-dimensional

manifold. We define the vector bundle Ωℓ of ℓ-forms over M:

Ωℓ(x) := ∧ℓT ∗
xM, x ∈ M. (17.8)

That is, an element of Ωℓ(x) is an antisymmetric multilinear map from (TxM)ℓ to R.
Note that Ωℓ(x) = {0} when ℓ > n. We use real valued forms here, but one can easily

consider instead complex valued forms, which we do without further discussion later.

Similarly to (17.7) we define the total form bundle Ω• over M by

Ω•(x) :=
n⊕
ℓ=0

Ωℓ(x), x ∈ M. (17.9)

Smooth sections of Ωℓ, that is elements of C∞(M; Ωℓ), are called ℓ-forms, while dis-

tributional sections in D′(M; Ωℓ) are called ℓ-currents. Note that 0-forms are just

functions and 1-forms are sections of the cotangent bundle T ∗M described in §13.1.5.

The wedge product (17.6) is defined on forms as follows: for u ∈ C∞(M; Ωℓ) and

v ∈ C∞(M; Ωm) we have

u ∧ v ∈ C∞(M; Ωℓ+m), (u ∧ v)(x) = u(x) ∧ v(x), x ∈ M. (17.10)

Any smooth map Φ : M → N between two manifolds induces the pullback operator

Φ∗ : C∞(N ; Ωℓ) → C∞(M; Ωℓ),

Φ∗v(x)(v1, . . . , vℓ) = v(Φ(x))(dΦ(x)v1, . . . , dΦ(x)vℓ)

for all x ∈ M, v1, . . . , vℓ ∈ TxM.

(17.11)

Note that wedge product is equivariant under pullback:

Φ∗(v ∧w) = (Φ∗v) ∧ (Φ∗w) for all v,w ∈ C∞(N ; Ω•).
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If κ : U → V is a chart on M, then to each u ∈ C∞(M; Ωℓ) corresponds its pushfor-

ward

κ∗u := (κ−1)∗(u|U) ∈ C∞(V ; Ωℓ). (17.12)

We can write κ∗u in the basis (17.2):

κ∗u =
∑

I⊂{1,...,n}
#(I)=ℓ

uI(x) dxI , uI ∈ C∞(V ;R) (17.13)

which gives coordinate representations for differential forms.

We next define the exterior derivative. This is a family of differential operators

(see §13.3.2)

dℓ ∈ Diff1(M; Ωℓ → Ωℓ+1), dℓ : C
∞(M; Ωℓ) → C∞(M; Ωℓ+1), (17.14)

defined using coordinate representations (17.13) as follows: for any chart κ : U → V

and u ∈ C∞(M; Ωℓ) we have

κ∗dℓu =
∑
I

duI ∧ dxI

where κ∗u =
∑
I

uI(x) dxI , duI =
n∑
j=1

∂xjuI(x) dxj.
(17.15)

Note that for ℓ = 0 and f ∈ C∞(M; Ω0) = C∞(M), d0f ∈ C∞(M; Ω1) = C∞(M;T ∗M)

is just the differential of the function f defined in (13.17). On the other hand, we have

dn = 0 where n = dimM.

Put together, the operators dℓ give the total exterior derivative operator

d ∈ Diff1(M; Ω• → Ω•). (17.16)

As an example, we compute the exterior derivative on forms in R3 (using the more

commonly used basis dx2 ∧ dx3 = dx23, dx3 ∧ dx1 = −dx13, dx1 ∧ dx2 = dx12 rather

than (17.5)):

df(x) = ∂x1f(x) dx1 + ∂x2f(x) dx2 + ∂x3f(x) dx3,

d(u1(x) dx1) = ∂x3u1(x) dx3 ∧ dx1 − ∂x2u1(x) dx1 ∧ dx2,
d(u2(x) dx2) = ∂x1u2(x) dx1 ∧ dx2 − ∂x3u2(x) dx2 ∧ dx3,
d(u3(x) dx3) = ∂x2u3(x) dx2 ∧ dx3 − ∂x1u3(x) dx3 ∧ dx1,

d(u23(x) dx2 ∧ dx3) = ∂x1u23(x) dx1 ∧ dx2 ∧ dx3,
d(u31(x) dx3 ∧ dx1) = ∂x2u31(x) dx1 ∧ dx2 ∧ dx3,
d(u12(x) dx1 ∧ dx2) = ∂x3u12(x) dx1 ∧ dx2 ∧ dx3.

(17.17)

Note that dℓ : C
∞(R3; Ωℓ) → C∞(R3; Ωℓ+1) correspond to the gradient (ℓ = 0), curl

(ℓ = 1), and divergence (ℓ = 2) operators in multivariable calculus. (However, this

requires us to identify forms of various degrees using the Euclidean inner product and
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so a more correct interpretation would feature the Hodge star operator, see (17.41)

below).

We list below the standard properties of the operator d:

• d2 = 0, that is

dℓ+1dℓu = 0 for all u ∈ C∞(M; Ωℓ); (17.18)

• if u ∈ C∞(M; Ωℓ) and v ∈ C∞(M; Ωm) then we have the Leibniz rule

d(u ∧ v) = (du) ∧ v + (−1)ℓu ∧ (dv); (17.19)

• if Φ : M → N is a smooth map, then for each v ∈ C∞(N ; Ω•) we have

d(Φ∗v) = Φ∗(dv). (17.20)

Note that in the example of R3 considered above, (17.18) corresponds to the curl of the

gradient, and the divergence of the curl, being zero. For the case ℓ = 0 and m = 1, 2,

the formula (17.19) corresponds to the formulas for the curl and the divergence of the

product of a function and a vector field.

17.1.3. Orientation, integration, and Stokes’s Theorem. We now discuss

integration of differential forms, which is perhaps the main reason why they are so

useful. To integrate a differential form in a coordinate invariant way one has to fix

only one additional piece of data: a choice of orientation on a manifold.

This is not a purely technical issue: certain quantities in multivariable calcu-

lus/physics such as work and flux are naturally dependent on the choice of direction of

travel. Mathematically this choice is expressed by fixing an orientation, and work and

flux are best thought of as integrals of differential forms. On the other hand, quantities

such as length, area, mass, or charge do not depend on the choice of orientation, and

are best thought of as integrals of densities (see §13.1.7).

We first define the concept of orientation on a vector space:

Definition 17.2. Let V be an n-dimensional real vector space. Denote by B(V) ⊂
Vn the set of bases on V. An orientation on V is a map

o : B(V) → {−1, 1}

such that for any linear isomorphism A : V → V and any (v1, . . . , vn) ∈ B(V) we have

o(Av1, . . . , Avn) = sgn(detA)o(v1, . . . , vn). (17.21)

We say that (v1, . . . , vn) ∈ B(V) is positively oriented with respect to o, if o(v1, . . . , vn) =

1, and negatively oriented otherwise.



236 17. DIFFERENTIAL FORMS AND HODGE THEORY

Each finite dimensional vector space has exactly two orientations. For Rn, these

are the standard orientation

o(v1, . . . , vn) = sgn det[v1 . . . vn],

where [v1 . . . vn] denotes the matrix with columns v1, . . . , vn, and the opposite orienta-

tion −o.
Next, let M be a manifold. A basis of TxM for some x is called a frame. An

orientation on M is defined to be a choice of orientation on each tangent space,

o(x) : B(TxM) → {−1, 1}, x ∈ M,

which is continuous in x (where continuity can be defined, for instance, using charts

on M). We say M is oriented if it is endowed with an orientation, and orientable if

there exists an orientation on M. There exist nonorientable manifolds, of which the

simplest example is the Möbius strip (or if one prefers a compact manifold without

boundary, the Klein bottle). If M is a connected orientable manifold, then it has

exactly two possible orientations.

For a diffeomorphism Φ : M → N of oriented manifolds M,N , we say that it is

orientation preserving if its differential maps any positively oriented frame on M to a

positively oriented frame on N , and orientation reversing if positively oriented frames

are mapped to negatively oriented ones.

