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Preface

These are the lecture notes for the course 18.155 (Differential Analysis I) taught at
MIT in Fall 2022. The topics include:

e basics of the theory of distributions,

e fundamental solutions to some constant coefficient PDEs,

e Fourier transform on distributions and Sobolev spaces,

e elliptic regularity and Fredholm mapping properties of elliptic operators on
Sobolev spaces,

e and applications to PDEs such as discreteness of the spectrum of the Laplacian
and Hodge’s theorem.

There are several sources used (acknowledged in more detail at the end of each section),
including:

e Hormander’s book, volume I [Hor03]: a classical and comprehensive treat-
ment of distribution theory. The text is quite dense, so it is not an easy source
to learn about distrbutions for the first time, but a lot of the arguments in
the distribution theory part of these notes are taken from there.

e Friedlander—Joshi’s book [FJ98]: a much shorter book which does the es-
sentials of distribution theory. This one can be used by a beginner (familiar
with topics such as Lebesgue integration). Some of other arguments in the
distribution theory part of these notes are from this book.

e Melrose’s lecture notes for 18.155 [Mel]: these inspired some of the arguments
in the later part of the course. I also tried to model the structure of my version
of 18.155 roughly after the version taught by Prof. Melrose.

To comfortably read the entire notes, a reader would find it helpful to be familiar
with some fundamentals of analysis and differential geometry. Some of these are re-
viewed briefly in the notes, as a reminder and to fix notation, but a lot of proofs and
explanations are replaced by references to the literature. The topics we will need are:

e Real analysis (18.100B at MIT): basics of metric space topology, the theory
of differentiation and integration, and the Arzela—Ascoli Theorem. This one
is a definite prerequisite to taking 18.155.
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8 PREFACE

e Lebesgue integration (covered in 18.102, 18.103, 18.125, or 18.675 at MIT):
Lebesgue integral, its convergence properties such as the Dominated Conver-
gence Theorem, metric spaces, the spaces LP and their completeness, and the
change of variables formula. This one is used from the beginning but largely
as a black box.

e Functional analysis (partially covered in 18.102 at MIT, these notes provide
the pieces which are not covered): Hilbert spaces and their basic proper-
ties (orthogonal projections, Riesz representation theorem), Banach spaces
and their basic properties (including Banach—Steinhaus theorem), compact
and Fredholm operators, spectra of self-adjoint compact operators on Hilbert
spaces (Hilbert—Schmidt theorem), and the Fredholm alternative.

e Manifolds (18.101 at MIT): for the latter part of the course the reader should
be familiar with the concept of an abstract C'>° manifold, tangent and cotan-
gent bundles, differential forms and Stokes’ theorem, and basic Riemannian
geometry.

e Complex analysis (18.112 at MIT): we will occasionally use a bit of the basics
e.g. unique continuation of analytic functions.

To help the reader get the most of these notes, I use the following superscripts for
section names/theorems/etc.:

o R

: review, a topic which I would say should be in the prerequisites for this
course rather than the course itself (regardless of whether prerequisite courses
at MIT actually cover this — if they don’t then I develop this in more detail);

s

. straightforward once you have enough understanding of the concepts in-
volved. If you feel comfortable with the material you might be able to skip
some of the details there;

e X: extra, will help deepen your understanding of the material but you might

be able to skip it at first reading.
I have been supported by the NSF CAREER grant DMS-1749858.



CHAPTER 1

Prologue: motivation and background

1.1. A bit of motivation

In this course we (among other things) develop the theory of distributions and show
various forms of elliptic regularity. These both take a while to set up, so let us first
look at a couple of applications to PDEs (partial differential equations).

1.1.1. Solving Poisson’s equation. To keep things simple, let us restrict to the
case of dimension 3. Consider the Laplace operator' on R?

92 2 2
A:=0; + 0, + 0,
and let us study Poisson’s equation
Au = f, (1.1)

where f is a given function on R? and w is the unknown function. If you took a physics
course, you might have encountered (1.1) in electrostatics (u = electric potential, f =
density of charge) or in Newtonian gravity (v = gravitational potential, f = density
of mass).

Perhaps you also learned that one solution to (1.1) is given by the integral formula

ue) = [ Ba-n)f)dy, ze®, (12)
R3
where the Coulomb potential F is defined by

E(z) = r € R*\ {0}. (1.3)

ik
This is something that can be checked directly for sufficiently nice f, see Exercise 1.1

below. However, this leaves open some questions, which can be conceptually addressed
by developing the theory of distributions.

One question is: the formula (1.2) makes sense, for example, for any bounded
compactly supported (Lebesgue measurable) function f. But in this case v might not

!There are two conventions in the literature: A = 02 +02, 402 and A = —92 — 02, —02,.
Physicists often use the first one and geometers often use the second one. We will use the first
convention here, for no good reason other than the author’s personal preference. However, the Hodge
Laplacian in §17.3.3 will use the opposite sign convention.

9



10 1. PROLOGUE: MOTIVATION AND BACKGROUND

be twice differentiable. Can we still say that u solves Poisson’s equation in a certain
sense?

An answer to this question is given by weak solutions. Assume first that u € C?(R3)
solves the equation (1.1) (we call such u a classical solution because it has enough
derivatives to make sense of the equation at each point). Take any smooth compactly
supported function ¢ € CX(R3) (see §1.2.4 below), which we call a test function.
Integrating by parts twice using the Divergence Theorem (where the boundary terms
do not appear since ¢ is compactly supported — see Theorem 1.17 below), we see that

[ @@= [ (Bu(@)pta)ds

3
S /R3 ; (0n,u(x)) (0s,0(2)) dz = /R3 u(z)Ap(x) dz,
that is we have
fodr = / u(Ap)dr  for all p € C°(R?). (1.4)

The latter makes sense for any u, f which are locally integrable. For such u, f we say
that u is a weak solution to Poisson’s equation (1.1) if (1.4) holds. Two comments are
in order:

e as the calculation above shows, if u is a classical solution, then it is a weak
solution as well;

e if u is a weak solution and we also know that u € C?(R?) then u is a classical
solution.

Weak solutions are thus a superset of classical solutions. The second comment above
leads to the following general strategy for studying solutions of linear partial differential
equations:

e understand all weak solutions to the equation;

e assuming regularity of the right-hand side, establish regularity of the weak
solution. If the weak solution is regular enough, then it is also a classical
solution.

Another question raised by the formula (1.2) is related to the following computa-
tion:

Bue) = [ (AE)w = 9)f(w)dy=0. (15)
R
Here in the first equality we differentiate (in x) under the integral sign. In the second

equality we use the fact that AE = 0 on R*\ {0} (see Exercise 1.1(a)) and thus the
integral is 0. This seems to contradict our expectation that Au = f.
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From the point of view of classical (Lebesgue) integration, the computation (1.5) is
invalid because the gradient V E(z) blows up too fast at = 0 to be able to differentiate
under the integral sign. But the theory of distributions gives another way of thinking
about this computation, which also gives a proof that Au = f. Namely, the first
equality in (1.5) is valid if we treat AFE as a distribution and think of the integral as
a distributional pairing. In distributions, we do not have AE = 0, instead

AE = § (1.6)

where 0y is the Dirac delta at the origin, which is not a function, but a distribution
with the following property:

/R3 So(r)p(x)dr = ©(0) for all ¢ € C(RY).

Then (1.5) can be made correct as follows:

Au(z) = / (AE) @ — ) f ) dy = | dole—y)f(y)dy
e R (1.7)

_ / ooy —y)dy = f(a).

Here the integral signs no longer denote literal integrals; instead they are distributional
pairings. It will take us some time to develop the theory of distributions enough to
rigorously justify statements such as (1.6) and (1.7), but these formulas have an im-
mediate physical interpretation which predates the development of distribution theory
in mathematics: (1.6) tells us that the Coulomb potential E corresponds to a point
charge (with dy being the ‘density’ of a point charge) and (1.7) is a version of superpo-
sition principle (i.e. for linear equations, taking linear combinations or more generally
parametric integrals of solutions gives other solutions).

1.1.2. Examples of elliptic regularity. For the next example, let us work in
R2. Consider the following three PDEs:

(8, + 10y, )u = 0, (1.9)
(02, — 07 )u=0. (1.10)

Here is a question:
Is it true that every solution u to these equations is a smooth (C™) function?

Here we can restrict ourselves to classical solutions (e.g. for (1.8), if u € C? solves the
equation, then u € C'°), or we can define weak solutions similarly to (1.4); the answer
will be the same either way.

The answer to the question above has been known a long time ago:
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e functions solving the Laplace equation (1.8) are called harmonic and they are
always smooth;

e functions solving the Cauchy—Riemann equation (1.9) are analytic functions
of the complex variable z = x; + ixs and they are also always smooth;

e but the wave equation (1.10) has some nonsmooth solutions, for example
u(ry,z2) = f(x1 + x9) for any C? function f.

However, the XXth century analysis that we study in this course will give a more sys-
tematic point of view on understanding what is different between the equations (1.8),
(1.9), and (1.10). To give a preview of it, let P be the differential operator such that the
equation studied is Pu = 0. Define the homogeneous polynomial p(;, &) by replacing
Oy, by & and 0., by &, so that (1.8)—(1.10) correspond to the polynomials

&+ &5, (1.11)
&1+ i, (1.12)
& —&. (1.13)

We say that the polynomial p is elliptic, if the equation p(&;,&) = 0 has only one
solution on R?, namely & = & = 0.

One of the main results of this course is elliptic regularity which in particular
says that if the polynomial p is elliptic, then all solutions to the equation Pu = 0 are
smooth. This applies to the equations (1.8)—(1.9), since the corresponding polynomials
are elliptic, but not to (1.10).

We will study three versions of elliptic regularity. The third version has many
applications, three of which we present in the setting of compact manifolds without
boundary:

e Fredholm mapping property of elliptic differential operators on Sobolev spaces;

e discreteness of spectrum of self-adjoint elliptic operators;

e and Hodge’s Theorem, giving a bijection between de Rham cohomology classes
(an algebraic topological invariant) and harmonic forms (a Riemann geomet-
ric/spectral theoretic object).

1.2. Functional spaces®
We start by giving a very brief review of the spaces L? and C*. We then introduce

the space of smooth compactly supported functions Cg°, which is important to us since
the space of distributions will be its dual.

For now we will work with subsets of R™. The definition below collects some useful
notation.

DEFINITION 1.1. Let M be a metric space and U C'V C M be two sets.
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(1) We write
UcV
if U is a relatively open subset of V.
(2) We say that U is compactly contained in V', and write

UeV
if there exists a compact set K such that U C K C V.

An alternative definition of compact containment is that the closure of U be com-
pact and contained inside V.

Recall that any open set U @ R™ can be exhausted by compact subsets:

U=|JK; where K; €U, K; €K1 (1.14)
j=1
Indeed, one can for example let K; consist of all points = such that |z| < j and the

open ball B°(x,1/j) is contained in U. Moreover, any K € U is contained in one of
the sets K.

When U is a set, by default a function on U is amap f : U — C. That is, functions
are assumed complex valued unless stated otherwise.

1.2.1. Lebesgue integral and the spaces LP. A theory of Lebesgue measure
and integral on R" produces:

e the notion of which subsets of R™ are measurable (in practice, any set you can
construct without, say, using the Axiom of Choice will be measurable so we
will not worry about checking measurability in these notes);

e the Lebesque measure, which maps each measurable subset A C R" to its
‘volume’ vol(A) € [0, oo];

e the Lebesgue integral, which defines for certain functions f : R" — C their
integral fRn f(z) dx. More precisely, we always need f to be measurable, that
is for each a € R the set {x € R" | f(z) < a} should be measurable. If f is
nonnegative, then nothing else is needed and the integral fRn f(z) dx is always
defined as a possibly infinite number in [0, cc]. For general f we impose the
additional condition that [p, |f(x)|dz < co (we call such functions Lebesgue
integrable) and the integral [, f(x)dz is defined as a complex number.

We refer to the books [Bea02, Jon01l, Rud64, Rud8&7, Strl1] for constructions
of the above objects and their standard properties, which we will freely use in these
notes. We in particular note that:

e If f is Riemann integrable (in the proper sense), then it is also Lebesgue
integrable and the Riemann integral is the same as Lebesgue integral. In
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other words, the Lebesgue theory does not give a different value of the integral,
instead it lets us integrate more functions.

e We have Fubini’s/Tonelli’s Theorem: if we write elements of R™™™ as (z,y)
where z € R,y € R™, the function f : R"™ — C is measurable and f is
either nonnegative or Lebesgue integrable, then

/an f(z,y) dedy / ( [t dy> iz,

In particular, this lets us reduce (at least in principle) integrals over R" to
integrals over R, which one can hope to compute using the Fundamental
Theorem of Calculus.

e We also have the Dominated Convergence Theorem: if a sequence of measur-
able functions fj : R™ — C converges to some function f for almost every =
(see below) and there exists an integrable function g such that |fy| < g for

all k, then [, fu(z)de — [5. f(z)dx.

For a logical statement S(x) with one free variable x € R", we say that it holds
(Lebesgue) almost everywhere (often abbreviated to ‘a.e.’), if the set {x € R™ |
S(x) is false} has Lebesgue measure 0. A measurable function f is equal to 0 almost
everywhere if and only if [, |f(z)|dz = 0.

We can now define the spaces LP. We start with the case p < oc:

DEFINITION 1.2. Let 1 < p < oco. For a measurable function f : R* — C, its

LP-norm 1s
1/p
T :=( / |f<x>|pdx) & 0,00,
R?’L

We define LP(R™) as the quotient space

e < o)
{f: f=0ae}’

In the above definition we identify two LP functions f and ¢ if f = g almost

LP(R™) :

(1.15)

everywhere. This is important because otherwise || ® || z» is not a norm on the space L?
(as there are nonzero elements of the space which have norm zero). It also corresponds
well to the theory of distributions: two LP functions are equal as distributions if and
only if they are equal almost everywhere as functions (see Theorem 1.16 below). So if,
say, a solution to some differential equation is given by the indicator function of a ball,
then we will not be worrying about what the values of this function on the boundary
of the ball are since that boundary has measure 0. Note however that none of this
matters for continuous functions: two continuous functions are equal a.e. if and only
if they are equal everywhere.

One of the main advantages of the Lebesgue integral over the Riemann integral
is that the space LP with the norm || e ||z» is a Banach space, namely it is a normed
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vector space which is complete. This is very useful in the study of PDE since quite often
solutions of differential equations are constructed as limits of sequences of approximate
solutions (even though in the modern theory this aspect is somewhat hidden).

We can also define the space L*> which carries a version of the sup-norm adjusted
for measure zero sets. Namely, we put

| fllze :=1inf{a > 0: |f(x)| < a for a.e. x}

and define the Banach space L>(R") as a quotient similarly to (1.15).
For later use we recall Hélder’s inequality: if f € LP(R™), g € L4(R™), and i—l—% =1,
then

1fgllze < [1F 1o lgllza- (1.16)

More generally, we can define the spaces LF(U) where U G R". More precisely, LP(U)
consists of measurable functions f : U — C such that 1y f € LP(R™), where for a set
A C R" we denote by 14 : R®” — R its indicator function:

1a(z) = {(1) z Z jf (1.17)

We also define the spaces of locally LP functions
{f:U—=C:1xf e LP(U) for all compact K C U}

L {f: f=0ae}

loc

U) =

and compactly supported LP functions
LP(U) :={f € LP(U) | there exists compact K C U such that f = 1xf a.e.}.

(Strictly speaking, L2(U) is the space of functions of compact essential support, whose
definition is different from Definition 1.5 below by adding ‘almost everywhere’.)

From Holder’s inequality we can see that

LY (U)c Ly, (U), LPU)cCL(U) forallp>r. (1.18)

loc

1.2.2. More on the space L?. Let U G R". For us the most convenient L? space
will often be the one with p = 2. This is because the space L*(U) is a Hilbert space,
whose norm is induced by the L? Hermitian inner product (with ® denoting complex
conjugation)

) / I (1.19)

Note that ||f||7. = (f, f)r2. We have the Cauchy-Schwarz inequality (following e.g.
from Holder’s inequality)

(s gzl < [ fle2llglle. (1.20)

We now list several important properties of L?(U), which are actually true for general
Hilbert spaces (relying crucially on completeness). See for example [DS88, §IV.4],



16 1. PROLOGUE: MOTIVATION AND BACKGROUND

[Lax02, Chapter 6], [RS81, Chapter II], or [Rud87, Chapter 4] for the proofs. We
start with

THEOREM 1.3 (Orthogonal Complement Theorem). Assume that W C L*(U) is a
closed subspace. Define its orthogonal complement as

W= {f € L*(U) | for all g € L*(U) we have {f, g)> = 0}.
Then L*(U) =W & W+.

Recall from functional analysis that a (linear) functional on a Banach space X is
a linear operator X — C. The dual space X' to X is the space of bounded linear
functionals on X, and it is a Banach space when taken with the operator norm

(s
1Tl = sup TOI

rexvioy [[f1lx
The next theorem establishes a canonical isomorphism between L?(U) and its dual
space L2(U)'.

THEOREM 1.4 (Riesz Representation Theorem for L?). 1. Let g € L*(U). Then
T,: fe L*(U) — (f,g)2€C

is a bounded linear functional on L*(U), and | Tyl 2wy = 9/l r2w)-

2. Assume that T is a bounded linear functional on L*(U). Then there exists unique
g € L*(U) such that T =T,.

More generally, the spaces LP(U) and L9(U) are dual to each other when p,q €
(1,00) and % + % = 1, but we will not use this fact in this course.

1.2.3. The spaces C*. For U G R", define the space of continuous functions
CU) :={f:U — C| f is continuous}.
The natural norm to use on the space of continuous functions would be the sup-norm

[fllgo == sup | f ().
zeU

However, since U is open rather than compact, the sup-norm || f||co is infinite for
some f € C°(U). This is a common theme for many of the spaces of functions and
distributions that we will be using in the study of PDEs: we do not make any a priori
assumptions on the growth of f(z) as x approaches the boundary of U.

To fix this we can consider the space of compactly supported continuous functions:
DEFINITION 1.5. Let U @ R™ and f : U — C. Define the support of f, denoted

supp f, as the closure of the set {x € U | f(z) # 0} in U. We say that f is compactly
supported if supp f is a compact subset of U.
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For example, if U = B°(0, 1) is the open unit ball, then the function f(x) =1 is
not compactly supported since its support is the whole U. But the indicator function
[ = 1p(,1/2) is compactly supported. We typically use Definition 1.5 for continuous
functions only.

Denote by C%(U) the space of compactly supported functions in C°(U). Then
| ® ||co defines a norm on CY(U), though C%(U) is not complete with respect to this
norm (see Exercise 1.2 below). Moreover, we have the inclusion

CoU) c LP(U) for all p.
Finally, any function f € C?(U) is uniformly continuous, thus it has a modulus of
continuity:
we(e) ==sup {|f(z) — fW)|: z,y €U, |[r—y[<e} =0 as e—=0+. (1.21)
We next define the spaces C* of k times continuously differentiable functions:

DEFINITION 1.6. Let U @ R"™. Define the space C*(U) consisting of continuously
differentiable functions:
CHU) :={f € C°U) | Op,f---,0u, [ exist and lie in C°(U)}.
For an integer k > 2, define the space C*(U) inductively by
CHU) :={f € C* U) | 0u,f,...,0u, [ exist and lie in C*~1(U)}.
Denote by C*(U) the space of compactly supported functions in C*(U).

REMARK 1.7.% Even though we used partial derivatives with respect to the given
coordinates in the definition above, the resulting spaces are independent of the choice of
linear coordinates on R™. A conceptual way to see this would be to give an alternative
definition of C' in terms of the (Fréchet) differential df : U — (R"), define C* using
the differential d(df) : U — (R")' ® (R™)" etc. but we do not develop this here since for
our purposes working with coordinates is perfectly fine.

REMARK 1.8. The closure in the definition of support is important in particular
because this makes support well-behaved under differentiation:

supp(d,, f) C supp f for all f € C*(U). (1.22)
Indeed, if x € U \ supp f, then f vanishes on some ball B(x,e) centered at x, so
O, f(x) = 0.

The set {f # 0} is not closed under differentiation: consider for example the
function f(x) =z on R.

To work with higher order derivatives, we introduce the multiindex notation. A
multiindex in R" is a vector a = (a4, ..., a,) whose entries are nonnegative integers.
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We denote (recalling that for functions in C* the order of differentiation & times does
not matter)

lof ;=1 + -y, OF =05 ... 0.
A norm on C*(U) (which is coordinate dependent but the resulting topology is canon-
ical) is given by

[fllor == maxsup |95 f(z)]. (1.23)
lo|<k zcU
For later use, we also introduce the notation
=t att, x=(xy,...,2,) € R™ (1.24)

1.2.4. The spaces C* and C°. We now define the spaces C'*° and C° that are
ubiquitous in the rest of these notes.

DEFINITION 1.9. Let U G R™. We say that a function f:U — C lies in C**(U) if
it lies in C*(U) for all k, that is

C=(U) = [ CHU).

k>0
The elements of C*°(U) are called smooth functions.

We say that a function f lies in C(U) if it lies in C°(U) and is compactly
supported. We often call functions in C(U) test functions because of the way they
are used to define the space of distributions later.

Note that the partial differential operators 0., act
Oy, : C(U) = C=(U), CZ(U)— CZ(U). (1.25)

REMARK 1.10.% In principle, most of the results involving the spaces C> can be
proved for the spaces C* where k is large enough. But this means we will have to keep
track of the value of k, which changes from place to place (as seen already from (1.25):
the operator 0, does not map C* to itself). The space C* provides a much cleaner
way to develop the basic theory and, as we see very soon, it still contains a lot of
functions.

It is easy to give plenty of examples of functions in C*°(R"); one can for example
take any polynomial. Nontrivial functions in C°(R™) are a bit harder to construct
because a lot of basic formulas produce functions which are real analytic and thus
cannot be compactly supported (or even vanish on any ball) unless they are identically
zero. A standard example of a function in C2°(R™), and one which is used in the next
section to construct many more functions in this space, is given by the ‘bump function’

f(x)=:{eXp(__T_%j)’ o] < & (1.26)

0, |z| > 1.
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| | |
-1 0 1

F1GURE 1.1. The ‘bump function’ (1.26).

The function (1.26) is plotted on Figure 1.1. See for example [Hor03, Lemma 1.2.3]
for a proof that this function does indeed lie in C°(R™).

1.3. Convolution and approximation by smooth functions

We now discuss how to approximate ‘rough’ functions (e.g. those in C° or L) by
‘smooth’ functions (those in C2°). One of the goals is to prove the following

THEOREM 1.11. Let U G R™. Then the space C>°(U) is dense in the space CO(U),
more precisely for each f € C2(U) there exists a sequence fr, € C°(U) such that fr — f
uniformly on U and all the supports supp fr are contained in some k-independent
compact subset of U.

We will also show the LP version of this statement, see Theorem 1.14 below.

1.3.1. Convolution. To show Theorem 1.11 we take a function f € C?(U) and
mollify it to get a function f,, € C°(U). This is typically done using convolution, which
is an operation on functions on R™ important in its own right. Thus we start with
introducing convolution and studying its basic properties. We assume for now that
the convolved functions are in C?(R™) but the integral below makes sense under much
weaker assumptions. In fact, convolution appeared in these notes already in (1.2).
See [Hor03, §1.3] and [Str11, §6.3.2] for more information about convolution.

DEFINITION 1.12. Assume that f,g € CO(R™). Define their convolution f x g €
L>(R™) by

frg(x) = . fyg(r —y)dy, zeR" (1.27)

Some standard properties of convolution are collected in
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THEOREM 1.13. 1. For f,g € C(R") we have f x g € CO(R™) and
supp(f xg) C supp f+suppg = {z+y|zesuwppf, y esuppg}.  (1.28)

2. fx(g*xh)=(f*g)«xh and fxg = g=* [, that is convolution is associative and
commutative.

3. If f € CO(R) and g € CH(R™), then f x g € CL(R") and
Oy, (f % 9) = [ % (0s,9)-
4. If f € CO(R™) and g € CK(R™), then f * g € CH(R"™) and
95 (f*xg)=[*(979) forala, |a| <k
PrROOF. 1. We first check that f x g is continuous. Let x,z € R". We compute
[(f*g)(x) = (f*9)(@)] = . fW)(g(z —y) —g(@ —y)) dy

< | fllpr@ny sup |g(z —y) — g(@ —y)|.
Y

Since g lies in C2(R™), it has a modulus of continuity w,, see (1.21). We then estimate

[(f x g)(@) = (f * 9)(@)] < [[fllor@ny wyllz — Z)
which shows that the function f x g is continuous.

For the support property, we note first that the set {x € R™ | f % g(x) # 0} is
contained in supp f + supp g since in order for f x g(x) to be nonzero there must exist
some y € R" such that f(y) # 0 and g(z — y) # 0. Next, the set supp f + supp g is
compact (as the image of the compact set supp f x supp g under the map (x,y) — z+y)
and thus closed, so supp(f * g) C supp f + supp g.

2. For associativity, we compute

[x(gxh)(z)= fW)ag(z)h(z —y — 2) dydz,

R2n
(f*g)xh(z)= | f(p)g(a—p)h(z —q)dpdg
R n
and make the change of variables y = p, z = ¢ — p. Commutativity follows similarly
by using the change of variables y — x — y.

3. The fact that fxg is compactly supported already follows from (1.28), and we also
know that f*(d,,g) is continuous. Thus it remains to show that 9,,(f*g) = f*(0,9).
Denoting by ey, . .., e, the canonical basis of R"”, we compute for z € R” and t € R\ {0}

(f xg)(x+te;) — f*g(x) ) glx —y+tej) —glz —y) dy.

t ~ Jge t
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A
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FIGURE 1.2. Left: the mollifying kernels x. from (1.31) for n = 1 and
several values of €. Right: a function f on R (in black) and its successive
mollifications f.. We have f. — f uniformly in x.

From the Mean Value Theorem and the fact that d,,¢ is uniformly continuous we get
9(z +te;) — g(2)
t

Since f is bounded and compactly supported, we can pass to the limit under the
integral sign and get

(f xg)(x +te;) — f*g(x)

— 0p,9(2) ast— 0 uniformly in z € R™. (1.29)

= [ fW)0w9(x —y)dy = [ * (0p;9)(x) ast—0

¢ n
which means that 0., (f * g)(z) = f * (0x,9)(x).
4. This follows from the previous property by induction on k. 0

From part 4 of Theorem 1.13 we see that
fECIRY), ge CFR") = [fxrgeCT[R"). (1.30)

That is, convolving a rough function with a smooth one produces a smooth result.
1.3.2. Mollification and the density theorems. We are now ready to give
PrOOF OF THEOREM 1.11. 1. Fix a ‘bump function’

x € CE(R™), suppx C B(0,1), / x(x)dz = 1.

One way to construct it is to multiply the function (1.26) by a constant.

For € > 0, define the rescaling (see Figure 1.2)
Xe(x) = 5‘")((%), Xe € C°(R™), suppxe. C B(0,¢). (1.31)

Let U G R™. Take arbitrary f € C2(U) and extend it by 0 to a function in C?(R")
(which we still denote by f). Define the mollifications of f as

fei=f*xe. (1.32)
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(See Figure 1.2.) From (1.30) and (1.28), we see that for each ¢ > 0
fe € CZ(R™), supp f. Csupp f+ B(0,¢).

Since supp f C U is compact, for € small enough (that is, smaller than the distance
between supp f and R™ \ U) we have supp f: C U and thus we can think of f. as a
function in C°(U). We claim that

fe—f ase— 0+ uniformly on R". (1.33)

Once we show (1.33), the proof of Theorem 1.11 is finished (we can for example take
fr = f- with € = 1/k for large k).

2. To show (1.33), let wy be the modulus of continuity of f defined in (1.21). Take
r € R™ and estimate

0 = £l = | [ (060 = 1t = )

< Ixelp@ny sup |f(z) = flz—y)| (1.34)

y€B(0,¢)
< lIxllzr @y wy(e)

Here in the first line we use the definition of convolution and the fact that [ x. = 1.
In the second line we use that supp x. C B(0,¢). In the last line we use that ||x:||;1 =
|x||z:- Now the expression on the last line of (1.34) is independent of = and converges
to 0 as ¢ — 0+, which gives the uniform convergence statement (1.33) and finishes the
proof. 0

We now give an L version of Theorem 1.11:

THEOREM 1.14. Let U GR" and 1 < p < 0o. Then the space C>X(U) is dense in
the space LP(U), more precisely for each f € LP(U) there exists a sequence fi, € C°(U)
such that fr — f in LP(U).

PrOOF. We do not give a detailed proof to avoid going too deep into the details
of Lebesgue theory of integration. But here is a scheme of a proof:

e Using Theorem 1.11 and the fact that C%(U)-convergence in that theorem
implies convergence in LP(U), we see that it suffices to show that CO(U) is
dense in LP(U).

e A standard fact in the theory of Lebesgue integral is that the space of simple LP
functions is dense in LP(U), where ‘simple’ means that the function only takes
finitely many different values. So it remains to show that any simple function
can be approximated in LP(U) by functions in C?(U), and this immediately
reduces to approximating indicator functions 14 where A C U is measurable
of finite measure.
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e For A as above, the regularity property of Lebesgue measure implies that
for each ¢ > 0 there exists a compact set K and an open set V such that
K C ACV CU. There exists a function g € C2(U) such that g = 1 on K,
0 < g <1 everywhere, and supp g C V (it can be constructed for example as
a function of distance to K). Then |14 — g||z»@) < €"/? and, since ¢ can be
chosen arbitrarily small, we can approximate 14 in L? by functions in CO(U).

O

1.3.3. More on smooth compactly supported functions. We finally give
two more statements about the spaces C°. The first one is the existence of smooth
partitions of unity:

THEOREM 1.15. Let Uy,...,U,, @ R" and K C Uy U---UU,, be a compact set.
Then there exist functions

X; €CxWU)), j=1,....m, x;>0, x1+-+xm<1,
X1+ +Xxm =1 1in a neighborhood of K.

The last statement above can be alternatively written as supp(l—x1—--—Xm)NK = 0.

For the proof of Theorem 1.15, see for example [H6r03, Theorem 1.4.5]. One of the
key points of the proof is that one can construct a function in C2°(R™) approximating
the indicator function of a set A by taking the convolution 14 * x. for small € > 0
similarly to the proof of Theorem 1.11.

The second statement, which is crucial for the development of the theory of distri-
butions, tells us that a function f € L{ _(U) is determined uniquely by the integrals

loc

Ji; fe for all the functions ¢ € C2(U):

THEOREM 1.16. Let U G R™, f € L} (U), and assume that

loc

/ flx)p(x)de =0 for all p € CZ(U). (1.35)
U
Then f(x) =0 for almost every x € U.

PrROOF. As with Theorem 1.14 we do not give a detailed proof to avoid going too
much into Lebesgue integration theory. But here are the sketches of two different
proofs:

e The equation (1.35) actually holds for all ¢ € C2(U). Indeed, by Theorem 1.11
we can take a sequence ¢, € C°(U) which converges to ¢. We have [, fo, =
0 for all £ and we can pass to the limit under the integral to get fU fe=0
as well. Now, the uniqueness part of the Riesz representation theorem for
measures gives that f = 0 almost everywhere.



24 1. PROLOGUE: MOTIVATION AND BACKGROUND

e It suffices to show that ¢f = 0 almost everywhere for any ¢ € C>(U).
Consider a mollifying kernel x. as in (1.31) and define the convolution (1 f) %
Xe, where we extend ¢ f by zero to a function on R". Using (1.35) for the
function ¢(y) = ¥(y)x(x —y), we see that (o f)*x(x) = 0 for all z € R™. On
the other hand, we have (¢ f) % x.(z) — ¢ f(x) as € — 0+ for almost every x:

[ f(x) = (f) * xe(2)] =

| (wr@ = er)te =) dy

§sup]x|-5_"/B( )Wf(x)—wf(yﬂdy—)O for a.e. x

where the last step follows from the Lebesgue Differentiation Theorem. Thus
Y f = 0 almost everywhere. 0

We finish this section by reviewing a simple yet very powerful tool, integration by
parts.

THEOREM 1.17. Let U G R™. Assume that f € CY(U) and g € CL(U). Then we
have for all j,

/ (00, f(2))g(x) dz = — / £(2) (8, 9(x)) d. (1.36)
U U

PROOF. We will show that
/ Op,h(z)dz =0 for all h € C,(U). (1.37)
U

The identity (1.36) follows by applying (1.37) to the function h := fg.

To show (1.37), extend h by zero to a function in C2°(R™), which we still denote by
h. For notational convenience assume that j = 1 and write = (x, 2’) where 2’ € R™.
Now by Fubini’s Theorem

/ O, h(z) do = / / gy h(z1,2") dzydr’ =0
n Rr—1 JR

since [ 0,,0(21) day = 0 for any ¢ € C}(R) by the Fundamental Theorem of Calculus.
0

REMARK 1.18. If U s bounded with a smooth boundary, then the Divergence The-
orem for the vector field h(x)e;, where e; is the j-th coordinate vector on R™, gives the

following version of (1.37) for h € C*(U) (that is, C* up to the boundary of U) which
15 not necessarily compactly supported:

/Uf)wjh(x) dr = /BU h(z)n;(z) dS(x). (1.38)
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Here n;(z) is the j-th coordinate of the outward unit normal vector to OU at x and
dS is the area measure on OU. This in turn gives the integration by parts identity for

f.g€CY(U)
[0 r@ns@ o= [ fagemn ) ise) - [ 1@ g@)de. (139

1.4. Notes and exercises

For a quick review of classical differential calculus, see [H6r03, Chapter 1]. This is
in particular where our proof of Theorem 1.16 comes from, see [H6r03, Theorem 1.2.5].

EXERCISE 1.1. (4 = 1+ 1+ 2 pts) Assume that f € C>(R3) (see §1.2./ below).
Let u be defined by the formula (1.2). Show that u solves the equation (1.1), following
the steps below:

(a) Show that AE(z) =0 for all x € R3\ {0}.
(b) Show that u € C*(R?) and

Bufa) = [ Bla=pAft)dy

(Hint: make the change of variables y — x — y in the integral.)
(c¢) Fizz € R® and let Q. :={y e R*: e < |z —y| < e '} for small e > 0. Write

Au(z) = lim i E(x —y)Af(y)dy

Use the Divergence Theorem/integration by parts twice to write Au(x) as an integral
over the sphere OB(x,¢). Letting ¢ — 0+, show that Au = f.

EXERCISE 1.2. (1 pt) Let U := (—1,1) C R. Show that the space C°(U) is not
complete with respect to the sup-norm.

EXERCISE 1.3. (1 pt) Let U := (—1,1) € R. Show that C>*(U) is not dense
in L>(U).






CHAPTER 2

Basics of distribution theory

2.1. Definition of distributions

We are now ready to introduce distributions, which are one of the central objects
of this course. The definition below is somewhat technical and some philosophical
explanations are provided later. But the general idea is: the space of distributions
on an open set U is the dual to the space of smooth compactly supported functions
C(U) (the latter also known as test functions), i.e. the space of continuous linear
functionals on C°(U). The notion of convergence on C°(U) is complicated (we only
study sequential convergence, see §2.2.1 below), so we first define a distribution as a
bounded linear functional, with the boundedness made precise in

DEFINITION 2.1. Let U G R™ and assume that
u:CXU)—C

1 a linear functional. We say that u is a distribution on U if for each compact set
K C U there exist constants C, N such that

lu(p)| < Cllgllen  for all p € CX(U)  such that supp e C K. (2.1)
Here the CN norm || e ||~ is defined in (1.23) above.

We denote the set of all distributions on U by
D'(U).

This notation goes back to Laurent Schwartz, the inventor of the theory of distribu-
tions: he denoted D(U) := C°(U), and D'(U) was its dual space.

PROPOSITION 2.25 D'(U) is a vector space.

The relation of distributions to functions comes from the following embedding of
locally integrable functions into distributions:

PROPOSITION 2.3. Let U GR" and f € L. (U). Define the linear functional

f: Ccx(U) —C, f((p) = /Uf(:v)gp(x) dx  for all o € CZ(U). (2.2)

Then f is a distribution in D'(U) and the map f — f is linear and injective.
27
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PROOF. The functional fis a distribution because it satisfies the following bound
of type (2.1) for any compact K C U and ¢ € C°(U) such that supp ¢ C K:

[f (@) < 1k fllzr - [lellco-
Linearity of the map f +— fis immediate, and injectivity follows from Theorem 1.16.

O

We now introduce important notation to be used throughout the rest of these notes:

e For f € L. (U), we identify the function f with the distribution f from
Proposition 2.3;
e For f € L} (U) and p € C>*(U), we define the pairing

/ f(x (2.3)

e For uw € D'(U) and ¢ € CX(U), we define the pairing
(u, ) := u(p). (2:4)

Sometimes we may even write (which is something you will see in textbooks

loc

and papers using distribution theory, so you might as well get used to it)

/U u(z)p(z) dr = u(p)

which still means the distributional pairing and not an actual Lebesgue inte-
gral since u might not even be a function.

This notation might be confusing at first, but it makes the presentation much cleaner.
It is also represents the following philosophical point underlying the theory of distri-
butions. To specify a function f : U — C, we need to answer the following question:

For any x € U, what is the value of f at the point x? (2.5)

To specify a distribution u € D'(U), we need to answer a different question:

For any test function ¢ € C°(U), what is the integral / u(z)p(z)dr ? (2.6)
U

The question (2.6) provides weaker information than (2.5), which corresponds to the
fact that there are plenty of distributions which are not functions (as we will see
shortly). In fact, we cannot even answer the question (2.5) for a function f € L _(U)
because the space L' is defined modulo equality almost everywhere.

Moreover, the question (2.6) more physically relevant because if u is a physical
quantity (for example, the temperature in some reservoir) then, since a physical sensor
has positive size, any measurement of u will produce an integral featuring v instead
of the value of u at a single point. (Not to mention that if we go to a subatomic scale
then the notion of the temperature at a given point does not make sense — all we can
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really define is the average temperature in a macroscopic region, which is a rougher
version of (2.6).)

A standard example of a distribution which is not a function is given by the Dirac
delta function:

DEFINITION 2.4. Let U @ R™ and y € U be a point. Define the distribution
6, € D'(U) by
0y, ) == p(y) for all p € CZ(U).

This is something that has been used in physics much earlier than the mathemati-
cally rigorous development of the theory of distributions: if we think of a distribution
in D'(U) as, say, the density of electric charge, then J, is the density of the point
charge centered at y.

To see that ¢, is not a function, assume the contrary: d, = f for some f € L} (U).
Take arbitrary xy € C°(R") with x(0) = 1 and consider the test function ¢.(z) :=
X((x —y)/e) which lies in C°(U) for sufficiently small ¢ > 0. Then (f,¢.) — 0 as

¢ — 0+ by the Dominated Convergence Theorem but (d,, p.) = 1.

2.2. Distributions and convergence

2.2.1. Sequential convergence of test functions. If X is a Banach space, then
a functional u : X — C is bounded if and only if it is continuous. We now give an
analog of this statement for distributions. A proper way to do this would be to define
a topology on C°(U) but it turns out to be an inductive limit topology which is a
bit complicated to describe (related to property (1) in Definition 2.5 below). So we
instead settle for defining convergence of sequences of elements in C°(U), which is
enough for our applications. See for example [RS81, §V.4] or [Rud91, §6.2] for the
definition of the inductive limit topology on C°(U).

DEFINITION 2.5. Let U G R"™ and assume that ¢, € C°(U) is a sequence and
p e Cx(U). We say that

o=@ ask —oo0 in CX(U)
if the following two conditions hold:
(1) there exists compact K C U such that supp ¢r C K for all k, and
(2) we have ||or — @|lcv — 0 as k — oo for all N.

We use the sequential notion of continuity to establish the equivalence of bound-
edness and continuity for functionals on C°(U):

PROPOSITION 2.6. Let u : CX(U) — C be a linear functional. Then the following
are equivalent:
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(1) w is a distribution, that is it satisfies the norm bounds (2.1);
(2) for each sequence @ € C(U), if or, — 0 in C2(U), then (u, x) — 0.

PRrOOF. (1) = (2): Assume that ¢ — 0in C2°(U). Then in particular there exists
K € U such that supp ¢, C K for all K. The norm bound (2.1) implies that there
exist C, N such that for all k

|(u, px)] < Cllor]len

The right-hand side goes to 0 as k — 00, so (u, pr) — 0 as needed.

(2) = (1): We argue by contradiction. Assume that u does not satisfy the norm
bounds (2.1), that is there exists K € U such that for any choice of C, N there exists
@ € C(U) such that suppp C K and |(u, )| > C||¢||cv. Choosing C'= N = k and
dividing ¢ by u(p), we construct a sequence

or € CE(U), suppor C K, (u,00) =1, l@iller < 4

The sequence ¢y converges to 0 in C°(U) since for all k& > m we have |pg|cm <
lekllor < % Thus u does not satisfy the sequential continuity property (2). O

2.2.2. Weak convergence of distributions. We next discuss convergence of
sequences of distributions. This is a very weak notion of convergence, in contrast with
convergence in C°(U) which is very strong.

DEFINITION 2.7. Let U G R"™, u € D'(U) be a sequence, and v € D'(U). We say
that
up —u ask— oo inD(U)
if we have

(ug, ) = (u, ) ask — oo forall p € CZ(U).
We give a few examples of weak convergence:

PROPOSITION 2.8. If uy,u € Li (U) satisfy u(z) — u(x) for almost every x € U,

loc

and there exists g € Li. (U) such that |ux(x)| < g(x) for all k, then up — u in D' (U).

loc
PRrROOF. This follows immediately from the Dominated Convergence Theorem. [J

PROPOSITION 2.9. Define the functions u;, € L (R) by

loc
uk(x) = kl[fl/k,l/k] ($)

(This is a classical example of a sequence which does not satisfy the assumptions of
the Dominated Convergence Theorem.) Then u, — 20y in D'(R).
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PRrROOF. Take arbitrary ¢ € C(R). Then
1/k
() =k [ pla)ds = 26(0) = (26,9
~1/k

by the continuity of . O

PROPOSITION 2.10. Define the functions uy € Li (R) by

loc
up(x) =e

Then uy — 0 in D'(R).
PRrOOF. Take arbitrary ¢ € C(R). Then

(s ) = / e () dx = G(—k)

where @ is the Fourier transform of . We will study the Fourier transform in detail
later but for now we note that integration by parts using e** = —(i/k)d,e™** gives
|p(—k)| = O(1/k) and thus (ug, ) — 0. O

While the convergence in Definition 2.7 is indeed very weak, it does imply a (weak)
uniform bound on the sequence u; — see Theorem 4.16 below.

2.3. Localization

We now discuss how the space D'(U) depends on the open set U and the related
question of localization of distributions. This is easy for functions (when we have
access to values at points) and takes more effort for distributions.