We are now ready to define the integral of a differential form. Let M be an

oriented n-dimensional manifold with orientation o and u ∈ C∞
c (M; Ωn) be an n-form

on M. For any point x ∈ M, basis (v1, . . . , vn) ∈ B(TxM), and linear isomorphism

A : TxM → TxM we have

u(x)(Av1, . . . , Avn) = (detA)u(x)(v1, . . . , vn),

o(x)(Av1, . . . , Avn) = sgn(detA) o(x)(v1, . . . , vn)

where the first equality follows from (17.4). This implies that the map ou(x) :

B(TxM) → R satisfies

(ou)(x)(Av1, . . . , Avn) = | detA| (ou)(x)(v1, . . . , vn),

which means that ou is a density on M (see §13.1.7):

ou ∈ C∞
c (M; |Ω|).

Now we can define the integral of the differential form u by∫
M

u :=

∫
M
ou (17.22)

where the integral on the right is an integral of a density, defined in §13.1.7.
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Alternatively one can repeat the procedure in §13.1.7, breaking u into pieces sup-

ported in charts. If κ : U → V is a chart on M and suppu ⋐ U , then we have∫
M

u = ±
∫
V

u(x) dx where u ∈ C∞
c (V ), κ∗u = u(x) dx1 ∧ · · · ∧ dxn,

the integral on the right-hand side is the usual integral with respect to Lebesgue

measure, and the ± sign is + when κ is orientation preserving and − if κ is orientation

reversing.

The notion of integration extends naturally to u ∈ L1
c(M) and in fact to compactly

supported distributions, yielding the linear map

u ∈ E ′(M; Ωn) 7→
∫
M

u ∈ R. (17.23)

This map is equivariant under diffeomorphisms: if Φ : M → N is an orientation

preserving diffeomorphism then∫
M

Φ∗v =

∫
N
v for all v ∈ E ′(N ; Ωn). (17.24)

The key result on integration of differential forms is the following

Theorem 17.3 (Stokes’s Theorem for differential forms). Assume that M is a

compact n-dimensional oriented manifold with boundary ∂M and u ∈ C∞(M; Ωn−1).

Then ∫
M
du =

∫
∂M

u. (17.25)

Here du = dn−1u ∈ C∞(M; Ωn) is defined in (17.14).

Theorem 17.3 implies as special cases several theorems from multivariable calculus:

• the usual Fundamental Theorem of Calculus (M ⊂ R is an interval, n = 1);

• Fundamental Theorem of Calculus for line integrals (M ⊂ RN is a curve,

n = 1);

• Green’s Theorem (M ⊂ R2 is a domain, n = 2);

• Stokes’s Theorem (M ⊂ R3 is a surface, n = 2);

• Divergence Theorem in 3D (M ⊂ R3 is a domain, n = 3).

To make the statement of 17.3 precise we would have to define the notion of a manifold

with boundary and explain how an orientation on M naturally induces orientation

on ∂M – see for instance [Lee13, Theorem 16.11] for details. We do not develop this

here, since all we need is the following version:
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Theorem 17.4 (Stokes’s Theorem without boundary). Assume that M is an n-

dimensional oriented manifold without boundary and u ∈ C∞
c (M; Ωn−1) is an n − 1-

form on M. Then ∫
M
du = 0. (17.26)

In fact, the main case of Theorem 17.4 that we use below is when M is a compact

manifold without boundary, when every u ∈ C∞(M; Ωn−1) is automatically compactly

supported.

17.2. De Rham cohomology

We now review the de Rham cohomology theory. We again keep the presentation

brief and omit most proofs, sending the reader to [Lee13, Chapters 17–18] for de-

tails. This theory belongs to algebraic topology, which is a big field associating various

topological invariants to manifolds and more general topological spaces.

LetM be a manifold. Recall the exterior derivative dℓ : C
∞(M; Ωℓ) → C∞(M; Ωℓ+1)

defined in (17.14). The starting point of the de Rham theory is the identity (17.18),

namely dℓdℓ−1 = 0. It implies that the space of exact ℓ-forms, defined as

dℓ−1(C
∞(M; Ωℓ−1)) := {dℓ−1v | v ∈ C∞(M; Ωℓ−1)} (17.27)

is contained inside the space of closed ℓ-forms, defined as

kerC∞ dℓ := {u ∈ C∞(M; Ωℓ) | dℓu = 0}. (17.28)

The order ℓ de Rham cohomology space is defined as the quotient of the space of closed

forms by the space of exact forms:

Hℓ(M;R) :=
kerC∞ dℓ

dℓ−1(C∞(M; Ωℓ−1))
, (17.29)

which is a real vector space. The ℓ-th Betti number is defined as

bℓ(M) := dimHℓ(M;R) ∈ N0 ∪ {∞}. (17.30)

To each closed ℓ-form u ∈ kerC∞ dℓ corresponds its cohomology class

[u] ∈ Hℓ(M;R).

Here are some basic properties of de Rham cohomology:

• We have Hℓ(M;R) = {0} when ℓ > dimM, simply because Ωℓ = 0.

• If M is connected, then b0(M) = 1. Indeed, we have d−1(C
∞(M; Ω−1)) =

{0}, since Ω−1 = 0 by convention. On the other hand, kerC∞ d0 consists of

functions f ∈ C∞(M) which satisfy df = 0; since M is connected, such

functions are constant.
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• If M ⊂ Rn is an open subset which is convex (or more generally, star-shaped),

then Hℓ(M;R) = {0} for all ℓ ≥ 1. This is commonly known as the Poincaré

Lemma. In particular, this applies to M = Rn.

• If M is connected and u ∈ kerC∞ d1, then [u] = 0 if and only if the integral

of u on every closed curve in M is equal to 0. (In fact, the space H1(M;R) is
related to the fundamental group of M, as a corollary of Hurewicz’s theorem

in algebraic topology.)

Additional information about the cohomology of M is given by the product structure.

It follows from (17.19) that the wedge product of two closed forms is closed, and the

wedge product of a closed and an exact form is exact. Thus the wedge product descends

to cohomology:

[u] ∈ Hℓ(M;R), [v] ∈ Hm(M;R) 7→ [u ∧ v] ∈ Hℓ+m(M;R).

17.2.1. Some examples. A basic example of a manifold with nontrivial coho-

mology H1 is given by

Proposition 17.5. Let M := R2\{0}. Then b1(M) = 1 and H1(M;R) is spanned
by the cohomology class [u] of the closed 1-form

u :=
x1 dx2 − x2 dx1

x21 + x22
. (17.31)

The part of Proposition 17.5 that is easier to prove is the fact that [u] ̸= 0, that

is u is not exact. Indeed, if u = df for some f ∈ C∞(R2 \ {0}), then by Stokes’s

Theorem 17.4 we see that
∫
γ
u = 0 for any closed curve γ. However, for the curve

γ = {(cos t, sin t) | 0 ≤ t ≤ 2π}, oriented in the direction of increasing t, one can

compute
∫
γ
u = 2π. In fact, for a general immersed closed curve γ ⊂ R2 \ {0}, the

integral 1
2π

∫
γ
u is the (signed) winding number of γ about the origin.

A fundamental example of cohomology computation is that of the sphere Sn: we

have

bℓ(Sn) =

{
1, ℓ = 0 or ℓ = n,

0, otherwise.
(17.32)

Another example is given by compact connected oriented surfaces. Such surfaces are

characterized by their genus g ∈ N0 which can be interpreted as the ‘number of holes’:

in particular the sphere S2 has genus 0 and the torus T2 has genus 1. If M is a compact

connected oriented surface of genus g, then

b0(M) = b2(M) = 1, b1(M) = 2g.
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As an application of Hodge theory, we will show below (see §17.3.5) that on a com-

pact manifold M (without boundary) of dimension n the spaces Hℓ(M;R) are fi-

nite dimensional and if M is additionally orientable, then we have Poincaré duality

bn−ℓ(M) = bℓ(M); in particular if M is connected then bn(M) = 1.

17.3. Hodge theory

Hodge theory is the theory of differential forms on oriented Riemannian manifolds.

The choice of metric and orientation induces several operations on differential forms:

• an inner product on the fibers of Ω•,

• the Hodge star operators ⋆ℓ : C
∞(M; Ωℓ) → C∞(M; Ωn−ℓ) where n = dimM,

• the codifferentials d∗ℓ : C
∞(M; Ωℓ+1) → C∞(M; Ωℓ),

• the Dirac operator d+ d∗ : C∞(M; Ω•) → C∞(M; Ω•),

• and the Hodge Laplacian ∆g = (d+ d∗)2.

We define these in §§17.3.1–17.3.3.

We next specialize to compact manifolds and prove Hodge’s Theorem which gives

a bijection between de Rham cohomology classes and harmonic forms, which are ele-

ments of the kernel of the Dirac operator (or equivalently, the Hodge Laplacian). The

key ingredient of the proof is the Fredholm property of d+ d∗ which follows from The-

orem 15.13. As an application of Hodge’s Theorem, we prove Poincaré duality. We

also discuss degree theory.

17.3.1. Inner product on exterior powers and the Hodge star. We first

define an inner product on exterior powers of vector spaces studied in §17.1.1 above.

Let V be a finite dimensional real vector space with a fixed inner product ⟨•, •⟩V .
Then we have a natural inner product on each exterior power ∧ℓV∗, defined as follows:

Lemma 17.6. There exists unique inner product ⟨•, •⟩∧ℓV∗ on ∧ℓV∗ such that for

all u1, . . . ,uℓ,v1, . . . ,vℓ ∈ V∗ we have

⟨u1 ∧ · · · ∧ uℓ,v1 ∧ · · · ∧ vℓ⟩∧ℓV∗ = det
(
(⟨uj,vk⟩V∗)ℓj,k=1

)
(17.33)

where ⟨•, •⟩V∗ is the inner product on the dual space V∗ induced by ⟨•, •⟩V .

Proof. Fixing an orthonormal basis of V , we identify it with the space Rn with

the standard Euclidean inner product. Both sides of (17.33) are linear in each of the

vectors uj, vk, thus for (17.33) to hold in general it is enough for it to hold when

each of the vectors u1, . . . ,uℓ,v1, . . . ,vℓ is equal to one of the canonical basis vectors

dx1, . . . , dxn ∈ (Rn)∗. In this case each u1 ∧ · · · ∧ uℓ is either zero or equal to ±dxI
where dxI is an element of the basis (17.2), and same is true for v1∧· · ·∧vℓ. It follows
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that (17.33) holds if and only if

{dxI | I ⊂ {1, . . . , n}, #(I) = ℓ} is orthonormal with respect to ⟨•, •⟩∧ℓV∗ (17.34)

which gives the desired existence and uniqueness statement. □

One can also define the inner product on the total exterior algebra ∧•V∗, by making

the spaces ∧ℓV∗ orthogonal to each other for different ℓ. If V = Rn, this is the inner

product in which the basis {dxI | I ⊂ {1, . . . , n}} is orthonormal.

Assume next that in addition to an inner product, we fix an orientation o on V (see

Definition 17.2). Define the volume form d volV ∈ ∧nV∗, where n = dimV , as follows:
for any basis v1, . . . , vn ∈ V

d volV(v1, . . . , vn) = o(v1, . . . , vn)
√
det

(
(⟨vj, vk⟩V)nj,k=1

)
. (17.35)

To see that this is indeed an element of ∧nV∗, note that if V is equal to Rn with the

Euclidean inner product, then d volV = dx1 ∧ · · · ∧ dxn, that is d volV(v1, . . . , vn) =

det[v1 . . . vn] where [v1 . . . vn] is the matrix with columns v1, . . . , vn ∈ Rn (see (17.3)).

We now define the Hodge star operator:

Lemma 17.7. Assume that V is an n-dimensional vector space with given inner

product and orientation. Let v ∈ ∧ℓV∗. Then there exists unique ⋆ℓv ∈ ∧n−ℓV∗ such

that

u ∧ (⋆ℓv) = ⟨u,v⟩∧ℓV∗ d volV for all u ∈ ∧ℓV∗. (17.36)

We call ⋆ℓv the Hodge star of v.

Proof. For each u ∈ ∧ℓV∗ and w ∈ ∧n−ℓV∗, the wedge product u∧w lies in ∧nV∗

which is a one-dimensional vector space spanned by d volV . The map

u ∈ ∧ℓV∗ 7→ u ∧w

d volV
∈ R

is a linear functional, therefore it is equal to u 7→ ⟨u, Tw⟩∧ℓV∗ for some Tw ∈ ∧ℓV∗.

In other words,

u ∧w = ⟨u, Tw⟩∧ℓV∗ d volV for all u ∈ ∧ℓV∗.

This defines a linear map T : ∧n−ℓV∗ → ∧ℓV∗. This map is invertible: indeed, the

spaces ∧n−ℓV∗ and ∧ℓV∗ have the same dimension
(
n
ℓ

)
, and T is injective since a

computation using the basis (17.2) shows that if u ∧ w = 0 for all u ∈ ∧ℓV∗, then

u = 0.

Now the Hodge star of v is equal to ⋆ℓv = T−1v. □

Lemma 17.7 defines the linear operators

⋆ℓ : ∧ℓV∗ → ∧n−ℓV∗. (17.37)
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Putting these operators together, we get the Hodge star operator on the total exterior

algebra

⋆ : ∧•V∗ → ∧•V∗. (17.38)

The next proposition lists the standard properties of Hodge star. We leave the proof

as an exercise below.

Proposition 17.8. 1. The operator ⋆ℓ is equal to its own inverse up to sign, more

precisely we have

⋆ℓ ⋆n−ℓ = (−1)ℓ(n−ℓ). (17.39)

2. The operator ⋆ℓ is an isometry with respect to the inner products ⟨•, •⟩∧ℓV∗

and ⟨•, •⟩∧n−ℓV∗.

We now give explicit formulas for the Hodge star operator on R2 and R3 with the

Euclidean inner product and the standard orientation. We leave the verification as an

exercise below.

• On R2, we have

⋆(1) = dx1 ∧ dx2, ⋆ (dx1 ∧ dx2) = 1,

⋆(dx1) = dx2, ⋆ (dx2) = −dx1.
(17.40)

In particular, the operator ⋆1 : (R2)∗ → (R2)∗ is the counterclockwise rotation

by angle π
2
.

• On R3, we have

⋆(1) = dx1 ∧ dx2 ∧ dx3, ⋆ (dx1 ∧ dx2 ∧ dx3) = 1,

⋆(dx1) = dx2 ∧ dx3, ⋆ (dx2 ∧ dx3) = dx1,

⋆(dx2) = dx3 ∧ dx1, ⋆ (dx3 ∧ dx1) = dx2,

⋆(dx3) = dx1 ∧ dx2, ⋆ (dx1 ∧ dx2) = dx3.

(17.41)

In particular, if u,v ∈ (R3)∗, then ⋆2(u∧v) is equal to the cross product of u

and v.

17.3.2. The d∗ operator. Let (M, g) be an n-dimensional oriented Riemannian

manifold. For each x ∈ M, the tangent space TxM has the inner product given by

g(x) and the orientation coming from the orientation on M. Thus Lemma 17.7 defines

the Hodge star operator

⋆ℓ(x) : Ω
ℓ(x) → Ωn−ℓ(x), x ∈ M.

This operator depends smoothly on x and thus defines a bundle homomorphism ⋆ℓ ∈
C∞(M; Hom(Ωℓ → Ωn−ℓ)), see §13.1.8. This bundle homomorphism acts on differen-

tial forms as a 0-th order differential operator:

⋆ℓ : C
∞(M; Ωℓ) → C∞(M; Ωn−ℓ), ⋆ : C∞(M; Ω•) → C∞(M; Ω•). (17.42)
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We now study the differential operator

d∗ℓ ∈ Diff1(M; Ωℓ+1 → Ωℓ)

which is the adjoint of the exterior derivative dℓ defined in (17.14). (Note that the

is the same as the transpose of dℓ, since all the operators studied act on real-valued

forms.)

To make sense of d∗ℓ , we first have to fix an inner product on L2
c(M; Ωℓ) for all ℓ.