As with many concepts later in these notes, we start by reviewing what happens
for functions and then generalize to distributions. Let V' @ U @ R™. Then we have
the restriction operator

Llloc(U) — Llloc(v)’ f = f|V
Its generalization to distributions is given by

DEFINITION 2.11. Let V @ U @ R™. For u € D'(U), define its restriction ul|y €
D'(V) as follows:
(ulv, @) = (u, @) for all p € CZ(V).

Here C(V') is considered a subset of C*(U) as follows: for p € CX(V) we extend it
by 0 to produce an element of C°(U) (owing to compactness of support).
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PROPOSITION 2.12.5 The restriction map ryvy = D'(U) — D'(V) from Defini-
tion 2.11 is linear and satisfies

roy =1,
TwvTvy = Tw,u forallW eV cU e R".

(In algebraic terms, we have obtained a presheaf — but if you don’t know what this
means, do not worry since we won’t be using this terminology later.)

The next theorem states that if we have an open cover of U, then a distribution on
U is uniquely determined from its restrictions to the elements of the cover. That is, if
we construct a distribution locally (i.e. on each set of the cover) then we can recover
it globally. The proof would be straightforward for functions but takes more effort for
distributions, using in a key way partitions of unity.

THEOREM 2.13 (Sheaf property of distributions). Assume that J is an arbitrary
set and
Uy GR" forjeJd, U=|]JU.
JET
Assume next that we are given u; € D'(U;), j € J, satisfying the compatibility condi-

tions
Uj|Uij£ = u€|U]ﬂUZ fO?” all j, (e \7 (27)
Then there ezists unique v € D'(U) such that
uly, =u; foralljeJ. (2.8)

ProoOF. 1. We first show uniqueness of u, which can be reformulated as follows:

ueDU), uly,=0 foralljeJ = u=0. (2.9)

Recalling Definition 2.11, we can reformulate (2.9) as follows:
(u,) =0 foral je J, v e CXU;) = (u,p)=0 forall pe CFU). (2.10)

Take abritrary ¢ € C°(U). We can decompose it as
p=> @ ¢ €CUy) (2.11)
JjeTJ

where only finitely many of ¢; are nonzero. Indeed, since supp ¢ is compact and covered

by the open sets Uj, there exists a finite set J' C J such that suppy C Ujej, U;.
Using Theorem 1.15, we take a partition of unity

x; € C2(U;y), €T, ij =1 on supp .
JET'
Multiplying the last identity by ¢, we get (2.11) if we put ¢; := x;¢ for j € J’ and
@; = 0 otherwise.
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Pairing (2.11) with u, we get
(us0) =D (u ;).
JET
If the assumption in (2.10) holds, then (u, ;) = 0 for all j, which gives (u, ) = 0 as
needed.

2. It remains to show that given u; € D'(U;) satisfying the compatibility condi-
tions (2.7), there exists u € D'(U) satisfying (2.8). To define u, we need to specify
(u, p) for each p € CX(U). Take such ¢ and decompose it as in (2.11):

o= _xi0, Xj €CXUy), (2.12)
JjeTJ
where only finitely many x; are nonzero. We then put
(u, @) == Z(uj,xjgp). (2.13)
JET
The rest of the proof proceeds in several steps:

e The value of (u, ) from (2.13) does not depend on the choice of the decom-
position (2.12). Indeed, assume that we have a different decomposition

o= Xyp Xy €CZ(Uy)

jedg
We write
Z(ujanSO) = Z (), XiX3)
jeT Ji'ed
= > (i Xyr9)
Ji'eT
= Z (uj'7 SZJISO)
j'eg

giving the required independence. Here in the first equality above we use
that x;0 = > e X;Xj - In the second equality we use the compatibility
conditions (2.7): we have x,;X; ¢ € C*(U; N Uj) and the restrictions of u;
and u; to U; NUj are equal. Finally, in the last equality we use that ;¢ =
> icq XiXi'$-

e (5) The map ¢ ~ (u,¢) is linear. Indeed, take any ¢, ©? € C=(U) and
ay,ay € C. Take a partition of unity (with only finitely many nonzero elements
as before)

X; €CE(U;), > x;j=1 on suppyp Usuppp®.
jeTJ
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Then (2.12) holds for ™), ¢ and their linear combination a;p™ + agp®.
By (2.13) and since the maps ¢ — (u;, ¢) are linear, we have

(u, a19™ + a0?) = (g, x5 (a2 + a2p®))

jed
= Z(Uja Xie) + az Z(uj’ xi9?)
jeJ jeJ

= a1 (U, 90(1)) + G,Q(U, 90(2)>

which shows linearity.
(5) The linear map u satisfies the bounds (2.1) and thus defines a distribution
in D'(U). Indeed, take any K € U. Fix a partition of unity

Xi €ECEU), Y xj=1 onK,
jeJ’
where J' C J is a finite set. Since each of the finitely many distributions w;,
j € J', satisfies the bounds (2.1), we can find C, N such that

|(uj, )| < Cl||len  forall j € J', ¢ € CZ(U;), suppy C supp x;-
Then for each ¢ € C*(U) with supp ¢ C K we have by (2.13)
[, 0) < D 1y, x59)]
JjeJ’
<O Ixsellon
JjeJ’

< C'llellen
for some constant C’ depending only on C, N, and the functions y;. This
gives the bounds (2.1).
We have u|y, = u; for all j € J, that is (u, p) = (uy, ) for each ¢ € C*(U;).
For such ¢ we have the decomposition (2.12) if we choose x; € C°(U;) with
X; = 1 on supp ¢ and put x; = 0 for all j' # j. Then (2.13) gives

finishing the proof. U

2.4. Notes and exercises

The modern theory of distributions was developed by Schwartz in the 1950s (and

was included in the citation for his Fields medal), see [Sch50, Sch57]. There have
been various precursors to this theory, most notably the definition of weak derivatives
of functions by Sobolev in [Sob36] in the context of existence and uniqueness theorems
for hyperbolic equations.
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Our presentation largely follows [Hor03, §§2.1-2.2] and [FJ98, §§1.3-1.4].

EXERCISE 2.1. (1 pt) Let U G R"™ and assume that u € D'(U) satisfies the bound

|(u, 0)| < Cllell 2y

for some constant C' and all ¢ € C*(U). Show that w € L*(U). (Hint: use the
Continuous Linear Extension theorem from functional analysis.)

EXERCISE 2.2. (1 pt) Let x € C2(R™) satisfy [p. x = 1. Define
Xe(x) :=e"x(z/e), €>0.

Show that x. — &g in D'(R") as e — 0+.

EXERCISE 2.3. (2 pts) Assume that the sequence {ag }rez satisfies

lag| < C(1+ k)N for some constants C, N.
Show that the Fourier series
Z akeikx

converges in D'(R).

EXERCISE 2.4. (2 pts) Let U C R", V C R™ be open and consider a linear operator

A:CEU) = C2(V).

Show that the following two definitions of continuity of A are equivalent:

(1) the following two conditions both hold:

(a) for every K € U there exists K' € V' such that for all p € CX®(U) with
supp ¢ C K, we have supp(Ayp) C K’ (we can call this ‘uniform control
on compact support’); and

(b) for every K € U and N € N there exist C > 0, N’ € N such that we
have the seminorm bound

[Ablloviy < Cllellen gy for all ¢ € CZ(U) with supp ¢ C K

(2) for each sequence o, € C(U) such that ¢ — 0 in C°(U), we have Agy — 0
in CX(V) (this is called ‘sequential continuity’).

(Hint: for the direction (2) = (1) you can argue by contradiction: if either 1(a)
or 1(b) fails then construct a sequence @y which violates sequential continuity. In case
of 1(a) it helps to take a sequence of compact subsets K, exhausting V' (see (1.14)): if
1(a) fails then there exists K C U such that neither of the sets K, will work as K'.)
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EXERCISE 2.5. (1 pt) Show that

Z Eo(1/k), o € C22((0,00))

defines a distribution on (0, oo) but this distribution does not extend to R, that is there
exists no v € D'(R) such that u = v|e0). (Hint: pair v with a dilated cutoff function
whose support contains 1/k but no other points of the form 1/7, j € N.)



CHAPTER 3

Operations with distributions

To quote from [H6r03], “In differential calculus one encounters immediately the
unpleasant fact that every function is not differentiable. The purpose of distribution
theory is to remedy this flaw,; indeed, the space of distributions is essentially the small-
est extension of the space of continuous functions where differentiation is always well

defined.”

In this chapter we learn how to differentiate distributions and also how to multiply
them by smooth functions. This will follow two general principles:

e Uniqueness of extension from a dense set: for any operator on the space of
smooth functions there is at most one continuous extension of this operator
to distributions, because any distribution can be approximated in D'(U) by
functions in C(U).

e Duality: one can extend many operators A : C*(U) — C*(U) to distribu-
tions by defining (Au, @) = (u, A'p) for all u € D'(U), p € C*(U), and a
correct choice of the transpose operator A'. (We make this strategy into a
theorem in §7.3 below.) That is, one defines operations on distributions by
defining the dual operation on test functions.

Once we define the two fundamental operations above, we can apply to a distribution
any differential operator with smooth coefficients, and thus we can pose PDEs in
distributions. We are not yet ready to study any ‘serious’ PDE, but in this chapter we
will solve two ‘baby’ ODEs: «' = 0 and zu = 0.

3.1. Differentiation

3.1.1. Definition. Before giving the definition of a derivative of a distribution,
let us first discuss which properties this operation should satisfy:

(1) We are looking for a linear operator 5xj :D'(U) — D'(U) where U G R™.

(2) This operator should agree with the usual (classical) partial derivative on nice
functions: if f € C*(U) then 5$Jf = 0,, f. Here C'(U) C Li,,(U) is embedded
into D'(U) in the standard way (2.2).

(3) This operator should also be (sequentially) continuous: if u, € D'(U) is a
sequence converging to 0 in D'(U), then 5xjuk — 0in D'(U) as well.

37
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REMARK 3.1. If an operator satisfying (1)-(3) above ezists, then it is unique.
Indeed, we will show later (see Theorem 6.10) that C°(U) is dense in D'(U), that is
for each w € D'(U) there ezists a sequence fi, € CX(U) which converges to w in D'(U).

Then 0O,

,u has to be the limit in D'(U) of the classical derivatives O,, fr and thus is

uniquely determined.

This proof applies to other operators on distributions that we define below, and

makes it possible to shorten proofs of various identities featuring these operations: by

density it is enough to verify these identities for ‘nice’ functions only.

As mentioned above, we will define the operator 5%. by duality:

(1)

(2)

First, let us take a ‘nice’ f € C*(U), and a test function ¢ € C>°(U). Using
integration by parts (Theorem 1.17), we see that

(00, ], ) = /U (00, P dz = — /U F(0s0) dz = —(£.04,0). (3.1)

Now we take (3.1) as the definition of 5xj. More precisely, if u € D'(U) and
@ € CX(U), then we define

(02,1, ) = —(u, 0y, ). (3.2)
Here we use that 0,,¢ € C(U).
It is direct to see (as d,, is a linear operator on C°(U)) that the formula (3.2)
defines a linear functional 5xju : C®(U) — C. We now show that this func-
tional satisfies the bound (2.1) and thus gives a distribution 5xju e D'(U).
Fix arbitrary K € U. Since u is a distribution, it satisfies the bound (2.1):
there exist C, N such that

|(u, )] < Clj||en for all ¥ € CF(U) such that suppy C K.

If p € CF(U) and supp ¢ C K, then we apply the above bound with ¢ := 0,,¢
to get
|(Day1 9)] = [(,00,0)] < Cl0u,0ller < Cllpllenn,

that is the bound (2.1) does indeed hold for 5$ju with N replaced by N + 1.
(Alternatively, we could use Proposition 2.6 and the fact that if ¢, — 0 in
Ce(U), then 0,0, — 0in CF(U) as well.)
From (3.1) we see that if f € C'(U), then 5mjf = Oy, [. Moreover, the operator
5xj is sequentially continuous on D’(U). Indeed, if u, € D'(U) converges to 0
in D'(U), then for each ¢ € C*(U) we have

(5173-”/67 QO) = _(uka axﬁ@) — 0
and thus 5Ijuk — 0in D'(U) as well.
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We now constructed the operator 53,]. that satisfies the properties (1)—(3) above. By a
slight abuse of notation, we will henceforth forget about the tilde and just write

Op,u = 5xju for all u € D'(U).
We remark that we still have 0,,0,, = 0,,0,, in distributions, so we can define 95 :

D'(U) — D'(U) for any multiindex a.

3.1.2. Examples. Having defined derivatives of distributions, we look at a few
examples with U = R:

e u(x) = |z|. To compute v’ = 0,u € D'(R), take arbitrary ¢ € C®*(R) and
write

() = () = = [ [ol(a) da
= /0 zy' (x) dr — /000 x¢'(x) dx

—00

:_/_(;go(x)dx+/00090($)dx

where in the last equality we use integration by parts, with the boundary
terms being zero. This shows that 0.|x| is given by the locally integrable
function sgn x:

1
-1, = <0.

; >0,
Orlx| =sgna == { ’

e The Heaviside function:
1, >0
H(x) := ’ ’ 3.3
() {0, x < 0. (3:3)

Take arbitrary ¢ € C(R) and compute

(H'.p) = —(H.¢) = - / " (@) dr = p(0)

where the last equality follows from the Fundamental Theorem of Calculus.
Thus the distributional derivative of the Heaviside function is the Dirac delta
‘function’:

H'(z) = dg(x). (3.4)
e The delta function dg. Take arbitrary ¢ € C°(R) and compute
(90, 9) = = (00, ¢) = =¢(0).

There isn’t a better way to write this down, so we just denote the derivative
of the delta function by dj.
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3.1.3. A differential equation. We are now ready to solve our first differential
equation, v’ = 0. In this case being in distributions does not produce any new solutions:

PROPOSITION 3.2. Assume that U C R is an open interval, uw € D'(U), and v’ = 0.
Then u is a constant function.
PROOF. The statement that v’ = 0 in distributions is equivalent to
(u,") =0 forall p € C(U).
Let us rewrite this as follows:
(u,0) =0 for all p in the space V :={¢' |y € CZ(U)}. (3.5)

The space V has codimension 1 inside C2°(U), indeed it can be characterized as

vofeecmw ’/ e =0}

To check this, we have to show that each ¢ € C°(U) which integrates to 0 can be
written as ¢’ for some ¢ € C°(U), which can be done by putting ¥(z) = [ ¢(t) dt
where a € U lies to the left of supp .

Now, fix xo € C*(U) such that [, xo(z)dx = 1. Then for each ¢ € C*(U) we
have

©—(1,¢)x0 €V where (1,p) = / o(x) dz.
U
Then by (3.5) we have for all ¢ € C°(U)
(u7 ()0) = (17 ¢)<U7XO) = ((u7 XO)L 90)7

that is u = (u, xo)1 is a constant function. O

3.2. Multiplication by smooth functions

3.2.1. Definition and basic properties. The next operation we extend to dis-
tributions is the multiplication operator

f€L100<U) = &f

where a € C*°(U) is given. For each f € L{ (U) and a test function p € C*(U) we
have

(0f.9) = [ alo)f@)olz) dz = (f.ap)
U
Thus we define for u € D'(U) and a € C*°(U) the product au € D'(U) as follows:
(au, @) := (u,ap) for all p € CZ(U). (3.6)

This gives the usual pointwise multiplication when u € L{ (U). Arguing similarly

to §3.1 we see that au is indeed a distribution and the map u — au is sequentially
continuous.
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REMARK 3.3. The definition (3.6) uses crucially that a € C*(U) and thus ap €
C>(U). In general it is not possible to define the product au when w is an arbitrary
distribution and a is a non-smooth function. Similarly, we generally cannot define the
product of two distributions. Indeed, let u; be the step function from Proposition 2.9,
with ux, — 20¢ in D'(R). If we could define products of distributions, we would expect
that ui — 462, but

() = K 11k m (2)
does not have a limit in D'(R) since (u2,x) — oo for any x € C®(R) such that
x(0) > 0.

As one would expect, the Leibniz rule still applies in distributions:
PROPOSITION 3.4. Assume that u € D'(U) and a € C>*(U). Then
O, (a11) = (O, @)1 + a(Dy1). (3.7)

REMARK 3.5. Note that (3.7) features the distributional derivatives defined in (3.2)
and the distributional multiplication by a smooth function a defined in (3.6). If we
denote the first of these operators by 53;], and the second one by M,, then a more
pedantic way to write (3.7) would be

5967(Ma(u)) = Maxja<u) + Ma(a:cj (u))

PROOF OF PROPOSITION 3.4. First proof: We can do this by direct computation.
Let ¢ € C*(U), then
(axj (au)’ 90) = _(au> a-l’jgp) = _(u7 a(awj ‘P)),
((Oa;a)u, 0) = (u, (0, a)),
(a(0s,u), p) = (0z,u, ap) = —(u, Oy, (ap))
which gives (3.7) since 0,,(ap) = (0z,a)p + a(0x,;¢).
Second proof: This one relies on the density of C° in D’ that we have not proved
yet, but it is more robust than the first one. By Theorem 6.10 below, there exists a

sequence fi, € C°(U) converging to u in D'(U). By the usual Leibniz rule we have for
all k

O, (afi) = (0z,a) fr + a(Oy, fr).
We now pass to the limit in D’(U), using that the operations u +— 0,,u and u > au
are sequentially continuous, and obtain (3.7). O

As a basic example of multiplication of distributions and smooth functions we have
the following formula featuring the delta function: if y € U and a € C*°(U), then

a(z)éy(z) = a(y)d,(x). (3.8)



42 3. OPERATIONS WITH DISTRIBUTIONS

3.2.2. Another differential equation. The next proposition solves the differ-
ential equation xu = 0 in distributions. This time there are interesting solutions which

are not functions, namely constant multiples of the Dirac delta function dy, where
xdo(x) = 0 by (3.8).

PROPOSITION 3.6. Let U @ R be an interval containing 0. Assume that u € D'(U)
and xu = 0. Then u = cdy for some c € C.

The proof of Proposition 3.6 uses the following lemma from classical analysis which
is important in its own right:

LEMMA 3.7. Assume that U G R is an interval containing 0 and ¢ € C(U)
satisfies ©(0) = 0. Then there exists i € C°(U) such that p(x) = xip(x).

PROOF. It is tempting to just define ¢)(x) := ¢(x)/x and compute derivatives of
all orders to see that they extend continuously to z = 0. But a faster strategy is to
apply the Fundamental Theorem of Calculus to the function ¢ — ¢(tz) on the interval
[0,1] and get for x € U

() :/0 O(p(tx)) dt = xp(z) where (x) ::/0 ¢'(tx) dt.

Differentiating under the integral sign, we get that ¥ € C*°(U), and it is compactly
supported since p(x) = z¢(z) and ¢ is compactly supported. O

We can now give

PrOOF OF PROPOSITION 3.6. We follow a similar scheme to Proposition 3.2. The
statement that xu = 0 in distributions is equivalent to

(u,) =0 for all ¢ in the space V :={z¢p | € C°(U)}. (3.9)
From Lemma 3.7 we see that )V has codimension 1, in fact
V={p e CXU)|(0) =0}
Fix xo € C(U) such that yo(0) = 1. Then for each ¢ € C°(U) we have
p(x) = p(0)xo(x) € V.
By (3.9) this implies that for all ¢ € C°(U)
(u, ) = @(0)(u, x0) = (1, X0)0, ©),

that is u = (u, x0)dp is a multiple of the delta function. O
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3.3. Notes and exercises

A natural generalization of Proposition 3.2 is that for a linear ODE
u™ (2) + @y ()™ (@) + -+ ag()u(z) = f € COU)

on an interval U @ R with coefficients a; € C*°(U), all distributional solutions are
classical, i.e. they lie in C™(U). See [Hor03, Corollary 3.1.6]. If f € C°°(U) then we
can also see this as a corollary of elliptic regularity, proved in Theorem 14.2 below.

Our presentation follows [Hor03, §3.1] and [FJ98, Chapter 2].

EXERCISE 3.1. (1 pt) Consider a function f : R — C such that f lies in C' on
(—00,a) and (a,00) for some a € R and the derivative f' € C°(R\ {a}) is locally

integrable on R. The latter implies the existence of one-sided limits f(a + 0) and
f(a—0). Show that

Ouf = [+ (fla+0) = fla—0))d
where O, f denotes the distributional derivative of f € D'(R).

EXERCISE 3.2. (1 pt) Assume that u,v € C°(R) and d,u = v in the sense of
distributions in D'(R). Show that u € C*(R) and v’ = v in the sense of the ordinary
deriwative. That is, if the distributional derivative is continuous, then it is the ordinary
derivative.

EXERCISE 3.3. (3 =1+ 2 pts) (a) For m € N, write 20)'0y € D'(R) as a linear
combination of &y, 0x0¢, . - ., O™ 5.

(b) Show that the space of solutions to the equation x™u = 0, u € D'(R), is the span
of 8, 0x00, . .., 0" 18y, (Hint: for m =1 this was done in class. The m =1 result can
be iterated to get the general case.)

EXERCISE 3.4. (2 pts) Find all u € D'(R) such that usinxz = 0.

EXERCISE 3.5. (2 pts) This exercise gives a higher dimensional version of the
Division Lemma 5.7. Let U G R™ contain 0. Define

Vo= {2t 4 A 2ty | V1., € C2(U)Y C CR(D).

(In algebraic terms, at least if we forget about the compact support condition, V is the
ideal generated by x1,...,x,.) Show that

V={peCZU)|»(0)=0}.

(Hint: first show that V contains C(U\{0}), by taking a partition of unity subordinate
to covering by the sets U N {x; # 0}. Neat, take arbitrary ¢ € CX(U) such that
©(0) = 0 and use the Fundamental Theorem of Calculus for the function t — ¢(tz) to
write ¢ as the sum of an element of V and an element of C°(U \ {0}).)
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EXERCISE 3.6. (1 pt) Let U @ R™ contain 0. Using Exercise 3.5, find all solutions
u € D'(U) to the system of equations

U =2u = ---=1x,u = 0.



CHAPTER 4

Distributions and support

In this chapter we define the support of a distribution. We next consider the space
&' of distributions with compact support and give an alternative characterization of
it as the dual to C'°*°. The latter is a Fréchet space, which lets us prove a Banach—
Steinhaus Theorem for distributions. Finally, we give a complete description of the
space of distributions supported at a single point.

4.1. Support of a distribution

Recall from Definition 1.5 that the support of a continuous function f is the closure
of the set {x | f(x) # 0}. If f is instead a distribution, then we cannot define the
support this way since we cannot evaluate f at a point. Luckily, all we actually
need is to know when f vanishes identically on an open subset, which makes sense in
distributions thanks to the restriction operator from Definition 2.11.

DEFINITION 4.1. Let U G R™ and u € D'(U). We say a point x € U does not lie
in suppu if there exists V. @ U containing x and such that u|y = 0. This defines a
subset
suppu C U.

From the definition above we see that supp u is a relatively closed subset of U since
its complement is open. We also see that for f € C°(U), Definitions 1.5 and 4.1 give
the same set supp f. As another example, the support of a delta function consists of
a single point:

supp o, = {y}.
The next statement is trivial for continuous functions, but it needs a proof for distri-
butions since support of the latter is not defined in a pointwise way.

PROPOSITION 4.2. Let uw € D'(U). Then

U|U\Suppu =0.

That is, if ¢ € C°(U) and suppu Nsupp e = 0, then (u,p) = 0.

PROOF. Here is a short proof: for each x € U\ supp u, there exists V,, G U \ supp u
containing x and such that u|y, = 0. The sets V, cover U \ supp u, so by the uniqueness
part of Theorem 2.13 applied to u|i\suppu, We see that u|i\suppw = 0.
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Alternatively we can repeat part of the proof of Theorem 2.13. Assume that ¢ €
C>®(U) and suppu Nsuppe = @. Then for each x € suppp there exists V, G U
containing x and such that u|y, = 0. Using a partition of unity we can write ¢ =
Y1 + -+ + ¢, where each ¢; € C®(U) is supported in one of the sets V. Then
(u, ;) = 0 and thus (u, ) = 0. O

Other properties of the support of a distribution are given in

PROPOSITION 4.3.5 Let U GR™. For all u,v € D'(U) and a € C*°(U) we have:

(1) w=0 if and only if suppu = (;

(2) supp(u + v) C suppu U suppv;

(3) supp(au) C supp a N supp u,

(4) supp(0y,u) C suppu;

(5) if au = O then suppu C {z € U | a(z) = 0};

(6) if V@ U then supp(uly) = suppunV;

(7) if ux — w in D'(U), then suppu is contained in the closure (in U) of the union

(U, supp u.

We omit the proofs since they are straightforward; some of the above properties
are assigned as exercises below.

Later in §8.3 we will study the related notion of singular support which will be
essential for Elliptic Regularity.

4.2. Distributions with compact support

Let U @ R"™. We previously defined D'(U) as the dual to the space C°(U). One
can alternatively consider the space £(U) which is dual to the space C>°(U) of all
smooth functions, not necessarily compactly supported. (The notation & goes back
to Schwartz who denoted £ := C.) In this section we define the space £'(U) and
identify it with the space of compactly supported distributions in D’(U).

We start by defining convergence of sequences in C'°(U), by requiring uniform
convergence of all derivatives on every compact set. For K € U and ¢ € C*(U),
define the seminorm

lellonw.r) = max sup |97 p(x)]. (4.1)
|a|<N ze K

DEFINITION 4.4. Let ¢, € C®(U) be a sequence and ¢ € C>*(U). We say that
i — ¢ in C=(U) if
lox — @llevwry — 0 ask— oo for all K € U and N.

We define the space £'(U) in a way analogous to the alternative definition of D’(U)
from Proposition 2.6:
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DEFINITION 4.5. Let u : C®°(U) — C be a linear functional. We say that u lies
in E'(U) if it is sequentially continuous, namely for each sequence py converging to 0

in C(U) we have u(py) — 0.

As in the case of D'(U), we use the notation (u, ) := u(p) when u € £'(U) and
p e C=(U,).

We next discuss the relationship between D'(U) and £'(U). Let u € £'(U). Then
the functional u : C*°(U) — C can be restricted to C°(U), which yields a distribution
in D'(U) by Proposition 2.6 and since ¢ — 0 in C°(U) implies that ¢, — 0 in C*(U)
as well. This yields the operator

L E'U) = DU), ((u),p)=(u,p) foralluel'(U), e CX). (4.2)

The next theorem shows that ¢ is injective and its range is exactly the space of distri-
butions in D'(U) with compact support. Thus ¢ gives an identification

E'U)~{ueD(U)|suppu € U}.
Once the theorem is proved, we will drop ¢ in the notation and treat £'(U) as a subspace
of D'(U).
THEOREM 4.6. 1. Assume that u € E'(U) and t(u) = 0. Then u = 0.
2. Assume that u € E'(U). Then supp t(u) € U.

3. Assume that v € D'(U) and suppv € U. Then there exists u € E'(U) such that
t(u) =wv.

PROOF. 1. Take arbitrary ¢ € C*°(U). Then there exists a sequence ¢y € C°(U)
which converges to ¢ in C*°(U). Indeed, using (1.14), take a sequence of compact
subsets exhausting U:

U=|JK:. Kiel (4.3)
k=1
Take cutoff functions
Xk € C2(U), supp(l —xx) N K =10 (4.4)

and put ¢y := xrp € CX(U). Then ¢ — ¢ in C°(U), since for each K € U there
exists ko such that for all £ > ko we have K C K} and thus ||¢r — ¢llev@w k) = 0.

Now, since ¢(u) = 0 we have (u, ;) = 0 for all k. Passing to the limit, we see that
(u, @) = 0 as well, which shows that u = 0.

2. We argue by contradiction. Assume that supp¢(u) is not compactly contained
in U. Take a sequence K} as in (4.3), then we have supp¢(u) ¢ K}, for each k. Then
there exists a test function ¢, € CX(U \ Kj) such that (u,p,) = 1. Similarly to
part 1 of this proof, we have ¢, — 0 in C*°(U), which gives a contradiction with the
sequential continuity of u as a functional on C*(U).
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3. Fix a cutoff x € C°(U) such that supp(1 — x) Nsuppv = 0. For p € C=(V),
define

(u, ) := (v, xp)-

It is straightforward to check that this defines u € £'(U); indeed, if ¢ — 0 in C*(U)
then xpr — 0 in C°(U). Moreover, if ¢ € C°(U) then by Proposition 4.2 applied
to v and (1 — x)g we have

(v,0) = (u,0) = (v, (1 = X)) =0

which shows that ¢(u) = v. O

We used in §2.3 that any test function ¢ € C°(V) can be extended by zero to a
test function in any open set containing V. The next statement is a version of this for
distributions with compact support. Its proof is left as an exercise below.

PROPOSITION 4.7. Let V G U G R" and v € E(V). Then there exists unique
u € E'(U) such that uly = v and suppu C V. In fact, we have supp u = supp v.

Similarly to the space D'(U), we define weak convergence in &'(U):

DEFINITION 4.8. Let U G R", u, € E'(U) be a sequence, and u € E'(U). We say
that

up —u ask — oo in & (U)

if we have

(ug, ) = (u, ) ask — oo forall p € C(U).

As we see in Proposition 4.15 below, this convergence can be characterized in terms
of convergence in D'(U).

Finally, let us give here the analog of Proposition 4.2 for the space £’. Note that
when writing supp u for u € £'(U), we technically mean supp ¢(u).

PROPOSITION 4.9. Let U GR", uw € E'(U), ¢ € C(U), and suppu Nsupp ¢ = (.
Then (u,p) = 0.

PROOF. Let ¢, = xrp € CX(U) be the sequence constructed in Step 1 of the
proof of Theorem 4.6, converging to ¢ in C°°(U). Then suppu N supp ¢ = 0, so by
Proposition 4.2 we have (u, @) = 0. Since u € £'(U), we have (u, px) — (u, ), giving
that (u, ) = 0. O
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4.3. Fréchet metric and Banach—Steinhaus for distributions

4.3.1. A metric on C*(U). Unlike C°(U), convergence of sequences in the space
C*>(U) from Definition 4.4 corresponds to a metric topology, which we introduce now.
The proofs in this section are left as exercises below.

Let U @ R™. Using (1.14), take a sequence of compact subsets exhausting U:
U=|JK;, K;eU K;€K.
j=1
For N € N, define the N-th seminorm || e |5 on C*°(U) using (4.1):
lellv = lleller w.xy)-

These seminorms depend on the choice of the exhausting sets Ky, and they are not
coordinate invariant, but the convergence they define is independent of these choices,
in fact it is the convergence of Definition 4.4:

PROPOSITION 4.10. Let ¢, € C®(U) be a sequence and p € C(U). Then ¢ — ¢
in C(U) if and only if ||pr — ¢y — 0 as k — oo for each N.

The set of seminorms || e ||y makes C*°(U) into a complete space:

PROPOSITION 4.11. Assume that ¢ € C*(U) is a Cauchy sequence in the follow-
ing sense: for each N we have

sup |lgx — @elly =0 asr — oco.
k4>r
Then there ezists p € C>°(U) such that o — ¢ in C°(U).

As an application of the seminorms || e ||y, arguing similarly to Proposition 2.6 we
can reformulate the statement that v € £'(U) in terms of a seminorm bound:

PROPOSITION 4.12. Let u : C*°(U) — C be a linear map. Then u € E'(U) if and
only if there exist K € U and constants C; N such that

|(u, )| < Cllgllenwx) for all o € C=(U). (4.5)
PROOF.S If (4.5) holds, then it is immediate that ¢, — 0 in C*°(U) implies that

(u,r) — 0, and thus u € £'(U).

Assume now that u € &'(U). We show the bound (4.5) by contradiction. If (4.5)
does not hold, then for each N there exists

pn €C7(U), (won)=1, lenly < 5.

Then oy — 0 as N — oo in C*°(U), which contradicts the sequential continuity of
u: C®{U)— C. O
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We now follow the standard construction (coming from the theory of Fréchet spaces)
to define a metric on C*°(U). Namely, for ¢, € C>(U), put

Ao - S Q*NM.
ox(p¥)i= 2 2 T

The fundamental properties of dcw are collected in

(4.6)

PROPOSITION 4.13. 1. do defines a metric on C°(U).

2. For a sequence ¢ € C®(U), we have ¢ — ¢ in C®°(U) (in the sense of
Definition /./) if and only if do(pg, ©) — 0.

3. The metric space (C*(U),dc) is complete.

4.3.2. Banach—Steinhaus for distributions. The next theorem shows in par-
ticular that if a sequence of distributions in £'(U) converges weakly, then it satisfies a
uniform bound. The proof is analogous to the Banach—Steinhaus theorem for operators
on Banach spaces and can be skipped at first reading.

THEOREM 4.14 (Banach-Steinhaus for £'(U)). Let U @ R" and assume that a
sequence of compactly supported distributions u, € E'(U) is weakly bounded in the
following sense:

for each ¢ € C(U) there exists C, such that for all k |(ug, ¢)| < Cp.  (4.7)
Then there exist K € U and constants C, N such that for all k we have:
supp uy C K,
|(ur, ©)| < Cllellenwxy  for all o € C=(U).
PRrOOF.X 1. We use the notation of §4.3.1. For L € N, define the subset of C°°(U)
A = {p € C®(U): for all k, |(ug, ¢)| < L}.

Each set Ay is closed in (C*(U),dc). Indeed, assume that ¢, — ¢ in C*°(U) and
©m € Ay for all m. For each k we have uy, € £'(U), so (ux, pm) — (uk, @) as m — oco.
Thus |(ug, om)| < L implies that |(ug, ¢)| < L which shows that ¢ € Ap.

By the weak bound (4.7) we have
c=(U) = Av.
L>1

Then by the Baire Category Theorem for the complete metric space (C*°(U), do) we
can fix L such that the interior of Ay is nonempty, that is A, contains a metric ball:

Bieo (,e) C A, for some ¢ € C*(U), € > 0. (4.10)

From (4.10) we get
Bdcoo (O,E) C A2L- (411)
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Indeed, take arbitrary ¢ € By, (0,¢). Then both ¢+ and ¢ lie in By, (¢, €), which
is contained in Ay ; thus ¢ € Asp.

2. Recalling the definition (4.6) of do=, and using that the seminorms ||¢||y are a
monotone increasing sequence, we see that for any N

d(,0) < [lelly +27".
Thus there exist N,d > 0 such that for all p € C>(U)
lelly <6 = d(p,0)<e.
Putting C':= 2L/J, we get from (4.11) that
for all p € C(U) and b, |(ur )| < Cllglly.
This implies the bound (4.9) with K := K. It also shows that suppu, C Ky for all
k: indeed, if ¢ € CX(U \ Ky) then |||y = 0 and thus (ug, ¢) = 0. O

As a consequence of Theorem 4.14, we obtain a characterization of the convergence
in &'(U) (see Definition 4.8) in terms of convergence in D'(U) (see Definition 2.7). To
make the proof easier to read, we make explicit the use of the embedding ¢ from (4.2).

PROPOSITION 4.15. Assume that u, € E'(U). Then we have uy, — w in E'(U) if
and only if both of the conditions below hold:

(1) there exists K € U such that for all k we have suppuy, C K, and
(2) t(ug) = t(u) in D'(U).

PROOF.S Assume first that the conditions (1) and (2) hold. Without loss of gen-
erality we have suppu C K. Fix x € C°(U) such that supp(1 — x) N K = (). Then by
Proposition 4.9 we have for each ¢ € C*(U)

(ukv 90) = (ulmXSD)’ (u7 90) = (UaXSO)

Now, since xp € C°(U) and ¢(uy) — ¢(u) in D'(U), we have (ug, xp) — (u, x¢). Thus
u — u in E'(U).

Now, assume that u;, — u in £'(U). Then condition (1) above follows from Theo-
rem 4.14 and condition (2) above it immediate since C°(U) C C>(U). O

Another consequence of Theorem 4.14 is the Banach—Steinhaus theorem in the
space D':

THEOREM 4.16 (Banach—Steinhaus for D'(U)). Let U G R" and assume that uy, €
D'(U) is a sequence of distributions which is weakly bounded in the following sense:

for each v € C*(U)  there exists Cy,  such that for all k, |(ug, ¢)| < C,. (4.12)
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Then uy satisfies a uniform version of the norm bound (2.1), namely for each compact

K C U there exist C, N such that
|(uk, )| < Cllelley  for all k and ¢ € C°(U)  such that suppp C K. (4.13)

Proor. Take arbitrary K € U and fix a cutoff function y € C®(U) such that
supp(1 — x) N K = (. Then yuy lies in £'(U) and is weakly bounded in the sense
of (4.7). By Theorem 4.14 we see that there exist C', N, and K’ € U such that for all
k

|(xur, ©)| < Cl[Y|levwkrny for all p € C=(U). (4.14)

Now, take any ¢ € C°(U) such that suppp C K. Then ¢ = xp and thus by (4.14)
we have for all k

[(ur; 0)| = [(xur, )| < Cllellen .y < Cllelon.
This gives the required estimate (4.13). O

One of the corollaries of Theorems 4.14 and 4.16 is that if a sequence of distributions
converges weakly, then the limit is always a distribution. We state it in the space D'(U):

PROPOSITION 4.17. Assume that up € D'(U) is a sequence of distributions and
u: CP(U) — C is a map such that

(ur, ) = u(p) ask — oo for all p € CX(U).
Then w € D'(U) is a distribution as well.
PROOF. Since each wy is linear, v is also a linear map. Passing to the limit in the

estimate provided by Theorem 4.16, we see that u satisfies the bounds (2.1) and thus
ue D). O

Finally, we show here that the map u € D'(U),p € CX(U) — (u,p) € C is
sequentially continuous. An analogous statement holds for u € £'(U) and ¢ € C*(U).

PROPOSITION 4.18. Assume that u, € D'(U) and ¢, € CX(U) are sequences such
that
ur = u in D'(U), o — ¢ in CZ(U).
Then (ux, r) — (u, @).

PROOF. We estimate

| (uk, 1) — (u, )| < (ko — @)| + [(ur — u, ).
The second term on the right-hand side converges to 0 since u, — u in D'(U). As for

the first term, we take K € U containing supp ¢y, for all k; Theorem 4.16 shows that
there exist constants C', N such that for all &

| (ur, o6 — )| < Cllor — @lleon.
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Since [|¢or — ¢|ley — 0, we have |(ug, or — )| — 0 as well, finishing the proof. O

4.4. Distributions supported at one point

Here we discuss distributions whose support consists of a single point. The next
theorem provides their complete description as linear combinations of the delta function
and its derivatives:

THEOREM 4.19. Assume that u € E'(R™) and suppu C {y} for somey € R™. Then
we have

u= Y ca 00, (4.15)

la|<N

for some N € Ny and some coefficients c, € C.

To simplify the notation in the proof, we assume that y = 0. We use the following

DEFINITION 4.20. Let ¢ € C*°(R"™) and m € Ny. We say that ¢ vanishes at 0 with
m derivatives if

050(0) =0 for all v, || < .
The basic properties of vanishing are collected in

PROPOSITION 4.21.5 1. Assume that ¢ vanishes at 0 with m derivatives. Then
o(z) = O(Jz|™") as z — 0.

2. Assume that ¢ vanishes at 0 with m derivatives, and || < m. Then 0%¢
vanishes at 0 with m — |«| derivatives.

The key ingredient in the proof of Theorem 4.19 is the following

LEMMA 4.22. Assume thatu € E'(R") and suppu C {0}. Then there exists N such
that for each o € C*(R™) which vanishes at 0 with N derivatives, we have (u, @) = 0.

PROOF. 1. Since suppu C {0}, we have by Proposition 4.9
(u,0) =0 for all p € C°(R"™) such that 0 ¢ supp ). (4.16)
Fix a cutoff function
x € C2(B(0,1)), 0 ¢ supp(l —x).
For ¢ € C*(R") and 0 < € < 1, define the function
po(a) = x(Z)p@), ¢ € CERY).
Applying (4.16) to ¢ := ¢ — ¢, we see that
(u, ) = (u,p.) forall e € (0,1). (4.17)
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2. Since u is a distribution on R™, by (2.1) there exists constants C, N such that
|(u, ¥)] < Cl[Yllen for all € CZ(B(0,1)). (4.18)
Assume that ¢ € C°°(R™) vanishes at 0 with N derivatives. We will show that
loelloxy =0 ase—0+. (4.19)
This finishes the proof since by (4.17) and (4.18) we have for all € € (0,1)

|(u, 0) = (1, )| < Cllgellow-

3. It remains to prove (4.19). To make the proof more readable, we first consider the
simpler case N = (. Since . is supported in B(0,¢), we estimate

[@ellco = supee] < lixllco sup lo| = Ofe)
B(0,e)

since ¢(0) = 0.
The case of general N is handled similarly. Fix a multiindex o with |a| < N; we

need to show that ||0S¢.(x)|[co — 0 as € — 0+. By the Leibniz rule, the derivative
0%, is a linear combination with constant coefficients of terms of the form

= 92x(Z) dxele)

where the multiindices (3, v satisfy « = f++. By Proposition 4.21 and since ¢ vanishes
at 0 with N derivatives, we have 9)¢(z) = O(|z|N+1=Pl) as  — 0. Thus

x 0,e

which finishes the proof since || + |v| = |a| < N. O
We are now ready to give

PROOF OF THEOREM 4.19. Assume that u € £'(R"), suppu C {0}, and let N be
the number in Lemma 4.22. For any ¢ € C*°(R"™) we have the Taylor expansion

pla)= 37 Ziome(0) + ()
lal<N

where ¢ € C°°(R") vanishes at 0 with N derivatives and 2% := z{" - - - 2% are mono-
mials. By Lemma 4.22 we have (u, 1) = 0 and thus

)= 3 U arp0)

lo|<N

This shows that u has the form (4.15) with ¢, 1= (=1)1*(u, 2%)/al. O
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4.5. Notes and exercises

Our presentation largely follows [Hor03, §§2.2-2.3] and [FJ98, §§1.4,3.1-3.2].
These books do not prove the Banach—Steinhaus theorems in §4.3.2; sending the reader
instead to functional analysis textbooks such as [Rud91, Theorem 2.6 and §6.16].

EXERCISE 4.1. (3 =0.75+0.75+ 0.75 4 0.75 pts) Prove parts (3)-(6) of Proposi-
tion 4.35.

EXERCISE 4.2. (1 pt) Prove Proposition /..

EXERCISE 4.3. (0.5 pts) Prove Proposition 4.10. (You will have to use that each
compact subset of U is contained in one of the sets K;.)

EXERCISE 4.4. (1 pt) Prove Proposition j.11. (This is similar to how we prove
completeness of the spaces C* in an analysis course.)

EXERCISE 4.5. (3 =1+ 1+ 1 pts) Prove Proposition 4.13.