Using (16.7), we see that one needs to fix a positive density on M and an inner product

on each fiber Ωℓ(x). We take the density d volg induced by the metric g (see (13.29))

and the inner product ⟨•, •⟩Ωℓ(x) induced by g(x), defined in Lemma 17.6. This gives

the following inner product on L2
c(M; Ωℓ):

⟨u,v⟩L2(M;Ωℓ) :=

∫
M
⟨u(x),v(x)⟩Ωℓ(x) d volg(x) for all u,v ∈ L2

c(M; Ωℓ). (17.43)

The integral in (17.43) can be interpreted as an integral of a differential form, if we let

d volg ∈ C∞(M; Ωn) be the volume form defined in (17.35), which is just the product

of the Riemannian volume density given by (13.29) and the orientation on M. Thus

Lemma 17.7 gives the following formula for the inner product (17.43):

⟨u,v⟩L2(M;Ωℓ) =

∫
M

u ∧ (⋆ℓv) for all u,v ∈ L2
c(M; Ωℓ). (17.44)

Here the right-hand side is an integral of a differential n-form.

We are now ready to compute the adjoint (which again, is the same as the trans-

pose) of dℓ:

Lemma 17.9. Define the differential operator

d∗ℓ := (−1)nℓ+1 ⋆n−ℓ dn−ℓ−1⋆ℓ+1 ∈ Diff1(M; Ωℓ+1 → Ωℓ). (17.45)

Then d∗ℓ is the adjoint of dℓ in the following sense:

⟨dℓu,v⟩L2(M;Ωℓ+1) = ⟨u, d∗ℓv⟩L2(M;Ωℓ)

for all u ∈ C∞(M; Ωℓ), v ∈ C∞
c (M; Ωℓ+1).

(17.46)

Proof. Let u,v be as in (17.46). We compute

⟨dℓu,v⟩L2(M;Ωℓ+1) − ⟨u, d∗ℓv⟩L2(M;Ωℓ) =

∫
M
(dℓu) ∧ (⋆ℓ+1v)− u ∧ (⋆ℓ d

∗
ℓv)

=

∫
M
dn−1

(
u ∧ (⋆ℓ+1v)

)
= 0,

giving (17.46). Here in the first equality we used (17.44), in the second equality we

used (17.19), (17.39), and (17.45), and the last equality follows from Stokes’s Theo-

rem 17.4. □
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Putting the operators d∗ℓ together, we get the total codifferential operator

d∗ ∈ Diff1(M; Ω• → Ω•). (17.47)

We remark that by definition, d∗0 = 0. Moreover, since d2 = 0 by (17.18), we have

(d∗)2 = 0 as well:

d∗ℓ−1d
∗
ℓ = 0. (17.48)

As an example, we use (17.17) (and its analog on R2) together with (17.40) and (17.41)

to compute the codifferential in R2 and R3 with the Euclidean metric:

• On R2, we have

d∗0(u1(x) dx1 + u2(x) dx2) = −(∂x1u1(x) + ∂x2u2(x)),

d∗1(f(x) dx1 ∧ dx2) = ∂x2f(x) dx1 − ∂x1f(x) dx2
(17.49)

That is, d∗0 corresponds to divergence and d∗1 corresponds to gradient rotated

by angle π
2
.

• On R3, we have

d∗0(u1(x) dx1 + u2(x) dx2 + u3(x) dx3) = −(∂x1u1(x) + ∂x2u2(x) + ∂x3u3(x)),

d∗1(u23(x) dx2 ∧ dx3) = ∂x3u23(x) dx2 − ∂x2u23(x) dx3,

d∗1(u31(x) dx3 ∧ dx1) = ∂x1u31(x) dx3 − ∂x3u31(x) dx1,

d∗1(u12(x) dx1 ∧ dx2) = ∂x2u12(x) dx1 − ∂x1u12(x) dx2,

(17.50)

and

d∗2(f(x) dx1 ∧ dx2 ∧ dx3)
= −(∂x1f(x) dx2 ∧ dx3 + ∂x2f(x) dx3 ∧ dx1 + ∂x3f(x) dx1 ∧ dx2).

(17.51)

We see that d∗0 corresponds to divergence, d∗1 to curl, and d∗2 to gradient.

Remark 17.10.X An attentive reader might have noticed that we actually do not

need to fix an orientation on M to define the inner product (17.43) and the codifferen-

tial operator d∗. However, having an orientation lets us access the Hodge star operator,

which makes the formulas nicer, and it will also be used in the proof of Poincaré duality

(Theorem 17.18) below.

Remark 17.11.X For readers familiar with Riemannian geometry, one can check

that on any oriented Riemannian manifold (M, g), if X ∈ C∞(M;TM) is a vector

field and X♭ is the 1-form corresponding to X by the metric, then the function d∗0X
♭

is equal to minus the divergence of X with respect to the Levi–Civita connection.
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17.3.3. The Dirac operator and the Hodge Laplacian. As in §17.3.2 above,

let (M, g) be an n-dimensional oriented Riemannian manifold. The operators d, d∗ ∈
Diff1(M; Ω• → Ω•) cannot be elliptic if n ≥ 2: for example, d maps functions (sections

of the 1-dimensional trivial bundle) to 1-forms (sections of the n-dimensional cotangent

bundle). However, if we add these together then we obtain the Dirac operator

d+ d∗ ∈ Diff1(M; Ω• → Ω•) (17.52)

which, as we show below, is elliptic. Note that d+ d∗ does not respect the degree of a

differential form: for example, if u is a 1-form then (d + d∗)u is the sum of a 0-form

and a 2-form. Nevertheless, it switches the parity of the degree. More precisely, if we

decompose the bundle Ω• defined in (17.9) as

Ω• = Ωeven ⊕ Ωodd where Ωeven :=
⊕
ℓ even

Ωℓ, Ωodd :=
⊕
ℓ odd

Ωℓ (17.53)

then the operator d+ d∗ is the direct sum of its restrictions

(d+ d∗)even ∈ Diff1(M; Ωeven → Ωodd),

(d+ d∗)odd ∈ Diff1(M; Ωodd → Ωeven).
(17.54)

Before proceeding with the general properties of the operator d + d∗, let us compute

it for R2 and R3 with the Euclidean metric, using (17.17) and (17.49)–(17.51). Since

Ω• in these cases is the trivial bundle, we fix a frame on Ω• and think of the operator

d+ d∗ as a matrix of first order differential operators.

• On R2 in the frame 1, dx1 ∧ dx2; dx1, dx2, we have

(d+ d∗)even =

(
∂x1 ∂x2
∂x2 −∂x1

)
, (d+ d∗)odd =

(
−∂x1 −∂x2
−∂x2 ∂x1

)
. (17.55)

In other words,

d+ d∗ =


0 0 −∂x1 −∂x2
0 0 −∂x2 ∂x1
∂x1 ∂x2 0 0

∂x2 −∂x1 0 0

 . (17.56)
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• On R3 in the frame 1, dx2∧dx3, dx3∧dx1, dx1∧dx2; dx1∧dx2∧dx3, dx1, dx2, dx3,
we have

(d+ d∗)even =


0 ∂x1 ∂x2 ∂x3
∂x1 0 −∂x3 ∂x2
∂x2 ∂x3 0 −∂x1
∂x3 −∂x2 ∂x1 0

 ,

(d+ d∗)odd =


0 −∂x1 −∂x2 −∂x3

−∂x1 0 −∂x3 ∂x2
−∂x2 ∂x3 0 −∂x1
−∂x3 −∂x2 ∂x1 0

 .

(17.57)

The following lemma is used in the proof of Hodge’s Theorem in §17.3.4 below.

Lemma 17.12. The Dirac operator d + d∗ ∈ Diff1(M; Ω• → Ω•) is elliptic in the

sense of Theorem 14.23.

Proof. We need to show that for each (x0, ξ0) ∈ T ∗M with ξ0 ̸= 0, the principal

symbol σ1(d+d
∗)(x0, ξ0) is an invertible linear map on (the complexification of) Ω•(x0).

Since σ1(d + d∗)(x, ξ) is homogeneous of degree 1 in ξ, without loss of generality we

may assume that ⟨ξ0, ξ0⟩g(x0) = 1.