CHAPTER 5

Homogeneous distributions

One of the goals of the next few sections is to prove the following fact: if P is
a constant coefficient differential operator on R" (for example, the Laplacian A) and
f € &(R") is a compactly supported distribution, then a solution to the differential
equation Pu = f is given by the distribution

u=FExf (5.1)

where ‘x” denotes convolution of distributions (defined in Chapter 8 below) and E €
D'(R") is a fundamental solution of P, namely PE = §;. (We will deliver (5.1) in
Chapter 9 below.)

To make (5.1) work it is important to find a fundamental solution E. Quite often
these fundamental solutions are homogeneous distributions on R™. In this section we
study general homogeneous distributions and give important examples of homogeneous
distributions on R.

5.1. Basic properties

5.1.1. Homogeneous functions. We first review the definition of a homoge-
neous function:

DEFINITION 5.1. A function f : R" \ {0} — C is called homogeneous of degree
a € Cif

ftx) =t"f(x) forallt >0, x € R"\ {0}. (5.2)

Here to make sense of t* when t > 0 and a is complez, we define t* := exp(alogt)
where logt € R.

We collect some basic properties of homogeneous functions in

PROPOSITION 5.2.8 1. A function f is homogeneous of degree a if and only if it
can be written in polar coordinates as

f(x)=r"g(0), =10, r>0, S} (5.3)

for a function g on S"7! :={x € R": |x| = 1}.
57
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2. If f € CYR™\ {0}) then f is homogeneous of degree a if and only if it satisfies
Euler’s equation

x-0.f =af wherex-0,:= Za:j&pj. (5.4)
j=1

8. If f € CY(R™\ {0}) is homogeneous of degree a, then Oy, f is homogeneous of
degree a — 1.

5.1.2. Homogeneous distributions. To define homogeneity in distributions, we
rewrite the definition (5.2) in terms of the distributional pairing (e,e). Assume that
[ € L .(R™) is a homogeneous function of degree a (where strictly speaking, we should

require (5.2) to hold for almost every z). Take ¢ € C°(R") and t > 0 and pair the
equation (5.2) with ¢:

(e = | fa)ple)de =17 Rnf(x)w(t‘lw) dz.

Here in the last equality we use the change of variables formula. Thus, if we define the
dilated function
Ap € CZ(R"),  Ayp(x) = p(ta), (5.5)
then we have the identity
(fi M) =t77"(f,¢) forallt>0. (5.6)

Conversely, if (5.6) holds for all ¢ € C°(R™), then f is homogeneous of degree a. Thus
we can give the following definition of homogeneity for distributions:

DEFINITION 5.3. Assume that u € D'(R™) and a € C. We say that u is homoge-
neous of degree a if

(u, Adpp) =t "(u,p) forallt >0, ¢ € CR"). (5.7)

This extends the usual definition of homogeneity, so for example the constant func-
tion 1 is homogeneous of degree 0, and more generally any homogeneous polynomial of
degree k € Ny is a homogeneous distribution of degree £ in the sense of Definition 5.3.
A genuinely distributional example is given by the delta function (with the proof by a
direct computation):

PROPOSITION 5.4. The delta distribution §g € D'(R™) is homogeneous of degree —n.

Some properties of homogeneous distributions are collected in
PROPOSITION 5.5. 1. If u € D'(R") is homogeneous of degree a, then xju is
homogeneous of degree a + 1 and O, u is homogeneous of degree a — 1.

2. If u € D'(R™), then u is homogeneous of degree a if and only if it solves Euler’s
equation (5.4) in the sense of distributions on R™.
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We leave part 1 as an exercise below. For a proof of part 2, see for example [Hor03,
(3.2.19)].

5.1.3. Extending homogeneous distributions through the origin. In §5.1.2,
we considered homogeneous distributions on R™. One could alternatively define homo-
geneous distributions on R™\ {0}, following Definition 5.3 but with ¢ € C(R™\ {0}).
The latter class turns out to be isomorphic to distributions on the sphere S*~! by a
distributional version of the formula (5.3) (something we cannot do here as we have
not yet introduced distributions on manifolds). However, for applications to PDE we
will often need homogeneous distributions on R™ with the origin included. Thus it is
reasonable to ask the following question:

Given v € D'(R™\ {0}) which is homogeneous of degree a € C,
does there exist unique u € D'(R™) homogeneous of degree a
such that U|Rn\{0} =?

Proposition 5.4 shows that in general the answer is ‘No’: the delta function 9, is
homogeneous of degree —n and it restricts to 0 on R™ \ {0} (existence also fails for
a = —n though it is a bit harder to see). It turns out that the answer to the question
above is ‘Yes’ unless a is a negative integer < —n, and for such integers one can give a
precise description of non-existence and non-uniqueness — see [H6r03, Theorems 3.2.3
and 3.2.4]. In these notes we only present a simpler special case when Rea > —n:

THEOREM 5.6. Assume that a € C satisfies Rea > —n, and v € D'(R* \ {0})
is homogeneous of degree a. Then there exists unique u € D'(R™) homogeneous of
degree a and such that u|gm\ oy = v.

PROOF. 1. We first show uniqueness. Assume that u € D'(R™) is homogeneous of
degree a and u|gm\ j0y = 0. Then suppu C {0}, so Theorem 4.19 gives

u= Z Ug, Up = Z Ca050p.

0<k<N la|=k

for some N and ¢, € C. By Propositions 5.4 and 5.5, each wu; is homogeneous of
degree —n — k. Since u is homogeneous of degree a, we have for each ¢ € C*(R") and
t>0
) = (u, M) = > ug, ). (5.8)
0<k<N
Since Re(—a —n) < 0, we see that the left-hand side of (5.8) converges to 0 as t — oc.
This implies that (uy,¢) = 0 for all £ and ¢, which shows that u = 0.

2. To motivate the proof of existence, assume first that v is a function in L .(R™\ {0}).

Then by (5.3) we can write v(r) = r%g(f) for some w € L'(S"™!). Since Rea >
—n, the function |z|® is integrable near the origin, and we see that v actually lies in
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L; . (R™) and thus defines a distribution v on R™. To present this argument in a more
distributional way, we take any ¢ € C'°(R") and write (u, ¢) using integration in polar

coordinates:
o) = [ [ ety tas@ar = [ a@rp@dse) (69
where we define
Rap(z) = /000 t = lo(tr)dt  for any x € R™\ {0}.

Since Re(a+mn—1) > —1 and ¢ is compactly supported, the integral R,¢(z) converges
for each x € R™ \ {0}. Moreover, we can differentiate under the integral sign to see
that R, € C°(R™\ {0}), in fact the derivatives are given by the integrals

0% Rup(z) = / gm0 ) (1) di
0

which still converge as Re(a +n — 1+ |a]) > —1. Since g € L'(S"™!), and R, is
bounded on S"!, the right-hand side of (5.9) converges and gives a way to define u
as a distribution.

We now show existence in the case when v is a general distribution on R" \ {0}.
It is tempting to still define the extension u by (5.9) since R, restricts to a smooth
function on S"! and g is a distribution on S*~!. This is perfectly valid but we cannot
do this here since we do not know distributions on manifolds yet (and accordingly have
not shown the distributional analog of (5.3)).

3.% So instead we fix a radial function ¢ € C>(R™ \ {0}) as follows:

(@) = x(lel),  x € C2((0,00), /f@dt - /Om@dt —1

Note that .
/ M dt =1 for all z € R"\ {0}. (5.10)
0
Let v € D'(R™\0) be homogeneous of degree a. Define the linear map u : C°(R") — C
as follows:
(u, ) == (v, ¥ Rap) for all p € CZ(R").

Here, as discussed above, R,p € C*(R" \ {0}) and thus the product ¥ R,¢ lies in
C*(R™ \ {0}) and can be paired with v. The operator ¢ — ©¥R,p is sequentially
continuous C°(R™) — C*(R™ \ {0}), so u € D'(R™) is a distribution. We claim that
u is the extension of v we are looking for.

We first show that u|gn\o = v, which is where the homogeneity of v is exploited.
Take arbitrary ¢ € C2°(R™ \ 0); we need to show that

(v, Rap) = (v, ). (5.11)
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If v e L, (R™\ 0) is a function, then this follows from (5.3) by a direct computation.

loc

In general, we write (with integral converging in C°(R™ \ {0}))

Q/JRago:/ t T Lp Ay dt.
0

Since v is continuous C°(R™ \ 0) — C, we can pair it with both sides to get

(0, 6 Rop) — / T (o, g ) di (5.12)

0
It does require some work to justify putting pairing with w inside the integral — this
can be done using Riemann sums similarly to Lemma 6.8 below.

Now, since v is homogeneous of degree a, we have
(U7 wAt90> = (U7 At(At_lw ' (p)) = tiain(?% At_lw ' QO)
and thus -
(Uv @ZJRQSO) = / t_l(v7 At*1¢ ’ (p) dt.
0

However, (5.10) shows that, with the integral converging in C°(R™ \ {0}) (with the
support property coming from our assumption on supp ¢),

/ I - pdt = .

0

Pairing this with v and again putting the pairing inside the integral, we get (5.11).
Thus w is indeed an extension of v.

It remains to show that u is homogeneous of degree a. Take arbitrary ¢ € C°(R").
Then for any ¢t > 0 and x € R" \ {0} we have

RoAio(z) = / s Ly(tsx) ds = t“”/ s p(sx) ds = 7" Rap(w).
0 0

Thus
(u, Ayp) = (v, VR Ap) =17 (v, P Raip) = 17" (u, ),
showing that u is homogeneous of degree a. U

5.2. Homogeneous distributions on R

We now introduce an important family of homogeneous distributions z¢ € D'(R),
where a € C is a complex parameter. Let us first assume that Rea > —1 and define
x¢ as the locally integrable function

" % x>0, (5.13)
xh = )
* 0, x<0.

Then ¢ is a homogeneous distribution of degree a. Note that the Heaviside function
is the special case with a = 0.
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5.2.1. Non-exceptional values of a. We now want to consider the case of gen-
eral a € C. When Rea < —1, the function (5.13) is no longer locally integrable, so we
need a different definition. We use the following

LEMMA 5.7. If Rea > 0 then, with derivatives understood in D'(R),

D, = az’". (5.14)
PROOF.S Take arbitrary ¢ € C*°(R) and compute
Ou0) = () == [t wyde =t [ o) de
0 e=0+ /.

Integrating by parts, we see that this is equal to

lim (6“@(6)+ / R d:zc) _ /0 " o () da,

e—0+
giving (5.14). O
We can now extend x4 to Rea > —2 except a = —1 as follows:
ax a+1
rh = ax——:l for Rea > -2, a # —1. (5.15)

Here 0, is the distributional derivative, so (5.15) means that

o] a+1
(2%, ) = —/ 5+ 1g0’(x) dr for all p € C°(R).
0

By Lemma 5.7 the definitions (5.15) and (5.13) agree for Rea > —1.

The process can be repeated: for any 7 > 0 we can put

At
e = z for R —7—1 —N 5.16
BT T ) (et Dty orRea>—j-lag (5.16)

and by Lemma 5.7 these definitions agree for different j (as long as Rea > —j — 1).

We have obtained an extension of x4 to all a € C except at the points a € —N =
{—1,-2,...}. In a natural way it is the extension because of holomorphy in a. Indeed,
for each ¢ € C°(R) the map a — (2%, ¢) is holomorphic in {Rea > —1} as can be
seen by differentiating under the integral sign; in fact

0,2 = x% logx

is still a locally integrable function for Rea > —1. Using (5.16) we see that in fact the
map a — (2%, ¢) is holomorphic in a € C\ —N. By the unique continuation property of
holomorphic functions, we see that the formula (5.16) provides the unigue holomorphic
continuation of %, defined in {Rea > —1} by the formula (5.13), to a € C\ —N.

We record some standard properties of % (which can be checked directly for Rea >
—1 and follow in general by analytic continuation, or using (5.16)) in
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PROPOSITION 5.8. For a € C\ —N the identity (5.14) still holds and
supp 2% = [0, 00). (5.18)
Moreover, z% € D'(R) is homogeneous of degree a.
5.2.2. Exceptional values of a. We now briefly discuss what happens at the
exceptional values a € —N. Looking at (5.16), we see that ¢ is meromorphic in a € C
with poles at —N (in the sense that for each ¢ € C®(R), the map a — (z%,¢) is

meromorphic). A typical way to get rid of the singularities of 2% is to divide by the
Gamma function, looking at the distribution

o _ _ T4
which is holomorphic in @ € C. Note that it satisfies the identities for all a € C
duxt = x4, (5.20)
v X = (a+ DX, (5.21)

We also have supp x4 C [0,00) and x% is homogeneous of degree a. In a way it is
more natural to consider x4 than x¢%, defining it similarly to (5.13) for Rea > —1 and
extending to general a € C using the identity (5.20) similarly to (5.16).

Given that x4 makes sense for all @ € C, it is irresistible to compute what it is
when a lies in the exceptional set —N. For a = —1, we use (5.20): % =29 = H(x) is
the Heaviside function, so by (3.4)

X3! = do. (5.22)
Using (5.20) repeatedly, we then get
PROPOSITION 5.9. For k € N we have
X =05 (5.23)

REMARK 5.10. So far we studied homogeneous distributions of degree a which are
supported on [0,00). We can alternatively define their analogs supported on (—o0,0],
starting with the locally integrable function when Rea > —1

0, x>0,
o]

(—x)*, =<0

and repeating the above constructions to obtain distributions (—x)% € D'(R) when

a € C\ —Nand (—x)¢ € D'(R) for all a € C. Another useful family of homogeneous
distributions, (x +140)®, are defined in Ezercise 5.4 below.
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5.2.3. A division problem. In §3.2.2 we found all solutions u € D'(R) to the
equation zu = 0. We now look at the equation

ru=1 where u € D'(R). (5.24)

If we restrict this equation to R\ {0} and multiply both sides by =+ € C*(R\ {0}),

then we get
1
ulr\(oy = - (5.25)

So we can think of (5.24) as the problem of extending the function I to a distribution
on R. This is nontrivial since % is not locally integrable on R and Theorem 5.6 does
not apply since % is homogeneous of degree —1; since xdy = 0 the extension is also not

going to be unique.

As in §5.2.1 a solution is to define a solution u as a distributional derivative. The
standard antiderivative of £ on R\ {0} is given by the function log ||, which is locally
integrable on R. We now define the principal value distribution

1
pV.— = d.log|z| € D'(R). (5.26)

To justify the term ‘principal value’, we compute for ¢ € C2°(R) using integration by
parts

1
(pv-3:9) = ~(loglal. o) = = [ ¢/(@)log el do

= — lim ¢'(x)log |z| dx
e—0+ R\(—¢,¢)

~ lim ( /R (875)de—l—(w(e)—gp(—e))logs)

)

(5.27)

= lim _go(x dx
e—0+ R\(—&‘,&‘) X
One can see directly that the limit on the last line of (5.27) exists by writing ¢(x) =
©(0) + O(x). This limit is known as the principal value integral of ¢(z)/x.
Some properties of the distribution p.v.2 (including (5.24) and (5.25)) are collected
in

PROPOSITION 5.11. We have

! ! (5.28)
V.o— == .
PV rR\{0} T
1
r-pv.— =1 (5.29)
T

Moreover, p.v.% 1s a homogeneous distribution of order —1.

The proof is left as an exercise below.
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5.3. Notes and exercises

Our presentation follows [Hor03, §3.2] and [FJ98, §§2.2-2.3], and to a lesser ex-
tent [FJ98, §4.2]. Our proof of Theorem 5.6 differs slightly from [H6r03], in particular
in how we justify the identity (5.12) — Hormander is careful to not use anything that
has not been proved yet but our approach is perhaps more direct and thus easier to
comprehend at first reading.

EXERCISE 5.1. (1 pt) Prove part 1 of Proposition 5.5.

EXERCISE 5.2. (2 pts) Show that 7' — (—z)7" = p.v.L in the following sense
(where you can restrict to a € R in the limit):

1
zy — (—z)4 = pv.— inD(R) asa——1+0.
x

EXERCISE 5.3. (1 pt) Prove Proposition 5.11, using the definition of p.V.% provided
by the limit on the last line of (5.27) (and without using explicitly the distributional
definition (5.26)).

EXERCISE 5.4. (3 = 1+1+41 pts) This exercise explores homogeneous distributions

on R which are alternatives to x% and (—x)4.
(a) For ¢ > 0 and a € C, define (v + ic)* € C*(R) by the formula (x + ie)* =
exp(alog(z + i€)) where we use the branch of log on C\ (—o0, 0] which sends (0, c0)
to reals. Similarly we can define (x — ie)*. Show that there exist limits in D'(R)

(x £40)* = lim (x £1ie)* € D'(R).
e—0+

(Hint: for Rea > —1 this is direct and (z £ 10)* are locally integrable functions. For
a = —1, write (v + i)™t = d,log(x + ic) and note that log(x + ic) has a distribu-
tional limit which is in Li (R). For general a # —1, reduce to the case of a + 1 by
antidifferentiation, similarly to what was done for x% in lecture.)

(b) For a € C\ =N, ezpress (x£1i0)* as a linear combination of x% and (—x)%. (Hint:
it is enough to consider the case Rea > —1 by analytic continuation.)

(¢) Show the identities
(x —i0)™! — (z +10) " = 2midy,
1
(x —i0) '+ (x +40) = 2p.v.—

(Hint: write (x +i0)~' = 9, log(x +140). Note that log(x £ i0) = logz for x > 0 and
log(z £i0) = log(—x) £ im for z <0.)






CHAPTER 6

Convolution I

In §1.3.1 we introduced the notion of convolution of two functions,

frg(x)= . f(y)g(r —y)dy. (6.1)

We would like to extend this notion to distributions. In this chapter, we define the
convolution when one of the factors is a distribution and another one is a smooth
function, with the result which is a smooth function. We next use this notion to show
that smooth functions are dense in the space of distributions.

6.1. Convolution of a distribution and a smooth function
For a function ¢ € C°(R") and = € R", define the function
oz — o) € CF(R"), p(z—o)(y) = p(r—y).

Then (6.1) can be rewritten in terms of the pairing (e, e) as

fro(x) = (f, oz —e)).

Thus we can extend the operation of convolution to the case when f is a distribution
as follows:

DEFINITION 6.1. Assume that u € D'(R™), ¢ € C®(R™), and either u or ¢ is
compactly supported. Define the function u* ¢ : R™ — C by

uxp(z) = (u,p(x —e)), xecR" (6.2)
As an example, we compute the convolution with a delta function:
PROPOSITION 6.2. For any ¢ € C*(R") we have
do * @ = . (6.3)
PRrROOF. Let x € R". Then

do * () = (0o, p(x — 0)) = p(z — )(0) = ().

67
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6.1.1. Smoothness of convolution. We now want to show that the function
u* @ defined in (6.2) is smooth. This is an application of the following general fact on
the pairing of a distribution with a test function depending on a parameter, which we
will use several more times later:

PROPOSITION 6.3. Assume that U G R", V @ R™, and

vel'(V), eC®UxV). (6.4)
For x € U, define ¢(x,0) € C°(V) by (x,e)(y) = (x,y). Then the function
f(@) = (v,¢9(x,0)), zeU (6.5)

lies in C*(U), with derivatives given by 0% f(x) = (v, 0% (x, ).
The same conclusion holds if instead of (6.4) we assume that v € D'(V), ¢ €

C>®(U x V), and the restriction of the projection 7, : U x V' — U to supp ) is proper,
namely for each compact subset Ky C U, the preimage m, ' (Ky) Nsupp ¥ is compact.

PROOF. 1. Assume that (6.4) holds. Let us first show that f € C°(U). Since
v € &'(V), we have the bound (4.5): there exists Ky, € V' and constants C, N such
that

(v, 0)] < Clleller i,y forall o e C(V). (6.6)

Fix « € U and estimate for Z € U close to =

[f(z) = f(@)] = |(v, U2, 0) = ¥(T,0)| < Cllv(z, 8) — (&, 0)[evwry)  (6.7)

Since ¢ € C°(U x V), we have as & — x

H?ﬁ(l} .> - w<i.7.)HCN(V,KV) = max Sup |85w<xvy) - afw(%uy” — 0 (68)
‘/3|§Ny€KV

thus f(z) — f(x) as & — x, which shows that f is indeed continuous.

Assume now that the alternative condition to (6.4) (in the last paragraph of the
statement of the proposition) holds. Fix z € U and put Ky := B(x,¢) where ¢ > 0
is small enough so that Ky € U. Since 7y |suppy 1S proper, there exists Ky € V such
that supp ¢(Z,e) C Ky for all £ € K. Using the bound (2.1) for v with this set Ky,
we get similarly to (6.7) and (6.8) that there exist C, N such that for all z € Ky

[f(2) = F(@)] < Cllg(w, 0) = (T, 8)[cx =0 as & —
giving again the continuity of f.
2. We now show that f is differentiable (in the classical sense) and
O, f (1) = (v, 02,9 (, @)). (6.9)

[terating this statement, we get that f € C*°(U) and the formula for the derivatives
of f.
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We assume that (6.4) holds; the argument can be modified for the alternative
assumption in the same way as for the continuity of f above. Fix x € U and estimate
for small ¢t € R (where e; denotes the j-th basis vector in R” and we use the bound (6.6))

|flz+te;) — f(z) — t(v,0p,00(z,0))| = [(v,0(x + te;, 8) — ¥(x, 8) — t,,1h(x, 0))|
< COllY(z +tej, o) — Y(x, 8) — 10y, 1(w, ®)|lov (v, i)
Since ¥ € C*°, we have as t — 0
|V(z +tej, @) —Y(z,0) — 10,0 (x,®)||on K,y = o(t),
which shows that

15% f(ZU + té;) — f(ﬂf) _ (U’amjw(x7 .))

and gives (6.9). O
Armed with Proposition 6.3, we can now prove

THEOREM 6.4. Assume that u € D'(R"), ¢ € C®(R"), and either u or ¢ is
compactly supported. Then ux @ € C*°(R™) and

00wk ) = ux (309) = (%) + . (6.10)
PROOF. Define ¢ € C°°(R?") by the formula

Y(z,y) = p(r —y).

Then we can rewrite (6.2) as
ux p(z) = (u,P(z, 0)).
Applying Proposition 6.3, we see that u * ¢ € C*°(R") and
OF(u* ) = (u, 00(z, ) = u* 5.

Here if u € &'(R™), then the assumption (6.4) holds. If instead ¢ € C°(R™), then the
projection 7 |suppy 1s proper. Indeed, if K C R™ is compact, then we have

m (K) Nsuppy = {(z,y) ER*™ |z € K,  —y € supp ¢} (6.11)
which is a compact set as it is the image of K X supp ¢ by a continuous map (see also
Figure 6.1).

Finally, the last equality in (6.10) follows from the definition (3.2) of distributional
derivatives:

ux (79)(x) = (u, (O7¢)(x — o)) = (=1)*(u, 05 (p(z — »)))
= (Oyu, p(z — o)) = (07u) = p(2).
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yﬂ

K &

FIGURE 6.1. An illustration of the proper projection condition in the
proof of Theorem 6.4. The lighter shaded area is supp which is not
compact. The darker shaded area is the compact set in (6.11).

6.1.2. Further properties of convolution. The bilinear map (u, ) — u * ¢ is
sequentially continuous:

PROPOSITION 6.5. Assume that u, € D'(R"), ¢ € C2(R™) satisfy
ur, — u in D'(R™), or — ¢ in CF(R™). (6.12)
Then uy, * o — ux @ in C°(R™). Same is true if instead uy € E'(R™), ¢ € C(R™)

and we revise (6.12) accordingly.

PRrOOF. By the formula (6.10) for derivatives of convolution, we see that it suffices
to show that for each K C R" we have

sup |ug * o — ux | — 0. (6.13)
K

We assume that (6.12) holds; the argument for the case uy € &', ¢, € C™ is similar.

To show (6.13) it suffices to check that for each sequence z, € K converging to
some T, € K we have

g * k() = ux (). (6.14)
By the definition (6.2) we have
uk * pr(k) = (Uk, ou(Tr — o).
Since ¢ — ¢ € C*(R") and x) — x, we have
oz — o) = p(xs — @) in C°(R™).
Now the convergence statement (6.14) follows from Proposition 4.18, which itself is a

corollary of the Banach—Steinhaus theorem for distributions. O

We collect some further properties of convolution in
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PROPOSITION 6.6. 1. Ifu € D'(R"), p € C*(R"™), and either u or ¢ is compactly
supported, then

supp(u * ) C supp u + supp ¢. (6.15)
In particular, if both u and @ are compactly supported, then so is their convolution.
2. If u € D'(R"™) and p, € CX(R™), then

(uxp)xp =ux(p=*1). (6.16)

The proofs are given as exercises below.

6.2. Approximation of distributions by smooth functions

In this section, we show that the space C2°(U) is dense in D'(U), see Theorem 6.10
below. (It is also dense in £'(U), which is shown by a similar argument.)

6.2.1. The case of R". Before giving the density statement for a general open
set U @ R"™, we consider the case U = R". We follow the same mollification procedure
as in §1.3.2. Fix a ‘bump function’

x € C(R™), suppy C B(0,1), / X(z)dx =1,
and define the rescaling for ¢ > 0
(@) = g—"x(g) e C2(RM). (6.17)
The next theorem implies in particular that C*°(R") is dense in D’(R").
THEOREM 6.7. Let u € D'(R"™) and define for e >0
Us 1= U * Xe (6.18)
which lies in C*°(R™) by Theorem 6.4. Then
u.—u ase— 0+ inD'(R").
To prove Theorem 6.7, we need to represent (u.,p) for any ¢ € C(R™) as the

result of applying the original distribution w to some function. This is done by the
following

LEMMA 6.8. Let u € D'(R"), u. be defined in (6.18), ¢ € CX(R™), and define
v € CZ(R™) by

e (y) == / Xe( — y)p(x) dr. (6.19)

Then we have
(ue, ) = (u, 2). (6.20)
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REMARK 6.9. Lemma 6.8 applies for any fized €. In fact, the precise form of the
integrand is not important in the proof — the main point is that we can exchange pairing
with a distribution with integration in a parameter. We will use the same idea later
in these notes, referring to Lemma 6.8 (or to Proposition 7./ below) for the scheme of
the proof.

PROOF. 1. If u. € L (R™), then (6.20) follows from Fubini’s Theorem:

loc

(e, p) = /Rzn u(y)xe(z — y)p(r) dedy = (u, p:). (6.21)

What we need is a version of (6.21) which works when u is a distribution. Informally,
the argument goes as follows: we have

P = / Xe(z — ®)p(x) dx (6.22)
with the integral converging in the space C°(R™). Pairing both sides with the distri-
bution u and putting the pairing inside the integral, we get

(g = [ (e - ae@dr = [ el ds

which gives (6.20).
2. To make sense of the argument above, we need to show that pairing with u can be
put under the integral sign in (6.22), preferably without relying on the general theory
of integral with values in a topological vector space. A common way to do this is by
using Riemann sums. Namely, for § > 0 define the Riemann sum for the integral (6.22)
Ry = 0" 3" xelw — @)pla) € CF(RY)
TEIL™

We have

Rs = pe asd =0+ in CF(R"). (6.23)
Indeed, the support condition is immediate since ¢ and y. are compactly supported.
Any derivative of Rs has the same form with y. replaced by its derivative, so it suffices
to show that Rs(y) — ¢:(y) uniformly in y. The latter follows in the same way as
convergence of the usual Riemann sums to the integral, writing the Riemann sum as
the integral of a step function and using that the function (x,y) — x:(x — y)p(y) is
continuous and compactly supported, and thus uniformly continuous.

Since u € D'(R™), by Proposition 2.6 we can pair (6.23) with u to get
(u,Rs) = (u, ) asd —0+.

On the other hand, since w is a linear map C°(R") — C, we compute

(u,Rs) = 6" Y (u,xe( = 9))plx) = 0" Y uc(z)p(x).

TEL™ TELM
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This is a Riemann sum for the function u.p, which converges as 6 — 0+ to the integral

[ wwyela)de = (u. ),
finishing the proof of (6.20). O
We can now give

PROOF OF THEOREM 6.7. Fix ¢ € C>°(R™). We need to show that
(e, p) = (u,0) ase—0+. (6.24)

By Lemma 6.8, we have (u., ¢) = (u, pe). Since u is a distribution, by Proposition 2.6
it suffices to show that

v = InCP(R") ase—0+. (6.25)

Note that the statement (6.25) is similar to the convergence statement (1.33) from §1.3.2;
indeed, ¢, is the convolution of ¢ with the function x.(—x).

We now show (6.25). The support condition is immediate from the definition (6.19)
of ¢. since ¢ is compactly supported, so it remains to show that for each multtiindex
a we have uniformly in y € R

9y ¢:(y) = I p(y) ase—0+.

By a change of variables we have

Pe(y) = /n x(w)p(y + ew) dw.

Since [, x(w) dw = 1, we have

10, ¢<(y) — Iy p(y)| < / X (W) (05 o(y + ew) — 0 p(y))| dw

n

< |Ixllzr@ny sup [0y @(x) — 9, ¢(y)]
z€B(y,e)

which goes to 0 as € — 0+ uniformly in y since the function J; ¢ is uniformly continuous
(see (1.21)). O

6.2.2. The case of a general open set. We now generalize Theorem 6.7 to
distributions on an open subset of R", proving the stronger statement that C>° (rather
than C*°) is dense.

THEOREM 6.10. Let U G R™ and uw € D'(U). Then there exists a sequence

fr € C(U), fr = u inD'(U).
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PROOF. 1. Using (1.14), take a sequence of compact sets exhausting U:
o0
U=|JK: Ki€Kpp.
k=1

For each k, choose a cutoff function
U, € CX(U), supp(l —¢p)NK=10
and fix a number ¢, > 0 small enough so that
supp ¥ + B(0,e) € U.

We also require that ¢, — 0 as k — oc.
Let x. be the function from (6.17) and put

fk = (¢ku) * Xep

Here ¢pu € £'(U) is extended by zero to an element of £'(R™), see Proposition 4.7. The
convolution fy lies in C*°(R"™) by Theorem 6.4; by (6.15) it is supported in supp ¢y +
B(0,ex) € U, so it restricts to an element of C>°(U).

2. We now claim that f, — uin D'(U). Take arbitrary ¢ € C°(U) and extend it by 0
to an element of C°(R™). We need to show that

(fr, ) = (u, ) as k — oo.

By Lemma 6.8 we have

(frs ) = (u, Yrpz,)
where ¢., € C®(R"™) is defined by (6.19).
Since u € D'(U), by Proposition 2.6 it suffices to show that
Yrpe, — ¢ in CX(U). (6.26)
We have
supp ¢e, C supp ¢ + B(0, ).

Fix €9 > 0 small enough so that the compact set K., := supp ¢+ B(0, g9) be contained
in U. Then for k large enough we have supp ¢., C K., which implies that all the
supports of ¥p., are contained in a k-independent compact subset of U. Moreover, if
k is large enough then supp ., C K., C K}, and thus ¢xp., = ¢.,. By (6.25) we have
e, — @ in CP(R™) as k — oo, which gives (6.26) and finishes the proof. O
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6.3. Notes and exercises

Our presentation mostly follows [H6r03, §4.1]. An alternative presentation is
available in [FJ98, §§5.1-5.2].

EXERCISE 6.1. (4 = 1+ 1+ 1+ 1 pts) This exercise discusses the convolution
property (6.15).

(a) Assume that X C R™ is closed and Y C R™ is compact. Show that the set
X+Y ={r+y|lreX, yeY} C R" (6.27)

15 closed.

(b) Give an example of two closed sets X, Y C R such that X +Y is not closed.

(¢) Show the property (6.15) when u € D'(R™) and ¢ € CX(R™).

(d) Give an example when the inclusion in (6.15) is not an equality.

EXERCISE 6.2. (1 pt) Let u € D'(R"), ¢, € C®(R"). Show that

(uxp)xp =ux*(p*1).
(Hint: one way is to use density of C in D’.)






CHAPTER 7

Tensor products and distributional kernels

In this chapter we discuss two topics on distributions on a product space U x V.
We first define the tensor product u @ v € D'(U x V) of two distributions u € D'(U),
v € D'(V). We next identify continuous linear operators A : C*(V) — D'(U) with
their Schwartz kernels KK € D'(U x V). We finish with a discussion of the transpose
of an operator and extending operators to distributions by duality; this section could
have been put much earlier but knowing about Schwartz kernels gives another way to
look at the transpose.

7.1. Tensor product of distributions

Let U c R™", V @ R™. We use the letter z to denote a point in U and the letter y to
denote a point in V. If f € L} _(U), g € L .(V), then we define their tensor product
f®ge Ll (UxV): as follows:

(f@g)(x,y) = f(x)g(y) (7.1)

We would like to extend this definition to distributions. For that we use the following
consequence of Fubini’s Theorem valid for any f € L (U), g € L1 .(V), p € C=(U),
e (V)

(fRge®) = f(@)g(y)e(x)y(y) dedy = (f, 0)(g,%). (7.2)

UxV

The next theorem uses (7.2) to define tensor product of distributions:

THEOREM 7.1. Let U ¢ R", V e R™, u € D'(U), and v € D'(V). Then there
exists unique w € D'(U x V') such that

(w, 0 @) = (u,0)(v,¢)  forall p € CZ(U), Y € CZ(V). (7.3)

We call w the tensor product of u and v and denote u ® v := w.

Proor. 1. We first show existence of w. If f,g are locally integrable functions,
then for any 5 € C®(U x V') we have by Fubini’s Theorem

teo) = [ 1@ [ atotna)de

7



78 7. TENSOR PRODUCTS AND DISTRIBUTIONAL KERNELS

We use the iterated integral formula above to define w in general. Let u € D'(U),
v e D'(V). Take any 5 € CX(U x V) and consider the function

(0(y), B(x,y)) = (v, B(, *)) (7.4)

where B(z,8) € CX(V) is defined by [(x,e)(y) = [(x,y). By Proposition 6.3 the
function defined in (7.4) lies in C*°(U); it is also compactly supported (since (3 is
compactly supported) and thus lies in C°(U). Thus we can apply u to that function
and get the iterated distributional pairing, which we use as a definition of w:

(w, B) == (u(z), (v(y), B(z,y))) forall B CZU x V). (7.5)

The map w : C®(U x V) — C is linear. We next show that w € D'(U x V) is
a distribution, by establishing seminorm bounds (2.1). Take arbitrary K € U x V.
Then we have K C Ky x Ky for some Ky € U, Ky € V. Since u and v are both
distributions, they satisfy the bounds (2.1): there exist C, N such that

|(u,0)| < Cllglley for all g € CZ(U), suppp C Ky, (7.6)

(v, V)] < C||W|lev  for all v € C°(V), suppy C Ky.
Take arbitrary g € C°(U x V) such that supp f C K. We estimate
|(w, B) < Cl(v, Bz, ))llexyw)

= (' max sup |(v(y), 05 B(x,
ma sup [(0(y), 27 A(.9))|

< (2 o < (C? .
<C e sup 107 B(z Wl vy < CEIBllezy vy

Here in the first line we use (7.6). In the second line we use the formula for the z-
derivatives of (v(y), B(z,y)) from Proposition 6.3. In the third line we use (7.7). This
gives a bound of the form (2.1) for w, showing that it is indeed a distribution.

Finally, the distribution w satisfies (7.3): indeed, if 8 = p®1) then (v(y), B(z,y)) =
¢(x)(v,v) and thus (w, 8) = (u, ¥)(v, V).

We remark that we could have alternatively defined w by the formula
(w, 8) = (u(y), (u(z), Blz,y))) for all # € CX(U x V) (7.8)

and until we prove uniqueness it is not clear that this gives the same distribution w
as (7.5).
2. We now show uniqueness of w; that is, if w € D/(U x V) satisfies

(w,p 1) =0 forall p € CX(U), e C(V) (7.9)
then w = 0.

We use the proof of Theorem 6.10, choosing the functions there in tensor product
form. (To avoid a notational clash, we use the notation 6 for the function called vy
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in the proof of Theorem 6.10.) Let KV, K} be families of compact sets exhausting U,
V in the sense of (1.14). Put

O =0 @6 € C>(U xV)
where 6Y € C°(U) satisfies supp(1 —0Y)NKY = 0 and §; € C=(V) satisfies supp(1 —
6;) N K} = (. Next, define the function
x=x"@x", x"eCE(Br(0,3)), X" € CZ(Brn (0,3 / /mxvz
and define YV € C®(R"), x¥ € C*®(R™), and x. € C>®°(R"*™) by (6.17). As shown in
Step 2 of the proof of Theorem 6.10, for a certain sequence €, — 0 we have
(Orw) * xe,, > w inD'(U x V).
For any (z,y) € U x V we have
(Grw) * Xe, (7,9) = (Oxw0, Xe, ((7,7) — 0)) = (W, Pro @ P y)
where  ¢0(7) = 0 (Z)xc, (v — %), ¥ry(@) = O (9)x, (v — 9)-
If w satisfies (7.9), then (6yw) * x-, = 0, which implies that w = 0. O

The formulas (7.5) and (7.8) are important, so we repeat them here for later use:

(u(x) @ v(y), B(z,y)) = (u(z), (v(y), Bz, 1)), (7.10)
(u(z) @ v(y), B(x,y)) = (v(y), (u(z), B(x,y)))- (7.11)

As an example, we compute the tensor product of two delta functions:

PROPOSITION 7.2. Let u := g € D'(R"), v := 6y € D'(R™). Then u® v = §y €
D/(Rn+m).

ProoOF. It suffices to note that for all p € CX(R"™), ¢ € C°(R™) we have

We collect various properties of tensor products in

PROPOSITION 7.3. Let U GR", V e R™, W G RY, u € D'(U), v € D'(V), and
w e D (W). Then:

1) supp(u ® v) = supp u X supp v;
(2) if up = win D'(U) and vy — v in D'(V), then up @ vy, — u®v in D'(U x V);
(3) Op;(u®@v) = (Op;u) ®v and Oy, (u @ v) = u® (9y,v);
(4) zfa e C®(U), be C=(V), then (a®b)(u®v) = (au)® (bv);
5) (URV)RW=u® (v w).
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We leave the proof as an exercise below.

We finish with a statement about exchanging pairing with a fixed distribution and
integration in a parameter. This is the integral counterpart of Proposition 6.3. Such
a statement was used before in the proof of Lemma 6.8 but the proof below relies on
existence and uniqueness of tensor product of distributions, whose proof in these notes
in turn relies on Lemma 6.8.

PROPOSITION 7.4. Let U G R, V G R™, and assume that v € D'(V) and ¢ €
C*(U x V). Then (in the notation of Proposition 6.3)

/U<U,1p(x,.))dx _ (U,/Uw(x, 0 dx). (7.12)

PRrROOF. Consider the constant function 1 € D'(U). Then the left-hand side
of (7.12) is equal to

(1(z), (v(y), U(z,1))),
the right-hand side of (7.12) is equal to

(v(y), (1(z), ¥ (2, 9))),
and by (7.10), (7.11) both of these are equal to (1 ® v, ). O

7.2. Distributional kernels

Let U G R", V G R™. For any function K(z,y) € LL (U x V), we can define the
integral operator A : L(V) — LL (U) by

Ap(x) = / K(e,y)e(y)dy, o LE(V), zel. (7.13)

We want to define an operator of the form (7.13) when K is a distribution. For all
p e CX(V) and ¢ € C°(U) we compute by Fubini’s Theorem

(Ag. 1) = / Kl p)aely) dedy = (K.09 9), (7.14)

We use the identity (7.14) as the definition of A when K is a distribution:

DEFINITION 7.5. Let K € D'(U x V). Define the linear operator A : C*(V) —
D'(U) as follows:

(Ap, ) = (K, @ @) for all p € CZ(V), ¢ € C(U). (7.15)

We call IC the distributional kernel or the Schwartz kernel of A.
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To check that Ay is indeed a distribution for all ¢ € C°(V), take any sequence
Y — 0in CX(U). Then ¢y ® ¢ — 0in C°(U ® V') and thus (A, ¥x) — 0. Similarly
if v € C(U) is fixed and ¢ — 0 in CX(V), then (Agg, 1) — 0. This shows that A
is a sequentially continuous operator C°(V) — D'(U), that is

or—0 ImCX(V) = Ap,—0 inD'(U). (7.16)

7.2.1. The Schwartz Kernel Theorem. The next statement shows that every
sequentially continuous operator A : C°(V) — D'(U) has the form (7.15) for a unique
choice of the kernel K. Thus we have a bijection

Operators C°(V) — D'(U) =~ Distributions in D'(U x V).

This is in contrast with integral operators on functions: for example the identity
operator cannot be written in the form (7.13) for any function K.

THEOREM 7.6 (Schwartz Kernel Theorem). Let U @ R™, V. @ R™, and A :
CX (V) — D'(U) be a sequentially continuous linear operator. Then there exists unique

K€ D'(U x V) such that A has the form (7.15).

PRrROOF. We only give a sketch of the proof, sending the reader to [H6r03, Theo-
rem 5.2.1] and [FJ98, Theorem 6.1.1] for details (we follow the latter for the sketch
below). Uniqueness of I follows immediately from the uniqueness part of Theorem 7.1:
if IC satisfies (7.15) with A = 0 then IC = 0. So what we really need to show is existence.

1. Let A: C*(V) — D'(U) be sequentially continuous. We can reduce to the case
when U = (0,1)", V = (0,1)™ are rectangles and A is compactly supported in the sense
that it is sequentially continuous C*(V') — &£'(U). From Proposition 4.18 (which is a
corollary of the Banach—Steinhaus Theorem in distributions) we see that

or =0 iInC®V), Yy >0 inC®U) = (Agg, ) — 0.

From here (arguing similarly to the proof of Proposition 2.6) we can derive the following
norm bound: there exist C', N such that

[(Ap, )| < Cllellevlldller  for all o € CZ(V), ¢ € CZ(U). (7.17)

2. We now construct the kernel K as a Fourier series. Namely, for p € Z", ¢ € Z™
define the complex number

Cpq 1= (Ae*%i(y,q)’ e—zm(;p,m)‘

If A has the form (7.15) then ¢,, are just the Fourier series coefficients of K. Thus for
general A we define

K(z,y) := Z Cpg” ™ P 2T e DU x V). (7.18)
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The bound (7.17) implies that the sequence ¢, is polynomially bounded in terms of p,
q, so the series (7.18) converges in D'(U x V') similarly to Exercise 2.3.