To simplify the computation, fix a chart κ : U → V on M such that x0 ∈ U and

κ(x0) = 0, dκ(x0)−T ξ0 = dx1, κ∗g(0) =
n∑
j=1

dx2j .

Then we need to compute the principal symbol of κ∗(d + d∗) at (0, dx1) ∈ T ∗V and

show that it is an invertible linear map on (the complexification of) ∧•(Rn)∗.

We start with the principal symbol of κ∗d, which is equal to the operator d on V

by (17.20). Using the formula (17.15) we compute

σ1(κ∗d)(0, dx1)v = i dx1 ∧ v for all v ∈ ∧•(Rn)∗.

In the standard basis of ∧•(Rn)∗ given by (17.2) we have for all I ⊂ {1, . . . , n}

σ1(κ∗d)(0, dx1)dxI =

{
0, 1 ∈ I,

i dxI∪{1}, 1 /∈ I.
(17.58)

To compute the symbol σ1(κ∗d
∗)(0, dx1)dxI , one could use the fact that κ∗d

∗ is the

d∗ operator for the metric κ∗g and the formula (17.45). Here the Hodge star is a 0-th

order differential operator, and its symbol at (0, dx1) depends only on κ∗g(0) which is

the Euclidean metric.

However, we instead use that κ∗d
∗ is the adjoint of κ∗d with respect to the inner

product on L2(V ; Ω•) induced by the metric κ∗g. Then the vector bundle version of the

Adjoint Rule (13.52) implies that σ1(κ∗d
∗)(0, dx1) is the adjoint of σ1(κ∗d)(0, dx1) with
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respect to the Hermitian inner product on (the complexification of) ∧•(Rn)∗ induced by

the Euclidean inner product κ∗g(0). Recalling (17.34) we see that this inner product

has an orthonormal basis {dxI}I⊂{1,...,n}. Using (17.58) we then compute

σ1(κ∗d
∗)(0, dx1)dxI =

{
−i dxI\{1}, 1 ∈ I,

0, 1 /∈ I.
(17.59)

Adding (17.58) and (17.59) we see that

σ1(κ∗(d+ d∗))(0, dx1)dxI =

{
−i dxI\{1}, 1 ∈ I,

i dxI∪{1}, 1 /∈ I,
(17.60)

which implies that σ1(κ∗(d + d∗))(0, dx1) is an invertible linear operator on the com-

plexification of ∧•(Rn)∗, finishing the proof.

(The above computation is somewhat abstract and relies on the version of Adjoint

Rule (13.52) for vector bundles, which has not been properly developed even though

it follows by a direct computation from the usual Adjoint Rule. The reader is strongly

encouraged to look at the coefficients of ∂x1 in (17.56) and (17.57) to see that the

formula (17.60) does hold in these special cases.) □

We next define the Hodge Laplacian as the square of the Dirac operator:

∆g := (d+ d∗)2 ∈ Diff2(M; Ω• → Ω•). (17.61)

Since d2 = (d∗)2 = 0 by (17.18) and (17.48), we have the following alternative formula

for the Hodge Laplacian:

∆g = dd∗ + d∗d. (17.62)

Since d maps ℓ-forms to ℓ + 1-forms and d∗ maps ℓ + 1-forms to ℓ-forms, we see that

∆g maps ℓ-forms to ℓ-forms, for any ℓ. That is, the Hodge Laplacian is the direct sum

of its restrictions

∆g,ℓ ∈ Diff2(M; Ωℓ → Ωℓ). (17.63)

Note that, as d∗ is the adjoint of d (see Lemma 17.9), the Dirac operator and the

Hodge Laplacian are both self-adjoint (or equivalently, equal to their own transposes

since we are working on real bundles):

(d+ d∗)∗ = d+ d∗, ∆∗
g = ∆g. (17.64)

A direct calculation using (17.55) shows that on R2 with the Euclidean metric, the

Hodge Laplacian is just a diagonal matrix with entries −∆0 where ∆0 = ∂2x1 + ∂2x2 is

the usual scalar Laplacian:

∆g =


−∆0 0 0 0

0 −∆0 0 0

0 0 −∆0 0

0 0 0 −∆0

 . (17.65)
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A similar calculation using (17.57) shows that the same is true for R3. We note that

for R3, the formula (17.62) on 1-forms gives the curl of curl identity in multivariable

calculus. The same form of the Hodge Laplacian is valid on any Rn with the Euclidean

metric, which follows by a direct computation which we do not give here.

For general (M, g), the operator ∆g,0 = d∗0d0 ∈ Diff2(M) is equal to −∆g where

∆g is the Laplace–Beltrami operator, as follows from (13.63) and (17.46). Moreover, as

one can show using the formula (17.60) for the principal symbol of the Dirac operator

in the proof of Lemma 17.12 above and the vector bundle version of the Product

Rule (13.49), the principal symbol of the Hodge Laplacian is given by

σ2(∆g)(x, ξ) = ⟨ξ, ξ⟩g(x)I for all (x, ξ) ∈ T ∗M (17.66)

where I is the identity homomorphism on Ω•(x).

Remark 17.13.X This remark is not directly relevant to the analytical results of

this chapter, since the metric used is not positive definite, so the ‘Laplacian’ obtained

here is really a wave operator, and in particular not elliptic. However, it is a connection

of Hodge theory to physics which I could not resist including in these notes.

Consider the space R4 = Rt × R3
x with the Minkowski ‘metric’

g = −dt2 + dx21 + dx22 + dx23.

Note that g is a nondegenerate quadratic form on R4 but it is not positive definite; it

gives what is known a Lorentzian metric instead of a Riemannian metric. The for-

mula (17.33) produces the quadratic form on Ω• = ∧•(R4)∗ in which the basis elements

dxI from (17.2) are orthogonal to each other and we have in particular

⟨u,u⟩∧2(R4)∗ =

{
1, u ∈ {dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2},
−1, u ∈ {dt ∧ dx1, dt ∧ dx2, dt ∧ dx3}.

The volume form is d vol = dt ∧ dx1 ∧ dx2 ∧ dx3. The Hodge star operator is defined

in the same way as in Lemma 17.7 and we compute

⋆(dx2 ∧ dx3) = dt ∧ dx1, ⋆(dx3 ∧ dx1) = dt ∧ dx2, ⋆(dx1 ∧ dx2) = dt ∧ dx3,
⋆(dt ∧ dx1) = −dx2 ∧ dx3, ⋆(dt ∧ dx2) = −dx3 ∧ dx1, ⋆(dt ∧ dx3) = −dx1 ∧ dx2.

Now, let u ∈ C∞(R4; Ω2) be a 2-form. We write the analogue of the harmonic form

equations du = d∗u = 0 from (17.73) below; by Lemma 17.9 these are equivalent to

du = 0, d(⋆u) = 0. (17.67)

Let us write u in the form

u = dt ∧ (E1 dx1 + E2 dx2 + E3 dx3) + (B1 dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2)
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where E = (E1, E2, E3) and B = (B1, B2, B3) are smooth maps from R4 to R3. Then

the equations (17.67) can be rewritten using the vector calculus operators curl and div

(acting in the x variables only) as follows:

∂tB = − curlE,

divB = 0,

∂tE = curlB,

divE = 0.

(17.68)

These are (in the right choice of units) the vacuum Maxwell’s equations, describ-

ing electrodynamics: here E is the electric field and B is the magnetic field. Note

that (17.67) implies the ‘Hodge d’Alembertian equation’ (dd∗+ d∗d)u = 0, which is the

same as each component of E,B solving the wave equation.

17.3.4. Harmonic forms and Hodge’s Theorem. As before, let (M, g) be an

n-dimensional oriented Riemannian manifold. We now additionally assume that M is

compact. The Dirac operator d+d∗ ∈ Diff1(M; Ω• → Ω•) is elliptic by Lemma 17.12, so

by Theorem 14.23 we see that any solution u ∈ D′(M; Ω•) to the equation (d+d∗)u = 0

is smooth. These solutions are called harmonic forms and they are characterized by

Lemma 17.14. Let (M, g) be a compact oriented Riemannian manifold and u ∈
C∞(M; Ω•) be a differential form on M. Then the following are equivalent:

du = d∗u = 0; (17.69)

(d+ d∗)u = 0; (17.70)

∆gu = 0. (17.71)

Proof. Since ∆g = (d+ d∗)2, it is easy to see that (17.69) ⇒ (17.70) ⇒ (17.71).