It remains to show that A is given by (7.15) with K defined by (7.18). Take
p € CX(V), ¢ € C(U). Define the Fourier coefficients

a, :z/e‘zmx’p%(x) dz, b, ::/6_2”<y’q>go(y) dy.
U 1%

Note that a,,b, are rapidly decaying (i.e. faster than any negative power of p,q)
as p,q — oo. We now compute

(K ®p) = Z Cpg—pb—q

PEL™, qEL™

— Z apbq(Ae%Ti(y,q), e2m‘<m,p>)

pEL™, qEL™

— <A Z bq€2m'<y,<z>7 Z ape%i(w,m) = (Ap, )

qEL™ pEL™

proving (7.15). Here in the last line we use the bound (7.17) and the fact that the
Fourier series

(P(y) _ Z bq627ri<y7Q), ¢(x) _ Z ap€27ri<:c7p>

qeEL™ PEL™

converge in C™ (V) and CV(U) respectively. O
7.2.2. Examples and properties. As an example, we compute the Schwartz
kernel of the identity operator:
PROPOSITION 7.7. Let U G R™. Then the Schwartz kernel of the identity operator
A:CXU)—>DU), Ap=¢p

is given by the distribution 6o(x —y) € D'(U x U) defined as follows:
(0o(z —y),P) = / Bz, x)dx for all B € CX(U x U).
U
PROOF. Let ¢,¢ € C°(U). Then

(Ap, ) = (@, ¢) = / p(x)(x) dr = (do(x —y), ¥(x)p(y))

U
showing that (7.15) holds. O

REMARK 7.8. Note that the support of do(x — y) is the diagonal {(z,z) | x € U}.
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We now discuss the relation between certain properties of the Schwartz kernel K
and mapping properties of the corresponding operator A. The next lemma shows that
operators with compactly supported Schwartz kernels are exactly those that extend to
operators C® — &’:

PROPOSITION 7.9. Let A : CX(V) — D'(U) be a sequentially continuous operator
with Schwartz kernel K € D'(U x V). Then A exlends to a sequentially continuous
operator A : C*(V) — E'(U) if and only if K € E'(U x V).

We leave the proof as an exercise below.

Another important class of operators is those that have smooth Schwartz kernels. It
turns out that these correspond exactly to smoothing operators which will be important
in later parts of the course:

PROPOSITION 7.10. Let A : C°(V) — D'(U) be a sequentially continuous operator
with Schwartz kernel K € D'(U x V). Then A extends to a sequentially continuous
operator A : E'(V) — C*(U) if and only if K € C(U x V).

ProOF. We only show the more useful direction that the smoothness of I implies
that A is a smoothing operator. For the other direction see [Hor03, Theorem 5.2.6].

Let K € C(U x V). We let A be the integral operator (7.13) where integration is
understood as distributional pairing:

Au(z) = (u(y), K(z,y)) forallue &(V), z e U.

By Proposition 6.3, we have Au € C>(U). Moreover, by (7.14) we see that Ap = Ag
for all p € C°(V).

It remains to show that A is sequentially continuous. Assume that u; — 0in £'(V).
We need to show that Aux, — 0in C*(U), that is for any Ky € U and any multiindex «

we have

sup 0% Aug(z)| — 0.
Z‘GKU

Arguing by contradiction we see that it suffices to show that for any sequence x, —
Too € K we have
ajAuk(xk) — 0. (719)
By Proposition 6.3 we compute
OgAuk(xk) = (Uk,aglc(l‘k, 0))

We have 09K (xy, ®) — 02K (2o, ) in C (V). Since uy — 01in '(V), Proposition 4.18
shows (7.19) which finishes the proof. O

As an example we give the Schwartz kernel of a convolution operator with a smooth
function (see §6.1). The proof is immediate from the definitions.
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PROPOSITION 7.11. Assume that ¢ € C*(R™). Define the operator
A E(RY) = C®R"), Au=ux*ep.
Then A has the Schwartz kernel
K(z,y) = ¢z —y).

7.3. The transpose of an operator and defining operators by duality

We now study transposes of operators, which are useful in particular in defining
various operations on distributions by duality (something we have already done in §3
without using the notion of transpose explicitly).

DEFINITION 7.12. LetU GR", V G R™, and A : C (V) — D'(U) be a sequentially
continuous linear operator. Define its transpose A’ : C(U) — D'(V') by the formula

(A", 0) = (Ap, ) for all p € CZ(V), ¢ € CZ(U). (7.20)

Note that (7.20) uniquely determines the operator A, which is sequentially con-
tinuous C°(U) — D'(V), and we have (A")' = A.

There is an easy formula for the Schwartz kernel of the transpose operator: if A
has Schwartz kernel K € D'(U x V), then the Schwartz kernel K* € D'(V x U) of A
is given by

Ky, ) = K(z,y), (7.21)
in the sense that for each f € C°(V x U) we have
(K',8) = (K,8")  where 8" € C°(U x V), B'(2,y) = B(y, v).

REMARK 7.13. We can also consider the adjoint operator with respect to the

sesquilinear pairing
(u, )2 == (u, @), weDU), peCxU).

If A: CX(V) — D'(U), then its adjoint A* : C(U) — D'(V) is given by

(A", )2 = (Ap,¥)r2 for all p € CZ(V), ¢ € C(U). (7.22)
The Schwartz kernel of the adjoint is given by

K*(y,z) = K(z,y).
(Here the complex conjugate w of a distribution u is defined by the identity (u,p) =
(u,9).)
As an example, we compute the transpose of a partial derivative operator:

PROPOSITION 7.14. Let U @ R” and take A := 0, : CZX(U) — C*(U). Then
At=—9, .
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PROOF. What needs to be checked is that

(0,0, 0) = = (0,00, p)  for all g, € C°(U)
and this follows from integration by parts, Theorem 1.17. 0J

The next theorem shows that if the transpose of an operator A maps smooth
functions to smooth functions, then A can be extended to an operator on distributions.
This conceptualizes the strategy used before in (3.2) and (3.6).

THEOREM 7.15. Assume that U G R*, V.G R™, and A : C>(V) — D'(U) is a
sequentially continuous linear operator. Assume furthermore that the transpose A :
CX(U) = D'(V) is a sequentially continuous operator

Al CR(U) — O°(V). (7.23)
Then there exists unique sequentially continuous operator
A:EWV)= D)
such that Ap = Ay for all p € Ce (V).

REMARK 7.16. Once the theorem is proved, we will identify A and ,Z[’ saying that A
maps spaces of distributions when strictly speaking A extends to spaces of distributions.

REMARK 7.17. If A* has the stronger mapping property C*(U) — C(V), then
we can extend A to an operator D'(V) — D'(U).

PROOF OF THEOREM 7.15. 1. We first show uniqueness, which follows from the
density of C° in D'. Indeed, assume that A : &'(V) — D'(U) is a sequentially
continuous operator such that Ay = 0 for all ¢ € C*(V). Take arbitrary v € &' (V).
By Theorem 6.10 (or rather its version for £’), there exists a sequence

v, € CX(V), v, — v in&'(V).
By the sequential continuity of A, we have Avy, — Av in D'(U). But Avg = 0 for all k,
so Av = 0. Since v was arbitrary, we get A = 0.

2. We next show existence of the extension A. We define this extension by the

simple formula
(Av, 1) = (v, A%) for all v € E'(V), ¥ € C2(U). (7.24)
Here A € C°°(V) by (7.23) and thus it can be paired with the distribution v. The

rest of the proof is a routine verification:

e Av € D/(U) for all v € &(V). Indeed, assume that ¢, — 0 in Cx(U).
Then from the sequential continuity of A between the spaces (7.23) we have
Al — 0in C=(V). It follows that (Zv, Yy) — 0, giving by Proposition 2.6
that Av € D'(U).
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o A: & (V) — D'(U) is sequentially continuous. Indeed, assume that v, — 0
in &(V). Then for each ¢ € C*(U) we have (Avg, ¥) = (g, AlY) — 0 and
thus Avy — 0 in D'(U).

o Ap = Ay for all ¢ € C°(V). This follows immediately from the defini-

tion (7.24) of A and the definition (7.20) of the transpose A?. O

7.4. Notes and exercises

We largely follow [Hor03, Chapter 5]. The presentation in [FJ98, §§4.1,4.3,6.1,2.8]
is similar but with one nontrivial difference: to show uniqueness in Theorem 7.1 we
follow [Ho6r03] (which is why we needed to define convolution of distributions with
smooth functions before tensor products) and [FJ98] instead uses Fourier series.

EXERCISE 7.1. (3 =1+ 1+ 0.5+ 0.5 pts) Prove Proposition 7.3 (1)-(4).
EXERCISE 7.2. (0.5 pts) Prove Proposition 7.3 (5).

EXERCISE 7.3. (2 pts) Assume that U C R", V. C R™ are open, 0 € U, and write
elements of R™™™ as (x,y) € R" xR™. Show that the space of solutions w € D'(U x V)
to the equations

Tw=...=x,w=0
is given by distributions of the form 6y @ v where 6y € D'(U) is the delta distribution
and v € D'(V) is arbitrary.

EXERCISE 7.4. (1 pt) Find the Schwartz kernels of the differentiation operators
Oy, : CF(U) — CX(U) and the multiplication operators u — au, where a € C*(U).

EXERCISE 7.5. (1 pt) Let A : C*(V) — D'(U) be a sequentially continuous
operator with Schwartz kernel KK € D'(U x V). Denote by 0,, : D'(U) — D'(U),
Oy, : C2(V) = C(V) the differentiation operators. Show that the composition 0,; A

C

has Schwartz kernel 0,,KC and Ad,, has Schwartz kernel —0,,K.

EXERCISE 7.6. (1 pt) Prove Proposition 7.9.



CHAPTER 8

Convolution II

Armed with tensor products, we now introduce convolution of two distributions
on R"™ (under appropriate condition on their supports), which is itself a distribution
on R™. This moves us one step closer to the formula (5.1) for a solution of a constant
coefficient PDE.

8.1. The case of compact supports

We first consider the technically simpler case when both distributions have compact
support. Assume first that f,g € L!(R") are functions. For any ¢ € C*(R") we
compute using Fubini’s Theorem

(fxg,0) = (@ —y)g(y)e(r) dedy

R2n

- /. f@)g()e(x +y) dedy = (f(2) @ g(y), p(x +y)).

This motivates the following definition of convolution in terms of the distributional
tensor product introduced in §7.1:

DEFINITION 8.1. Let u,v € &'(R™). Define the convolution u x v € E'(R™) as
follows:

(uxv,p) = (u(z) @v(y), p(x +y)) foralpe CR"). (8.1)

It is immediate that u * v is indeed a distribution: if ¢, — 0 in C*°(R") then
or(z+1y) — 0in C*(R?*") and thus (as u®v € &'(R?")) we have (u*v,p;) — 0. The
resulting operation is sequentially continuous:

PROPOSITION 8.2. Assume that up — u and vy, — v in E'(R™). Then

up * vy = uxv i E'(R™).

PRrROOF.S Take arbitrary ¢ € C°°(R"). By part (2) of Proposition 7.3 (or rather
its version for &) we have uy ® vy — u®w in E'(R™). Thus (ug * vk, ) — (uxv, ). O

The next statement shows that if v is a distribution and v is a smooth function,
then the convolution defined in §6.1 is the same as the convolution defined in the
present section:

87



88 8. CONVOLUTION II

PROPOSITION 8.3. Assume that u € E'(R™) and v € C(R"). Let uxv € CX(R")
be as in Definition 6.1, namely

uxv(x) = (u,v(x — o)) for all x € R".
Then uxv =uxv where uxv € E'(R™) is defined by (8.1).
PROOF. First proof: Take arbitrary ¢ € C>°(R™). We need to show that
(uxv,p) = (u(z) @ v(y), p(z +y))- (8:2)

The left-hand side is equal to

(uxv,p)= /n(u, v(z — e))p(x)d.

Using Riemann sums similarly to the proof of Lemma 6.8 (or alternatively using a
slight modification of Proposition 7.4), we pull the pairing with u out of the integral
to get

(ukv,0) = (u,) where p(y) = / ol —y)e(e)dr, v e CH(RY).

Making a change of variables, we see that

v) = [ vle)pl+y)d

thus (recalling the formula (7.10) for the distributional tensor product, or strictly
speaking, its analog for £’)

(uxv, ) = (u(y), (@), oz +71))) = (u(@) @v(y), e(z +y)).

Second proof: By Theorem 6.7 (or rather, its version for £’) there exists a sequence
u € C°(R™) converging to u in E'(R™). We have uy x v = uy * v since both are given
by the integral formula (1.27). By Propositions 6.5 and 8.2 we have

up*v = uxv, up*xv—u*xv in&(R").

Thus uxv = u * v. [l

We collect basic properties of convolution of two compactly supported distributions
in
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PROPOSITION 8.4. Let u,v,w € E'(R™). Then

UXxV=0*u, (8.3)

ux (vxw) = (u*xv)*w, (8.4)
supp(u * v) C supp u + supp v, (8.5)
O%(uxv) = (0%) * v =ux* (0%), (8.6)
dp * u = u. (8.7)

PRrROOF.S All of the properties except (8.5) can be proved by approximating u, v, w
by test functions in C°(R™) (Theorem 6.7) and using that these properties hold for
test functions together with continuity of convolution (Proposition 8.2). In fact, (8.5)
can also be shown this way if we pay attention to the supports of the approximating
functions.

Below we provide more direct proofs for the sake of completeness. Let ¢ € C°(R™)

be arbitrary.
(8.3): Follows immediately from (8.1) and the fact that ¢(x +y) = v(y + z).

(8.4): Using (7.10) we see that when paired with ¢, both sides are equal to
(u(z) @ v(y) ® w(z), o(z +y + 2))
where u®v@w = (URV) QW = u® (vRw) is well-defined thanks to Proposition 7.3(5).
(8.5): We know (see Exercise 6.1(1)) that suppu + suppv is closed. Next, if ¢ €

C*°(R™) and supp ¢ N (supp u + suppv) = () then by Proposition 7.3(1) we have

supp(u(z) ® v(y)) Nsupp(p(z +y)) = 0
and thus by Proposition 4.9 we get (u v, p) = 0.
(8.6): It is enough to differentiate once. We compute using Proposition 7.3(3)

(O (uxv),0) = —(uxv,05,9) = —(u(@) ®v(y), (0z,0)(x + y))
= —(u(z) @ v(y), O, (p(z +9))) = (On, (u(z) @ v(y)), p(z +y))
= ((0z,u)(z) ® v(y), ¢z +y)) = ((O;u) x v, ).

(8.7): We compute using (7.10)

(d0 * u, 0) = (do(x) ® u(y), p(z +y)) = (do(x), (u(y), (x +y))) = (u, ).

8.2. The case of properly summing supports

We now generalize the construction of §8.1 to cases when w, v are not necessarily
compactly supported. This requires that the supports supp u, supp v sum properly in
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the sense defined below. The significance of this condition is explained in the discussion
following (8.10).

DEFINITION 8.5. Let Vi, Vo C R™ be closed subsets. We say that Vi, Vo sum properly
if for each R > 0 there exists T' > 0 such that for all x,y € R"

reVi,yeV, l[z4+y|<R = |z|,|ly| <T. (8.8)

In other words, if x € Vi,y € Vo and |x| and/or |y| is large, then |z + y| is also large.

Some basic properties of properly summing sets are collected in

ProprosITION 8.6. 1. If Vi, V5 sum properly then their sum
VitVa={z+ylzeW, yeli}
i1s a closed subset of R™.

2. If one of V1, V5 is compact, then Vi, Vo sum properly.

We leave the proof as an exercise below.

We now come back to the more general definition of convolution. Let u,v € D'(R")
and assume that supp u, supp v sum properly. We would like to define the convolution
u*v as an element of D'(R™). Take arbitrary ¢ € C®(R"™), then, following (8.1) we
want to put

(uxv,9) = (u(z) @ v(y), o(z +y)). (8.9)
Here u @ v € D'(R*") and p(x + y) € C*(R**) need not be compactly supported.
However, the intersection of their supports is compact:

supp(u ® v) Nsupp(p(x +y)) € R™ (8.10)

Indeed, since p € CX(R"), there exists R > 0 such that suppy C B(0,R). Let
(z,y) € supp(u ® v) N supp(p(z + y)). By Proposition 7.3(1) we have x € suppu,
y € suppv. Moreover, x +y € suppp so |z + y| < R. Since suppu,suppv sum
properly, we have |z, |y| < T for some fixed 7' > 0. Thus
supp(u @ v) Osupp(p(z +y)) < B(0,T) x B(0,T)
is bounded and thus compact, giving (8.10).
Given the compact intersection of supports, we can make sense of the pairing (8.9)

using the following general

PROPOSITION 8.7. Let U GR", uw € D'(U), ¢ € C*(U), and assume that supp uN
supp ¢ is compact. Define (u,p) € C as follows (see Figure 8.1):

(u, ) := (u, xp) where x € CX(U), supp(l — x) NsuppuNsuppp =0. (8.11)
Then:
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FIGURE 8.1. An illustration of (8.11). The support of u is in blue and
the support of ¢ is in red. The dashed line denotes the support of x.

(1) the value of (u,p) does not depend on the choice of the cutoff x;

(2) if p € CX(U) oru € D'(U), then (u,p) equals to the distributional pairing
defined before (in (2.4) and §/.2);

(3) the expression (u, ) is bilinear in wu, @;

(4) if suppuNsupp ¢ = 0, then (u,p) = 0.

REMARK 8.8. The formula (8.11) gives the only way to extend the distributional
pairing which satisfies the above properties — see [Hor03, Theorem 2.2.5].

Proor S (1): If X is another cutoff satisfying (8.11) then supp uNsupp((x —X)») =
) and thus (u, xp) = (u, Xe) by Proposition 4.2.

(2):if p € C°(U), then take x such that xp = ¢. If u € £'(U), then take x such
that supp(1 — x) Nsuppu = @) and use Proposition 4.9.

@ we need to check the formula for (aju; + agua, by + baps) where a;,b; € C,
and it suffices to choose x so that (8.11) holds for each u;, py.

(4): we may choose x = 0. O
We can now formally give

DEFINITION 8.9. Let u,v € D'(R"™) and assume that suppu,suppv sum properly.
Define ux v € D'(R™) by the formula (8.9), where the pairing is defined using Propo-
sition 8.7 and (8.10).

It is straightforward to check that u = v is indeed a distribution, and that for u,v €
E'(R™) it coincides with the convolution defined in §8.1. Moreover, if R, T satisfy (8.8)
with Vi = suppu, Vo = suppwv, and x € C°(R") satisfies supp(1 — x) N B(0,T) = 0,
then

u*v|geo,r) = (x) * (xv)|Bo(0,R) (8.12)
where the right-hand side of (8.12) features the convolution of two compactly supported
distributions xu, yv.

Other properties of convolution are collected in
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PROPOSITION 8.10.5 1. For any u € D'(R") we have &y * u = u.

2. If u,v € D'(R™) and supp u,supp v sum properly, then

Uxv=0%u, (8.13)
supp(u * v) C suppu + supp v, (8.14)
O(uxv) = (0%) * v =ux* (0%). (8.15)

3. If u,v,w € D'(R™) and supp u,suppv,suppw sum properly (defined similarly
to (8.8)), then ux (v w) = (u*v) * w.

4. If u e D'(R™), p € C°(R"), and either u or ¢ is compactly supported, then the
convolution uxyp from Definition 8.9 is the same as the convolution from Definition 6.1.

Proor. This follows routinely from the properties of convolution of distributions
in &'(R™) discussed in §8.1 and the formula (8.12). O

We finish with some examples illustrating the properly summing condition:

e By part 2 of Proposition 8.6, a compactly supported distribution in £'(R")
can be convolved with any distribution in D'(R").

e The set [0,00) C R sums properly with itself, in fact we can take T := R
in (8.8). Thus we can for example define the convolution of two Heaviside
functions H * H; one can compute H x H(z) = . See Figure 8.2.

e On the other hand, the set [0, 00) does not sum properly with the set (—oo, 0].
Thus we cannot define, for example, the convolution of the Heaviside function
H with the function H(z) := H(—z). Note that the usual definition (1.27)
does not work either: we get

H*I:[(ac)—/ dy = oc.
max(0,z)

8.3. Singular support and convolutions

In §4.1 we defined the support of a distribution u € D'(U) as follows: a point x
does not lie in supp u if it has a neighborhood V' such that u|y = 0. We now define
singular support by replacing the requirement that |y = 0 by u|y being smooth:

DEFINITION 8.11. Let U G R"™ and uw € D'(U). We say that a point x € U does
not lie in sing supp u if there exists V @ U containing x and such that uly € C®(V).

Here we recall that C*°(V) is embedded into D'(V) by (2.2), so when we say
uly € C®(V) we strictly speaking mean that there exists f € C°°(V) such that

(u, @) = /Vf(x)cp(x) dx  for all ¢ € C(V).
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FIGURE 8.2. An illustration of (8.12) for suppu,suppv C [0,00). The
shaded region is the intersection (supp u xsuppv)N{(x,y): |z+y| < R}.
The dashed lines denote the boundaries of the sets {x(x) = 1} and

{x(y) = 1}.

Similarly to Proposition 4.2 we have

PROPOSITION 8.12. Let u € D'(U). Then u|isingsuppu € C(U \ singsuppu). In
particular, singsuppu = 0 if and only if u € C*(U).

PROOF.S For each x € U\ sing supp u, there exists an open set V,, C U \ sing supp u
containing = and a smooth function v, € C*°(V,) such that u|y, = v,. The sets V,
cover U \ sing supp v, and we have the compatibility conditions v, |v,nv, = vy|v,nv, for
all z,y. Thus there exists v € C*°(U \ singsuppu) such that v|y, = v, for all z. By
the uniqueness part of Theorem 2.13 we have u’U\sing suppu = U. O

Some basic properties of singular support are collected in

PROPOSITION 8.13. Assume that U G R™, u € D'(U), and a € C*(U). Then

sing supp(d,,;u) C singsupp u, (8.16)
sing supp(au) C sing supp u, (8.17)
sing supp v C supp u. (8.18)

The proofs are immediate.

A somewhat harder to establish property, used crucially in the proof of elliptic
regularity in §9.2 below, is the behavior of singular support under convolution:

PROPOSITION 8.14. Assume that u,v € D'(R™) and supp u,suppv sum properly.
Then
sing supp(u * v) C singsupp u + singsupp v. (8.19)

REMARK 8.15. Note that (8.19) is nontrivial even if one of the sets sing supp u,
sing supp v is empty: in this case it states that the convolution of a smooth function
with a distribution is smooth. This special case is used as a step in the proof below.
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PrOOF. 1. We first assume that u,v € &'(R™). We write u as the sum of two
pieces: one whose support is in a small neighborhood of the singular support of u and
another one which is smooth. Namely, fix ¢ > 0 and take a cutoff function

, € C(R™), supp, C singsuppu+ B(0,¢), supp(l —1,) Nsingsuppu = 0.

Then we write u = ¥, u + (1 — 1, )u where

supp(Yu) C singsuppu + B(0,¢), (1 — 1, )u € CZ(R™).
In the same way we write v = ¥,v + (1 — ¥, )v where

supp(¢v) C singsuppv + B(0,¢), (1 —1)v € CZ(R™).
We now decompose

wk v = (Yuu) * (hyv) + (uu) * (1= o)v) + (1 = Yu)u) *v.

We have by (8.18) and (8.5)

sing supp ((¢uu) * (wvv)) C supp (¥, u) + supp(¥,v)
C sing supp u + sing supp v + B(0, 2¢)

where we used that B(0,¢)+ B(0,¢) C B(0,2¢). On the other hand, (¢, u)*((1—1,)v)
and ((1—1)y,)u)*v are convolutions of a distribution in £'(R") and a function in C2°(R™),
thus by Proposition 8.3 they lie in C2°(R™). It follows that

sing supp(u * v) C singsupp u + sing supp v + B(0, 2¢).

Since this is true for any € > 0 and sing supp u + sing supp v is closed, we get (8.19).

2. We now consider the general case, when u,v € D/'(R™) and suppu,suppv sum
properly. It suffices to show that for each R > 0, we have

(singsuppu * v) N B°(0, R) C singsuppu + singsupp v. (8.20)

The left-hand side of (8.20) is the singular support of u * v|ge (g r), and by (8.12)

u* v|goo,r) = (Xu) * (XV)|Bo(0,R)

for a correct choice of the cutoff x € C°(R™). Applying Step 1 of the present proof to
xu, xv € £'(R™), we have

(singsuppu * v) N B°(0, R) C singsupp(xu) + sing supp(xv)
C singsupp u + sing supp v

giving (8.20). O
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8.4. Notes and exercises

Our presentation mostly follows [FJ98, §5.1-5.3 and Lemma 8.6.1]. The presenta-
tion in [H6r03, §4.2] is different because it comes before the definition of the tensor
product of distributions.

EXERCISE 8.1. (1 =0.54 0.5 pts) Prove Proposition 8.6.

EXERCISE 8.2. (1 pt) Assume that Rea,Reb > 0. Show that 2% ' x 2% ! =
B(a, b)xffrb_l where B denotes the beta function. (You can use the standard integral
formula for convolution, no need to do things distributionally here. Note: using ana-
lytic continuation one can show that the same formula actually holds for all a,b € C,
but you don’t have to do this.)

EXERCISE 8.3. (1 pt) Denote elements in R™ (where n > 2) by x = (x1,2") where
' € R"'. Define the set Q := {z: x; > |2|}. Show that Q+Q = Q. Show also that
sums properly with the set {xy > 0}. Does the set {xy > 0} sum properly with itself ?






CHAPTER 9

Fundamental solutions and elliptic regularity

In this chapter we show the formula (5.1) for a solution to a constant coefficient
partial differential equation. We give several basic examples and then prove the first
version of Elliptic Regularity, for constant coefficient operators which have fundamental
solutions with singular support at the origin.

9.1. Fundamental solutions

9.1.1. Basic properties. We first give the general definition of a linear differen-
tial operator (with smooth coefficients):

DEFINITION 9.1. Let U @ R™ and m € Ny. A differential operator of order m on U
1s an expression of the form

P= Z ao ()0 (9.1)
lal<m

where a, € C*(U) are called the coefficients of P. Denote by
Diff™(U) (9.2)

the space of all differential operators on U. For P € Diff™(U) we say that P has
constant coefficients if each of the functions a, is constant.

Here are some basic properties of differential operators:

e cach P € Diff"(U) maps each of the spaces C>*(U), C>*(U), E'(U), D'(U) to
itself;

o if P € Diff™(U), Q € Diff’(U), then their composition PQ is a differential
operator in Diff™™(U);

e if P € Diff™"(U), then the transpose P! (see Definition 7.12) also lies in
Diff™(U), in fact if P is given by (9.1) then P* is given by the formula

Plu= Y (=1)*02(aqu) for all u € D'(U) (9.3)
lo]<m

as we can see from Proposition 7.14.

97
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o if P € Diff""(U) and u € D'(U) then
supp(Pu) C supp u, (9.4)
sing supp(Pu) C sing supp u. (9.5)

In this chapter we study differential operators with constant coefficients. For such
operators a key object is a fundamental solution:

DEFINITION 9.2. Let P be a differential operator with constant coefficients. A
distribution E € D'(R™) is called a fundamental solution of P if it solves the differential
equation

PE = . (9.6)
REMARK 9.3. For any u € D'(R"™) and ¢ € C*(R™) we have
(Pu,¢) = (u, P'¢)
where P! is the transpose of P. Thus E is a fundamental solution of P if and only if
(E, P'¢) = ¢(0) for all p € C°(R™).
Fundamental solutions are important because they give a way of describing (some)

solutions of the more general equation Pu = f where f is a distribution. To state this
we use the notion of convolution of distributions from §8.2.

THEOREM 9.4. Let P be a differential operator with constant coefficients and E be
a fundamental solution of P. Then:

(1) if u € D'(R™) and supp u,supp E sum properly then u = E % (Pu);
(2) if f € D'(R™) and supp f,supp E sum properly then P(E x f) = f.
PROOF. From (8.15) we see that for any v,w € D'(R™) such that supp v, supp w
sum properly we have
P(vxw) = (Pv) xw = v x (Pw). (9.7)
To show part (1) of the theorem, we apply this statement to v and E, getting
E x (Pu) = (PE) *u = b * u = u.
For part (2) of the theorem, we apply (9.7) to f and E, getting
PExf)=(PE)x f=00xf=F.
0

REMARK 9.5. The proper sum condition always holds if one of the sets is compact
(see Proposition 8.6). Thus we have in particular:

(1) if u € E'(R™) solves the equation Pu = f then u = E % f (one can think of
this as a uniqueness statement for the equation Pu = f);
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(2) if f € E'(R™) and we define u := E x f, then u solves the equation Pu = f
(one can think of this as an existence statement).

However, these statements come with a very serious restriction that u or f be compactly
supported. As an example, the Laplace equation Au = 0 has no nontrivial compactly
supported solutions but it does have plenty of non-compactly supported ones (e.g. u =
1). This also shows that in part (1) of Theorem 9./ it is important that supp E sums
properly with suppu, not just with supp(Pu). See §9.1.3 below for why this is needed
on a simple example.

9.1.2. Examples of fundamental solutions. We now give a few examples of
fundamental solutions for important constant coefficient operators. We start with the
Laplace operator:

PROPOSITION 9.6. A fundamental solution of the Laplace operator A = 821 +-- 4

8§n on R™ is given by the locally integrable function

E(r) = loglz], n=2, (9.8)

Here ¢, = W and vol(S"™1) is the area of the unit sphere in R™.

REMARK 9.7. Note that, except for n = 2, the function E is homogeneous of
degree 2 —n. Thus AFE is homogeneous of degree —n, which matches the degree of ho-
mogeneity of the delta function. This, and the fact that E is invariant under rotations
(i.e. orthogonal changes of variables), explains why we would expect a fundamental
solution to have the form (9.8).

PROOF. We just consider the case n = 2, with the case of general n proved similarly.
By Remark 9.3, and since A is its own transpose, it suffices to show that for each ¢ €
C>(R?) we have

/R2 E(x)Ap(x)dx = ¢(0). (9.9)

This is done similarly to Exercise 1.1. For z € R*\ {0} we compute

|z|? — 222

0, E(r) = —3— 92 E(x) = I AE(z)=0.

T 2 W 2rfzlt

Since F € L (R?) we have

loc

/ E(x)Ap(z) = lim I. where I, ::/ E(z)Ap(z)dx.
R2 e—0+

R2\B(0,¢)



100 9. FUNDAMENTAL SOLUTIONS AND ELLIPTIC REGULARITY

Integrating by parts twice (using (1.39)) and using that AE = 0 on R? \ {0} and
© € C(R?) we write I, as a surface integral:

I = / E(z)(ni(z) - V(z)) dS(z) — / p(z)(fi(z) - VE(z)) dS(z). (9.10)
9B(0,¢) oB(

0,¢)
Here dS is the length measure on the circle 0B(0,¢) and 7i(z) is the unit normal on
the circle which points inside the circle, i.e. outside of the region R?\ B(0, ). We have
for x € 0B(0,¢)

x 1
27|x|?’ fi(z) - VE(z) 2me
Now, the first term on the right-hand side of (9.10) is O(elog(1/¢)) which goes to 0
as € — 0+. The second term is
1

— o(x)dS(z) = p(0) ase—0+.

2me JaB(0,e)
Thus we obtain (9.9) which finishes the proof. O

fi(z) = —;—’, VE(x)

One can similarly obtain a fundamental solution for the Cauchy-Riemann operator
0; = %(39; +10,) on ]Riy. We leave the proof as an exercise below.

PrOPOSITION 9.8. A fundamental solution of 0 is given by the locally integrable
function

1
Ex,y) = ————.
() m(z + iy)
We next consider the heat operator 9; — A, on R"™! = R, x R”. The proof is again
left as an exercise below.

PROPOSITION 9.9. A fundamental solution of 0y — A, is given by the locally inte-

grable function
1\2

_n _|=®
E(t,x)z{gm) © :8 (9.11)

REMARK 9.10. One can show that singsupp E = {0}, that is E is smooth on
R™\ {0}, similarly to the bump function (1.26).

We now discuss the wave operator 92 — A, on Ry x R™. The situation is more com-
plicated here since in general fundamental solutions are not locally integrable function.
For now we just consider the case n =1 (in §10.2 below we handle the case n = 3):

PROPOSITION 9.11. A fundamental solution for the operator 07 — 02 on R?, is
giwen by the locally integrable function

Bt z) = {%’ t> el 9.12)

0, t< |z
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tA

T
FIGURE 9.1. The support (shaded) and the singular support (the bold
lines) of the fundamental solution (9.12).

ProoFr. We change variables to
yu=t+zx, Yp=It—=z
which transforms the wave operator to a multiple of 9,,0,, and the function £ to a
multiple of H(y;)H (y2), where H is the Heaviside function.

Since we have not introduced pullbacks of distributions yet, we argue on the side
of test functions. Take arbitrary ¢ € C>®(R?). Denote O = 9? — 9% and define
Y € C(R?) by putting ¢(t,z) = (¢t + x,t — x). We compute

/ E(t,z)0¢(t,x) dedt = 4/ E(t, )0y, 0y, Y(t + x,t — x) dxdt
R2

RQ

= [ H(y1)H(y2)0y, 0y, 0 (y1,y2) dy1dy:

RQ

= (8ylay2(H(y1) ® H<y2))7 w(yla yz))
= w(ov 0) = 30(07 O)

which shows that CJE = dy by Remark 9.3, since [ is its own transpose. In the last
line above we used that

0y, Oy, (H (y1) @ H(y2)) = do(y1) ® do(y2) = do(y1, y2)

which follows from the properties of tensor product (see Propositions 7.2 and 7.3) and
the fact that H' = &g (see (3.4)). O

REMARK 9.12. Note that supp E = {t > |z|} and singsupp E = {t = |z|}, see
Figure 9.1.

We finish this section with the following general

THEOREM 9.13 (Malgrange-Ehrenpreis Theorem). Let P # 0 be a differential
operator with constant coefficients. Then P has a fundamental solution.



102 9. FUNDAMENTAL SOLUTIONS AND ELLIPTIC REGULARITY

We do not give the proof here, sending a curious reader to [Hor03, Theorem 7.3.10]
or [FJ98, Theorem 10.4.1].

9.1.3. A negative example®. We now give a simple example illustrating why
in part 1 of Theorem 9.4 it is important that the supports of £ and v sum properly,
going through the construction of distributional convolution in §8 in this particular
case. This section is optional for reading.

Our example is as follows: on R we have
Pu=0 where P=0,, u=1,
and a fundamental solution of P is given by the Heaviside function:
E(x) = H(x).

Clearly we do not have u = E % Pu, even though the convolution F x Pu makes perfect
sense (and equals 0). There is no contradiction with Theorem 9.4 since the supports
of E,u do not sum properly. But what if we were to repeat the proof of that theorem
while ignoring the support issue?

Looking at the proof of Theorem 9.4, we see that what fails is the identity
(0.H)*1=H % (0,1),

and properties of convolution do not apply here since supp H, supp 1 do not sum prop-
erly, so the convolution H %1 cannot be defined. Let us look a bit more into the proof
of this property of convolution to see what goes wrong. Take arbitrary ¢ € C>(R),
then if we ignore the support issue then

((0:H) * 1,¢) = (0: H(z) ® 1(y), p(z + y)) = —(H(z) ® 1(y), ¢'(z + y)),

(H % (9:1),9) = (H(2) ® 0y 1(y), p(z +y)) = —(H(z) ® 1(y), ¢'(z +y)),
which indicates that the two expressions are equal. However, in the second equality
in each line above we used the definition of distributional derivative which does not
apply since H(x) ® 1(y) cannot be paired with ¢(z + y) as their supports do not have
compact intersection. More concretely, we could try to write

H@ @10, F+v) = [ ot ydedy
>0

and compute it by Fubini’s Theorem in two ways (which corresponds to the iterated
tensor product formulas (7.10) and (7.11)) as

/{x>0}g0’(q:+y)dq:dy:/Ooo<[R<p’(x+y)dy> dx:/ﬂg(/ooogo’(x—i—y)dx) dy

But the function ¢'(z + y) is not integrable on {x > 0}, so Fubini’s Theorem does not
apply. While the two iterated integrals above both converge, their values are different:
the first one is equal to 0 and the second one is equal to — fR o(y) dy.
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9.2. Elliptic regularity I

We now give the first version of elliptic regularity, which is one of the main results
in this course. Further versions will be proved in §§12.2,14 below. Recall the notion of
singular support defined in §8.3.

THEOREM 9.14 (Elliptic Regularity I). Assume that P is a differential operator
with constant coefficients on R™ and that there exists a fundamental solution E of P
such that

sing supp F = {0}. (9.13)
Let U GR™ and v € D'(U). Then
sing supp u = sing supp(Pu). (9.14)
In particular, we have
PueC®U) = wueC>™). (9.15)

REMARK 9.15. Theorem 9.1/ is not a completely satisfactory result since to apply
it we need to find a fundamental solution of P with singular support at the origin.
Still, looking at the examples in §9.1.2 we get elliptic reqularity for the Laplace opera-
tor, the Cauchy—Riemann operator, and the heat operator. On the other hand, for the
wave operator elliptic reqularity fails; in the case of 1 spatial dimension this follows
from Proposition 9.11 since the fundamental solution E does not satisfy sing supp £ C
sing supp LUE. Also, strictly speaking Theorem 9.1/ should be called hypoelliptic regu-
larity since it applies to some operators which are not elliptic, such as the heat opera-
tor — see §12.2.

PROOF. We have sing supp(Pu) C singsuppu by (8.16), so we need to show that
sing supp u C sing supp(Pu).

1. Fix arbitrary zp € U such that xy ¢ singsupp(Pu); we need to show that zy ¢
sing supp u. Fix a cutoff function

X € C2(U), 0 ¢ supp(l — x).
Consider the product
xu € &'(U)
and extend it by 0 (using Proposition 4.7) to an element of £'(R™), which we still
denote by yu.

By part 1 of Theorem 9.4 we have
xu = E x (Pxu).
Since sing supp E = {0}, by Proposition 8.14 we have

sing supp(xu) C singsupp(Pxu).
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It thus suffices to show that

xo ¢ sing supp(Pyu). (9.16)

Indeed, then zy ¢ sing supp(xu) and thus, as x = 1 near z,, we have xy ¢ singsupp u
as needed.

2. We compute
Pxu = [P, x]Ju + xPu.

Here [P, x| = Px—xP is the commutator of P with the multiplication operator by x. It
is a differential operator with variable coefficients, and (as x = 1 near xy and [P, 1] = 0)
these coefficients are supported away from xy. Thus 2o ¢ supp([P, x]u) and thus
xo ¢ sing supp([P, xJu). Since xq ¢ sing supp(Pu), we also have xy ¢ sing supp(xPu).
Adding these together we get xy ¢ singsupp(Pxu), giving (9.16) and finishing the
proof. 0

9.3. Notes and exercises

Our presentation largely follows [Hor03, §4.4]; see also [FJ98, §5.4] for an alter-
native presentation of the material of §9.1. For a detailed introduction to the general
theory of differential operators with constant coefficients see [Hor05].

EXERCISE 9.1. (1 pt) Prove Proposition 9.8.

EXERCISE 9.2. (1.5 pts) Prove Proposition 9.9. (Hint: first check that (0;—A,)E =
0 fort > 0. Then compute the integral in Remark 9.5 as an iterated integral dxdt,
integrate by parts in the integral dx, and use the Fundamental Theorem of Calculus
in t to write the integral in Remark 9.3 as a limit as t — 04. Finally compute this
limit by a change of variables x = 2\/ty and the Dominated Convergence Theorem,
using also the value of the Gaussian integral.)

EXERCISE 9.3. (0.5 pt) Using the fact that the Heaviside function is a fundamental
solution for 0, show that for u € D'(R), if suppu C [a,00) and supp(d,u) C [b, c0)
for some a < b, then suppu C [b, 00).

EXERCISE 9.4. (25=14+0.5+1+0.5+ 0.5 pts)

This exercise studies solutions to the initial value problem for the wave operator
on R?, 00 := 97 — 92. Assume that

Ou=f, u(0,z)=go(z), u(0,z)= g1(z).

Here u € C*(R?) is the solution, f € C°(R?) is the forcing term, and go € C*(R), g1 €
CY(R) are the initial data.
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(a) Define v(t,x) = H(t)u(t,z) € L} (R?) where H is the Heaviside function. Show
that, with derivatives in the sense of distributions,

Do = 5h(t) @ golx) + Solt) © gu () + H(1) .

(b) Using that suppv C {t > 0} show that v = E x Ov where E is defined in (9.12).

(c) Assume that w € D'(R?) and suppw C {t > 0}. Show that for each ¢ € C>(R?)

we have
(B *xw,p) = (w,9)

for some 1 € C(R?) such that

1
vlta) =5 [ eltrstg)dsdy, tzo
lyl<s

(d) Assume that f =0 and supp go,supp g1 C [—R, R|. Show that
suppuN{t >0} C {|z| <t+ R}.

(This is called ‘finite speed of propagation’.)
(e) Assume that go = g1 = 0 and supp f C {t > 0}. Show that singularities propagate
at unit speed: namely, if (t,x) € singsuppu and t > 0, then we have (t,z) = (s,y) +
(1,—7) or (t,z) = (s,y) + (7, 7) for some 7 >0 and (s,y) € singsupp f.

EXERCISE 9.5. (1.5 pts) Using the previous exercise, show d’Alembert’s formula:
fort >0

u(t,z) = %(go(x +1t)+ golz — 1)) + % /x g1(s)ds
o (9.17)

1 t  prt+(t—T)
+ = / / f(7,s)dsdr.
2 0 Jr—(t—71)

(This would need a fair amount of computation.)






CHAPTER 10
Pullbacks by smooth maps

In this chapter we define the composition of a distribution with a C'*° map, under
appropriate conditions on the map. As an application, we find a fundamental solution
of the wave operator in 3+1 dimensions.

10.1. Defining pullback

10.1.1. Pullback of functions. We first review the classical concept of pullback
of smooth functions. Assume that U @ R", V @ R™, and ® : U — V is a C* map.
For f € C*°(V), define the pullback of f by ® as

O f:=fod € C(U). (10.1)
This gives a linear sequentially continuous operator
O C®(V) — C™(U). (10.2)
The pullback operator acts on locally integrable functions:
" ¢ L (V) = Lho(U) (10.3)

provided thats & satisfies the following condition: for each K &€ U there exists a
constant C'k so that

vol(K N®1(Q)) < Cr vol(Q)  for all measurable Q C V. (10.4)
A basic example of when this condition fails is the following map:
¢:R—R, &(x)=0 foralluz. (10.5)

In this case pullback does not make sense on locally integrable functions already be-
cause of identification of functions which are equal almost everywhere: there exist
functions f on R which satisfy f = 0 almost everywhere but ®*f is not equal to 0
almost everywhere (e.g. take f to be the indicator function of the set {0}).

Note that pullback is contravariant, namely if we have two C'*° maps

® ®
U=V —

then the pullback by ®; 0 &5 : U — W satisfies
(P10 Py)* = P3P (10.6)
107

W,



108 10. PULLBACKS BY SMOOTH MAPS

10.1.2. Pullback on distributions. The counterexample (10.5) shows that we
do not expect to be able to define the pullback of an arbitrary distribution by an
arbitrary smooth map ®. Instead we restrict to ® satisfying the following condition:

DEFINITION 10.1. Let U @ R", V. @ R™. A C*>® map ® : U — V s called a
submersion if
dd(z) : R" — R™ s surjective for all x € U.

Note that we necessarily have n > m. Moreover, any submersion satisfies the
condition (10.4) (for example, one can see this by following the proof of Theorem 10.2
below).

The main result of this section is

THEOREM 10.2. Assume that U @ R", V @ R™, and ® : U — V is a C™
submersion. Then there exists a sequentially continuous linear operator

o D/(V) = D'(U) (10.7)
such that for any f € L (V), ®* f € Li (U) is the classical pullback defined in (10.1).

loc loc

REMARK 10.3. Since C*(V') is dense in D'(V) (by Theorem 6.10), such an ex-
tension of ®* to distributions is unique. Since C®(V') is also dense in Li (V) (by
Theorem 1.14), it suffices to construct ®* such that ®*f = f o ® for any f € C(V)
(rather than for any f € Li (V)).

loc

REMARK 10.4.% The requirement that ® be a submersion is almost necessary to
define ®* with the properties in Theorem 10.2 — see [Hor03, Theorem 6.1.1] and the
paragraph following it.

We prove Theorem 10.2 in steps, treating first two special cases and then writing
a general submersion as a composition of those cases.

10.1.3. Case 1: diffeomorphism. We start with the case when n = m and
®: U — VisaC™ diffeomorphism, that is ® is bijective and the inverse =1 : V — U
is a C* map. (By the Inverse Mapping Theorem, this is equivalent to ® being bijective
and the differential d®(z) being an invertible linear map for each z € U.) We will use
the following standard result from multivariable calculus/Lebesgue integral theory:

THEOREM 10.5 (Change of variables formula).® Assume that ® : U — V is a C*
diffeomorphism. Define the Jacobian

Jo € CO(U), Js(x) = |detdd(z)|.
Let f : V — C be a measurable function. Then f € L*(V) if and only if the function
(®* f)To lies in LY (U), and in this case

/V f(y) dy = / F(®() To () da. (10.8)
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For the proof, see for example [Rud87, Theorem 8.26] or [Str11, Theorem 5.2.2].

We now define the pullback operator ®* : D'(V) — D'(U), we use the general
extension by duality procedure of Theorem 7.15. All that we need is to show that the
transpose operator (®*)? is sequentially continuous on test functions,

(@) : C=(U) = C=(V). (10.9)

We take arbitrary ¢ € C*°(V), ¢ € C>(U) and compute using Theorem 10.5

(@), 0) = (*p,)) = /

U

(D)) ) di = / D)@ (1) T (y) dy.

|4

It follows that

(@)(y) = (@ (Y) T (y), yeV, 1 eCEU).

This gives the mapping property (10.9) and shows that the operator ®* extends to
distributions by the formula

(®*v,9) = (v, (®*)4p) for all v € D'(V), ¢ € CX(U).
We discuss two important examples. One is the pullback of a delta function:

PrRoOPOSITION 10.6. Assume that ® : U — V is a C* diffeomorphism and yo € V.
Then

(I)*dyo = jq;—l(yo)(sq)—l(yo). (1010)
PRrOOF.S We compute for any 1 € C>°(U)
(@040, 1) = (g, (D)) = (%) (y0) = Ta-1(y0) (2™ (40))

which gives the needed identity. 0

Another one is the relation to homogeneous distributions defined in §5.1.2. Define
the diffeomorphism \; : R" — R™, A\;(z) = tz, t > 0, so that Ay = A}.

PROPOSITION 10.7. Let u € D'(R™). Then u is homogeneous of degree a € C if
and only if A\ju = t*u for all t > 0.

PRrROOF.S We compute for any 1) € C®(R")

(Afw ) = (u, 7" A H)).
Thus (Afu, ) = t%(u, ) if and only if (u, A; ') = "+ (u, ). O
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10.1.4. Case 2: projection. We now consider the case of a projection map
O:U—=V, P 2")=2a
where n > m, we write elements of R" as x = (2/,2”) with 2/ € R™, 2 € R*™, and
UcR" V eR™satisty U CV x R*™™.
If fe L. (V), then we can write the pullback ®*f € L. (U) as the restriction of

loc loc

a tensor product: (®*f)(a/,2") = f(2'), thus ®*f = (f ® 1)|y where 1 is treated as a
constant function on R"™™ so that f® 1 € L (V x R*™™),

loc

Same definition works for distributions: for v € D/(V) put
P*v:= (v 1)y € D) (10.11)
and this defines an operator satisfying the conditions in Theorem 10.2.
10.1.5. The general case. We now give the proof of Theorem 10.2 in the case

when U G R™, V G R™ and ® : U — V is an arbitrary C* submersion. The following
lemma shows that locally ® is the composition of a diffeomorphism and a projection:

LEMMA 10.8. Assume that ® : U — V is a C* submersion. Fix xq € U. Then
there exist open sets Uy, c U, W,, GV x R"™™ zy € U,,, and a C*™ diffeomorphism
Hyy 2 Uy — Wy, such that

O(z) =y forall x € Uy, where (y,y") = s, (). (10.12)

PROOF. Since ® is a submersion, the linear map d®(zg) : R" — R™ is surjective.
Thus there exists a linear map W : R” — R"™™ such that the linear map

veR" — (dP(xg)v,¥(v))
is invertible. For x € U, define
oo (1) = ((2), ¥(x)) €V xR"™™,

then dse,,(xo) is invertible. By the Inverse Mapping Theorem there exist open neigh-
borhoods U,,, Wy, of xg, 3, (o) such that s, : U,, — W,, is a diffeomorphism. From
the definition of s, we see that it satisfies (10.12). O

Coming back to the proof of Theorem 10.2, take arbitrary xy € U and let U, W, s,
be given by Lemma 10.8. Then we can write

(I)‘Uzo = 7TIO O %930
where 7, : W,,, — V' is defined by 7, (¢/,y") = v/. Define the pullback operator
(®lu,, )" = 55,75, : D'(V) = D'(Us) (10.13)

Zo  Zo
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where 55 @ D'(Wy,) — D'(Uy,) is defined in §10.1.3 and 7 : D'(V) — D'(W,,)

zo
is defined in §10.1.4. Then (®|y, )* satisfies the conditions of Theorem 10.2 for the
map P|y, .

We now glue the different operators (@]Umo)* together to get the global operator ®*.
If 29,71 € U then the pullback operators (®|p, )* and (®|y,, )* agree on Uy, N Uy,
that is for all v € D'(V') we have

Indeed, this is immediate for v € C*(V) (as both sides are equal to the classical
pullback (v o @)y, nv,,) and follows for general v since C*°(V) is dense in D'(V) by
Theorem 6.10.

Applying the sheaf property of distributions (Theorem 2.13) for the covering U =
Usyevr Uzo» we see that for each v € D'(V') there exists unique ®*v € D'(U) such that
(@*)|v,, = (®|v,,)*v for all zo € U. (10.15)

It it straightforward to check that this defines an operator ®* : D'(V) — D'(U)
satisfying the conditions of Theorem 10.2, finishing its proof.

REMARK 10.9. Recalling the constructions in §§10.1.5-10.1.4, we get the following
concrete expression for (®ly, )*: for allv € D'(V) and ¢ € C°(Uy,)

(o) 0, 0) = (0@ 1, (5¢,) ) = (v,9)
where  P(y') = Ty Wi, (v, y") dy".

Rn—m

10.1.6. Properties of pullback. We now discuss properties of the pullback op-
erator on distributions. We start with

ProposITION 10.10 (Chain Rule). Assume that U ¢ R", V. @ R™, & : U —
V is a C* submersion, and v € D'(V). Denote ®(z) = (P1(z),..., Py (x)) where
®,...,9,,: U —R. Then we have for all j=1,...,n

m

Or, (P*0) = D (0y, Dp) (D, 0). (10.16)

k=1

REMARK 10.11. Writing v(®(z)) in place of ®*v(z), we see that (10.16) takes the
more familiar form

Oy, (v(®1(2), . .., Zax]cpk )0y, v(®1 (), ..., Pp()).

ProOF. This follows from the usual Chain Rule when v € C*°(V), and is true in
general since C*°(V') is dense in D'(V') (by Theorem 6.10). O
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As an application of Proposition 10.10 we compute the pullback of the delta func-
tion dy € D'(R) by a submersion ®, which produces a delta function on the hypersur-
face ®~1(0). See Proposition 13.2 for a review of the concept of embedded submanifold
(more specifically, a hypersurface) used below. The surface measure used below coin-
cides with the Riemannian volume density induced by the restriction of the Euclidean
metric to ¥ (see §13.1.7).

PROPOSITION 10.12. Let U @ R™ and ® : U — R be a submersion (that is,
the gradient d® is nonzero everywhere); in particular, then ¥ := ®1(0) C U is a
hypersurface. Define the distribution éx, € D'(U) by integration with respect to the
surface measure dS on X:

(0g,p) = /ng(x) dS(z) for all p € C(U). (10.17)

Then .
D%y (z) = mq)—(x)’(&(a:). (10.18)

PROOF. Denote by H € L{ (R) the Heaviside function. Then ®*H = 1q is the

loc
indicator function of the set

Q:={zeU]|P(x) >0}
By Proposition 10.10 and since H' = §q by (3.4) we have for each j =1,...,n
0, (0" H) = (9,,0) 4. (10.19)

Now, by the Divergence Theorem (see (1.38), where we effectively have 02 = ¥ since
supp ¢ € U) we compute for each ¢ € C*(U)

(0,, (0 H), ) = — /Q By = — /E v dS(x).

Here v(z) = (v1(z),...,vs(2)) is the normal vector to ¥ at x € ¥ pointing outside
of Q2. We have

B d®(x)

v(r) = ————+,

|d® ()|

thus we get the identity
Oy, @
|d®|
Together (10.19) and (10.20) show that for each j

1
DV Py — —— | =
(9, ’( % \dcwz) 0

which gives (10.18) since d® # 0 everywhere on U. O

O, (0" H) = 25y, (10.20)
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We finally state several more properties of pullbacks. The proofs are left as exercises
below.

PROPOSITION 10.13. Assume that U GR™, V cR™, & : U — V is a submersion,
veD(V), anda € C®(V). Then

O*(av) = (P*a)(P*v), (10.21)
supp(®*v) = &~ !(suppv), (10.22)
sing supp(®*v) = &~ (sing supp v). (10.23)

Moreover, the contravariant property (10.6) holds on distributions.

10.2. Application to the wave equation

10.2.1. Construction of a fundamental solution. We now come back to the
question of constructing a fundamental solution for the wave operator, started in
Proposition 9.11. The theorem below gives the existence of what is known as ad-
vanced, or future, fundamental solution:

THEOREM 10.14. The operator 0 = 92 — A, on Ry xR” has a fundamental solution
E € D'(R"™Y) with the following properties:

supp £ C {(t,z): t > |z|}, (10.24)
singsupp F = {(t,z): t = |z|}. (10.25)

We only prove Theorem 10.14 for n = 3, that is in the case of 3 spatial dimensions.
See [H6r03, Theorem 6.2.3] for the case of general n. We break the proof into several
steps.

1. We first construct the restriction EJF = E |r+\{0} as a pullback of the delta function
on R. (For other values of n, one has to instead pull back the homogeneous distribution
x% defined in (5.19) with a := 15.) Consider the function
d:R*\ {0} = R, &(t,z)=1*— |z

In special relativity, this is known as the interval between (¢, x) and the origin. Just
like the function |z| featured in the fundamental solution of the Laplace operator
(Proposition 9.6) is invariant under rotations, the function @ is invariant under the
Lorentz group O(1, 3) which also leaves the wave equation invariant.

The map @ is a submersion, so we may define the pullback
E:= &5, € D'(R*\ {0}).

We claim that
OF = 0. (10.26)
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This follows from the Chain Rule (Proposition 10.10): we compute for any v € D’'(R)
and j =1,2,3

(P v) = 2™/,

O} (®*v) = 20 + 4t20*”,
O, (P*v) = —22;0™0',
02 (B*v) = =200 + 425 0*0".

This gives
O(®*v) = 80" + 4P &*v" = ®*w  where w(s) := &'(s) + 450" (s).

The distribution d, € D'(R) is homogeneous of degree —1, so §], is homogeneous of
degree —2. Then Euler’s equation (see part 2 of Proposition 5.5; of course this can also
be checked directly in this case e.g. by differentiating the identity sdo(s) = 0 twice)
shows that soj(s) = —2d,(s). Thus if v = 0y above, then w = 0, and we obtain (10.26).

By Proposition 10.12, we see that

~ 1
E=—§
|d®|™

where the light cone C := ®~1(0) consists of two parts:
C=C,UC., Ci:={(t,x)eR*\{0}: £t >0}.

We now define
~ 1
Ei :

— wéci e D'(R*\ {0}),

so that

E= EJF + E,, suppEi CCy.

By (10.26) we have DE+ +OE_ = 0, but the supports of OE4 do not intersect each
other, thus

OE. =0. (10.27)

2. We now extend E+ through the origin. This can be done using homogeneity: since
dp is homogeneous of degree —1 and ¢ is homogeneous of degree 2, one can check
that E+ is homogeneous of degree —2 and thus by Theorem 5.6 there exists a unique
extension of E+ to a distribution E; € D’'(R?*) which is homogeneous of degree —2.

However, we can also argue directly by obtaining a more explicit formula for E+.
Let us parametrize C; by x € R?\ {0} as the graph ¢ = |x|, then the surface element
dS is given by
2

dlz| dz = V2dx.

dS =4/1+|—
+‘dw
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Next, d®(t,z) = 2(t,—x), so |[d®| = 2v/2|z| on C;. Thus we have for each ¢ €

Ce(R*\ {0})
N Y o (], x)

The integral above still converges if supp ¢ is allowed to contain the origin, so we define
the distribution F, € D'(R*) by

(Ey, ) = / de for all ¢ € C°(RY). (10.28)
R3 2|l’|

We have E g\ 0y = EJr. Moreover, recalling Definition 5.3 we see that E, is homo-

geneous of degree —2. We also have

supp F, = singsupp B, = {(t,r) € R*: t = |z|}. (10.29)

3. We finally compute (JE,, which is a distribution in D'(R*). By (10.27) we have
OF |ga\oy = OF, = 0. Thus suppdE, C {0}. By Theorem 4.19, OF, is a linear
combination of dyg and its derivatives. On the other hand, by part 1 of Proposition 5.5
we see that [JF, is homogeneous of degree —4, and 9“9, is homogeneous of degree
—4 — |al. Arguing similarly to (5.8) we see that (JE, is a multiple of dy:

OF, = cdy for some c € C. (10.30)

To compute the constant ¢, we pair JF, with a function of the form (t) where
1 € C(R) satisfies 1(0) = 1. This is possible by Proposition 8.7 since the intersection
of (supp®) x R? with supp F, is compact. We have

c= (OF.,¥(t)) = (BEL,OY(t)) = (B, 0" (1) = / V" (|z]) i

s 2|zl
= 27T/ r" (r) dr = 2.
0

where in the last line we used spherical coordinates and then integrated by parts.

It remains to put
1
E:=—E, ¢ D'RY
2w
to obtain a fundamental solution of [J satisfying the conditions of Theorem 10.14.
Recalling (10.28) we obtain the following explicit expression for E:

(E,¢) = /R 3 % dr for all p € C%(RY). (10.31)
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10.2.2. The Cauchy problem. We now use the fundamental solution E of [J
on R x R” from Theorem 10.14 to obtain a few partial results on the forward Cauchy
problem

Ou(t,x) = f(t,x), t>0,
u(0,z) = go(), (10.32)
(0, ) = g1 ().
See [H6r03, Theorem 6.2.4] for a more comprehensive treatment.

Assume that v is a classical solution to (10.32):
u € C*([0,00); x RY), go € C*(R"), g1 € CY{R").
Using the Heaviside function H, define
v(t,z) == H(t)u(t,x), v e L (RY).
Arguing in the same way as for Exercise 9.4(a) we compute
Ov = 64(t) @ go() + do(t) @ g1(x) + H(t) . (10.33)

By Exercise 8.3, supp E and supp v C {t > 0} sum properly, thus part 1 of Theorem 9.4
gives
v=FE=xo. (10.34)

This gives uniqueness for the Cauchy problem (10.32): if f =0 and gy = g1 = 0 then
(v = 0 and thus v = 0, implying that u = 0.

Arguing similarly to Exercise 9.4(d,e) we obtain finite speed of propagation:
suppu C {(t,x) | 3y € supp go Usupp g1, |z —y| <t}
U {(t,l’) | H(S,y) € Suppf7 |I - y| S t— S}

and a weak version of propagation of singularities: if go = g1 = 0 and supp f C {t > 0}
then

(10.35)

singsuppu C {(¢,z) | 3(s,y) € singsupp f, |r —y| =1t — s}. (10.36)

10.3. Notes and exercises
Our presentation largely follows [Hor03, §§6.1-6.2] and [FJ98, Chapter 7].

EXERCISE 10.1. (25 = 05+ 141 pts) Let & : U — V be a submersion and
veD (V).
(a) Show that if U c U, V @V, and ®(U) C V, then (®*v) 7 = (®|z)"(v]y), where
(I>|(7 U — V.
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(b) Show that if ® is surjective (that is, ®(U) =V ), then
P'v=0 = wv=0, (10.37)
v e C®(U) = wvel™V). (10.38)
(You might need to review the construction of the extension ®* in §§10.1.5-10.1.5.)
(c¢) Prove (10.22) and (10.23). (You might find the previous two parts of the exercise
useful.)

EXERCISE 10.2. (0.5 pt) Prove the properties (10.6) and (10.21) for pullback on
distributions.

EXERCISE 10.3. (1 pt) Let ® : R — R be given by ®(z) = x*. Show that the pullback
operator ®* : C*°(R) — C*(R) does not extend to a sequentially continuous operator
D'(R) — D'(R). (Hint: let x € C(R) be equal to 1 near 0, put x.(z) := e 'x(z/e),
and look at the limit of (®*x., X))

EXERCISE 104. (2 =1+ 1 pts) Compute the transposes (®*)' : C=(U) — D'(V)
of pullbacks by the following two maps ® : U — V. In each case decide whether (®*)*
maps CX(U) to CX (V') (which would allow to extend ®* to distributions):

(a) ®:R? = R, O(x1,15) = x1;
(b) ®:R — R? &(x1) = (21,0).

EXERCISE 10.5. (2 =141 pts) Assume that W C R™ is open and F: W — R™ is
a C* map. Define the submersion ® : W x R™ — R™ by ®(z,y) =y — F(x).

(a) Show that for each v € D'(R™) the distribution ®*v € D'(W x R™) is given by

(D v, ) = (v(y), /W o(z,y + F(x)) d;z:) forall e CX(W xR™).  (10.39)

(b) Show that the Schwartz kernel of the pullback operator F* : C*(R™) — C>®°(W)
is given by K(x,y) = do(y — F(x)) where do(y — F(x)) is defined as ®*6y. (In the
special case when F' is the identity map we see that the Schwartz kernel of the identity
operator is given by do(y — z) = do(x — y).)

EXERCISE 10.6. (1 pt) Check that the distribution E given in (10.31) satisfies
OF = &g directly, without appealing to the classification of distributions supported at
the origin. To do this, introduce the spherical coordinates x = r0 where § € S%. You
may use the formula

2 1
Am == 83—1— —&—l— —2A9
T r

where Ag : C®(S?) — C>(S?) is the Laplace—Beltrami operator for the standard metric
on the 2-sphere. You may also use that Agf integrates to 0 on S for all f € C>(S?).
After getting rid of Ay, you might find it useful to write everything in terms of the
function ¥(u,v,0) = o(u + v, (u —v)0) where p € C(R*Y) and u,v € R, 6 € S2.
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EXERCISE 10.7. (1 =0.5+ 0.5 pt) Let E € D'(R*) be defined in (10.31).

(a) Assume that w € D'(R*) and suppw C {t > 0}. Show that for each ¢ € C°(R*)
we have

(B xw,p) = (w,¢)
for some 1 € C(R*) such that

1 t
Mt,x)__/ ¢ +|y|,x+y)dy7 £>0.
AT Jps Y|

(b) Using part (a) and (10.33), show the following version of Kirchhoff’s formula: if
u e C*({t > 0}) is the solution to

Ou(t,z) =0, w(0,2) =0, 0u(0,z)=gi(z),
then we have for all t > 0 and v € R3

ult,z) = % /S oo+ 16) dS(6).

That is, the value of the solution at time t and space x is equal to t times the average

of the initial data g, over the sphere of radius t centered at x.



CHAPTER 11

Fourier transform 1

In this chapter we define the Fourier transform on distributions, which is a powerful
tool in the study of PDEs in particular because it turns constant coefficient differential
operators into multiplication operators.

11.1. Fourier transform on Schwartz functions

11.1.1. Fourier transform on L'. We start by defining Fourier transform on
functions. For two vectors z,£ € R", denote by x - £ their usual Euclidean inner
product, that is

z-§ = Zx]fj.
j=1

DEFINITION 11.1. Let f € L*(R"). Define the Fourier transform
F=F(f) € L=®")
by the formula
f€ :/ e " f(2) da. (11.1)

~

Note that f(0) is the integral of f.
It is immediate to see that F : L'(R™) — L*(R") is a bounded linear operator, in
fact we have from its definition
| Fllee ey < | fllzi@ny  for all f e LY(R™). (11.2)

Moreover, f is a continuous function:

PROPOSITION 11.2. Assume that f € L*(R"). Then f € C°(R™).

PrOOF. We have for any £ € R"
foy = [ en@de » [ e fa)de=FO) asne
n RTL
by the Dominated Convergence Theorem, since e f(z)| = |f(z)|, f € L'(R"), and
e~y emwE a5 — € for all z € R™. O
119
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11.1.2. Schwartz functions. The operator F : L' — L* is very far from in-
vertible. It is highly desirable to have spaces on which the Fourier transform is an
isomorphism. One of such spaces is given by Schwartz functions:

DEFINITION 11.3. We say that ¢ € C*(R") is a Schwartz function if for all
multiindices o, § we have

sup |20 p(z)| < oc. (11.3)
zeR™

Denote by .7 (R™) the space of all Schwartz functions on R™. For a sequence p; €
L (R™), we say it converges to ¢ € L (R") in L (R") if for all a,  we have

Suzé) 1208 (p; — )| = 0 as j — oo.
zeR?

REMARK 11.4. We think of (R™) as a space of test functions which is well suited
to study the Fourier transform. We sometimes call elements of this space rapidly
decreasing functions, since for o € . (R") every derivative d2¢ is O((1+ |z|)~N) for
all N.

REMARK 11.5. We have the inclusions
C*[R") ¢ L(R") Cc C=(R"). (11.4)

Correspondingly, convergence of sequences in C°(R™) is stronger than in & (R"),
which in turn is stronger than in C°(R™). The space C*(R") is dense in ./ (R™),
see Exercise 11.1 below.

Note however that unlike C(U) and C*(U), which are defined for any U @ R",
the Schwartz space is only defined for functions on the entire R™.

A family of seminorms on .(R") is given by

= aps N. M . 11.
ol v,ar Ia‘gr]g{%wsgylw obel, N,M e Ny (11.5)

We have ¢, — 0 in .%/(R") if and only if ||@,||nvar — O for all N, M. In fact, it is
enough to require that ||¢,|xnx — 0 for all N. The collection of seminorms || e ||y
makes . (R") into a Fréchet space similarly to §4.3.1.

From the definition of the above seminorms we see immediately that the multipli-
cation operators z; and the differentiation operators 0,, are sequentially continuous
S (R") — Z(R"), in fact for all all N, M there exists a constant C' such that for all
v € CP(R") we have

lzjollvar < Cllellveas, 10zl < Cllelln,arr (11.6)

The Schwartz space .(R") is contained in L'(R™). In fact, if ¢ € #(R"), then
lo(2)] < Cull@llns1,0(1 + |z])~™ ! for some constant C,, depending only on n, so

el < Callllntro- (11.7)
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11.1.3. Fourier transform acts on Schwartz functions. For any ¢ € ./ (R"),
we can use (11.1) to define the Fourier transform ¢ € L*(R"™), and (11.2) and (11.7)
together show that
18]l oo rmy < Cullollnr10- (11.8)
A remarkable property of the space .’(R") is that the Fourier transform of a Schwartz
function is again a Schwartz function:

THEOREM 11.6. For each ¢ € L (R"™), F(p) = @ also lies in ./ (R™). Moreover,
the operator F : S (R") — L (R") is sequentially continuous.

The proof of Theorem 11.6 relies on the fact that Fourier transform intertwines
differentiation and multiplication. To state it we introduce the modified differentiation
operators

Dy, = —i0,,. (11.9)
For a multiindex «, we have

DY = D2 ... Do = (—i)lo2,
PROPOSITION 11.7. Let ¢ € Z(R™). Then p € C*(R™) and

D.o(6) = &3(), (11.10)
z;9(§) = —Dg, (). (11.11)

PROOF. 1. To show (11.10), we integrate by parts:
Dop(€) = [ e Dplayd == [ (Due)pla) da

= | &e " ip(x) dr = ().

R’)’L
Here to justify integration by parts, we can first integrate on the ball B(0, R) and then
let R — oo; the boundary terms will go to 0 since ¢ is rapidly decreasing.

2. To show (11.11), we differentiate under the integral sign:

—De,3(¢) = / (~Dee " )p(a) da = / rje " p(x) de = (). (11.12)
To justify differentiation under the integral sign, denote by e; the jth coordinate vector

on R™ and write for any £ € R” and t € R\ {0}

-~ te.) — & —ix-(§+te;) _ ,—iz€
plE+ eé) 90(5):/ ¢ t C  ox)da. (11.13)

n

Applying the inequality |e® — 1| < |o| with a := —tz;, we see that
67itxj -1

t

efiz-(ngtej) — e~ ig

: o) < ezt

w(l‘)) =
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Since ¢ is a Schwartz function, we have z;p € L'(R™). Thus we can pass to the limit
t — 0 under the integral in (11.13), which means that we can differentiate under the
integral in (11.12). O

REMARK 11.8. The above proof shows that (11.11) holds for all ¢ € L*(R™) such
that x;0 € LY(R™). Together with Proposition 11.2 this implies that for each k € Ny

1+ |z))ff(z) € LNRY) = fe CHRY). (11.14)
We can now give

PROOF OF THEOREM 11.6. Assume that ¢ € .(R"). Applying Proposition 11.7
iteratively and using that the operators z;,d,, map .(R") to itself, we see that ¢ €
C*(R™) and for any multiindices «, (3

¢ Dlg = (—1)P Dgap. (11.15)

Here D%2Pp € #(R™) C L*(R") and thus (11.15) is a bounded function on R™. Since
a, 3 are chosen arbitrary, we see that @ € .(R"™). The continuity of Fourier transform
on . (R™) follows from the estimates (where C' depends only on N, M, n)

1Pllvar < Cllpllarin iy
which are an immediate corollary of (11.15), (11.2), (11.7), and (11.6). O
11.1.4. Properties of Fourier transform. We now give some properties of the
Fourier transform. We first show that Fourier transform is its own transpose in the

sense of §7.3. Similarly to (2.3) we use the notation (f, g) to denote the integral of fg,
where f, g are functions on R” and fg € L'(R"™).

PROPOSITION 11.9. Let f,g € L'(R"). Then
(F.9)=(£.9). (11.16)

Proor.S By Fubini’s theorem both sides are equal to

e o) dode
U

We next give the relation between Fourier transform, convolution, and multipli-
cation. Note that if f, g € L*(R™), then by Fubini’s Theorem the convolution f * g
(defined by the integral (1.27) which converges for almost every z) is in L'(R").

PROPOSITION 11.10. Let f,g € L*(R™). Then

— ~

fxg(&) = F(E)g(&)- (11.17)
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PRroOF.S By Fubini’s theorem and the change of variables z = y + 2 we have
@) = [ e stgle ) dody
R2n
= [ e gl dydz = Fle)a(o)
R2n

OJ
We give three more properties. The proofs are left as exercises below.
PROPOSITION 11.11. Assume that f € L*(R") and g € L*(R™). Then
fog=Jo3 (11.18)

PROPOSITION 11.12. Assume that A : R™ — R"™ is an invertible linear map and
f € LYR™). Then
Af(€) = |det A7 F(ATE) (11.19)

where AT denotes the inverse of the transpose of A.

PROPOSITION 11.13. Let f € LY(R™) and f be the complex conjugate of f, i.e
f(x) = f(x). Then

F(HE) = (FNH(=E). (11.20)
We finally compute the Fourier transform of the Gaussian function
x 2
G(z)=e"%, zeR™ (11.21)

Note that G € .(R"), since for any «, 3 the function z*9°G is the product of G with
a polynomial and thus is bounded on R™.

PROPOSITION 11.14. If G is given by (11.21), then

G(&) = (2m)Be %, (11.22)

M\S

that is G = (27)3G.

Proo¥F. It suffices to consider the case of dimension n = 1. Indeed, if G,, is the
Gaussian in R” then Gn+m = G, ®G,,, so the formula for Gn+m can be deduced from
the ones for G and G by Proposition 11.11.

First proof: The function G(z) satisfies the linear first order ODE
0,G(x) = —xG(x). (11.23)

Taking the Fourier transform of both sides and using (11.10) and (11.11), we see that
G satisfies the same ODE (11.23). From standard theory of linear ODEs we see that

G(€) = cG(€)
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for some constant ¢ € R. To compute ¢, we take & = 0, then
-~ z2
c=G(0) = / e zdr =27
R

is the Gaussian integral.

Second proof: We write down the integral for G (€) and complete the square:

~ 22 (@+ie)® g2
G(§) :/6_2_”5dx:/6_ 2 7 dx.
R R

We write this as a complex integral:

z

G(¢) = e%/ e 7 dz.
R+-i€

Since F'(z) := e~z is holomorphic in z € C and satisfies F(x +i§) — 0 as |z| — o0
locally uniformly in &, we can deform the contour above from R + i¢ back to R (more
precisely, use Cauchy’s integral theorem on the boundary of the domain [—R, R]+ |0, ¢]
and let R — oo) and get

[

~ 2 22 2
G(§) = e T / e~ T dy =\ 2me T
R
where we again used the Gaussian integral. U

11.1.5. Fourier inversion formula. We are now ready to prove one of the most
magical properties of the Fourier transform, which is a formula for its inverse:

THEOREM 11.15. Assume that p € (R™). Then we have for all x € R",

o(x) = (2m)" / e7EB(E) d. (11.24)

n

REMARK 11.16. It follows from Theorem 11.15 that the operator F : & (R™) —
S (R™) is invertible and its inverse is given by the formula

F () = @m) " / e E(€) de. (11.25)

Note that F~! maps #(R") to itself by Theorem 11.6, since F~'¢(x) = (ZW)*”IZ(—Q:).

REMARK 11.17X An interpretation of Theorem 11.15 is as follows: p(€) is the L*
inner product (@, e¢)2mny between ¢ and the complex exponential wave at frequency
¢ defined as ec(x) = €. We can think of 3(§) as the (complex) amplitude of the
function ¢ at frequency §. Now the inversion formula (11.24) can be rewritten as

o=n) [ peecds

We can interpret this as ¢ being reconstructed from the basic waves eg as an integral
(which is analogous to a linear combination) with p(§) giving the coefficients. In a
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way this formula is similar to writing an element of a Hilbert space in terms of its
coefficients in an orthonormal basis. Of course this is only a heuristic — the functions eg

do not lie in L* and the argument above does not explain the factor (2m)™".

PROOF OF THEOREM 11.15. We can write the right-hand side of (11.24) as an

iterated integral:
(2m)™" / e”f( / e p(y) dy) de.

However, Fubini’s theorem does not apply here since the function e!@=%)¢p(y) is not
integrable on R?".

To fix this issue, we regularize the integral using the Gaussian G defined in (11.21),
which is a useful function because we have previously computed its Fourier transform
in (11.22). Since p € #(R") C L'(R") and G(0) = 1, by the Dominated Convergence
Theorem we see that the right-hand side of (11.24) is equal to
i (2) " [ "SGR de = Jim (2m) " [ G () dyd

n e—

e—0+ R27

. —n Wz—y)n
— lim (2¢) / G ply) dydy

e—0+

(11.26)
= lim (2re) ™" /n @(y ; I)so(y) dy
= lim (27) " /n G(w)o(z + ew) dw.

Here in the first line we use Fubini’s theorem (which applies now since G € L'(R"™)).
In the second line we make the change of variables £ = n/e. In the third line we use
Fubini’s theorem again to integrate out 7, and in the last line we make the change of
variables y = x + cw.

Since G € L'(R™), we can use the Dominated Convergence Theorem, the explicit
formula (11.22) for G, and the Gaussian integral to compute the limit on the last line
of (11.26) as

2m)™" | G(w)e(r) dw = o(z)
Rn
which finishes the proof. 0

As an application, we obtain the formula for the Fourier transform of a product.
Note that for two Schwartz functions, their product and convolution are still Schwartz
functions (see Exercise 11.8 for the latter).

PROPOSITION 11.18. Assume that ¢,v € (R™). Then

o = (21) "G x 1. (11.27)
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PROOF. Similarly to (11.17) we have for each f,g € L*(R")
F o fxg)=@m)"FH(HF (g)-

~

It remains to apply this with f := @, g := 9. 0
11.2. Fourier transform on tempered distributions

In this section we extend the Fourier transform from L!'(R™) to the much larger
space of tempered distributions.

11.2.1. Tempered distributions. We first define tempered distributions as the
dual space to . (R™), similarly to the spaces D’ and £

DEFINITION 11.19. Let u : L (R™) — C be a linear functional. We say that u is
a tempered distribution if for each sequence ¢, — 0 in . (R™) we have (u,¢x) — 0.
Denote by 7' (R™) the space of all tempered distributions on R™.

For a sequence uy, € /' (R™), we say that up — u in ' (R™) if (ux, p) — (u,p) for
all p € S (R™).

REMARK 11.208 Similarly to Proposition 2.6, a linear functional u on 7 (R"™) lies
in ' (R™) if and only if there exist C; N, M such that

[(u, ©)| < Cllelina for all o € S (R) (11.28)

where the seminorm ||  ||nar was defined in (11.5).

REMARK 11.215 There is a natural version of the Banach-Steinhaus Theorem for
the space ' (R™) which is proved in the same way as Theorem /.1J. In particular, we
have the following analog of Proposition /J.18:

u, = u i (R, o=@ in SR = (up,pr) = (u,p).  (11.29)

The space ./(R") is fairly large, in particular for any N we have
(1+ [z)NLYR™) c S (R™).

More precisely, if f : R® — C is a function such that (1 + |z|)™"f € L'(R") for
some N, then we treat f as an element of .%/(R™) by defining the pairing (f, ¢) for
p € .Z(R") as the integral (2.3). In particular, the space LP(R™) embeds into ./ (R")
for any p € [1,00] and any polynomial function lies in ./(R").

Similarly to the inclusion & C D’ (see (4.2)) we have the inclusions
E'R") ¢ S'(R") c D'(R"), (11.30)
since C*(R") ¢ L (R™) € C*(R"), C*(R™) is dense in .7 (R™) (see Exercise 11.1),
and . (R™) contains C'°(R™) which is dense in C*°(R™). Moreover, C°(R") is dense
in .’(R") (see Exercise 11.2).
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We now briefly discuss how previously defined operations on distributions act on
the space ./(R™), viewed as a subspace of D'(R™). All the operations below are
sequentially continuous on the indicated spaces. The first property is straightforward
to verify and the rest are assigned as exercises below.

(1) If w € &'(R"), then its distributional derivative 0,,u € D'(R™) also lies
in ./(R™) and satisfies

(02, u, ) = —(u, 0y, ) for all p € S (R").

(2) If u € '(R") and a € C*°(R™) has polynomially bounded derivatives, i.e. for
each a there exists N such that 0%a(z) = O((1 + |z|)"), then au € D'(R")
lies in .¢/(R™). In particular, this applies if a is a polynomial or a € . (R").

(3) If u € ' (R") and v € ./ (R™) then u ® v € D'(R"™) lies in ./"(R"™™).

(4) If A: R™ — R™ is an invertible linear map and u € ./(R™) then A*u € D'(R")
lies in .7/ (R™).

(5) If u € ' (R") and ¢ € ./ (R™), then the convolution

uxp(xr)=(u,p(xr—e)), =zeR" (11.31)
is a smooth function on R™ with polynomially bounded derivatives, and thus
in particular lies in ./ (R").

6) If u e L' (R") and v € &'(R™), then the convolution u * v € D'(R™) lies
in .7/ (R").

11.2.2. Extending Fourier transform to tempered distributions. We now
define Fourier transform of tempered distributions. As with many other operations
before, we use duality. Recall from Proposition 11.9 that for all f,g € L*(R") we have

(f,9) = (,9) (11.32)
This motivates the following

DEFINITION 11.22. Let u € #'(R"). Define the Fourier transform Fu = u €
' (R™) by the formula

(, @) == (u,p) for all p € L (R"). (11.33)

Since F : .7 (R") — . (R") is sequentially continuous by Theorem 11.6, we see that
u is indeed a tempered distribution. Moreover, the operator F : ./(R") — ./(R")
defined in (11.33) is sequentially continuous. By (11.32), if u € L'(R") then the
distribution @ defined in (11.33) agrees with the classical Fourier transform of u defined
in (11.1).

Having defined the Fourier transform on .#”(R™), we give two important examples:
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ProproOsITION 11.23. On R"™, we have

b0 =1, (11.34)
1= (27)"dp. (11.35)

PROOF. (11.34): We compute for each ¢ € .7 (R")
(o) = (60, 3) = 300) = [ pla)do = (1,¢)
(11.35): We compute for each ¢ € Z(R")

Lo)=(1.8) = [ 3O)de = 2m"p(0) = (20"

where we use Fourier Inversion Formula (Theorem 11.15) with x := 0. O

REMARK 11.24. In PDE papers, (11.35) is often written as

/n e dy = (2m)"50(€)

despite the fact that the integral does not converge. (One could actually make sense of
an integral here by repeated integration by parts, see for example [Hor03, §7.8].) If we
formally substitute £ = 0, we obtain the nonsensical statement

/ de = (27)"60(0).

We now discuss some properties of Fourier transform on tempered distributions. We
start with the Fourier inversion formula. The inverse Fourier transform operator F~! :
S (R") — (R") defined in (11.25) extends to a sequentially continuous operator
S'(R") = ' (R™), since we have F lu(z) = (2r) " u(—z). Since .#(R") is dense
in .#/(R"), the operators F and F ! are still inverses of each other when acting
on . (R").

A similar argument using the density of . in . shows that the identities (11.10)
and (11.11) hold on .. Iterating these, we see that for all u € .”(R") and «

Deu(€) = €(€), (11.36)
zou(§) = (-1 Dga(s). (11.37)

Arguing again by density, we also get the distributional analogues of the formu-

las (11.18) and (11.19): if u € ./(R") and v € .%/(R™) then
LOV=TU®7D, (11.38)
and if u € ./(R") and A : R® — R™ is an invertible linear map, then
Ay = | det A|"H(AT)"4. (11.39)
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We also give a version of the convolution formula:

PROPOSITION 11.25. Assume that u € 7' (R") and ¢ € .7 (R™). Then
uxQ=up, (11.40)
up = (2m) " U . (11.41)

PRrROOF. (11.40): We first review why both sides of the formula make sense. Since
u € ' (R") and ¢ € .#(R"), we can define their convolution uxp € #/(R™) by (11.31).
The product u@ lies in .#/(R") (see Exercise 11.3).

We now argue by density. All the operations used are sequentially continuous on
appropriate spaces, so if u; — u in ./(R™), then

Up*@ > u*xp, Upp—up in L' (R").

Since . (R") is dense in ./ (R™), we can choose uy € .(R™) converging in .’(R"™) to
any given u € ./(R"). The formula (11.40) holds for uy, ¢ by (11.17) and it remains
to pass to the limit.

(11.41): This is proved in the same way, using the identity (11.27). O

11.2.3. Fourier transform of compactly supported distributions. We pre-
viously saw that each u € £'(R") also lies in ./(R™). The Fourier transform of u is a
smooth function given by a simple formula:

PROPOSITION 11.26. Let u € E'(R™). Then u € C*(R"™) has polynomially bounded
derivatives and

u(&) = (u(z),e™™*)  for all ¢ € R™ (11.42)
Here we can pair u with e_¢(x) := e~ since u € E'(R™) and e_¢ € C=(R™).

PROOF. 1. Define v(€) := (u(x),e %) following (11.42). By Proposition 6.3 we
see that v € C°°(R") and for all «

O v(E) = (u(x), 0 e %) = (=) (u(x), 2" ~9).

Since u € &'(R™), by Proposition 4.12 there exist K € R" and constants C, N such
that for all £
980(©)] < Clla"e—llonmn ) = C max sup |9 (a®e™ ).
Thus v has polynomially bounded derivatives, more precisely for each a there exists
C,, such that
080(€)] < Call+ [N for all £ € R™. (11.43)

2. It remains to show that 7 = v. One way to see is this by approximation: this is true
when u € C°(R"), both u and v depend continuously on u € £'(R"), and C°(R") is
dense in &'(R™) similarly to Theorem 6.7.
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We give here a more direct way. Fix ¢ € .#(R"), then we need to show that

(u, @) = (v, ). (11.44)

(. ) = (u R™ e )
= [ (o) "ot de

~ [ w@e© &t = v.0)

This is proved as follows:

Here in the second line we use that the integral [, e (&) d€ converges in C>(R™)
in the = variable, so one can exchange the integral with the pairing with v € £'(R")
similarly to the proof of Lemma 6.8. U

REMARK 11.27X The function @ is in fact real analytic — see Theorem 11.51 below.

Ifue (R") and v € &'(R"), then the convolution uxwv lies in ./ (R™) by item (6)
at the end of §11.2.1. By Exercise 11.3, the product uv lies in ./(R"™). The two are
related by a convolution formula:

PROPOSITION 11.28. Assume that u € ./(R") and v € E'(R™). Then

—

UxU=Uun. (11.45)

PROOF. One possibility is to argue using the density of C°(R™) in both ./(R")
and £'(R™). Here we present a more direct proof.

1. We first consider the case when both w,v lie in &'(R™). In this case u,v are
smooth functions and the proof is simple: denoting e¢(x) = €™ we have (recalling the
definition of convolution in §8.1)

uxo(§) = (u(z) ® v(y)’e s +y))
= e¢(r) ®e¢(y))
= (U(ﬂ?),6 g(2))(v(y), e—e(y)) = u(§)v(§).