Thus it remains to assume that ∆gu = 0 and show that du = d∗u = 0. By (17.62)

and since d∗ is the adjoint of d by (17.46), we compute

0 = ⟨∆gu,u⟩L2(M;Ω•) = ⟨dd∗u,u⟩L2(M;Ω•) + ⟨d∗du,u⟩L2(M;Ω•)

= ⟨d∗u, d∗u⟩L2(M;Ω•) + ⟨du, du⟩L2(M;Ω•)

(17.72)

implying that du = d∗u = 0 as needed. □

Denote by H •(M) the space of harmonic forms of all degrees:

H •(M) := {u ∈ C∞(M; Ω•) | du = d∗u = 0}. (17.73)

This space is finite dimensional by Theorem 15.13 applied to the operator d+d∗, which

is elliptic by Lemma 17.12:

dimH •(M) <∞. (17.74)
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As follows from its definition, the space H •(M) is the direct sum of the spaces of

harmonic forms of specific degrees:

H •(M) =
n⊕
ℓ=0

H ℓ(M)

where H ℓ(M) := {u ∈ C∞(M; Ωℓ) | dℓu = 0, d∗ℓ−1u = 0}.
(17.75)

The spaces H ℓ(M) depend on the choice of the metric g; however, as we will see in

Theorem 17.17 below, their dimension is independent of g.

We are now ready to prove the main results of this chapter.

Theorem 17.15 (Hodge’s Theorem). Assume that (M, g) is a compact oriented

Riemannian manifold. For any ℓ, we have the Hodge decomposition

C∞(M; Ωℓ) = H ℓ(M)⊕ dℓ−1

(
C∞(M; Ωℓ−1)

)
⊕ d∗ℓ

(
C∞(M; Ωℓ+1)

)
. (17.76)

That is, any smooth differential form can be written in a unique way as the sum of a

harmonic form, an exact form (an element of the range of d), and a coexact form (an

element of the range of d∗).

Remark 17.16.X As in Remark 17.10, orientability is not actually necessary for

Theorem 17.15 and Theorem 17.17 below to hold.

Proof. 1. First of all, arguing similarly to (17.72) (taking the L2-inner product

with v) we see that for each v ∈ C∞(M; Ω•)

d∗dv = 0 =⇒ dv = 0, (17.77)

dd∗v = 0 =⇒ d∗v = 0. (17.78)

We now show that the sum in (17.76) is direct, that is if

0 = h+ dv + d∗w, h ∈ H •, v,w ∈ C∞(M; Ω•), (17.79)

then h = dv = d∗w = 0. To see this, we apply d∗ and d to (17.79) and use that

d2 = (d∗)2 = 0 by (17.18) and (17.48) to get

d∗dv = 0, dd∗w = 0,

which by (17.77)–(17.78) gives dv = d∗w = 0 and thus h = 0 as well.

2. We next show that for each u ∈ C∞(M; Ω•) we can write

u = h+ dv + d∗v for some h ∈ H •(M), v ∈ C∞(M; Ω•). (17.80)

This is the step where we use the theory of elliptic operators developed in the earlier

chapters. The Dirac operator d+ d∗ ∈ Diff1(M; Ω• → Ω•) is elliptic by Lemma 17.12

and the manifold M is compact, so by the formula (15.32) in the statement of the

Fredholm property (Theorem 15.13) we see that for any s ∈ R and ũ ∈ Hs(M; Ω•)
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we have (noting that there is no difference between transpose and adjoint for opera-

tors on real-valued forms and the operator d + d∗ is self-adjoint by (17.64); see also

Remark 15.2)

ũ = (d+ d∗)v for some v ∈ Hs+1(M; Ω•)

⇕

⟨ũ, h̃⟩L2(M;Ω•) = 0 for all h̃ ∈ ker(d+ d∗).

(17.81)

By Lemma 17.14, the space ker(d+d∗) is the same as the space H • of harmonic forms.

Take arbitrary u ∈ C∞(M; Ω•) and decompose it as

u = h+ ũ where h ∈ H •(M)

and ũ ∈ C∞(M; Ω•) is orthogonal to H •(M) with respect to the inner product

on L2(M; Ω•). Fix s ∈ R. Then (17.81) implies that ũ = (d + d∗)v for some v ∈
Hs+1(M; Ω•), and we have v ∈ C∞(M; Ω•) by Theorem 14.23. This gives existence

of the decomposition (17.80).

3.S We now show that C∞(M; Ωℓ) is contained in the right-hand side of (17.76).

Let u ∈ C∞(M; Ωℓ) and write it in the form (17.80) for some h ∈ H •(M) and

v ∈ C∞(M; Ω•). We decompose

h =
n∑
r=0

hr, v =
n∑
r=0

vr

where hr ∈ H r(M) and vr ∈ C∞(M; Ωr). Taking the part of (17.80) corresponding

to Ωℓ we see that

u = hℓ + dvℓ−1 + d∗vℓ+1 (17.82)

which shows that u lies in the right-hand side of (17.76). □

As an application of Theorem 17.15 we show that harmonic ℓ-forms are in one to

one correspondence with de Rham cohomology classes reviewed in §17.2, in fact each

cohomology class contains a unique harmonic form:

Theorem 17.17. Assume that (M, g) is a compact oriented Riemannian manifold.

For each ℓ we have the decomposition featuring the spaces of closed and exact forms

introduced in (17.28) and (17.27)

kerC∞ dℓ = H ℓ(M)⊕ dℓ−1(C
∞(M; Ωℓ−1)). (17.83)

Moreover, the space H ℓ(M) of harmonic forms is isomorphic to the de Rham coho-

mology space Hℓ(M;R) defined in (17.29).

Proof. The sum on the right-hand side of (17.83) is direct by (17.76) and it is

contained in the left-hand side of (17.83). Thus it remains to show that each u ∈
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C∞(M; Ωℓ) such that du = 0 can be written as the sum of a harmonic form and a

closed form. Let us write the decomposition (17.76) for u:

u = h+ dv + d∗w where h ∈ H ℓ(M), v ∈ C∞(M; Ωℓ−1), w ∈ C∞(M; Ωℓ+1).

Applying d to both sides and using that du = dh = 0 and d2 = 0 by (17.18), we see

that dd∗w = 0. By (17.78) this shows that d∗w = 0. Thus u = h+ dv, which finishes

the proof of (17.83).

Finally, consider the map from harmonic forms to their cohomology classes:

h ∈ H ℓ(M) 7→ [h] ∈ Hℓ(M;R). (17.84)

By (17.83) this map is an isomorphism. □

17.3.5. Applications of Hodge theory. Theorem 17.17 and (17.74) imply that

whenM is a compact manifold, its de Rham cohomology groups are finite dimensional:

bℓ(M) = dimHℓ(M;R) = dimH ℓ(M) <∞. (17.85)

Another consequence of this theorem is the de Rham version of Poincaré duality for

the Betti numbers (17.30):

Theorem 17.18. Assume that M is a compact orientable manifold. Then we have

for all ℓ = 0, . . . , n

bℓ(M) = bn−ℓ(M). (17.86)

Remark 17.19.X Unlike Theorems 17.15 and 17.17, Theorem 17.18 uses ori-

entability of M in an essential way, via the existence of the Hodge star operator.

In fact, if M is connected and not orientable, then Hn(M;R) = {0} in contrast

with (17.89) below, see for example [Lee13, Theorem 17.34].

Proof. Fix an orientation and a Riemannian metric on M. By Theorem 17.17,

we have bℓ(M) = dimH ℓ(M). Recalling the formula (17.45) for the operator d∗ and

the identity (17.39), we see that for each u ∈ C∞(M; Ωℓ) we have

du = 0 ⇐⇒ d∗(⋆u) = 0,

d∗u = 0 ⇐⇒ d(⋆u) = 0.