2. X We now consider the general case when u € .%/(R") and v € £ (R"). Using the

definition of convolution in §8.2 we have for each ¢ € .(R")

o~

(@*0,0) = (uxv,8) = (u(@), (v(y), Bz +y)))
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where (v(y), 3@ +9)) € #(R") (see Exercise 11.9). We now compute
(o), 8o+ ) = (000 [ et
= [ e e o) de
= [ 3@ () d = Tpla).

Here in the second line we use that the integral [, e Se ¥ p(£)d¢ converges in
C*(R™) in the y variable, so one can exchange the integral with the pairing with
v € &'(R™) similarly to the proof of Lemma 6.8. We now have

n

(@, ) = (u, V) = (@, 0¢) = (A0, ¢),
giving (11.45). O
11.2.4. Fourier transform on L?. The next theorem shows that the Fourier
transform acts as a unitary operator on the space L*(R") C .%/(R"™) (up to a constant).

It is key in the Fourier transform characterization of Sobolev spaces and gives one more
reason why the space L? is the best for many applications to PDEs.

THEOREM 11.29. Assume that f € L*(R™). Then the Fourier transform f, defined
by (11.33), also lies in L*(R™) and we have

£l z2@ny = (27) 2 || f]] 2 (eny- (11.46)
Similarly we have F~1(f) € L*(R"), so F : L*(R") — L*(R") is an invertible linear
operator.
ProoOF. 1. We first show the identity

18/l 22y = (27) 2 ||p||L2ny  for all o € 7 (R™). (11.47)

To do this, we apply (11.27) to the function ¢ and its complex conjugate @:
o2 = ¢ = (27) "G p.

Evaluating both sides at 0 and using (11.20) we get

lol22ny = [2(0) = (27T)_"/ PE)P(E) de = (2m) "Bl ee)

which gives (11.47).
2. Now take arbitrary f € L?*(R™). By Theorem 1.14, there exists a sequence ¢; €
< (R™) converging to f in L?*(R"). In particular, ¢ is a Cauchy sequence in L*(R™).
By (11.47) we have

ok — @HL%R”) = (277)%”%01@ - 90£HL2(R")'
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Thus @ is also a Cauchy sequence in L*(R"). Since L?(R") is a complete space, the
sequence ), converges in L2(R™) to some g € L?(R"), with

9|l z2@ny) = Jim 1Bkl r2(ny = (2m)2 Jim okl re@n) = (2m) 2| f]| L2(en)-

Since the convergence in L*(R") is stronger than in .%/(R"), and the Fourier transform
is sequentially continuous on ./(R"), we see that

@k—U?, P — g in (R
Thusf:g. O

REMARK 11.30. Following the proof of Theorem 11.29 we also see that for all
f.g € L*R")

({f, 9)2@ny = 2m)"(f, 9) L2(®n), (11.48)

(f.0)= @0 | T~ (11.49)

11.2.5. Paley—Wiener theoremX. We saw in Proposition 11.26 that when u €
E'(R™), the Fourier transform @ is a smooth function. In fact, this function is real
analytic and one can characterize the space £&'(R") in terms of the properties of the
holomorphic extension of u:

THEOREM 11.31 (Paley—Wiener theorem). Let R > 0. Then:
1. If u € &'"(R™) and suppu C B(0, R) then u € C*(R") extends to a holomorphic
function U : C™ — C and there exist constants C, N such that

U()] < C(1 4+ [¢)NefIM™e for all ¢ € C™. (11.50)

2. Conversely, if U is a holomorphic function on C" satisfying the bound (11.50)
for some C, N then there exists u € E'(R"™) such that suppu C B(0, R) and U|gn = u.

For the proof, see [H6r03, Theorem 7.3.1] or [FJ98, Theorem 10.2.2]. Here we
just give some informal explanations:

e Recall from Proposition 11.26 that u(¢) = (u(z),e @¢). We define the ex-
tension of @ by U(¢) := (u(z),e ®¢) for ¢ € C" and U is holomorphic. The
bound (11.50) can be verified by following the proof of Proposition 11.26.

e For part 2, let us consider the case when (11.50) is replaced by the following
stronger estimate: for each NV there exists Cy such that

|U(Q)] < Cn(1+|¢]) " NeBImel for all ¢ € C™. (11.51)

The function Ulg» is Schwartz (as follows from (11.51) and Cauchy estimates
for derivatives of holomorphic functions), thus there exists u € .#(R") such
that a - Uan
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e It remains to show that suppu C B(0, R). Fix z € R" with || > R. Then
there exists 7 € R" such that |§| =1 and - n > R (e.g. take n = z/|z|). By
the Fourier inversion formula (Theorem 11.15) we write

w(w) = (2m)" / U (€) d.

n

Since U is holomorphic, using the estimate (11.51) we can deform the contour
of integration to get

u(r) = (2m)™" / e EH (€ 4 gtn) dE for all t € R.

n

Using the estimate (11.51) with N =n+ 1 we get

)] < ) [ O+ )] de < Ceteri

n

Letting t — oo we see that u(z) = 0 as needed.

11.2.6. Poisson summation formula*. We finally state a formula for the Fourier
transform of the delta function on a periodic lattice:

THEOREM 11.32 (Poisson summation formula). Define u € ./(R"™) by

that is for each ¢ € (R"™) we have
(u,0) = D k).
kezZn
Then
U= 02m)" ) o (11.52)
tezn
Equivalently, we have
D et =(2m)" ) Sami(a). (11.53)
kezn tezn
Here the series converge in .'(R™), that is for all p € ./ (R™)

D Blk) = (2m)" > p(2rl). (11.54)

keZm Lezm

For the proof, see [H6r03, Theorem 7.2.1] or [FJ98, Theorem 8.5.1]. Here we just
give some informal explanations for how Theorem 11.32 is related to Fourier series:
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e Denote by T := R"/27Z" the n-torus. Each ¢p € C*°(T") is the sum of its

Fourier series
W(x) = Z Upe®®  where 1)y, := (27r)"/ e R () d. (11.55)
kezn "

We can think of ¢ as a 27Z"-periodic function in C*°(R"). The integral
in (11.55) can then be computed by

Yy = (27r)_”/[02 . e~ kT (x) d. (11.56)

An alternative to (11.56), which is better for applications to distributions, is
as follows. Fix x € C°(R") whose translates form a partition of unity:

> X(@—2ml) =1 forallzeR"
Lezn

Then we can write
U = (27r)_”/ e R Ty (2 ) () de. (11.57)

We have ¢, = (27)‘”@(1@, so (11.54) for the function ¢ := xt is the same
as (11.55) with z = 0.

Here is a way to derive (11.54) (and thus Theorem 11.32) from (11.55). Take
arbitrary ¢ € . (R") and define ¢ € C°°(T") as the symmetrization of ¢:

() = Z o(x 4 2nl) for all x € R™.
tezn
Using (11.57) we compute the Fourier coefficients of :

Y = (27r)_"/]R Z e~ Ry (x)p(x + 2ml) dx

" pezn

=(@2m)™" Y / ] e~y (z — 2ml)p(z) de = (27) " B(k).

tezn
Using (11.55) at x = 0, we get
@2m) ™ Y B(k) =(0) = > w(2n0),
kezn tezn

giving (11.54).

Another way to interpret Poisson summation formula in terms of Fourier series
is to show that (11.55) actually holds for any 27Z"-periodic distribution ¢ €
D'(R™), with the series converging in D’'(R"™) and 1y, defined by (11.57) with
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the integral replaced by distributional pairing. If we now take 1 to be the
delta function at 0 € T", that is

Y= Z dores

Lezm

then ¢, = (2m)~" for all k, so (11.55) implies (11.53).

11.3. Notes and exercises

Our presentation follows [H6r03, §§7.1-7.3] and [FJ98, §§8.1-8.5,9.2,10.2]. Our
proof of Theorem 11.15 follows a direct route by regularizing the double integral;
there is an alternative proof by using the intertwining relations of Proposition 11.7,
see [HOr03, Theorem 7.1.5].

EXERCISE 11.1. (1 pt) This exercise shows that C°(R™) is dense in ./ (R™). Let
v € L (R") and p € CE(R") satisfy v(0) = 1. Put p.(x) = Y(ex)p(x) for e > 0.
Show that p. — ¢ in L (R™) as e — 0+.

EXERCISE 11.2. (1 pt) Show that C°(R") is dense in #'(R™). (Hint: show that for
an appropriate choice of 1, x € C(R") and each u € ' (R™), we have (Y.u)*x. — u
in ' (R™) as ¢ — 04 where ¥.(x) := P(ex), x:(z) == "x(x/e). To do that, you can
follow part of the proof of Theorem 6.10. You can use without proof that Lemma 6.8
applies when u € E'(R"™) and ¢ € C*(R").)

EXERCISE 11.3. (1 = 0.5+ 0.5 pt) Assume that a € C°(R"™) has polynomially
bounded derivatives, i.e. for each a there exists N such that 0%a(x) = O((1 + |z|)V).
Show that:

(a) multiplication by a is a sequentially continuous operator . (R™) — & (R™);
(b) if u e ' (R"), then the product au € D'(R") lies in /' (R™) and the map u — au
is sequentially continuous on %' (R™).

EXERCISE 11.4. (0.5 pt) Prove Proposition 11.135.

EXERCISE 11.5. (1.5 = 0.5+1 pts) This exercise shows the relation between Fourier

transform and tensor product.

(a) Show that if p € L (R™), ¥ € L (R™) then ¢ @ ¢ € L (R™™) and prove Propo-
sitton 11.11.

(b) Show that if v € '(R"), v € ' (R™) then the distributional tensor product
u® v e D (R™™) (defined in §7.1) lies in &' (R™™) and ©« ® v =T & 0.

EXERCISE 11.6. (1.5 = 0.54+0.5+0.5 pts) This exercise shows the relation between
Fourier transform and pullback by an invertible linear map A : R™ — R"™.
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(a) Show then A* is a sequentially continuous operator . (R") — . (R™) and prove
Proposition 11.12.

(b) Show that if u € . (R"), then the distributional pullback A*u € D'(R"™) (defined
in §10.1.3) lies in &' (R™) and the Fourier transform formula (11.19) holds.

(c) Assume that u € #'(R") is homogeneous of degree a € C. Show that u is homo-
geneous and compute its degree of homogeneity. You may use Proposition 10.7.

EXERCISE 11.7. (1 = 0.5+ 0.5 pt) For w € R", define the following operators
on C®(R™):
Twf(2) = flx —w), oy,f(z)=e""f(z).
(a) Show that 7,0, define sequentially continuous operators on & (R™). Use this to
show that for uw € ' (R™), the distributional pullback and product T,u,o,u € D'(R™)
lie in 7' (R™).
(b) Show that for each u € ' (R™)

— ~ —

Toll = O_yll, Oull = Tyull.

EXERCISE 11.8. (2 =1+ 1 pts) This exercise studies the properties of convolution
on Schwartz functions and tempered distributions.
(a) Assume that v, € #(R"™). Show that the convolution  * 1), defined by (1.27),
lies in 7 (R™). (Hint: you can use the Leibniz Rule for convolutions, which states that
zi(px ) = (x;0) * ¢ + o * (x9).)
(b) Assume that u € ' (R™) and ¢ € L (R"). Show that the convolution uxy, defined
by (11.31), is a smooth function on R™ with polynomially bounded derivatives.

EXERCISE 11.9. (1 pt) Assume that u € ./ (R") and v € E&'(R™). Show that the
convolution u v € D'(R™), defined in §8.2, lies in %' (R™). (Hint: use (8.9), (7.10),
and show that for each ¢ € 7 (R™) the function x — (v(y), p(x + 1)) lies in L (R"™).)

EXERCISE 11.10. (1 pt) Let ¢ € L (R"). Fort >0 and x € R, define

_Jz—y?

u(t,x):(élmf)g/ e p(y)dy. (11.58)

n

Using Proposition 11.10, show that u solves the heat equation Oyu = Azu in (0,00); x R™
and that u(t,e) — ¢ ast — 0+ in L (R™). (We can think of u as the convolution of
do(t) @ p(z) with the fundamental solution to the heat equation given in (9.11), but for
this problem it is useful to apply Proposition 11.10 in the x variable only for fixed t.
You don’t need to rigorously justify being able to exchange 0y with taking the Fourier
transform in the x variable.)

EXERCISE 11.11. (3 = 1 4+ 1 + 1 pts) This exercise gives a method to compute
Fourier transforms of certain distributions using analytic continuation.
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(a) Assume that v € '(R) and suppu C [a,00) for some a € R. Take a cutoff
X € C®(R) such that x = 1 near [a,00) and suppy C [a — 1,00), and define the
function

F(n) = (u(z), x(x)e ™), ne€C, Imn<D0.
Ezplain why F(n) is well-defined and independent of x and show that it is holomorphic
in {Imn < 0}.
(b) Show that F(§ — i) — u(&) in L' (R) as e — 0+. (Hint: F(§ —ig) is the Fourier
transform of e~ *u(z) but you should justify your arguments carefully.)
(c) Assume that a € C and Rea > —1. Show that the Fourier transform of x4 is
given by e~ ™@+D/20 (g 4 1)(& — i0)7*"" where T is the Euler Gamma function and
(€ —10)7"! was defined in Exercise 5./. In particular, compute the Fourier transform
of the Heaviside function. (Hint: use parts (a)—(b), computing F(n) forn = —is, s >0
and then arguing by analytic continuation in n. The result actually holds for all a € C
by analytic continuation in a.)






CHAPTER 12

Fourier transform II

In this chapter we explore applications of Fourier transform. We first define Sobolev
spaces and establish their fundamental properties. We next proving the second version
of Elliptic Regularity, applying to elliptic constant coefficient differential operators.

12.1. Sobolev spaces

12.1.1. A simple case. The Sobolev space H*(R") is the subspace of .#/(R")
whose elements are thought of as ‘having derivatives up to order s lying in L?’. This is
an informal definition since s can be any real number (integer or non-integer, positive
or negative). The easiest formal definition of these spaces for us is on the Fourier
transform side. To prepare for this, we consider first the simplest case when s is a
nonnegative integer:

PROPOSITION 12.1. Let u € .7'(R") and k > 0 be an integer. Then the following
are equivalent:

(1) u has deriatives up to order k in L*(R™), that is
0%u € L*(R™)  for all o, |a| < k. (12.1)

(Here as before, 0%u is defined in the sense of distributions.)
(2) the Fourier transform u (defined a priori as an element of '(R™) ) is a locally
integrable function such that

(1+ €D a(e) € L*(R™). (12.2)

PROOF. Since the Fourier transform on ./(R") maps L?*(R™) onto itself (by The-
orem 11.29), either condition (1) or (2) above implies that @ € L*(R").

Since the Fourier transform also intertwines differentiation with multiplication
(by (11.36)), we have for any multiindex o

0%u € L2(R") <= Ocue LA(R") < &) € LA(R").
Thus (12.1) is equivalent to the statement

€q(€) € LAR™)  for all o, |af < &
139
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which is equivalent to (12.2) since

CTA+ N <1+ ) 151 < Y e < e+ Igh

j=1 la|<k

for some constant C' depending only on n, k. OJ

REMARK 12.2. For £ bounded, the condition (12.2) does not depend on k, it just
states that u(€) lies in L? (locally). The difference for different k is only in the as-
ymptotic behavior of u(§) as || — oo. This is a basic example of the general principle
that regularity of a distribution u is related to the decay of its Fourier transform u(§)
as €] = oo.

12.1.2. General definition and basic properties. We now define general Sobolev
spaces following (12.2). For convenience we define the function

(€ =vV1+[E?, ¢€R” (12.3)

which is smooth on R™ and satisfies for some constant C' depending only on n
CTH 1+ g < (&) <C1+ ).
DEFINITION 12.3. Let s € R. Define the Sobolev space of order s
H*(R") := {u € Z"(R"): (£)"u(¢) € L*(R")}. (12.4)

Here are some basic properties of Sobolev spaces:
(1) Each H*(R™) is a Hilbert space, with the norm customarily defined by
[ull sy = 1) u(©) [ 2@ry, v € H(R™). (12.5)
This follows from the fact that H*(R") is isometric to the weighted L? space
()" L*(R").
(2) We have the containment H*(R") C H*(R™) whenever s > t.
(3) If s = k is a nonnegative integer, then H¥(R") consists of all functions

u € L?(R") satisfying the equivalent conditions of Proposition 12.1, and the
norm (12.5) is equivalent to the alternative Hilbert norm

3
(Z ||6§U||%2(Rn)) .
lor| <k
In particular, H°(R™) = L*(R").
(4) We have the containments
S (R") ¢ H*R") c Y (R") (12.6)

and convergence in .% is stronger than convergence in H®, which in turn is
stronger than convergence in .. Moreover, .7 (R") is dense in H*(R"), since
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the space .(R") is dense in the weighted L? space (£)"*L?(R") (by Theo-
rem 1.14) and the Fourier transform maps . (R") onto itself. In fact, C°(R")
is dense in H*(R™) as well, since any Schwartz function can be approximated
by elements of C°(R") in H® norm.

(5) The differential operator d,, on R™ restricts to a bounded operator

Oy, : H*TH(R™) — H*(R™). (12.7)
Indeed, if u € H**1(R™), then by (11.36) we have

10z, wll 2y = [14€)° &) | L2@ny < ()™ A(E) | z2ny = [lull e gen)-

12.1.3. Characterization of Sobolev spaces. The definition (12.4) is conve-
nient because it immediately works for all values of s. However, it is useful to have a
characterization of Sobolev spaces which does not feature the Fourier transform. (We
will in particular use it in the proof of Proposition 12.15 below.)

We start with a characterization of H*™! in terms of H® which generalizes Propo-
sition 12.1:

PROPOSITION 12.4. For any s € R we have
HNR") = {u e H*(R"): O5,u € H*(R™), j=1,...,n} (12.8)

with the corresponding norm equivalence: there exists a constant C' such that for all
= Herl(Rn)

HS(RTL) + Z ||8x]u|

=1

C'leuHHsﬂ(Rn) S HU| Hs(R™) S CHUHHS'H(]R")- (129)

ProOOF S If u € H*™(R"), then d,,u € H*(R") by (12.7). On the other hand, if
u € H*(R™), then we estimate

[l

ey = €T UE) | 2@ey < 1€ TE) |2y + Y 16 &(E) |12y
j=1

= [|ullare@n) + D 105l

J=1

Hs(R")-
O
We next consider the special case s € (0,1) and characterize H® in terms of con-

vergence of a double integral (reminding one of Hélder continuity but with sup-norm
replaced by square-integral):
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PROPOSITION 12.5. Fiz s € (0,1). Assume that u € L*(R"™). Define the integral

L(u) == /R%dedy e [0, 00]. (12.10)

|z =yl

Then uw € H*(R™) if and only if Is(u) < co. Moreover, we have the norm equivalence
CMull s @ny < Jullz2@ny + vV Is(w) < Cllul| grsgn).- (12.11)

REMARK 12.6. If u € L*(R") and s > 0, then by Fubini’s Theorem we have for
any € >0

_ 2 2
[ MO [,
{la-yl>e} 1T =l (la—yl><} [T = Y] (12.12)
< CEHUH%Z(R”)'
Therefore, the convergence of Is(u) is a question about the neighborhood of the diagonal
{lz —yl <e}.

ProoF. 1. Making the change of variables y = x 4+ w, we write

L(u) = /R e w o G .

‘w‘n+23

We first compute the integral

: lu(x 4+ w) — u(x)|* de = ||7_wu — u||%2(Rn) (12.13)

where 7_,u(z) := u(zr + w). By Exercise 11.7, we have

F(rowu —u)(€) = (€™ = 1)u(g),
thus by Theorem 11.29 the integral (12.13) is equal to

(2m)™" [ [t — 117 [a(€)]” de.
Rn
It follows that '
|elw-§ _ 1|2

L(u) = (27)" /R ()P dude (12.14)

2. We now integrate out w. For £ € R”, define

P& = m) " |

’eiw-f o 1|2

n

so that
Lw = [ FEER e (12,16

The integral (12.15) converges: on {|w| > 1} this follows from the fact that s > 0 and
on {|w| < 1} this follows from the bound |e®¢ — 1| < [£] - |w| and the fact that s < 1.
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Moreover, this integral only depends on || (since |w| is invariant under orthogonal
transformations) and we have for all ¢ > 0, making the change of variables w = v/t

P9 = (20 [

itw-€ 1 2
e .

n

’U) ’n+23

=2 )‘"tQS/ € —1F 4 pope)

= a7 Rn |U|n+25 v= ’
It follows that F'(£) = ¢|¢[* for some constant ¢ > 0. Thus, recalling (12.16), we have

L) =c [ g )R .
Rn
Since © € L*(R"), we see that
I(u) < oo < [¢{fu(¢) € L*(R") < (&)*u(§) € L*(R") <= wue H*(R").

The bound (12.12) follows directly from the proof. O

Together Propositions 12.4 and 12.5 (and the fact that H° = L?) characterize the
spaces H*(R™) for s > 0. To handle the case s < 0, we use the following proposition,
whose proof is left as an exercise below.

PROPOSITION 12.7. Fiz s € R. Then the space H*(R") is dual to H*(R™) in the
following sense:

1. There exists a unique bilinear pairing
uwe H'(R"), ve H*(R") — (u,v)€C (12.17)
which coincides with the usual pairing (2.3) when u,v € (R™) and is continuous
in the sense that whenever uy — w in H*(R™) and vy — v in H*(R"™) we have
(ug, vg) = (u,v).
2. Letv € '(R"). Then v € H*(R") if and only if there exists a constant C,
such that
(v, )| < Coll@l|ms@ny  for all ¢ € S (R"). (12.18)

Moreover, there exists a constant C' depending only on n,s such that for each v €

H~*(R™) we have

CHolla-s@ny < Co < Cllv|la-s@n) (12.19)

where C,, is the smallest constant such that the inequality (12.18) holds.

REMARK 12.8. Since H*(R"™), Riesz Representation Theorem (Theorem 1./) shows
that any bounded linear functional F' : H*(R™) — C has the form

F(v) = (w,v)gsny for some w € H*(R"). (12.20)
On the other hand, Proposition 12.7 shows that
F(v) = (u,v) for some u e H*(R"). (12.21)
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There is no contradiction between (12.20) and (12.21) since the former features the
inner product (e,e)ys and the latter uses the standard pairing (e, e) which is related
to the L? inner product. A more proper way to explain Proposition 12.7 is to say that
it shows that H=* is dual to H® with respect to the L? pairing.

12.1.4. Multiplication by Schwartz functions. Since we defined Sobolev spaces
using Fourier transform, it is not immediately clear that they are invariant under mul-
tiplication by smooth functions (except when the order is a nonnegative integer, where
one can use Proposition 12.1 and the Leibniz rule). The next proposition shows that
Sobolev spaces are invariant under multiplication by Schwartz functions a. Since we
will typically use local Sobolev spaces, the restriction that a decays rapidly at infinity
will not be too strong; in fact, we will typically the statement below for a € C°(R").

PROPOSITION 12.9. Assume that s € R and a € #(R"™). Then there exists a
constant Cs , such that for each uw € H*(R™), the product au also lies in H*(R™) and

Hs(R)- (12.22)

laul s @ny < Ciallul

The proof will write the Fourier transform of au in terms of the convolution of the
Fourier transforms of a and w. It will use the following

LEMMA 12.10 (Young’s convolution inequality, special case). Assume that f €
L*(R™) and g € L*(R")N L*(R"), and define f*g by (1.27). Then fxg € L*(R") and

If * gll2@ny < | fllz2@m |9l @ny- (12.23)

REMARK 12.11. The requirement that g € L*(R™) is just to make the integral (1.27)
converge at every point; it is not necessary but we do not want to do the extra work to
remove it here.

Proor. Take any £ € R". We estimate
2

|+ g(&)]* =

. f(€—=mn)g(n)dn

(/ <|f€ ml-v1g(n) )\/Ig |dn)
< (/ |f(§—n)|2lg(n)|dn) (/ Ig(n)ldn)

Here in the last line we use the Cauchy—-Schwartz inequality. Integrating in & we get

1 * 0l < ( / rf@—n>|2|g<n>|d5dn)||g||L1<Rn)
]RQn

= Hf”%?(Rn)HgH%I(Rn)'
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We now give

PROOF OF PROPOSITION 12.9. 1. By (11.41) we have au = (27) " u % a. Since
u € H*(R™), the Fourier transform u is a function and, recalling (11.31), we have

(2m)"a(€) = / a(e — nyatn) dn.

n

Define the functions on R"

then

G
w©) = [ e =ty (12.20)

and we need to show that if v € L?*(R™) then w € L*(R") and
|w||z2@ny < Coallv] L2@ny.- (12.25)

2. Since a € .Z(R"), we have a € ./ (R"). Looking at (12.24), we see that a(§ — n)
is small unless & — 7 is bounded, and when £ — 7 is bounded the ratio (£)*/(n)® is
bounded. This observation motivates the use of the following inequality (where Cy is
a constant depending only on s):

< g =", (12.26)

To show (12.26), we recall the definition (12.3), which implies the inequality

(€ =1+ n+(E—nP < 1+2nl*+2]¢ —n* < 2(n)*(€ - n)*.

Switching the roles of £ and 7, we also get the inequality (n)? < 2(£)?(¢ —n)?. Taking
these inequalities to the power |s|, we get (12.26).

Recalling (12.24) we see that

w(e)] < C, / (& — YSI[a(E — )| - |o(n)| diy. (12.27)

n

The right-hand side of (12.27) is the convolution of |v| € L?(R") with the function
(OBlfa¢)| € LY(R") N L*(R™). By Lemma 12.10 we have

lwll2@ny < Col{OMAO N 1@y - N0l z2ny (12.28)

giving (12.25) and finishing the proof. O
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12.1.5. Further properties. We defined Sobolev spaces on the whole R™. One
can localize these to obtain spaces of locally Sobolev distributions and compactly
supported Sobolev distributions on any open subset of R™:

DEFINITION 12.12. Let U @ R™ and s € R. Define the spaces of locally H?®
distributions and compactly supported H?® distributions
HS

loc

(U) ¢ D(U), HU) c &)
as follows:

o foru € &' (U), we say that w € HZ(U) if the extension of u by zero to an
element of E'(R™) (see Proposition J.7) lies in H*(R™);

o for u € D'(U), we say that u € H _(U) if for each x € CX(U) we have
xu € H(U).

Note that Proposition 12.9 implies that

H:(U) = H;

loc

U)YN&EWU). (12.29)
We define convergence of sequences in the newly introduced spaces as follows:

e we say that uy — u in HS(U) if there exists K € U such that suppuy C K
for all k, and |lux — u| gs@®n) — 0 where we identify u, —u € £'(U) with its
extension by zero to the entire R";

e we say that upy — u in H (U) if for each x € C*(U) we have |x(ux —
)| s (rny — 0, where we again identify x(u, —u) € £'(U) with its extension
by zero to R™.

We list below some properties of the spaces H;, Hj .. We leave the proof as an exercise
below.

PROPOSITION 12.135 Let U G R" and s € R. Then:

(1) for any a € C*(U), multiplication by a is a sequentially continuous operator
H(U) = H(U) and Hi, (U) — Hi, (U);

(2) for any a € C°(U), multiplication by a is a sequentially continuous operator
Hy (U) = H(U);

loc

(3) the differentiation operator Oy, is sequentially continuous H:™(U) — HE(U)
and HHH(U) — Hi, (U);

loc

(4) the space C*(U) is dense in H:(U) and in H

loc

U).

Similarly to Proposition 12.7, the spaces H (U) and H_*(U) are dual to each

other. We again leave the proof as an exercise below.
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PROPOSITION 12.1458 Let U G R"™ and s € R.

1. There exists a unique sequentially continuous bilinear pairing
ue Hy (U), ve H*(U) — (u,v) €C (12.30)

which coincides with the usual pairing (2.3) when u € C*(U), v € CX(U).

2. Foru e D'(U) we have uw € H{ (U) if and only if (u, o) — 0 for any sequence
o € C2(U) converging to 0 in H_*(U).

3. Forv e &'(U) we have v € H7*(U) if and only if (v,¢r) — 0 for any sequence
Y € C®(U) converging to 0 in H} (U).

loc

A more difficult property to establish (but still left as an exercise below) is invari-
ance of Sobolev spaces under pullback by diffeomorphisms:

ProproSITION 12.15. Assume that U,V G R"™ and ® : U — V is a C™ diffeomor-
phism. Fixz s € R. Then the pullback operator ®* (defined on distributions in §10.1.3)
is a sequentially continuous operator HE(V) — HE(U) and H (V) — HE .(U).

loc loc

We finish this section with one case of Sobolev embedding, which allows us to convert
Sobolev regularity (at a loss in the number of derivatives) to classical C* regularity.
The proof is left as an exercise below.

THEOREM 12.16. Assume that s € R, k € Ny, and s > % + k. Then for any
UcR"?
HS

loc

(U) c CHU) (12.31)
and if u; — 0 in Hy (U) then u; — 0 in C*(U) (i.e. uniformly on compact subsets

loc
with k derivatives).

12.2. Elliptic regularity II

In this section we present the second version of elliptic regularity. For the first
version, see §9.2 above. The conclusion is the same as for the first version, but the
assumption is different, featuring the coefficients of the operator rather than requiring
existence of a fundamental solution with a particular property.

12.2.1. Symbols of operators. We start by making the definitions needed to
state the theorem. Let P be a constant coefficient differential operator of order m € N,
on R™ (see Definition 9.1). We write it in the form

P= > a.D}, D= (-i)o; (12.32)

|a|<m

for some constants a,, € C.
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DEFINITION 12.17. Let P be given by (12.32). Define the full symbol of P as the
following polynomaial on R™:

p(&) = ) aa™ (12.33)

Define the principal symbol as consisting of order m terms in the full symbol:

Z aE”. (12.34)

We say that P s an elliptic differential operator if
po(§) #0  forall £ € R™\ {0}. (12.35)

The presence of powers of 7 in (12.32) compared to (9.1) is convenient because of
the relation to the Fourier transform. More precisely, from (11.36) we get that the
Fourier transform conjugates P to multiplication by the full symbol p:

Pu(€) = p(&) () for all u € ' (R™). (12.36)

As an example, we compute the full and principal symbols of the Laplace operator,
the Cauchy—Riemann operator, the heat operator, and the wave operator (see §9.1.2):

P=A = p(&)=po(§)=—l¢, (12.37)

P =3(0; +10,) = p(&n)=po(&n) = 5(§+in), (12.38)
P=0—A, = p(r.§) =i+, po(r.) = ¢ (12.39)
P=0}-A, = p(1,6) =po(r,€) = -1+ |¢]*. (12.40)

12.2.2. Statement of elliptic regularity. We are now ready to state

THEOREM 12.18 (Elliptic regularity II). Assume that P is an order m constant

coefficient differential operator on R™ which is elliptic in the sense of Definition 12.17.
Then for any U G R"™ and v € D'(U) we have

sing supp u = sing supp(Pu). (12.41)

REMARK 12.19. Looking at (12 37)—(12.40), we see that the Laplace operator A and
the Cauchy—Riemann operator = (8 +10,) are elliptic, and the heat operator 0y — A,
and the wave operator 0} — A, are not elliptic. The ellipticity condition is sufficient

but not necessary for (12.41) to hold, since the heat operator satisfies the assumptions
of Elliptic Regularity I (Theorem 9.1).

Following the proof of Theorem 12.18 below we obtain the following analog in
Sobolev spaces. The proof is left as an exercise below.
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THEOREM 12.20. Under the assumptions of Theorem 12.18 we have for each s € R

Pue H; (U) = weH™{U) (12.42)

loc

where m s the order of the elliptic operator P.

As an example, if Au € L2 (U) then u € H?

loc loc

).

12.2.3. Kohn—Nirenberg symbols. The proof of Theorem 12.18 uses Kohn—
Nirenberg symbols, which also play an important role in the proof of Elliptic Regular-
ity III in §14 below. Here we introduce these symbols and study their basic properties.

DEFINITION 12.21. Let m € R and a € C®(R"). We say that a is a Kohn—
Nirenberg symbol of order m if for each multiindex o there exists a constant C, such
that

02a(&)] < Col&)™ 1 for all ¢ € R™ (12.43)
Denote by S™(R™) the space of all Kohn—Nirenberg symbols of order m.

The condition (12.43) can be interpreted as follows: a(§) = O((£)™) and each
differentiation makes a one order smaller as |{| — oo.

From the definition and using the Leibniz rule one can check that
ac S™R"), be S(R") = abec S"(R"), (12.44)
a€S"R") = 0,aeS"(R"). (12.45)

A fundamental example of a Kohn—Nirenberg symbol is the symbol of a differential
operator:

PROPOSITION 12.22. Assume that m € Ny and p(§) is a polynomial of degree m
in&. Thenp e S™(R™).

PROOF.S The derivative §°p is a polynomial of degree m — |a| (and is equal to 0
if |a| > m) which implies the bounds (12.43). O

We next prove two properties of the class S™ which will be used in the next subsec-
tion to prove Theorem 12.18. The first one is that inverses of elliptic Kohn—Nirenberg
symbols are also Kohn—Nirenberg symbols:

PROPOSITION 12.23. Assume that p € S™(R™) and there exists a constant ¢ > 0
such that
p(E)] = ()™ for all { € R™. (12.46)

Define q :== 1/p € C*(R"™). Then q € S~ (R").
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PRrOOF. By induction on |af, we see that for any multiindex a the derivative 0¢q
is a linear combination with constant coefficients of expressions of the form

9 p(&) - -- 9" p(§)

12.47
p(§)FH! (1247)
where |aq|, ..., ag| > 1 and a; + -+ + o = . Since p satisfies the bounds (12.43)
and (12.46), we see that (12.47) is
<€>m—|a1\ e <§>m|ak|> o
@) = O((g)~m N
(e o
which shows that ¢ € S™™(R"). O

REMARK 12.24. The same proof shows that if (12.46) holds for all |£] > T and
some fized T, and q € C*°(R") satisfies p(§)q(§) =1 for all |§| > T, then g € S~™(R™).

The second property concerns the Fourier transform of a symbol. Note that each
a € S™(R™) has polynomially bounded derivatives and in particular lies in .7/ (R™).

PROPOSITION 12.25. Assume that a € S™(R"™) for some m, and let a € %' (R") be
the Fourier transform of a. Then

singsuppa C {0}. (12.48)

REMARK 12.26. An example is when a is a polynomial, then @ is a derivative of
the delta function &y by (11.35) and (11.37).

PROOF. 1. For any multiindex «, we have by (11.36)

2°(z) = D¢a(x). (12.49)

By (12.43) we have Dga(§) = O((€)™1l). Thus
D¢a € LY(R™) when |a| > m +n.
By Proposition 11.2 we see that
r°a(r) € C°(R™)  when |a| > m + n.
In particular, if we take N € Ny large enough so that 2N > m + n then |z|*Na(z) €
C°(R™) which implies that
a0y € COR™\ {0)).

2. A modification of the above argument shows that a is in C'°° away from the origin.

Namely, fix &£ € Ny and choose N € Ny large enough so that 2N > k + m + n. Then
for each v with |a] = 2N we have

D¢a € (§)""L'(R™).
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By (11.14) and (12.49) we see that
2°a(z) € C*(R™).

This shows that |z[*V@(z) € C*(R™), implying that a|g=\ {0} lies in C*. Since this is
true for all k, we see that a|gm 0y € C*(R™ \ {0}). Thus singsuppa C {0}. O

12.2.4. Proof of elliptic regularity. We now prove Theorem 12.18.

1. We first construct an elliptic parametriz, which is a distribution £ € D'(R") such
that

R:=6y— PE € C*(R"), singsupp £ C {0}. (12.50)
We can think of F as a fundamental solution of P modulo smooth functions: instead
of PE = ¢y we require that 6o — PE be smooth.

Let p be the full symbol of P and py be its principal symbol (see Definition 12.17).
Since P is elliptic, the restriction of py to the unit sphere S*~! C R" is a nonvanishing
continuous function, so there exists a constant ¢ > 0 such that |py(£)| > ¢ for all
¢ € S* L. Since the function py is homogeneous of degree m, we have

Ipo(§)] > €™ for all £ € R™. (12.51)

The difference p — py is a polynomial of degree m — 1, so p(§) = po(€) + O((E)™).
Therefore there exists 1" > 0 such that

()] = 5(™ forall &, |¢] =T

Fix a function

q € C®(R"), q(&) = ]% for |§] > T. (12.52)

For example, we can put ¢ := (1 — x)/p where x € C*(B°(0,T)) satisfies x = 1
near p~'(0).
By Proposition 12.23 and Remark 12.24 the function ¢ is a Kohn—Nirenberg symbol:

qge ST™(R").
We now define the distribution £ € ./(R") as the inverse Fourier transform of ¢:
E:=F'q), E=q. (12.53)

By Proposition 12.48 (which applies to the inverse Fourier transform since E(z) =
(2m)~"q(—x)) we have singsupp F C {0}.

It remains to show that R := 6y — PE € C*(R"). By (12.36) and (11.34) we
compute the Fourier transform
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Recalling (12.52) we see that R is a smooth compactly supported function, and thus
in particular in .(R"). Since the inverse Fourier transform maps .7’ (R") to itself, we
see that R € .(R™), so in particular it lies in C*°(R™).

2. We now argue similarly to the proof of Theorem 9.14. Fix arbitrary zo € U \
sing supp Pu and take a cutoff function

X € CZ(U), xo ¢ supp(l — X).
Treating yu as an element of &'(R"™) and using (9.7) we see that
xu=0p* (xu) = (PE + R) * (xu) = E % (Pxu) + R * (xu).

Since sing supp E C {0}, by Proposition 8.14 we have sing supp Ex(Pxu) C singsupp(Pxu).
Since R € C*°(R"), by Theorem 6.4 we have R * (xyu) € C*(R"). Therefore

sing supp(xu) C sing supp(Pxu).

Arguing as in the proof of Theorem 9.14 we see that zo ¢ singsupp(Pyu), thus xy ¢
sing supp(xu) which implies that zo ¢ singsuppu. Since o was arbitrary this shows
that sing supp u C sing supp Pu and finishes the proof.

12.3. Notes and exercises

Our presentation mostly follows [H6r03, §7.9] and [FJ98, §§8.6,9.3]. The book
of Sobolev [Sob91], first published in 1950, is a nice introduction to Sobolev spaces
and their applications for anyone interested in the history of their development before
Schwartz.

A simple explanations for how Sobolev spaces appear in the study of hyperbolic
equations is as follows: if u solves the wave equation (92 — A,)u = 0, then the energy

1
E,(t) = 5/}1{ |0u(t, 2)|* + |O,u(t, 2)|* dv

is a conserved quantity. However, this energy controls the H' norm of u, rather than
the C? norm which would be needed to make sense of u as a classical solution.

The theory of Sobolev spaces extends considerably past what is presented here. In
particular, one can define Sobolev spaces based on L? rather than L?, as well as Sobolev
spaces on domains with boundary. The latter are important in solving boundary value
problems for elliptic equations (such as the Poisson equation Au = f) and the Hilbert
theory of these spaces underlies the finite element method of solving such equations
numerically. See [Taylla, Eval0] for more information.

EXERCISE 12.1. (1 = 0.5+ 0.5 pt) For the distributions below, find out for which s
they lie in H°(R™):

(0,) 50 ;
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(b) the indicator function of the some interval [a,b] C R (here n =1).

EXERCISE 12.2. (0.5 pt) Let u € &' (R™). Show that there exists s € R such that
u € H*(R™). (Hint: use Proposition 11.20.)

EXERCISE 12.3. (1.5 = 0.5 + 1 pts) Prove Proposition 12.7. (Hint: use (11.49)
and Ezercise 2.1.)

EXERCISE 12.4. (1 pt) Prove Proposition 12.15. (Hint: to show density of C°(U)
in He (U), take arbitrary u € HE (U), consider a sequence of functions xx € C°(U)
defined in (4.4) and take ¢, € CP(U) such that || xxu — @il ms@ny < 1/k. Then show
that o — u in HY

oc(U)-)

EXERCISE 12.5. (1 pt) Prove Proposition 12.14.

EXERCISE 12.6. (2.5 pts) Prove Proposition 12.15. (Hint: use the results of §12.1.3,
considering first the case s = 0, then 0 < s < 1, then using these to treat the case of
general s > 0, and finally using duality to treat the case s < 0.)

EXERCISE 12.7. (1 pt) Prove Theorem 12.10. (Hint: use (11.14).)

EXERCISE 12.8. (1 = 0.5 + 0.5 pts) This exercise extends the previous one by
comparing Sobolev spaces with Hélder spaces. Assume that 0 < v < 1. Define the
Holder space C7(R™) C CY(R™) consisting of all functions f such that for each K @ R™
there exists a constant C'x such that for all z,y € K we have |f(z)— f(y)| < Cklrx—y|".
Denote by CY(R™) the set of compactly supported functions in C7(R™).

(a) Show that CY(R™) C H*(R™) for each s <. (Hint: use Proposition 12.5.)
(b) Show that H*(R™) C C?(R") for each s > v+7%. (Hint: write each w € H*(R™) in
terms of U using the Fourier inversion formula, and use the inequality |e®* — e¥¢| =

lei@=)¢ — 1| < C |z — y] ]

EXERCISE 12.9. (1.5 pts) This exercise forms the basis for the theorem about re-
stricting elements of Sobolev spaces to hypersurfaces, which is important for the study
of boundary value problems. We write elements of R™ as (xq, ") where ' € R"™!, and
consider the restriction operator to {x1 = 0},

T:R") = LR, Tela) =p0,z).
Show that when s > %, there exists a constant C' such that we have the bound
I Tl gerny forall pe S (R").
Thus by Continuous Linear Extension T extends to a bounded operator H*(R"™) —
H"’_%(R”_l). (Hint: use Fourier Inversion Formula to write the Fourier transform of

T in terms of the integral of p in the & variable. Next, if v € L*(R™), then we can
use Cauchy-Schwartz to estimate [, (&) *v(&,&') d& in terms of the L* norms of the

sty < Cll
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functions & w— (14 |62 +|€?)~%/? and & — v(&1,€). It remains to show that the
first of these norms is bounded by C’(f’)%_s.)

EXERCISE 12.10. (1 pt) Prove Theorem 12.20. (Hint: show first that if E is defined
in (12.53), then for any v € HZ(R™) we have E xv € H*™™(R"). You might want to
choose arbitrary ¢» € CX(U) and show that hu € H*T™ by taking x € C(U) in the
proof of Theorem 12.18 such that supp(1—x)Nsuppt = 0. You can freely use anything
in the proof of Theorem 12.18.)



CHAPTER 13

Manifolds and differential operators

In this chapter we discuss manifolds, distributions on manifolds, and differential
operators. Omne of the advantages of manifolds for us is the existence of compact
manifolds, which are the setting of several of the most interesting applications of the
material of this course (see Theorems 15.13, 16.1, 17.15 below).