Thus the Hodge star operator ⋆ℓ restricts to a linear isomorphism

⋆ℓ : H ℓ(M) → H n−ℓ(M) (17.87)

which implies (17.86). □

As a corollary of (17.87), if M is a compact connected oriented Riemannian man-

ifold then we can compute the highest and lowest degree harmonic forms on M:

H 0(M) = R1, H n(M) = R d volg (17.88)
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where d volg ∈ C∞(M; Ωn) is the volume form induced by the metric g and the choice

of orientation, see the paragraph following (17.43). In particular, we have

b0(M) = bn(M) = 1. (17.89)

We finish this subsection with a simple formula for the index of the even and odd parts

of the Dirac operator d+ d∗, see §15.3.3 and (17.54):

Proposition 17.20. Let M be a compact oriented Riemannian manifold. Then

ind(d+ d∗)even = − ind(d+ d∗)odd =
n∑
ℓ=0

(−1)ℓbℓ(M). (17.90)

The expression on the right-hand side of (17.90) is called the Euler characteristic

of M.

Proof. Since d + d∗ is self-adjoint (see (17.64)) and the spaces C∞(M; Ωeven)

and C∞(M; Ωodd) are orthogonal to each other with respect to the L2(M; Ω•)-inner

product, we have (
(d+ d∗)even

)∗
= (d+ d∗)odd.

By (15.42) (where there is no difference between transpose and adjoint since we are

working with real bundles), we have

ind(d+ d∗)even = − ind(d+ d∗)odd = dimker(d+ d∗)even − dimker(d+ d∗)odd.

Next, Lemma 17.14 shows that

ker(d+ d∗)even =
⊕
ℓ even

H ℓ(M), ker(d+ d∗)odd =
⊕
ℓ odd

H ℓ(M).

Now (17.90) follows from Theorem 17.17. □

17.3.6. Degree theory. Assume that M,N are two compact connected oriented

manifolds of the same dimension. Let

Φ : M → N

be a smooth map (not necessarily a diffeomorphism). In this section, we define a

topological invariant corresponding to Φ, called the degree of Φ. We next use this

invariant to give a proof of the Hairy Ball Theorem.

We first make a few preliminary definitions:

Definition 17.21. 1. Let x ∈ M. We say that x is a regular point for Φ, if the

linear map dΦ(x) : TxM → TΦ(x)N is invertible. In this case, we define

sgn det dΦ(x) ∈ {1,−1}

to be equal to 1 if dΦ(x) is orientation preserving (with respect to the orientations fixed

on M, N ) and −1 otherwise.
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2. Let y ∈ N . We say that y is a regular value for Φ if each x ∈ Φ−1(y) is a

regular point for Φ. (This includes the case when Φ−1(y) = ∅.)

Any smooth map Φ has a regular value. In fact, Sard’s Theorem [Lee13, Theo-

rem 6.10] shows that the set of non-regular values of Φ has Lebesgue measure 0 in N .

Note that if y is a regular value, then Φ−1(y) has to consist of isolated points and thus

is a finite set.

We can now give the definition of the degree. We in fact give two definitions and

the statement below shows that they coincide.

Theorem 17.22. Let M,N be compact connected oriented manifolds of the same

dimension n and Φ : M → N be a smooth map. Then there exists an integer

deg Φ ∈ Z, (17.91)

called the degree of Φ, with the following properties:

(1) for any n-form v ∈ C∞(N ; Ωn), we have∫
M

Φ∗v = (degΦ)

∫
N
v (17.92)

where Φ∗v ∈ C∞(M; Ωn) is the pullback of v by Φ, defined in (17.11);

(2) for any y ∈ N which is a regular value of Φ, we have

deg Φ =
∑

x∈Φ−1(y)

sgn det dΦ(x). (17.93)

Before proceeding to the proof, let us give a few remarks:

• If Φ is an orientation preserving diffeomorphism, then deg Φ = 1 as follows

from either (17.24) or (17.93). Similarly, if Φ is an orientation reversing dif-

feomorphism, then deg Φ = −1.

• If Φ is not onto then, taking y ∈ N \Φ(M) in (17.93), we see that deg Φ = 0.

• From (17.92) we see that the degree of the composition of two maps is the

product of their degrees.

• As an example, if M = N = S1 := R/Z and Φ(x) = mx mod Z for some

m ∈ Z, then deg Φ = m, as can be seen from either (17.92) (taking v = dx,

in which case Φ∗v = mdx) or (17.93). If we think of S1 as the unit circle

in C, then Φ corresponds to the map z 7→ zm, explaining the use of the word

‘degree’.

• X The degree of a map is a special case of the induced maps on de Rham

cohomology spaces defined in (17.29). More precisely, if u ∈ C∞(N ; Ωℓ) is a

closed form, then its pullback Φ∗u is closed, and if u is an exact form then

Φ∗u is exact (both follow from (17.20)). Thus Φ∗ descends to a linear map

Φ∗
ℓ : H

ℓ(N ;R) → Hℓ(M;R). By (17.89), we have Hn(M;R) ≃ Hn(N ;R) ≃
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R, with the identification being canonical using the integral of an n-form over

the entire manifold. Then the map Φ∗
n is the multiplication by the degree of Φ.

The fact that the degree is an integer is related to the existence of cohomology

groups with integer coefficients, which we do not study here.

Our proof of Theorem 17.22 relies on the following characterization of exact n-forms:

Lemma 17.23. Assume that M is an n-dimensional compact connected oriented

manifold and v ∈ C∞(M; Ωn). Then

v = dw for some w ∈ C∞(M; Ωn−1) ⇐⇒
∫
M

v = 0.

Proof. The ⇒ direction follows immediately from Stokes’s Theorem 17.4, so it

remains to show the ⇐ direction. Assume that
∫
M v = 0. Fix a metric g on M.

By (17.82) we write

v = h+ dw for some h ∈ H n(M), w ∈ C∞(M; Ωn−1).

Taking the integrals of both sides over M and using Theorem 17.4 to see that the

integral of dw is equal to 0, we see that
∫
M h = 0. But H n(M) is spanned by d volg

by (17.88), and
∫
M d volg = volg(M) > 0. It follows that h = 0 and thus v = dw as

needed. □

We are now ready to give

Proof of Theorem 17.22. 1. Fix any

v0 ∈ C∞(N ; Ωn),

∫
N
v0 = 1.

For example, one can fix a Riemannian metric on N and let v0 be a multiple of the

corresponding volume form. Now, put

deg Φ :=

∫
M

Φ∗v0 ∈ R.

We first show that (17.92) holds. Take arbitrary v ∈ C∞(N ; Ωn) and put c :=
∫
N v.

Then
∫
N v − cv0 = 0 and thus by Lemma 17.23 we have

v − cv0 = dw for some w ∈ C∞(N ; Ωn−1).

Then by (17.20) we get

Φ∗v − cΦ∗v0 = dΦ∗w

and thus by Theorem 17.4 we have
∫
M Φ∗v − cΦ∗v0 = 0 which gives (17.92).

2. It remains to show that (17.93) holds, which (since Φ has a regular value) also implies

that deg Φ ∈ Z. Let y ∈ N be a regular value for Φ. Denote by δy ∈ D′(N ; Ωn) the

delta-current at y. It is similar to the delta-density defined in (13.46) but incorporates
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the orientation fixed on M. More precisely, supp δy = {y} and if κ : U → V is a chart

on N such that y ∈ U , then we have

κ∗δy = (sgn det dκ(y))δκ(y) dx1 ∧ · · · ∧ dxn. (17.94)

The currents defined on the right-hand side of (17.94) satisfy compatibility conditions

analogous to (13.43), as follows from (10.10), and thus give rise to a current δy on N .