A lot of definitions and proofs can be transferred from open subsets of R™ to a
manifold (often via pushforwards by charts), and we try to give the list of statements
that are true and the new details of the proofs compared to the case of open subsets
of R™ but skip the more technical details which can hopefully be worked out by a
dedicated reader and would potentially add many more pages to this chapter without
making it any easier to read.

13.1. Manifolds®

In this section we briefly review some concepts from the theory of smooth manifolds.
We skip a lot of definitions and almost all the proofs, referring the reader to [Leel3,
Chapters 1-3,10,11,13,16] for details. For a more gentle introduction to some of the
topics below, see alternatively [Spi65]. On the other end of the spectrum, [H6r03,
§86.3-6.4] provides a very fast introduction to the theory of manifolds.

13.1.1. Basics. A manifold is informally thought of as a space which is locally
diffeomorphic to R™. More precisely, for us an n-dimensional manifold is:

e a Hausdorff topological space M which is second countable (there exists a
countable basis of the topology of M),

e and a collection of homeomorphisms U — V' where U G M, V @ R", which
we call charts,

so that the following properties hold:

e the domains U of the given charts cover the entire M;

o if 5 : U — V is a chart, then for any nonempty W G U the restriction
#lw : W — (W) is also a chart;

o if )1y : U — Vi and 35 : U — V5 are two charts, then the transition map
25 0 27 is a diffeomorphism V; — V5.

155
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REMARK 13.1.X One can show that every manifold has metrizable topology. The
second countability and Hausdorff property above are for correctness sake, we will not
be using them directly in these notes.

We denote the manifold above by just M, suppressing the smooth structure (i.e.
the choice of the collection of charts on M) in the notation. It is actually better to
define the manifold as having a complete atlas, which is a collection of charts which
includes any chart compatible with all the charts in it (in the sense of smoothness of
transition maps).

We think of charts as local coordinate systems: if > : U — V' is a chart, then s(z)
is the coordinate vector of a point z € U. The inverse ! : V — U is called the
parametrization map.

13.1.2. Examples. A fundamental example of an n-dimensional manifold is R"”
itself, with charts given e.g. by identity maps [ : U — U for all nonempty U C R"™.
An open subset of a manifold is a manifold itself, so any open subset of R" is an
n-dimensional manifold. (We purposely avoid the question about whether the empty
set is a manifold.)

A more nontrivial example is given by

PROPOSITION 13.2. Assume that U G RY and F : U — R™ is a C™ map, with
N >m. Fizyo € R™ and assume that for each x € F~(yy), the differential dF(x) is
a surjective linear map. Then F~'(yo) is an N —m dimensional manifold.

The proof of Proposition 13.2 uses the Inverse Mapping Theorem. Arguing the
same way as in the proof of Lemma 10.8 we see that for each xy € F~'(yy) we can
find a local system of coordinates y on RY near xy in which F(y/,4") = 3 where
y' € R™ " € R¥N=™, Then F~1(y,) is an open subset of the N —m dimensional affine
subspace {3 = o} C RY and a chart on F~!(yy) near x is given by the map x + y".

An important example of a manifold constructed this way is the sphere

S" = {r e R": |z| = 1}. (13.1)
Another commonly used manifold is the torus
T :=8"x---x§ (13.2)
—_——
n times

which is also often thought of as the quotient T" = R™/Z".

13.1.3. Functions and maps. For a manifold M and a function f : M — C,
we say that f is smooth, and write

feld®M)
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if for each chart s¢ : U — V, the pushforward of f by s,
w.f=foxt!: V-C (13.3)

lies in C*°(V). The pushforward here is just the pullback by »~', but it will be
notationally convenient for us to write s, rather than (sc71)*.

We define C2°(M) to be the space of compactly supported functions in C*°(M),
with support of f defined to be the closure of {x € M | f(x) # 0}. If N G M, then
we have the natural restriction operator C*°(M) — C*(N) and the extension by zero
operator C®(N) — C>®(M). The partition of unity Theorem 1.15 still applies to
manifolds.

The notions of convergence in C° (from Definition 2.5) and in C*° (from Defini-
tion 4.4) make sense on a manifold:

DEFINITION 13.3. We say that a sequence u, € C*°(M) converges to u in C>°(M)
if for each chart » : U — V we have »,(u, —u) — 0 in C°°(V') in the sense of Defi-
nition 4.4. A sequence uy € C(M) converges to u in C°(M) if ur, — u in C°(M)
and there exists K € M such that supp up C K for all k.

Similarly to the spaces C* and C°, we can define the spaces LY (M), LP(M). The
key observation, just like with smooth functions, is that pullbacks by diffeomorphisms
preserve the spaces Lf . on open subsets of R”, so it does not matter what chart
s : U — V we choose to determine whether f € L} (U) for U G M.

More generally one can define smooth maps between two manifolds, ® : M — N.

Such a smooth map is called a diffeomorphism if the inverse ®~! is also a smooth map.

13.1.4. Tangent bundle and vector fields. If M is an n-dimensional manifold
and z € M, then the tangent space T, M is an n-dimensional (real) vector space.
Elements of T, M are called tangent vectors to M at x. There are several ways to
define it (derivations at = on the space of smooth functions, or equivalence classes of
paths through z) but neither is particularly fast to describe so we will just have to
refer to [Leel3, Chapter 3] for a proper definition.

In the example M = F~!(yy) given by Proposition 13.2, the tangent space at
x € M is the following N — m-dimensional subspace of RY:

T, F (o) = {v € RY | dF (z)v = 0}. (13.4)

If ®: M — N is a smooth map between two manifolds, then its differential is a
linear map of tangent spaces:

d®(z) : T,M — ToN, €M,
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and we have a version of the Chain Rule: if M 2% A 2% £ are smooth maps then
d(Py 0 @1)(x) = dPo(P1(2))dP:(z), =€ M.

If V @ R", then the tangent space to V' at each point is just R”. Thus if s : U — V,
U @ M, is a chart, then we have the linear isomorphisms

dw(x): T,M—=R" zel. (13.5)
The tangent bundle of M is the set of all tangent vectors:
TM:={(z,v) |z e M, veT, M} (13.6)

and it is a 2n-dimensional smooth manifold. More precisely, any chart » : U — V
on M induces the following chart on T'M:

(z,v) = (3¢(z),dse(x)v) € R, 2 €U, veT,M.
If M = F~Y(y,) is the example of Proposition 13.2, then the tangent bundle of M is
TM = {(z,v) €U xRY | F(x) =y, dF (x)v =0}

which is again a manifold of the type given by Proposition 13.2. In particular, if M is
the sphere defined in (13.1) then

TS" = {(z,v) e R*"**: |z| =1, z-v =0},
so for example
TS? = {(x1, 72, 73,01, 09, v3) € R®: 23 + 25 + 23 = 1, 2101 + 105 + 303 = 0}
A C® vector field on M is a map
X:zeM — X(z)eT, M

so that the map x € M +— (z, X(z)) € T M is smooth. Denote by C*(M;TM) the
space of all C'"*™ vector fields on M.

If 2 : U — V is a chart on M, then the pushforward of a vector field X €
C®(M;TM) by » is the vector field 3, X on V defined by

. X (5(x)) = dswe(x) X (x), z€U. (13.7)
A vector field on V' @ R" is just a smooth map V — R", so we can write

X = X;(2)0,, (13.8)
j=1

where 0,,, ..., 0, denotes the canonical basis of R® and X; € C*(V;R).
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REMARK 13.4. Note that we should have used a different letter instead of x in (13.8);
indeed, x in (13.7) is a point in U G M and in (13.8) it is a point in V @ R". We
denote both by the same letter, which is a common abuse of notation in differential
geometry. In fact, we often suppress the pushforward s, in the notation and just say
that in the chart s, we have X = Y7 | X;(2)0,,. This takes some time to get used
to, but it saves a lot of time and ink later. Same applies to forms, densities, and
Riemannian metrics studied below.

A vector field X € C*(M;TM) defines an operator X : C°(M) — C>*°(M) as
follows:

Xf(z)=df(x)X(x) forall feC®M), xe M. (13.9)
If 5: U — Vis a chart in which X = 3"7 | X;(2)9,, for some X; € C*(V) then in
this chart

Z X;(2)0s, f(2) (13.10)

Here we push forward both X f and f to V' by s, so strictly speaking (13.10) should
be stated as

X = ZXj(x) O, == n(Xf)(z)= ZXj(x)E)xj(%*f)(a:). (13.11)

13.1.5. Cotangent bundle and 1-forms. If M is a manifold and x € M, the
cotangent space T7¥ M is the dual of the tangent space, that is the space of linear maps
T.M — R. Similarly to the tangent spaces, one can put cotangent spaces together to
form the cotangent bundle

M={(z,&) |z e M, £ T M}. (13.12)
If ®: M — N is a smooth map, then we can define the transpose differential
do(x)" : TgwN = ThM, zeM (13.13)

by the formula
d®(x)"n(v) = n(d®(x)v) for all n € Ty N, v e T,M.
If @ is a diffeomorphism, then we can define the inverse-transpose
d®(x)™" = (d®(x)") " : TyM — Ty N (13.14)
Similarly to vector fields, we define 1-forms on M as maps
wireM — w(x)eTiM

such that the map x € M — (z,w(z)) € T*M is smooth. Denote by C*°(M;T*M)
the space of all 1-forms on M.
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If 52: U — V is a chart, we define the pushforward of a 1-form w € C*°(M; T*M)
by s to be the following 1-form on V:

se,w((z)) = doe(z) Tw(z), zel. (13.15)

A 1-form on V' @ R" is the same as a smooth map w from V' to the dual of R", which
is canonically identified with R", so we can write

PANES ij(x) dx; (13.16)
j=1

where dz; : R* — R is the j-th coordinate map on R™ and w; € C*(V;R).

If f: M — R is a smooth function, then the differential df is naturally a 1-form,
since for each x € M, df(x) is a linear map from 7, M to R. In any chart sc: U — V
this 1-form is given by

df = i(awj f)da;. (13.17)

For a vector field X € C*°(M;TM) and a 1-form w € C°(M;T*M), we can define
the pairing w(X) € C*(M;R) by

(WX))(x) = w(z)(X(2)), =eM,
so that X f = df (X).

13.1.6. Riemannian metrics. A Riemannian metric g on a smooth manifold M
is a smooth choice of a (positive definite) inner product on tangent spaces to M. That
is, for each z € M, g(x) is an inner product on T, M (we also denote this inner product
by (e, ®)4() and the norm-squared

|U|§(x) = <Uav>g(x)7 (ZL’,U) cTM

is a smooth function on T'M.

A Riemannian metric g defines also an inner product on cotangent spaces, so that
for each (z,&) € T*M the corresponding norm is

[€lg(x) = max{{(v): v € LM, |v|g@) = 1}
If ®: M — N is a diffeomorphism, and A is a metric on A/, then the pullback metric
®*h on M is defined by
(U, W)arn@) = (dP(2)v,dP(2)W)h@@), = €M, v,we TM.
If g is a metric on M, we say that ® : (M, g) — (N, h) is an isometry if *h = g.

If 5¢: U — V is a chart, we define the pushforward of a metric ¢ on M to be the
pullback of g by s

g = (g



13.1. MANIFOLDS® 161

which is a metric on V. A metric on V' @ R" is the same as a smooth map from V to
the space of positive definite matrices, so we can write

PAES Z gjk(x) dx;dxy, (13.18)

J,k=1

where G(z) = (g; (7))} =, is a real symmetric positive definite n X n matrix depending
smoothly on x € V and for v,w € R"

<U7w>%*g(ar) = Z gjk(x)vjwk'
k=1

Note that if £ = Z?Zl & dxj,m="> 1 _, ndry are two vectors in the dual space to R™,
then their inner product with respect to g is

<§7 n>%*g(x) - Z gjk(x)fﬂlk

jk=1
where
G () = (67 (2))] jma (13.19)
is the inverse of the matrix G(x), which is again a positive definite matrix.

If M = & 1(y,) is the example from Proposition 13.2, then a Riemannian metric
on M can be defined by restricting the Euclidean inner product on RY to tangent
spaces of M. For example, in the case of the sphere S"~! defined in (13.1) this
produces the standard metric known as the round metric on the sphere.

As an example of computation in coordinates, if g is the round metric on S?, and
we consider the spherical coordinate chart s : U — V with

U=S’\{yeR®|y; >0, yo =0}, V=(0,7)p x (0,27),,

L . o (13.20)
7 (0, ) = (sinf cos p, sinfsin ¢, cosh)
then the pushforward s,.g has the form
s,9 = db* + sin? 0 dp*. (13.21)

13.1.7. Integration of densities. Let M be a manifold and a € L!(M). We
would like to define the integral of a on M but this is not possible: the resulting
definition cannot be invariant under diffeomorphisms of manifolds since the change of
variables formula (Theorem 10.5) features multiplication by the Jacobian. To fix this
problem, we introduce a different kind of object on M, called density, which can be
integrated in a coordinate independent way.

We start with a bit of linear algebra:
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DEFINITION 13.5. Let V be an n-dimensional real vector space. A density on V
is a map w : V" — C such that for any linear map A : V — V and any vectors
V1, ...,V €V we have

w(Avy, ..., Av,) = |det Alw(vy, ..., v,). (13.22)

Denote by Den(V) the set of all densities on V. A density w is called positive if
w(v, ..., v,) > 0 whenever vy, ..., v, form a basis of V.

It is immediate from the definition that Den()V) is a vector space. It is at most
one-dimensional since (13.22) implies that w is determined by w(ey,...,e,) for any
fixed choice of basis e,...,e, of V. On R™ we have the canonical positive density
|dx| = dzy ... dx, defined as follows:

|dz|(v, ..., v,) = |detvr...v,)| forallvg,... v, €R? (13.23)
where [vy ...v,] is the matrix with columns vy, ..., v,. This shows that for general V
the space of densities is nontrivial and thus one-dimensional.

Coming back to the manifold M, define for each z € M
||, := Den(T, M).

In particular, an element of ||, is a map from (7, M)" to R. A (rough) density on M
is then a map

wireM — w(x) € Q.
If ®: M — N is a diffeomorphism, and w is a density on N, then the pullback ®*w
is the density on M defined as follows: for all x € M and vy,...,v, € T, M

O*w(x)(ve, ..., 0n) = w(P(x))(dP(x)vy, ..., dD(x)vy,). (13.24)
If 5: U — V is a chart on M, then the pushforward of a density w on M by s is just
the pullback of w by s~
syw = (o) w
which is a density on V. We can write
7w = w(x)|dx| (13.25)
where w : V' — C and |dz| is the standard density defined in (13.23).
We say that a density w on M is smooth if for any chart sc: U — V the function
w(z) from (13.25) lies in C*°(V). Denote by C*(M;|2|) the space of all smooth

densities on M. Similarly one can define the spaces C(M;|Q|), LY (M;[Q]), and
LE(M; [4).

We now describe how to integrate densities on manifolds. If s : U — V is a chart
on M and w € L}(M;|Q|) is supported inside U, then we define

/Mw::/vw(x)dx (13.26)
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where the right-hand side is the integral with respect to Lebesgue measure and w(x) is
defined in (13.25). Using the change of variables formula we see that this integral does
not depend on the choice of the chart; we leave the verification of this as an exercise
below.

For general w € L1(M;|Q|) we take a partition of unity 1 = y; + --- + Yy near
supp w, where each y, is supported in the domain of a single chart, and define

/M wim g/M ew (13.27)

where the integrals on the right-hand side are defined by (13.26). The resulting integral
is independent of the choice of parition of unity (something we again leave as an exercise

below). Moreover, we have the following invariance under pullback: if ® : M — N is
a diffeomorphism and w € L1(N;]Q|) then

/Mcp*w:/Nw. (13.28)

Given a Riemannian metric g on M, then we can define the Riemannian volume
density dvol, € C>(M;|Q]) as follows: for x € M and vy,...,v, € T, M we put

dvoly(x)(v1,...,v,) = /|det B where B = (bjk)jr=1,  bjrx = (Vj, Vk)g(x)- (13.29)

(We leave the fact that dvol, is indeed a density as an exercise below.) In any chart
»: U — V we have (using the notation (13.18))

s.dvoly = /| det G(x)||dx|, G(r) = (gjr(z))]s=s (13.30)

Since each manifold has a Riemannian metric, and since d vol, is positive, we see that
each manifold has a positive C'*° density. Denoting one such density by wg, we can
identify densities w on M with functions f by the formula w = fwy. Under this
identification, the integral (13.27) of w is just the integral of f with respect to the
measure on M induced by the density wy.

As an example of (13.30), in the spherical coordinate chart on S? given by (13.20)
the Riemannian volume density for the round metric g is given by

s, dvol, = sin 0 dfdy

which corresponds to the integration in spherical coordinates formula from multivari-
able calculus.

13.1.8. Vector bundles. We finally introduce general vector bundles, several
particular cases of which (the tangent bundle, the cotangent bundle, and the bundle
of densities) have already appeared above.
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The idea of a vector bundle over a manifold M is to fix a vector space &(z) for
each point x € M, in a way which in some sense is smooth in x. More precisely, a
smooth m-dimensional real vector bundle over an n-dimensional manifold M is a

e smooth n + m-dimensional manifold &, called the total space of the bundle,
e a surjective smooth map 7 : & — M, with each preimage

&) =nz), reM

called the fiber of & at x,
e a structure of a real m-dimensional vector space on each fiber &(x),
e and a collection of diffeomorphisms (called trivializations of &)

O:7 ' (U) = UxR™

where U @ M, such that for each x € U, © maps the fiber &(x) to {z} x R™,
and this restricted map is a linear isomorphism with respect to the vector
space structure fixed on &(x) and the standard vector space structure on
{z} x R™ ~ R™,

e so that the domains U of trivializations cover the whole M and the restriction
of a trivialization © to 7= 1(W) for any W G U is again a trivialization.

We have transition maps between different trivializations: if ©1,0, : 771(U) — UxR™
are trivializations then

03007 (z,w) = (z, A(x)w) forallz € U, w € R™ (13.31)

where A(x) : R™ — R™ is a family of linear isomorphisms depending smoothly on x €

U.

A basic example of a vector bundle is the trivial bundle
E:=MxR" 7(z,v)=ux,
with trivializations given by identity maps. More interesting examples are given by

e the n-dimensional tangent bundle & = T'M, where for each chart »: U — V
on M we have a trivialization

O, (z,v) = (z,dx(x)v) e U xR", zeU veTl,M, (13.32)

e the n-dimensional cotangent bundle & = T* M, where for each chart »: U —
V on M we have a trivialization

O,.(2,8) = (z,ds(x)T¢) e UxR", x €U, £€TiM, (13.33)

with ds(z)~7 defined in (13.14),
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e and the 1-dimensional bundle of (real) densities & = {(z,w) | 2 € M, w €
Den(T, M)}, where for each chart s : U — V on M we have a trivialization

O,.(7,w) = (z,w(dsx(z) e, ..., dx(z) " e,)), = €U, weDen(T,M)  (13.34)
where eq, ..., e, is the canonical basis of R".

If & is a vector bundle over M, then a smooth section of & is a map
f:xeM — Bx)eé(x)

such that x — (z, f(z)) is a smooth map M — &. Denote by C*°(M; &) the space
of all smooth sections of &. Note that sections of the tangent bundle, the cotangent
bundle, and the density bundle are respectively vector fields, 1-forms, and densities.
On the other hand, sections of the trivial bundle M x R™ are just smooth functions
M — R™.

An equivalent characterization of the map f being smooth is the following: for any
trivialization © : 771 (U) — U x R™ the map B¢ : U — R™ defined by

O(5(z)) = (z,Pe(z)) forallz e U (13.35)

is smooth. We call Bg the representation of  in the trivialization ©. Using these
representations, we can define the space of locally L” sections LT (M;&); here we
use that the transition maps (13.31) preserve the space of locally L” maps M —
R™. Restricting to compactly supported sections we get the spaces C°(M; &) and
LP(M; &).

Building on Definition 13.3 we give

DEFINITION 13.6.5 We say that By € C®°(M;&) converges to 3 in C°(M; &) if
for each trivialization © of &, with the representations Pire,Be : U — R™ defined
by (13.35), we have fro — Po in C°(U;R™). We say that i, € C2(M; &) converges
to B in CX(M;E) if B, = B in C°(M;&) and there exists K € M such that
supp Br C K for all k.

If &,.% are two vector bundles over the same manifold M, then a bundle homo-
morphism is a smooth map
B:&— 7 (13.36)

such that for each x € M, B maps the fiber &(z) to the fiber .#(z), and the corre-
sponding map is linear (with respect to the vector space structures on &(x), .Z (z)).

We can think of bundle homomorphisms as sections of the homomorphism bundle
Hom(& — %) over M defined by

Hom(& — F)(z) = {A: &(x) — Z(z) linear map}.
Thus we denote the space of all bundle homomorphisms & — .# by
C*®(M;Hom(& — F)).
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For a section w € C°(M; &), we can apply B to w to yield a section Bw € C*°(M; F).
The resulting operators B : C®°(M; &) — C®°(M; F) are generalizations of multipli-
cation by smooth functions to sections of vector bundles.

13.2. Distributions on a manifold

13.2.1. Basic properties. As discussed in (2.6), if U @ R"™ then a distribution
u € D'(U) is determined by specifying the ‘integrals’ [, up dz for all test functions
p € CX(U). If M is a manifold, then there is no canonical way to integrate functions
on M; instead, as explained in §13.1.7 we can integrate densities. The product of
a function and a density is a density, so if u is a function on M and w is a density
on M, then the integral [ m uw makes invariant sense. Thus on manifolds, we should
revise (2.6) to make a distribution v on U answer the question

For any test density w € C°(M; [€2|), what is the integral / u(z)w(z) 7 (13.37)
M

This means that the space D'(M) of distributions on M should be defined as the
dual space to C°(M;|€2|) and the space £'(M) of compactly supported distributions
should be defined as the dual to C*(M; |Q|):

DEFINITION 13.7. Let M be a manifold and |Q2| be the bundle of densities on M.
A linear functional u : C2(M;|Q]) — C is called a distribution on M if for each wy
converging to 0 in C°(M;|Q]) in the sense of Definition 15.6 we have (u,wy) — 0.
Denote by D'(M) the space of distributions on M.

We similarly define the class of distributions E'(M) as the space of sequentially
continuous linear functionals on C*(M;|9]).

As in Proposition 2.3 and the discussion following it, we denote by (u,w) the result
of applying a distribution u € D'(M) to a density w € C®(M;|Q]) and we embed
L (M) into D'(M) by putting

loc

(fw):= /M fw forall fe L (M), weCP(M;|Q|). (13.38)

A lot of the fundamental theory of distributions that we established before works
on manifolds, with essentially the same proofs. This includes:

e the notion of weak convergence of distributions (see Definitions 2.7 and 4.8);

e restriction of distributions to open subsets and the sheaf property (see §2.3),
since partitions of unity still exist on manifolds;

e multiplication of distributions by functions in C*°(M) (see §3.2.1);

e the notion of support suppu C M of a distribution u € D’(M) and the iden-
tification of £'(M) with the space of compactly supported elements of D’'(M)
(see §§4.1-1.2);
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e the notion of singular support sing suppu C M of a distribution u € D'(M)
(see §8.3);

e Banach—Steinhaus theorems (see §4.3) where to define the Fréchet space struc-
ture on C*°(M; |Q|) we take a countable partition of unity 1 = >, x,, with
each x, compactly supported in the domain U, of some chart s : Uy — V,
and taking for w € C°(M;|Q]) the seminorms || (3¢, ")* (xw)||e~ for all £, N.

We can also differentiate distributions, extending to them the action of vector fields on
smooth functions defined in (13.9). Let X € C*°(M;TM) be a vector field, considered
as an operator on C°>°(M). Then there exists the transpose operator X’ on C°(M; |Q2])
such that in terms of the pairing defined by (13.38)

(X f,w) = (f,X'w) forall feC®M), we C>(M;|Q|), (13.39)

and moreover supp(X‘w) C suppw.

To show the existence of X*, take a chart s : U — V, in which 5. X =37 | X;(2)0,;.
Recalling (13.26) we see that (13.39) holds for any f € C®(M), w € C>(U;|Q)|) if
and only if

/V%*(Xf)%*w:/vmf%*(th)

which by Theorem 1.17 gives the following formula for s, (X'w):
s (X'w) = — Z&cj(Xj(x)w(m)ﬂdﬂ where s.w = w(x)|dz|. (13.40)
j=1

One can now check for any w € C®(M;|Q]), the formula (13.40) defines the same
density X'w|y for any choice of chart s : U — V, and use the sheaf property for
C>®(M;|9]) to piece (13.40) together to a global density X'w € C®(M;|9Q)).

Now we can define the result of applying a vector field X to a distribution as
follows:

(Xu,w) = (u, X'w) for all u € D'(M), we CP(M;|Q]). (13.41)

This gives a sequentially continuous operator X : D'(M) — D’'(M). The Leibniz Rule
(Proposition 3.4) takes the form

X(au) = (Xa)u+ a(Xu) for all a € C®°(M), u € D'(M).

13.2.2. Pushforwards by charts and further properties. We previously de-
fined pushforwards of functions, vector fields, 1-forms, Riemannian metrics, and densi-
ties by charts, which allowed us to locally view these as corresponding objects on open
subsets of R”. We now do the same with distributions.
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Let M be a manifold and » : U — V be a chart. For u € D'(M), define the
pushforward s,u € D'(V) of u by s as follows:

(seeu, @) = (u, " (pldz])) for all p € CZ(V) (13.42)
where the pullback s*(p|dz|) is a density in C*(U;|Q]) € CX(M;|Q]). If u €

Li.,.(M), then the pushforward szu as a distribution coincides with the usual push-

forward s,u =wuo s ' € L _(V), as follows from (13.26) and (13.38).

loc
If : U — V is a chart and W & U, then the pushforward of u by the restricted
chart |y is equal to seul.y). Moreover, if »¢ : U — Vi, 560 : U — V5 are two charts,
then

s = (569 0 57 V) g, (13.43)

where 35 0 3] L' Vi — V4 is the transition diffeomorphism and we use the notion of
the pullback of a distribution from §10.1.3. Conversely, using the sheaf property for
distributions we see that if for each chart s : U — V we are given a distribution
u,, € D'(V) and the compatibility conditions above are satisfied, then there exists
unique u € D'(M) such that u,, = »,u for all s.

Using pushforwards and previously proved results on distributions on open subsets
of R™, we can establish the following properties of distributions on manifolds:

e The space C¥(M) is dense in D'(M) and in £'(M). To show this, fix a
countable partition of unity

1= xi. xe€CX(U) (13.44)
/=1

such that each U, G M is the domain of a chart s, : U, — V,, and the
partition (13.44) is locally finite in the sense that any K € M intersects only
finitely many of the sets Uy. (See for example [Leel3, Theorem 2.23] for a
proof of existence of such a partition.)

Take arbitrary u € D'(M). For each ¢ there exists a sequence ¢y, €
C(Uy) such that pr, — xou as k — oo in D'(M). Indeed, it suffices to use
Theorem 6.10 to construct a sequence of functions in C°(V}) converging to
s (xou) in E'(Vy), and pull these functions back to Uy by . Now put

pri= o € CX(M) (13.45)
1<k

Take arbitrary w € C°(M;|€2|). Then there exists ¢y > 0 such that for all
¢ > {y and k we have U, Nsuppw = (). We have for all & > ¢,

(uaw) = Z(X@U,w), ((pkv('U) = Z(@k&w)?

1<ty )
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which implies that (¢x,w) = (u,w) as k — oo and thus ¢ — u in D'(M).
The same argument shows density of C°(M) in £'(M).

e If M, N are two manifolds and u € D'(M), v € D'(N), then one can define the
tensor product u ® v € D'(M x N) satisfying the conditions of Theorem 7.1.
Here the tensor product of a (smooth) density on M and a density on N
is a density on M x N. Note that if ¢ : U" — V' is a chart on M and
#":U" — V" is a chart on N, then the pushforward of u ® v by the chart
7 XU xU"— V' xV"is equal to the tensor product (su) ® (»/v).

e If M, N are two manifolds, then sequentially continuous operators C>°(N) —
D'(M) are in 1-to-1 correspondence with the corresponding Schwartz kernels
on M x N, but the presence of densities makes this more cumbersome to
state. For example, if K € D'(M x N), then (7.15) gives the corresponding
operator which maps C°(N; Q) — D'(M).

o If ® : M — N is a smooth submersion, then the pullback operator ®* :
C>®(N) — C*(M) extends to an operator D'(N) — D'(M), which can be
seen by following the construction in §10.1.

e On the other hand, the concepts of homogeneity, convolution, tensor prod-
uct, constant coefficient differential operator, or fundamental solution do not
extend to general manifolds.

If & is a vector bundle over M, then we can define the space of distributions on M
with values in &, denoted by D'(M; &), as the dual to the space of smooth compactly
supported sections C°(M; Hom(& — |Q])), with || denoting the bundle of densities
over M. Indeed, for each f € L] (M;&) and w € C*(M;Hom(& — |Q])) the
product wf lies in L!(M;|Q]) and thus can be integrated in an invariant way, yielding
the pairing (f,w).

A representation of u € D'(M;&) in a trivialization © : 7 Y(U) — U x R™
(see (13.35)) is a distribution on U with values in R™, which is the same as an element
of the direct sum of m copies of D'(U). We leave it to the reader to fill in the technical
details of the construction of such local representations.

A particular case is when & = |Q], with the space D'(M; [€)]) being the dual to the
space of (scalar) functions C2°(M). (Note that since || is a one-dimensional vector
bundle, the homomorphism bundle Hom(|Q2| — [£2|) is canonically isomorphic to the
trivial bundle M x R.) This space of density-valued distributions includes in particular
the delta function 6, for any y € M, defined by

(0y, ) = p(y) for all ¢ € C(M). (13.46)
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13.2.3. Sobolev spaces. We now introduce Sobolev spaces on a manifold:
DEFINITION 13.8. Assume that M is a manifold and s € R. Define the spaces
Hi, (M) C D'(M),  H(M) := Hp, (M) NE'(M)

(M) if and only if for any chart
(V) (see

as follows: a distribution v € D'(M) lies in H

% : U — V the pushforward s,u € D'(V) lies in the local Sobolev space H{ .
Definition 12.12).

This definition makes sense since for any two charts s¢; : U — Vi, 20 : U — V5, we
have se,u € HY (V1) if and only if se.u € HP (V3), as follows from Proposition 12.15
and (13.43). See Exercise 13.3 below for more information.

We say that a sequence u;, € HY (M) converges to u in Hy (M) if for any chart
2 : U — V the pushforward s, uy, converges to se,u in H (V). Convergence in HS (M)

loc
is defined by requiring convergence in Hj (M) and all the supports being contained
in a fixed compact subset of M.

An important special case is when M is a compact manifold. Then H} (M) =
H$(M), and we denote this space by just H*(M). One can make H*(M) naturally
into a Hilbert space, convergence in which corresponds to Hj . (or equivalently H?)
convergence. See Fxercise 13.4 below for details.

Coming back to the case of general M, the properties in §12.1.5 still hold on
manifolds, in particular:

o if a € C*°(M), then multiplication by a is a continuous operator on Hy (M)
and on H?(M);

e if X is a smooth vector field on M, then it defines a continuous operator
HER (M) = Hi (M) and B (M) = H2 (M)

e the space C°(M) is dense in both H (M) and H(M) (for the case of
H{ (M) one can argue similarly to (13.45)).

loc
One can also define Sobolev spaces H*(M; &) inside the spaces of distributions with
values in a vector bundle &. We leave to the reader to work out the technical details,
noting that the transition maps (13.31) preserve the spaces Hf (U;R™) ~ @™ H (U)
since multiplication by smooth functions preserves Hf (U).
The spaces Hf (M; &) and H_ *(M;Hom(& — |€2])) are dual to each other in the
same sense as Proposition 12.14. In particular, HS (M) is dual to H_*(M; |€2]).

loc

13.3. Differential operators

We now introduce the notion of the principal symbol of a general differential oper-
ator and study its basic properties.



13.3. DIFFERENTIAL OPERATORS 171

13.3.1. The case of R". We start with the case of U @ R". Recall from §9.1.1 the
definition of the algebra of differential operators Diff"™(U), where m € Ny is the order
of the operator. The key object associated to a differential operator is its principal
symbol, defined as follows:

DEFINITION 13.9. Let U @ R™ and consider an operator P € Dift™(U) given by
P= )" a.(x)DS, an€C(U), DI:=(-i)og. (13.47)
|o]<m
Define the principal symbol of P to be the function
pEC™®(U XRY), px,&) = an()", ze€U, (R (13.48)
|a|=m

We use the notation o,,(P) := p.

Here are a few basic properties of the principal symbol:

e 0,,(P) is a homogeneous polynomial of degree m in £ € R™ with coefficients
that are smooth functions of = € U;

e if P has constant coefficients then the definition of principal symbol that we
just gave agrees with the one given before in (12.34) (note that there we
denoted the principal symbol by py rather than p);

e 0,,(P) = 0if and only if P € Diff'(U).

We will sometimes suppress the subscript m and just denote the principal symbol of P
by o(P), when the order of P is understood from the context.

The principal symbol has several important algebraic properties. We do not use
them in the course but list them in the following proposition. The proof is left as an
exercise below.

PROPOSITION 13.10. Let U G R", A € Diff™(U), and B € Dift*(U). Then:

1. (Product Rule) The principal symbol of the composition AB € Diff " (U) is

Omt(AB) = 0,,(A)oe(B). (13.49)
2. (Commutator Rule) The principal symbol of the commutator [A, B] := AB— BA

18
Ome-1([A; B]) = —i{om(A), 0u(B)} (13.50)

where [A, B] € Dift "™ Y (U) since o,ie([A,B]) = 0 by (13.49), and the Poisson
bracket {e, e} is defined by

(.0} = Y- (05,0)(0:,b) — (9, @)@, abe (U xR (13.51)
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3. (Adjoint Rule) The principal symbol of the adjoint A* € Diff"(U) (see (7.22))
15 given by

om(A%)(, &) = om(A)(,§). (13.52)

In preparation for defining the principal symbol of a differential operator on a
manifold, we need to understand how principal symbols change under conjugation by
diffeomorphisms. To do this, we first prove the following preliminary statement, which
is interesting in its own right:

LEMMA 13.11. Assume that U G R", P € Diff""(U), and we are given two functions
p € C*(U;R), beC™U;C).
(One commonly calls ¢ the phase and b the amplitude.) Denote p := 0,,(P). Then
we have for all A € R
P(ei’\‘p(”’)b(x)) = (@) (p(z, dp(z))b(x)N™ + 7(z, \)) (13.53)
where r(x, \) is a polynomial of degree m — 1 in X with coefficients in C*(U) and

do(x) denotes the vector (O, 0(x), ..., 0, o(x)).

REMARK 13.12. An important special case is when b =1 and p(x) = z-& for some
fized & € R™. In this case we recover the full symbol of P:

P<ei/\x4§> _ ei/\x{ Z aa(x)ga)\\od

|a|<m

where a, € C®(U) are the coefficients of P, see (13.47).

Proo¥F. Consider the conjugated operator e~*** Pe™¢ defined by
e Per f (1) = e”"\‘P(’”)P(eM“"(m)f(x)) for all f € C(U).
We compute
e_i’\wDIj e = Dy, + A0y,
Therefore for a general differentiation operator Dy = Dg? ... D3» we have
e" MDY = (D, + Adp)® = (Dy, + A0y, 0)* ... (Dy, + A0y, ).
It follows that, using the formula (13.47) for P,
P(e??p(x)) = e 3" a4 (2)(Dy + Adp)*b(z). (13.54)
la|<m

The sum on the right-hand side is a polynomial of degree m in A with coefficients in
C*®(U). The coefficient of A™ in this polynomial is equal to

Y aa(w)dp(x) () = plx, do(x))b(x),

la|=m

which gives (13.53). O
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REMARK 13.13. An a concrete example, if P = A s the Laplacian, then
e~ pere@ g (2)) = —|de(z)[Pa(z) N + (2dp(z) - da(z) + (Ap(z))a(z))iX + Aa(z).

The principal part as X — oo is given by (13.53); the other parts are harder to under-
stand (though they come up in several advanced topics such as Carleman estimates or
Witten Laplacians).

We now give the promised formula for how the principal symbol behaves under
changes of variables:

PropPOSITION 13.14. Let U,V GR™ and ® : U — V be a diffeomorphism. Assume
that P € Diff™ (V') and define the pullback of P by ® as the operator ®*P : C*(U) —
C>®(U) given by

(®*P)(u) = ®*(P(® *u)) for allu e C>®(U) (13.55)
where ®* is the pullback operator by ®~1. Then ®*P € Diff™(U) and
Om(®*P)(2,€) = 0 (P)(®(2),d®(2)"1€¢) forallz € U, ¢ € R" (13.56)

where d®(x)~T denotes the inverse of the transpose of d®(x) : R® — R™.

Proor. The fact that ®*P € Diftf""(U) follows from the Chain Rule. One can also
use the Chain Rule to get (13.56), but we instead give a proof relying on Lemma 13.11.

Take arbitrary ¢ € C*°(U;R). By Lemma 13.11, we have as A — oo
(©*P) (™)) = @) (g, (2" P) (x, dip(x))A™ + O(A™ ). (13.57)
Denote ¢ := oo @1 € C*(V;R). Then, denoting p := 0,,(P), we have
(@°P)(e™()) = &*(P(™ 1))

= O (W (p(y, dip(y)) A" + O(X" 1)) (13.58)
= MO (p(D(x), dip((x)))A™ + O™ ).

Here in the first equality we used (13.55) and in the second equality we again used
Lemma 13.11. By the Chain Rule we have diy(®(z)) = d®(z) Tdp(z). Compar-
ing (13.57) and (13.58) we get

o (®*P)(z, dp(2)) = p(®(x), d®(x) " dp()).

Since ¢ can be chosen arbitrary, we get (13.56). O
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13.3.2. The case of manifolds and examples. We now introduce differential
operators on manifolds. As in §§13.1.4-13.1.7, we use pushfowards by charts.

DEFINITION 13.15. Let M be a manifold. We say that an operator P : C*°(M) —
C*(M) is a differential operator of order m € Ny if for any chart » : U — V| there
exists a differential operator s, P € Diff"(V'), called the pushforward of P by s, such
that

#.(Pu) = (56.P)(5eu)  for all u € C®(M). (13.59)

Denote by Dift™ (M) the space of all differential operators of order m on M.

Each P € Diff™(M) is sequentially continuous on C*(M) and on C°(M), and
satisfies the locality property

supp(Pu) C suppu for all u € C*(M).

Next, we define the principal symbol of a differential operator on a manifold, which
is a function on its cotangent bundle:

PROPOSITION 13.16. Assume that M is a manifold and P € Diff"(M). Then
there exists unique function p € C*°(T*M) such that for each chart s : U — V we
have

p(x,6) = 0 (5. P)(5¢(x), dre(x)"1€)  forallz € U, € € TAM. (13.60)

where o, (5. P) is defined in (13.48). We call p the principal symbol of P and denote
om(P) == p.

The proof of Proposition 13.16, left as an exercise below, relies on Proposition 13.14,
which shows that it is natural to consider the principal symbol of a differential operator
on V @ R™ as a function on the cotangent bundle of V' (which is canonically identified
with V' x R™).

REMARK 13.17.% Proposition 13.10 can be extended to differential operators on
manifolds. The Product Rule and the Commutator Rule there are the same as for open
subsets of R™, though some work is needed to see why the Poisson bracket makes invari-
ant sense on functions on T*M (for this one typically uses the canonical symplectic
form on M, but we do not develop this here). The Adjoint Rule also holds but one has
to be careful since the adjoint of an operator A : C*°(M) — C*°(M) is an operator
on densities, A* : C®(M;|Q]) = C®(M;|Q]); see §13.3.3 below for the definition of

such an operator.

We now give several important examples of differential operators on manifolds and
compute their principal symbols:
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e Let a € C%(M). Then the multiplication operator Pu = au lies in Diff’(M)
and we have

oo(P)(z,§) = a(x) forall (z,§) € T*"M. (13.61)

o Let X € C°(M;TM) be a vector field and consider it as an operator us-
ing (13.9). Then the operator P := —iX lies in Diff' (M) and we have

o1(P)(z,&) =&(X(x)) for all (x,&) € T* M. (13.62)

This gives a simple explanation for why the principal symbol of a differential
operator should be a function on the cotangent bundle (rather than, say, the
tangent bundle): the vector X (x) defines a linear function on the cotangent
space T M.

e Let g be a Riemannian metric on M. The Laplace—Beltrami operator A, is
characterized by the identity

- / (A, f)p dvol, = / (df (), dip())g(0) d vOl, ()
M M
for all f € C®(M), p € CZ(M).

(13.63)

If 5: U — V is a chart and s,g = Z;kzl gjk(x) dz;dxy, then the pushforward
»#.A, has the form

(s g) f(2) = | det G(x)| ¢ ()0, f () (13.64)

Z a“”ﬂ
\/ | det G(x
where G(z) = (gjk(‘r))?,kzl and G~'(z) = (¢°*(x))}—,- The operator A, lies
in Diff*(M) and its principal symbol is given by

02(Ag) (@, &) = —(£,&) gy for all (z,&) € T"M. (13.65)

13.3.3. Vector bundles. We finally discuss differential operators acting on sec-
tions of vector bundles over manifolds. We start with the trivial bundles. Let ¢, ¢ € N.
An operator P : C®(M;C") — C>®°(M;C’) is the same as a matrix of operators

1<k<t, 1<k/<
with the action of P given by
e’
P(uy,...,up) = (v1,...,v) with v, = Z Prrug . (13.66)

k=1
If each Py is a differential operator in Diff™ (M), then we say that P is a differential

operator of order m, and write

P ¢ Diff™(M;C" — C).
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Now, let &,.% be two vector bundles of dimensions ¢, ¢ over a manifold M. To keep
the theory consistent we should complexify &,.% (i.e. consider the bundle &t with
éc(x) = C®g &(x) for all z) but we suppress this complexification in the notation.

DEFINITION 13.18. We say that a sequentially continuous operator P : C*(M; &) —
C>®(M; .F) is a differential operator of order m € Ny, and write

P € Diff"™"(M; & — F)
if for any trivializations O : 7, (U) — U x C*, Oz : 7, (U) — U x C', where
UcMand g : & - M, mg : F — M are the projection maps, there ezists a

differential operator Pe Diff(M; C" — C') which is the representation of P in the
trivializations ©g, © # in the following sense:

(PBle, = PBo, forall B e C®(M;&) (13.67)
where Bo, € C=(U;C"), (PBo, € C®(U;C’) are defined in (13.35).

Note that P is sequentially continuous on the spaces C*° and C2° and supp(Pg) C
supp f3 for all B € C®(M; &). Moreover, Diff(M; & — .F) is just the space of bundle

homomorphisms & — .% defined in (13.35) above.