Now (17.93) follows by applying (17.92) with v := δy. Since δy is not a smooth

form, some explanations are in order. Since y is a regular value for Φ, we have

Φ−1(y) = {x1, . . . , xN} for some x1, . . . , xN ∈ M

and dΦ(xk) is invertible for each k. By the Inverse Mapping Theorem, we can fix a

neighborhood V ⊂◦ N of y such that

Φ−1(V) =
N⊔
k=1

Uk, xk ∈ Uk,

and the restriction of Φ to each Uk is a diffeomorphism Uk → V . Using the pullback

operators on distributions by these diffeomorphisms, we can define the operators of

pullback on differential forms (Φ|Uk
)∗ : E ′(V ; Ωn) → E ′(Uk; Ωn). Adding these together

and extending by zero to M, we get the pullback operator

Φ∗ : E ′(V ; Ωn) → D′(M; Ωn)

which is sequentially continuous and agrees with the usual pullback of differential forms

on C∞
c (V ; Ωn). Since C∞

c (V ; Ωn) is dense in E ′(V ; Ωn), from (17.92) we see that∫
M

Φ∗v = (degΦ)

∫
N
v for all v ∈ E ′(V ; Ωn).

Now apply this with v := δy. The right-hand side is equal to deg Φ. Using (17.94) we

see that the left-hand side is equal to∫
M

N∑
k=1

(sgn det dΦ(xk))δxk =
N∑
k=1

sgn det dΦ(xk).

This gives (17.93). □

A classical application of Theorem 17.22 is the following

Theorem 17.24 (Hairy Ball Theorem).X Assume that n is even and X ∈ C∞(Sn;TSn)
is a vector field on the sphere Sn. Then there exists x ∈ Sn such that X(x) = 0.

Proof. Fix the standard metric on Sn ⊂ Rn+1 coming from the Euclidean met-

ric and take the standard orientation o on Sn corresponding to the outward nor-

mal: that is, for each x ∈ Sn and a basis v1, . . . , vn ∈ TxSn ⊂ Rn+1, we have
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o(v1, . . . , vn) = sgn det[xv1 . . . vn] where [xv1 . . . vn] is the (n + 1) × (n + 1) matrix

with columns x, v1, . . . , vn.

We argue by contradiction. Assume that the vector field X is nonvanishing. Divid-

ing it by its length, we may assume that |X| = 1 everywhere. Then for each x ∈ Sn,
X(x) ∈ Rn+1 is a unit vector orthogonal to x. Now define the family of smooth maps

Φt : Sn → Sn, t ∈ [0, π], Φt(x) = (cos t)x+ (sin t)X(x).

That is, Φt(x) is the result of following for time t the geodesic on Sn with initial position

x and initial velocity X(x). Consider the degree

deg Φt ∈ Z.

It is a continuous function of t as can be seen from (17.92) and takes integer values.

Thus deg Φt is constant. This gives a contradiction since we can compute

deg Φ0 = 1, deg Φπ = −1.

Indeed, Φ0 is the identity map (which is an orientation preserving diffeomorphism)

and Φπ(x) = −x is the antipodal map, which (as n is even and thus n + 1 is odd) is

an orientation reversing diffeomorphism. □

17.4. Notes and exercises

For an introduction to the de Rham cohomology theory and some of its applica-

tions (including degree theory and the Brouwer fixed point theorem) see Lee [Lee13,

Chapters 17–18]. For a more comprehensive treatment of differential topology see Bott

and Tu [BT82].

For Hodge theory and its applications, the reader is referred to the books [Che56,

BDIP02, Huy05, Voi07, War71]. Many of these consider the case of complex or

Kähler manifolds, in which the manifold has a complex structure which gives additional

structure for the de Rham cohomology spaces and for the operators d, d∗.

Exercise 17.1. (1 pt) Prove Proposition 17.8.

Exercise 17.2. (0.5 pt) Verify (17.40) and (17.41).
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∗ convolution, see §§1.3.1,6.1,8.1,8.2
⋆ Hodge star, see §17.3.1
⊗ tensor product of distributions, see §7.1
∼ asymptotic sum, see §14.1.2
∧ wedge product, see §17.1.1

∧ℓV exterior power, see §17.1.1
∧•V total exterior algebra, see §17.1.1
a.e. Lebesgue almost everywhere, see §1.2.1

bℓ(M) Betti number, see §17.2
B◦(x, r) the open ball in some metric space centered at a point x and of radius r

B(x, r) the closed ball in some metric space centered at a point x and of radius r

Ck(U) the space of k-times differentiable functions on U , see §1.2.3
Ck

c (U) the space of compactly supported functions in Ck(U), see §1.2.3
C∞(U) the space of infinitely differentiable functions on U , see §1.2.4

C∞(M;E ) the space of smooth sections of a vector bundle, see §13.1.8
C∞

c (U) the space of compactly supported functions in C∞(U), see §1.2.4
∥ • ∥CN (U,K) see (4.1)

· inner product on Rn, see §11.1
D′(U) the space of distributions on U , see §2.1
D′(M) the space of distributions on a manifold M, see §13.2

d exterior derivative, see §17.1.2
dxI see §17.1.1
d∗ codifferential, see §17.3.2
∂xj the partial derivative operator in j-th variable

∂αx the higher order partial derivative w.r.t. multiindex α, see §1.2.3
Dxj , D

α
x the operators −i∂xj , (−i)|α|∂αx , see §11.1.3
δy Dirac delta function, see §2.1
∆ the Laplace operator ∂2x1 + · · ·+ ∂2xn on Rn

∆g Laplace–Beltrami operator, see §13.3.2
∆g Hodge Laplacian, see §17.3.3

Den(V) the space of densities of a vector space V , see §13.1.7
Diffm the space of differential operators, see §§9.1.1,13.3
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d volg Riemannian volume density or volume form, see §§13.1.7,17.3.2
E ′(U) the space of distributions with compact support on U , see §4.2

f̂ ,F(f) the Fourier transform of f , see §§11.1–11.2
H the Heaviside function, see (3.3)

Hs Sobolev space, see §§12.1.2,13.2.3
Hs

loc, H
s
c see §§12.1.5,13.2.3

Hℓ(M;R) de Rham cohomology space, see §17.2
H ℓ(M) the space of harmonic forms, see §17.3.4

Hom(E → F ) the bundle of linear homomorphisms, see §13.1.8
indP the index of an operator P , see §15.3.1

1A the indicator function of a subset, see (1.17)

JΦ the Jacobian of a diffeomorphism Φ, see §10.1.3
κ∗ pushforward by a chart, see §§13.1.3–13.1.7,13.2.2,13.3.2

kerP the kernel of an operator P , see §15.3.1
Λt dilation operator, see §5.1.2
Lpc compactly supported Lp functions, see §1.2.1
Lploc locally Lp functions, see §1.2.1

(•, •) distributional pairing, see §2.1
⟨•, •⟩L2 L2 Hermitian inner product, see (1.19)

⟨•⟩ see §12.1.2
|Ω| the bundle of densities on a manifold, see §13.1.7
Ωℓ the bundle of ℓ-forms on a manifold, see §17.1.2
Ω• the total bundle of differential forms on a manifold, see §17.1.2
⊂◦ open subset, see Definition 1.1

Op quantization procedure, see §14.1.3
P t the transpose of an operator, see §§7.3,13.3.3
P ∗ the adjoint of an operator, see §§7.3,16.1.1
Φ∗ pullback of a function or a distribution by a map Φ, see §10.1

p.v. 1
x

principal value integral, see §5.2.3
ranP the range of an operator P , see §15.3.1

S (Rn) the space of Schwartz functions, see §11.1.2
S ′(Rn) the space of tempered distributions, see §11.2.1

Sm the space of Kohn–Nirenberg symbols, see §§12.2.3,14.1.1
S−∞ rapidly decaying symbols, see §14.1.1
Sn the n-dimensional sphere, see §13.1.2
σm the principal symbol of a differential operator, see §13.3

sing supp singular support of a distribution, see §8.3
Spec(P ) spectrum of an operator, see §16.1.1

⋐ compactly contained, see Definition 1.1

supp support of a function (see §1.2.3) or a distribution (see §4.1)
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Tn the n-dimensional torus, see §13.1.2
TM tangent bundle, see §13.1.4
T ∗M cotangent bundle, see §13.1.5
xa+ see §5.2
xα see §1.2.3
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