An important example of a differential operator on bundles is the first order differ-
ential operator (see (13.17))

d: C®(M) = C°(M; T*M). (13.68)

We now define the principal symbol of a differential operator on vector bundles. In
case of trivial bundles, the principal symbol of an operator P € Diff™(M;C" — CY)
given by (13.66), is the matrix of the principal symbols of the operators Py It is
useful to think of this matrix as a linear map of the fibers C*,C* if (z,¢) € T*M
then o,,,(P)(x,&) : C* — C’ is the linear map given by

¢

om(P)(z, ) (wy,. .., wp) = (Z O (P (1, f)wk/> . (13.69)

k=1

Next, if &,.% are two vector bundles over M and P € Dift™(M;& — %) then we
define the principal symbol o,,(P) as follows: for each (z,§) € T*M, the value of
om(P) at (z,&) is a linear map

om(P)(2,6) : &(x) = F(2) (13.70)

such that for any trivializations ©,, © # and with P given by (13.67) we have for all
relU,{eTiM, and w e &(x)

Oz (om(P)(x,&)w) = (w,am(f’)(x,ﬁ)va) where Og(w) = (z,w). (13.71)

This definition does not depend on the choice of trivializations, as one can show that
the symbol defined in (13.69) is equivariant under the transition maps (13.31); we skip
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the details. The resulting symbol o,,(P) is a section of the bundle 7* Hom(& — %)
over T* M, which is the pullback of the homomorphism bundle Hom(& — %) by the
projection map m : T*M — M; more precisely,

7 Hom(& — Z#)(x,§) = Hom(& — F)(x) for all (x,§) € T*" M. (13.72)

As an example, if d is the differential operator from (13.68) then we compute the
principal symbol of —id:

o1(—id)(z,§)w = w for all (x,&) € T*"M, w € C.
which follows from (13.17).

One application of differential operators on vector bundles is extension of differ-
ential operators to distributions by duality. Namely, if A € Diff"(M), then we can
extend it to a sequentially continuous operator on D'(M) by the formula

(Au,w) = (u, A'w) for all u € D'(M), w € CZ(M;|Q)) (13.73)

where the transpose operator A lies in Diff"(M;|Q| — |Q|). We omit the details
since they are quite similar to what was done for vector fields in (13.41).

13.4. Notes and exercises

The material in §13.1 can be found in most differential geometry textbooks such
as [Leel3]. The presentation in §13.2 partially follows [Hor03, §6.3], and the presen-
tation in §13.3 partially follows the first half-page of [H6r03, §8.3].

EXERCISE 13.1. (1 = 0.5 + 0.5 pt) This exercise proves coordinate invariance of
the integral of a density, introduced in §15.1.7. Let M be a manifold.

(a) Assume that s, : Uy — Vi and > : Uy — Vy are charts on M and w € LY(M; Q)
1s supported inside Uy N Uy. Show that the integrals fM w defined by (13.26) using the
charts 3 and s are equal to each other. (Hint: use Theorem 10.5 for the transition
map between ¢ and .)

(b) Assume that w € LL(M;|Q|). Show that the integral [, w defined in (13.27) does
not depend on the choice of partition of unity.

EXERCISE 13.2. (1 pt) Let (M,g) be a Riemannian manifold. Show that the ex-
pression dvol, defined in (13.29) is a density, that is for each x € M the function
dvoly(x) : (TuM)" — R satisfies (13.22). (Hint: reduce to the case when vy, ..., v, is
a basis of T, M use the matrixz of the linear map A in this basis.)

EXERCISE 13.3. (1 pt) This exercise shows in particular that Sobolev spaces on
manifolds are nontrivial, by constructing elements of these spaces from charts. Let M
be a manifold, »c: U — V be a chart on M, s € R, and v € H(V). Take the pullback
w*v € E'"(U) and extend it by zero to an element of E'(M). Show that »*v € HS(M),
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and if vy — 0 in HZ(V') then sc*vy, — 0 in HS(M). (You may freely use properties of
pullback of distributions on manifolds.)

EXERCISE 13.4. (2 = 1+1 pts) Let M be a compact manifold. Fiz a finite collection
of charts s, : Uy —V,, £ =1,... N, such that M = Ui,vzl Uy, and a partition of unity

N
1= xe, xt€CX(U).
=1

Let s € R and denote H¥(M) := H}

loc

(M) = H$(M). Foru € H*(M), define the

norm ||ul| gs(r) as follows:

N

Ju| %S(M) = Z H%f*(Xéu)H?{S(]R”) (13.74)

=1
where each s (xou) is a distribution in H(Vy) and thus in H*(R™). (It is easy to see
that || ®|| is a norm on H*(M) induced by an inner product — you do not need to show
this explicitly.)
(a) Show that for each sequence u, € H*(M), we have ||ug| gsmy — 0 if and only
if up — 0 in H (M) as defined in §13.2.5. (Hint: use Ezercise 13.4, the decom-
position u = Zé\;l Xxew, and the fact that xeu is the extension by 0 of the pullback
s 7. (xouw).) This in particular implies that a different choice of the charts s and the
cutoff functions x, yields an equivalent norm (13.74).

(b) Show that H*(M) with the norm (13.74) is complete and thus a Hilbert space.
(Hint: let ug be a Cauchy sequence in H*(M). Use completeness of H*(R™) to show
that for each €, we have x,ur, — vy as k — oo in HE (M) for some v, € HE(Uy).
Conclude that uy — S0, vg in Hy (M).)

loc
EXERCISE 13.5. (2 = 1+ 1 pts) Prove parts 1 and 3 of Proposition 13.10. (For
part 3, you can use (9.3) and the relation between transpose and adjoint.)

EXERCISE 13.6. (1 pt) Prove part 2 of Proposition 15.10.

(
EXERCISE 13.7. (0.5 pt) Prove Proposition 13.16.

EXERCISE 13.8. (2.5 = 0.5+ 141 pts) Let S™ be the n-sphere defined in (13.1), with
n > 2, endowed with the round metric g (i.e. the one coming from the ambient space
R™). In this exercise you compute the eigenvalues of the operator —A,, namely the
numbers A € R such that there exist nonzero u € C*(S™;R) solving the eigenfunction
equation

—Agju = Au.

(a) Show that each eigenvalue \ has to satisfy A > 0. (Hint: compute the integral
Jon (Agu)udvoly using the defining property of the Laplace-Beltrami operator.)
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(b) Let a > 0. Denote by Ay the usual Laplace operator on R"*'. Show that the
equation

Agw=0 on R" 1M\ {0} (13.75)
has a nonzero solution v € C°(R™\ {0}) which is homogeneous of degree a if and
only if a is a (nonnegative) integer. (Hint: show that v is a locally integrable function
on R™ and defines a tempered distribution in ' (R™™Y), which we denote v. Arguing
similarly to the proof of (10.30), show that Agv = 0. Now pass to the Fourier transform
of v and show that it is supported at a single point; deduce from here that v is a
polynomial.)

(c¢) The pullback of the operator Ag by the polar coordinate diffeomorphism
®:(0,00) x S* — R"™\ {0}, &(r,0) =10

is equal to the operator 92 + 20, + T%Ag, with the spherical Laplacian A, acting in the
0 wvariable. (This can be checked by noting that this operator has to be the Laplace—
Beltrami operator of the pullback by ® of the Fuclidean metric, but you don’t need to
do this computation here.) Using this, show that the eigenvalues of —A, are given by
k(k 4+ n — 1) where k runs over nonnegative integers. (Hint: if u is an eigenfunction
of =A, then define v(rf) = ru() in polar coordinates for a right choice of a so that
Agv =0.) The eigenfunctions of —A, are called spherical harmonics.






CHAPTER 14

Elliptic operators with variable coefficients

In this chapter we prove the third (and last) version of elliptic regularity, for elliptic
differential operators on manifolds. (See §§9.2,12.2 for the previous versions.) To state
it, we make the following

DEFINITION 14.1. Let M be a manifold and P € Diff" (M) be a differential op-
erator. Denote by p := 0,,(P) the principal symbol of P (see Proposition 15.16). We
say that P is an elliptic differential operator if

p(x,&) #0  forall (z,&) € T*M, £ #0. (14.1)

Note that for constant coefficient differential operators on R™, this definition of
ellipticity coincides with the one given in (12.35) above. An example of an elliptic
differential operator is the Laplace-Beltrami operator A, € Diff*(M) associated to a
Riemannian metric, see §13.3.2.

We can now state the main result of this chapter:

THEOREM 14.2 (Elliptic Regularity III). Let M be a manifold and P € Diff™ (M)
be an elliptic differential operator. Then for each u € D'(M) we have

sing supp u = sing supp(Pu). (14.2)

A version for vector bundles is given by Theorem 14.23 below. One can replace
C* regularity by Sobolev regularity, see Theorem 15.1 below.

14.1. Pseudodifferential operators

Our proof of Theorem 14.2 relies on the construction of an elliptic parametriz,
which is a generalization to the variable coefficient case of the convolution operator
with the distribution F used in the proof of Theorem 12.18. This elliptic parametrix
will be a pseudodifferential operator, and in this section we take some time to introduce
pseudodifferential operators and establish some of their properties. For our purposes
it will be enough to study pseudodifferential operators on open subsets of R".

14.1.1. Kohn—Nirenberg symbols revisited. We start by revisiting the Kohn—
Nirenberg symbols introduced in §12.2.3, allowing for dependence on x in addition to &:

181
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DEFINITION 14.3. Let U @ R™. A function a € C®°(U x R") is called a Kohn—
Nirenberg symbol of order m € R, if for each K € U and multiindices «, 5 there exists
a constant Cyopi such that

0207 a(w,€)| < Caprc ()™ 1 for all (z,€) € K x R". (14.3)

Denote by S™(U x R™) the space of all Kohn—Nirenberg symbols of order m.
REMARK 14.4. The bounds (14.3) can be interpreted as follows: we have a(x,&) =
O(&)™), each differentiation in x keeps the bound the same but each differentiation

& makes a one order smaller, and the constants in the bounds are locally uniform
inzel.

We have SY(U x R™) C S™(U x R") whenever ¢ < m. We will also use the residual
class (whose elements are called rapidly decaying symbols)

ST xRY) = () S™(U xR") (14.4)

meR

which can be characterized as follows: a function a € C*°(U x R") lies in S™>°(U x R")
if and only if for each K € U, multiindices «, 5, and N € N there exists a constant
Cuprn such that

0207 a(@,€)| < Caprn (€)™ forall (z,6) € K x R™. (14.5)

Informally, this means that a(z,£) = O(()~>°) locally uniformly in x with all deriva-
tives.

Similarly to (12.44) and (12.45) we have
acS™UXRY), be S(UxR") = abe S™U xR"), (14.6)
a€S™MUxXR") = 0§,a€S™(UxR"), d,aecS™" (U xR"). (14.7)
We also have the following generalizations of Propositions 12.22 and 12.23:

PROPOSITION 14.5. Assume that p(z,£) = > ,<,, @a(T)E™ is a polynomial of de-
gree m in & € R™ with coefficients a, € C*°(U). Then p € S™(U x R™).

PRrROOF.S The derivative 8;"8? p is a polynomial of degree m — || in & with coeffi-
cients smooth in z (and it is equal to 0 if |3] > m), which gives the bounds (14.3). O

PROPOSITION 14.6. Assume that p € S™(U x R™) and for each K € U there ezists
a constant cxg > 0 such that

Ip(z,&)| > ck|&]™ forallz € K, £ € R", |£] > 1. (14.8)

Let ¢ € C®°(U x R™) be such that q(x,&) = 1/p(x,&) for all x € U, |{| > 1. Then
qge S™™U x R").
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PRrROOF.S By induction in |a|+|3| we see that for all multiindices «, 3 and all x € U,
¢ € R* with |¢] > 1, 8;‘85 q(z,€) is a linear combination with constant coefficients of
expressions of the form

(9510 p(,€)) -+ (9540 p(x, )

p(z, )M
where |aq| + |Bul, - oy Jok| + 18] > 1and a1 + -+ ap = «, f1 + -+ B = 8. Using
the bounds (14.3) and (14.8) we see that for each K & U there exists a constant C'x
so that (14.9) is bounded in absolute value by Cg|¢|~™7 18l for all x € K, [¢] > 1. This
gives the bounds (14.3) for ¢, showing that it lies in S~ (U x R™). O

(14.9)

14.1.2. Asymptotic sums and Borel’s Theorem. In preparation for the con-
struction of elliptic parametrix in §14.2.1 below we now introduce asymptotic sums of
Kohn—Nirenberg symbols:

DEFINITION 14.7. Assume that U @ R"™, m € R, and we are given symbols
a € S™(U x R"); ar, € S™FU x R"), k € Ny.

We say that a is asymptotic to Y, ax, and write

oo
a ~ E g
k=0

if for each N € Ny we have
N-1

a—Y a, € S"N(U xR, (14.10)
k=0

REMARK 14.8. It is important to distinguish between asymptotic sums and conver-
gent series. As we see in Theorem 1.9 below, any sequence of symbols in the right
classes has an asymptotic sum. The corresponding series Yy ., ar(x,&) may converge
for all (x,&). This is similar to the difference between Taylor formula and Taylor se-
ries. See Fxercise 1.2 below for a version of Theorem 1.9 for Taylor expansions of
functions of one variable.

The main result about asymptotic sums is that they always exist:

THEOREM 14.9 (Borel’s Theorem). Given any sequence ar € S™ *(U x R"), k €
Ny, there exists a € S™(U xR") such that a ~ Y p_ ;ay, in the sense of Definition 14.7.
Moreover, any two such symbols a differ by an element of S~(U x R™).

PRrRoOOF. 1. Fix a cutoff function

x € CF(R"), x=1 on B(0,1).
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We have
1—x(e£) -0 in SYR") ase — 0+, (14.11)
where convergence is understood in the sense of the seminorms coming from (14.3).

(The convergence (14.11) holds in S° for all § > 0, but not in S°.) To see (14.11), we
first observe that |1 — x(&)| < C|¢] for all £ and thus

sup (&) '[(1 = x(e€))| < C sup £(§)7'[¢] < Ce — 0.
£ER™ £eRM

Next, for any multiindex S with |G| > 1 we have
sup (€)1 |0 (1 = x(2€)| = & sup ()77 ](9¢x) (<€)

EER™ EERM

< el sup ()P < Ce =0
l€1<R/e

where we fixed R > 0 such that supp x C B(0, R). This shows (14.11).

Using the Leibniz Rule similarly to (14.6), we see that (14.11) and the fact that
ap, € S™F(U x R") implies that for each k

(1 —x(e€))ag(x, &) =0 in S™HU x R"). (14.12)

2. Take a sequence of compact sets K € Ky exhausting U in the sense of (1.14).
Using (14.12), choose ¢ > 0 small enough so that

0200 (2, )| < 274(©)™ L for all |al, |8] < k, (2,€) € K x R”

(14.13)
where bg(x,&) := (1 — x(ex€))ar(x, §).
We now put
a(z,£) =Y bi(x,&). (14.14)

The series (14.14) converges to a function a € C*°(U x R") since for any given (z,¢)
only finitely many terms are nonzero.

We claim that for each M € Ny there exists a constant C'y; so that

M-1

050 (a(w,é) - ;; %(af,ﬁ))’ < Oy (&) MH1-1A]

for all |a|, |B] < M, (x,§) € Ky x R™.

(14.15)

Note that on the surface, (14.15) appears weaker than (14.10) since we lose a power
of () and restrict the «, 8, K that we can take depending on M. However, in Step 3
of the proof we will show that (14.15) implies (14.10), since we access more and more
of the symbol space seminorms as M grows.
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To show (14.15) we write

=

M-

a(z,§) — ap(zx X€kf&kl’f+zbki€5

0 k=0

H

e
Il

Since x is compactly supported, the first sum on the right-hand side lies in S™°(U x
R™) and in particular satisfies the estimate (14.13). To bound the second sum, we
use (14.13) to estimate for all ||, |3] < M and (z,€) € Ky x R"

0200 S wio6) < 3 0200 )
k=M k=M
< 2—k<§>m—M+1—|B\ < 21—M<§>m—M+1—|B|
k=M
finishing the proof of (14.15).

3. We now show that a ~ > 7 a; in the sense of Definition 14.7. Take arbitrary
N € Ny. We need to show that a — S0 o ax € S™N(U x R™), that is for any K € U
and «, # there exists C' such that

8;3‘8? (a(w,ﬁ) — i ak(x,ﬁ))' < C(E)m NPl for all (z,6) € K x R".  (14.16)

k=0

Take M > N + 1 such that K C K;; and |af, |8] < M. We write

N = (al.6) - MZ w(r.9) + MZN (i, €).

The first term on the right-hand side satisfies the bound (14.16) by (14.15). The second
term lies in S™ (U x R") and thus satisfies the bound (14.16) as well.

4. Finally, if a,b € S™(U x R™) are such that a,b ~ Y ;- ay, then from (14.10) we see
that a —b € S™ N (U x R") for all N, which implies that a —b € S™°(U x R*). O

14.1.3. Pseudodifferential operators and quantization. We now develop a
quantization procedure which lets us turn symbols in S (U x R™) into operators on
functions on U. The term ‘quantization’ is used because this procedure is related to
the map from classical to quantum observables in quantum mechanics.

DEFINITION 14.10. Let U G R™, m € R, and a € S™(U x R"™). For ¢ € C*(U),
define the function Op(a)p : U — C as follows:

Op(a)p(z) = (2m)™ /n " a(x, )P(&)dE, e U. (14.17)



186 14. ELLIPTIC OPERATORS WITH VARIABLE COEFFICIENTS

where € (R™) is the Fourier transform of the extension of ¢ by 0 to C°(R™), and
the integral converges absolutely since a(z,§) is polynomially bounded in & and @ is
rapidly decaying.

An example of quantization, which justifies the prefactor (27)7", is given by

PROPOSITION 14.11. Op(1) is the identity operator C(U) — C°(U).

ProoOF. This follows immediately from the Fourier Inversion Formula, namely The-
orem 11.15. U

More generally, if a is a polynomial in £ then Op(a) is a differential operator — see
Exercise 14.3 below. This is the reason why operators of the form Op(a) are called
pseudodifferential operators. (If a € S°(U x R™), pseudodifferential operators are also
related to singular integral operators studied in harmonic analysis.)

Another example is given by symbols which depend only on £, in which case Op(a)
is a convolution operator:

PROPOSITION 14.12. Assume that a € S™(R™) (see Definition 12.21) and consider
a(xz,&) = a(§) as a symbol in S™(R™ x R™). Then

Op(a)p = (]—"_la) x @ for all p € CZ(R™)

where F~ta € '(R") is the inverse Fourier transform of a, defined in §11.2.2.

PROOF. From (14.17) and using (11.40) we see that

—

Op(a)p = F~(a) = FH(F(a)@) = F '(a) x .
O

We now establish the basic mapping properties of the operator Op(a), starting with

PROPOSITION 14.13. Assume that a € S™(U x R™). Then Op(a) is a sequentially
continuous operator CX(U) — C*(U).

PROOF.S Let ¢ € C(U). Since $(¢) € .%(R") and all the z-derivatives of a(z, £)
are polynomially bounded in &, we can differentiate under the integral sign in (14.17)
similarly to the proof of (11.11) to get that Op(a)p € C*(U). The sequential conti-
nuity is straightforward to verify. O

We next extend Op(a) to a sequentially continuous operator on distributions:

Op(a) : &'(U) — D'(U). (14.18)
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To show existence of such an extension, we use Theorem 7.15. What one needs to
show is that the transpose Op(a)’ is a sequentially continuous operator

Op(a)' : C*(U) — C=(U) (14.19)
and we leave this as an exercise below. Note that since Op(a) : C°(U) — C*(U), the
transpose Op(a)’ acts E'(U) — D'(U) as well.

Let us now consider the case when a lies in the residual class S~ defined in (14.4).

In this case Op(a) is a smoothing operator:

PROPOSITION 14.14. Assume that a € S™°(U x R™). Then Op(a) eztends to a
sequentially continuous operator E'(U) — C*(U).

PROOF. Since a(z,§) is rapidly decaying in &, by Fubini’'s Theorem we see that
Op(a) is an integral operator:

Op(a)p(x) = / Ko(w,y)p(y)dy for all g € C(U), z € U

where the Schwartz kernel K, is given by

Ka(z,y) = (27)" / D (e ) dE, oy e U (14.20)

n

Since a(x, &) and all its x-derivatives are rapidly decaying in £, similarly to the proof
of (11.11) we can differentiate under the integral sign to see that

Ko € C®(U xU).
Now Proposition 7.10 shows that Op(a) extends to a sequentially continuous operator

EU) — C=(U). O

For general a € S™(U x R"), the operator Op(a) is not smoothing (see e.g. Propo-
sition 14.11). However, it is pseudolocal in the following sense:

PROPOSITION 14.15. Let a € S™(U x R™). Then:

1. If K, € D'(U x U) is the Schwartz kernel of Op(a) (see §7.2) then its singular
support is contained in the diagonal:

singsupp K, C {(z,z) | z € U}. (14.21)
2. We have for all u € E'(U)

sing supp(Op(a)u) C sing supp u, (14.22)

sing supp(Op(a)'u) C sing supp u. (14.23)

REMARK 14.16. In the special case when a = a(§), the operator Op(a) is the convo-
lution operator with E := F~1(a) as shown in Proposition 14.12. By Proposition 12.25
we know that singsupp E C {0}, which gives the pseudolocality property by (8.19).
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ProoOF. We roughly follow the proof by Proposition 12.25, showing that for any k,
if |o| is large enough depending on k then (y — z)*K,(x,y) is in C*(U x U).

1. Assume first that a € S™(UxR") and m < —n. From (14.3) we see that the function
¢ a(x,§) lies in LY(R™), with a norm bound locally uniform in x. By (14.17) and
Fubini’s Theorem, the Schwartz kernel /C, has the form (14.20):

Kolz,y) = (2#)_”/ V(g ) de, xy e U (14.24)

n

We have K, € C°(U x U) similarly to Proposition 11.2.

Next, if £ € Ny and m < —n — k then we can differentiate £ times in x under
the integral sign in (14.24). Each differentiation of the integrand either gives one
more power of ¢ or differentiates a in z, so the integral still converges by (14.3).
Differentiation under the integral sign is justified similarly to the proof of (11.11).
This shows that

a€ S"(UxR"), m<-n—-k = K,cC"UxU). (14.25)
2. We next show the identity
(y; — 23)Ka(z,y) = Kp a(2, y). (14.26)

For a € S™>°(U x R™) this can be seen from (14.20) by integrating by parts:

(4; — 2)Ka(z,y) = (27) " / (4 — )¢ Sa(a, €) de

n

=) [ (Dee P )ale,€)de

= (271-)_71/ ei(x—y){nga(l,’ 5) d§ = ICnga(xa y)

For general a € S™(U x R"), from the definition (7.15) of the Schwartz kernel of
an operator we see that (y; — z;)KCq(x,y) is the Schwartz kernel of the commutator
[Op(a), z;] where z; : C*°(U) — C*°(U) is a multiplication operator; indeed, for all
1 € CX(U) we have

((y — z)Ka(z,y), ¥(x) ® o(y)) = (Op(a)z;p,v) — (Op(a)p, z;0) = ([Op(a), z;]e, ¥).

Next, for all ¢ € C°(U) and x € U we compute

(Op(a)liole) = ~(2m) " [ ¢"Sa(z.€) (Do 2(6) +,2(6)) de

——n) " [ ale. D (750 de

= (20)" [ 4Dy (o, )P dE = Opp, 4 o(o).
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Here the first equality follows from the definition (14.17) and the formula (11.11). In
the third equality we integrate by parts, which is justified similarly to (11.10) since
p(€) is rapidly decaying and a(x, &) is polynomially bounded in . Thus the operator
[Op(a), z;] has Schwartz kernel ICDEja(x, y), giving (14.26).

3. Iterating (14.26), we see that for any multiindex g
(v = )" Ka(w,y) = Kpp,(2,9). (14.27)
Assume that a € S™(U x R™). Then Dfa € S™ I8l by (14.7), we see from (14.25) that
Bl>m+n+k = (y—2)°K.lz,y)eCHUxU).

In particular, if we choose N € Ny such that 2N > m+n +k then |y — z|*V K, (z,y) €
Ck(U x U), which implies that K, € C*({(z,y) € U x U | x # y}). Since k can be
taken arbitrarily large, we see that K, is smooth on U x U away from the diagonal,
giving (14.21).

4. We now show that (14.21) implies (14.22). (The statement (14.23) follows in a
similar way, since the Schwartz kernel of Op(a) is equal to ICo(y, z) by (7.21).) Let
u € E'(U) and xy € U \ singsupp u. We need to show that

xo ¢ sing supp(Op(a)u). (14.28)

Fix cutoff functions x1, x2 € C°(U) such that

x1(xo) # 0, supp(l — x2) Nsingsuppu =0, supp x; Nsupp x2 = 0.
We write
x1 Op(a)u = x1 Op(a)xau + x1 Op(a)(1 — x2)u.

The Schwartz kernel of the operator x; Op(a)xs is given by (x1(x) @ x2(y))Ka(z,y)
which lies in C®(U x U) since supp(x1(x) ® x2(y)) = supp x1 X supp x2 does not
intersect the diagonal of U, which by (14.21) contains sing supp KC,. Thus by Proposi-
tion 7.10 we have

X1 Op(a)xau € C°(U). (14.29)
Next, we have (1 — x2)u € C°(U), so by Proposition 14.13 we get
X1 O0p(a)(1 — x2)u € CZ(U). (14.30)

Adding (14.29) and (14.30) we see that x1 Op(a)u € C*(U), which implies (14.28)
and finishes the proof. 0J
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14.2. Proof of Elliptic Regularity 111

14.2.1. Elliptic parametrix. The proof of Theorem 14.2, given below, relies on
the existence of elliptic parametrices which is important in its own right:

THEOREM 14.17 (Elliptic parametrix). Let U G R™ and assume that P € Diff"(U)
1s an elliptic differential operator. Then there exist sequentially continuous operators

Q,Q:&U)—D(U)
such that

(1) Q, @ are sequentially continuous C°(U) — C*(U);
(2) Q,Q are pseudolocal in the sense that

sing supp(Qu), sing supp(@u) C singsuppu for allu € E'(U); (14.31)

(3) the operators [—PQ) and ]—QVP are smoothing in the sense that their Schwartz
kernels are in C*(U x U) and thus (by Proposition 7.10) they are sequentially
continuous

[—PQ,1—-QP:E&U)— CU). (14.32)

REMARK 14.18. We call @, @ right, respectively left, parametrices of P, where the
word ‘parametriz’ stands for an explicitly constructed operator which is a (one-sided)
inverse to P modulo smoothing operators. One could actually take Q) = @ but we do
not prove this here.

Before proceeding with the proof of Theorem 14.17, we present one more prop-
erty of pseudodifferential operators, computing the composition P Op(b) where P is a
differential operator:

LEMMA 14.19. Let U @ R*, P € Diff™(U), and b € S*(U x R"). Denote by
p:=on(P) € S™(U x R™) the principal symbol of P. Then

P Op(b) = Op(P#:b) (14.33)

for some symbol P#b € S™(U x R™), depending linearly on b, whose leading part is
just the product pb:

P#b —pb € S™ (U x R™). (14.34)

REMARK 14.20. In the special case when b(x,§) is a polynomial in & and thus
Op(b) is a differential operator, Lemma 1/.19 follows from the Product Rule in Propo-

sition 13.10. See Exercise 1/.5 below for an explicit example of the computation of
P#b.
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PrROOF. Similarly to Proposition 14.13, we can differentiate under the integral sign
in (14.17) to get for all p € C*(U)

P Op(b)p(z) = (2m)" / P(e™$b(a, €))(€) dé. (14.35)

n

Now, similarly to (13.54) we see that, writing P = 3", ., aa(z)Dg,

P(eb(x,§)) = e (P#b)(x,€)
where (P#b)(z,£) = Y aa(z)(Dy + £)*b(x, ). (14.36)

laj<m

Here for a multiindex a = (g, ..., ), we define (D, + &)* = (Dy, + &) ... (D,, +
€,)*. By the Leibniz Rule we get the formula (where a! = a;!--- a,,!)

|
P#b(a,€) = Y aalr) Y %éﬁle(Lf)- (14.37)
la|<m Bty=a """

By (14.6) and (14.7) we have £¢° Db € S“HP(U x R™). Tt follows that P#b € S™H (U x
R™). Moreover, the term in the sum (14.37) corresponding to +v = a is in S™+H~1(Ux
R™) unless || = m and § = a. The terms with || = m and 8 = « together give

Y aa(@)E"b(x, &) = p(x, &)b(w, €)
jaj=m

which shows (14.34). Finally, (14.35) and (14.36) show that P Op(b)p = Op(P#b)¢
for all ¢ € C®(U), which (since C°(U) is dense in £'(U)) implies that P Op(b) =
Op(P#b) as operators £'(U) — D'(U). O

We are now ready for

PROOF OF THEOREM 14.17. 1. We first construct the operator (), taking it in
the form

Q@ :=O0Op(q) for some ¢ € ST™(U x R").

Any such @ is sequentially continuous C°(U) — C*°(U) (by Proposition 14.13) as well
as E'(U) — D'(U) (by (14.18)), and it is pseudolocal (by Proposition 14.15). Thus it
remains to construct ¢ such that I — P(Q) is a smoothing operator.

By Lemma 14.19 and since I = Op(1) by Proposition 14.11, we see that
I — PQ = Op(1 — P#q).
By Proposition 14.14, I — P() is a smoothing operator if we construct ¢ such that
1—P#Hqe S™U xR"). (14.38)
Henceforth in this proof we denote the spaces S*(U x R™) by just S°®.
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2. We construct a solution ¢ to (14.38) by an iteration procedure. We start by finding
go € S™™ such that r ;=1 — P#qy € S (14.39)

Denote by p := o,(P) € S™ the principal symbol of P. By (14.34) we see that
P#qy — pgo € S™'. Therefore (14.39) is equivalent to
1—pg €S (14.40)

It is time for us to use the fact that P is an elliptic operator. The principal symbol
p(z, &) is a homogeneous polynomial of degree m in £, and since P is elliptic (recalling
Definition 14.1), we have p(x,&) # 0 for all z € U and & # 0. Similarly to (12.51), we
see that for each K &€ U there exists cg > 0 such that

Ip(z, )| > ck|€|™  for all (z,&) € K x R™. (14.41)

Take any function

1

For example, we can put qo(z, &) := (1—x(&))/p(x, &) where x € C(B°(0,1)) satisfies
X = 1 near 0. By Proposition 14.6 we see that (14.41) implies

qo € S, (1443)
The symbol 1 — pgy € C*°(U x R"™) is supported in {|¢| < 1} and thus lies in S™°. It
follows that ¢o solves (14.40) and thus (14.39).

3. We next add a correction term to gy to improve the remainder in (14.39) from S—!
to S™2. More precisely, we construct

q1 € S™™ 1 such that ry :=1— P#(q +q1) € S°. (14.44)
Let r; € S™! be the remainder term from (14.39) and gy be defined in (14.42). We put
™ (I‘7 é)

q1 ‘= qo’1, Q1(95a5> = for z € U, ‘f’ > 1. (14'45)

p(z,§)
From (14.43) and (14.6) we have ¢; € S™™~1. Then by (14.34) we have P#q, — pq, €
S~2. Since pg; — ry € S by (14.45), we get
1— P#(qo+q) =r1 — P#q € S72,
giving (14.44).
4. Tterating Step 3 of the proof, we construct symbols
g € STk ke N,

such that for all k£ € N

Thpr = 1 — P# zk:qg € S (14.46)

=0



14.2. PROOF OF ELLIPTIC REGULARITY III 193

Indeed, qo and ¢, were already constructed in the previous two steps of the proof. If
k > 2, then we let 1 be defined by (14.46) for £ — 1 and put

G = qore € SR (14.47)
Arguing as in Step 3 above, we see that (14.46) holds for k.

5. Having constructed all the symbols g, we use Borel’s Theorem 14.9 to see that
there exists

We claim that ¢ solves (14.38). Indeed, for any N € N we have ¢ — Z,]ﬂv;()l qr €
S=m=N_ Thus by Lemma 14.19 we have P#(q— > 1 @) € S™V. By (14.46) we have
1 — P# Z,]CV;OI gs € S7V as well. It follows that 1 — P#q € S™V. Since this is true
for all N, we get 1 — P#q € S~ as needed. This finishes the construction of the
operator () satisfying the conclusions in the theorem.

6. It remains to construct the operator @ Let P € Diff"(U) be the transpose of P.
By (9.3) we get the following formula for the principal symbol of P':

Tm(P)(@,€) = 0 (P)(x, =€) = (=1)"0,n(P)(x, ). (14.48)
Since P is elliptic, we see that P! is also elliptic. Thus by Steps 1-5 above there exists

g€ S~™(U x R™) such that I — P'Op(q) is smoothing. Define Q to be the transpose
of Op(q) : C=(U) — C>=(U):

Q := Op(q)' : E'(U) — D'(U). (14.49)
Then Q also maps C®°(U) — C*(U) by (14.19), and it is pseudolocal by Proposi-
tion 14.15. We now have N

[—QP = (I - P Op@).

Since I — P* Op(q) is smoothing, so is [ — QP (see the beginning of Step 4 of the proof
of Proposition 14.15). d

REMARK 14.21 X [t is possible to get by without invoking Borel’s Theorem. Indeed,
for each ¢ € Ny we can take q = Zg:o qr 1 Theorem 14.17 for N large enough
depending on { to get the operator I — P Op(q) to have Schwartz kernel in C*. Since
¢ can be taken arbitrarily large, this is enough to show elliptic reqularity. However, it
is conceptually cleaner to construct a single q such that I — P Op(q) is smoothing.

REMARK 14.22.%X Theorem 1/.17 features both a right parametriz QQ and a left
parametriz @ The reason is as follows: it is easier for us to construct a right
parametriz because of the formula for P Op(q) given in Lemma 14.19. An analog
of this lemma for Op(q)P is harder to prove, so we construct the left parametriz é as
the transpose of the right parametriz for the operator Pt. However, the proof of elliptic
reqularity in the next subsection needs a left parametriz. This is a technical point made
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necessary by our refusal to develop a proper calculus of pseudodifferential operators
(which would in particular show that the transpose Op(q)' has the form Op(q") for
some symbol q*, modulo a smoothing operator).

14.2.2. Proof of Elliptic Regularity. We are now ready to give the proof of
Theorem 14.2. We have sing supp(Pu) C singsupp u for any differential operator P,
so we need to show that singsupp u C sing supp(Pu).

1. We first note that it is enough to consider the setting of differential operators on
open subsets of R”. Indeed, assume that M is a general manifold, P € Diff"™ (M) is
an elliptic differential operator, u € D'(M), and xy € M satisfies xg ¢ sing supp(Pu).
Take a chart s : Uy — V; such that xy € Uy, and let sc,u € D'(V}) be the pushforward
defined in (13.42). In terms of the operator s, P defined in (13.59), we have

(50, P)(5t,u) = 5. (Pu).

Since xg ¢ singsupp(Pu), we have s(zg) ¢ singsupp s (Pu). The operator s, P €
Diff™(Vj) is elliptic as follows from (13.60). Therefore, the version of Theorem 14.2
for Vo @ R™ shows that s(xg) ¢ sing supp(se.u), which implies that xy ¢ sing supp .

2. From now on we assume that U @ R", P € Diff""(U) is an elliptic differential
operator, u € D'(U), and zy € U satisfies xy ¢ singsupp(Pu). We need to show that

xo ¢ sing supp u.
Fix a cutoff function
X € C(U), o ¢ supp(l — x).
Let CNQ be the left elliptic parametrix constructed in Theorem 14.17. Then by (14.32)
I=QP+ R where R:E'U)— C®(U). (14.50)
Applying this to xu € &' (U), we get
yu = QPxu + Ryu. (14.51)
By the pseudolocality property (14.31) for Q, and since Ryu € C*>®(U), we see that
sing supp(xu) C sing supp(Pxu).
Similarly to the proof of Theorem 9.14, since Pxu = x Pu+|[P, x]u and xy ¢ sing supp(Pu),

xo ¢ supp[P, x|u, we see that x¢ ¢ singsupp(Pxu). Thus zy ¢ sing supp(xu), which
implies that xy ¢ sing supp u, finishing the proof.

14.2.3. The case of vector bundles. We finally give the analog of Theorem 14.2
for operators acting on vector bundles:

THEOREM 14.23 (Elliptic Regularity I1I"). Assume that M is a manifold, &, F are
(complex) vector bundles of the same dimension over M, and P € Diff"(M; & — F)
is a differential operator (see §15.5.3). Assume that P is elliptic in the following sense:
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for each (x,&) € T*M with £ # 0, the principal symbol 0,,,(P)(z,&) : &(x) — F(x) is
a linear isomorphism. Then we have for all u € D'(M; &)

sing supp u = sing supp(Pu). (14.52)

The proof of Theorem 14.23 is similar to that of Theorem 14.2; so we just give
a brief outline here. Similarly to Step 1 in §14.2.2, we can reduce to the case when
M=U GR"and & =.% = U x C* are trivial vector bundles. The operator P is then
given by a matrix of differential operators (see (13.66)):

P = (P;; € Diff*(U))§

J.d'=1"
Following the proof of Theorem 14.17, we construct pseudolocal operators
Q.Q: CF(U;C") = C>(U;C"), £(U;C) - D'(U;C")
such that I — PQ, [ — QP are smoothing:
[-PQ,I—QP:&U;CH — Cc®(U;CH). (14.53)

The operator Q is a matrix of pseudodifferential operators. More precisely, we con-
struct a matrix of symbols

q= (qjj’)g,j’:lv gjy € ST"(U x R"),
and put Q = Op(q) where
Op(q) := (Op(g;))j -1 : €'(U;C) = D'(U;C°).

Jy'=1
The matrix-valued symbol q € S™™(U x R"; Hom(C* — C*)) is constructed as an
asymptotic sum:

a~Y ai a €S HU x R Hom(C! — C))
k=0
where for each k£ € Ny we have

k
I-POp (qu) = Op(rpy1) for some rpyy € S7F7L (14.54)
5=0

Let p := 0,,(P) € S™(U x R"*; Hom(C* — C")) be the principal symbol of P. From
Lemma 14.19 we see that
P Op(a) = Op(P#a) for any a € S"(U x R"; Hom(C* — C))
where P#a € S™ (U x R"; Hom(C’ — C*)), P#a—pac S™!
and pa is defined using multiplication of ¢ x ¢ matrices.
Now, in Step 2 of the proof of Theorem 14.17 in place of (14.42) we should take
qo(z,€) € C=(U x R"; Hom(C* — C*)) to be the (matrix) inverse of p:

qo(x’f):p(x’f)_l:(cﬁ_}(cf’ QfGU, |€‘ 21
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Since P is elliptic and thus p(x,€) : C* — C! is invertible for ¢ # 0, one can follow
the proof of Proposition 14.6 to see that qo € S™™, where (14.9) now looks more
complicated and features matrix multiplication. (Alternatively one can apply Cramer’s
Rule and use that the scalar symbol det p(z, £) is homogeneous of degree mf in  and
nonvanishing for £ # 0.)

Next, Steps 3-4 of the proof of Theorem 14.17 adapt to the setting of matrix-
valued symbols to construct the symbols qi, qo, ... such that (14.54) holds. Here in
place of (14.47) we put q := qorg, defined by matrix multiplication. Step 5 of the
proof applies as well, showing that Q := Op(q) satisfies (14.53), and Step 6 works as
before to construct Q

Finally, Step 2 of the proof of Theorem 14.2 in §14.2.2 applies (with Q taking the
place of @) to give the conclusion of Theorem 14.23.

14.3. Notes and exercises

The modern theory of pseudodifferential operators, in the form quite similar to what
we present in §14.1, goes back to the work of Kohn and Nirenberg [KN65]. See also
the slightly later paper of Hérmander [Hor65] which shows coordinate invariance of
pseudodifferential operators and has a form of elliptic regularity [H6r65, Theorem 4.7]
identical to Theorem 15.1 below.

The theory of pseudodifferential operators has at least two precursors: the the-
ory of singular integral operators, which are essentially pseudodifferential operators
whose symbols are homogeneous of degree 0 in £, and the theory of quantum/classical
correspondence in quantum mechanics developed in the early XXth century (in par-
ticular, by Hermann Weyl who introduced Weyl quantization, which is an alternative
to (14.17)). See the introduction to [KN65] and the notes to [Hor07, Chapter 18] for
more on the history of the subject.

We treat pseudodifferential operators here as a means to an end and prove the
bare minimum needed for the proof of Theorem 14.2. A proper treatment of pseu-
dodifferential operators (including the analogues of Propositions 13.10 and 13.14 and
the notion of pseudodifferential operator on a manifold) is a part of the field called
microlocal analysis (in MIT, it is taught in 18.157). A curious reader is welcome to
look at [Hor07, Section 18.1] or [GS94, Chapter 3] for a comprehensive introduction
to pseudodifferential calculus.

The presentation in this chapter was partially inspired by [Mel, Chapter 4].

EXERCISE 14.1. (2=1+40.5+0.5 pts) Let U GR"™ and m € R.
(a) Assume that a € C*(U x R™). Fort > 1, define the dilated function

Ao € C(U xR"),  Aa(z,§) = a(x, t€).
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Show that a € S™(U x R") if and only if for all K € U x (R™\ {0}) and «, 3 there

exists a constant Caﬁf( such that
10207 (Ava)(z,€)| < Cypt™  for all (z,6) € K, t > 1. (14.55)

(This can be used to show that the class S™ is invariant under changes of variables
appearing in (13.56) and thus one can define invariantly the class S™(T* M) where M
is a manifold. It can also be used to give an alternative proof of Proposition 14.6.)

(b) Assume that a € C>°(U x R™) has the following homogeneity property:
a(z,t&) =t"a(x, &) forallzeU, [ >1, t > 1. (14.56)
Show that a € S™(U x R™).
(c) Let (€) be defined in (12.3). Show that the function a(§) := (&)™ lies in S™(R™).
EXERCISE 14.2. (1 = 0.540.5 pt) In this exercise you show the following version of

Borel’s Theorem 14.9: for any sequence a € C, k =0,1,..., there exists f € C°(R)
such that f*)(0)/k! = ay for all k.

(a) Fiz x € C(R) such that x = 1 near 0. Show that there exists a sequence € > 0,
k=0,1,..., such that ¢, — 0 and

A x
max sup | gy (7)| <27 where gi(z) := X(—)akxk.
0<ji<k 4 Ek

(b) Show that the series
fl@) = g(@)
k=0
converges in CI(R) for every j to a function f € C®(R) and f9(0)/5! = a; for all j.

EXERCISE 14.3. (1 pt) Assume that a(z,§) = 37, <, @) is a polynomial of
degree m in & with coefficients a,(x) which are smooth functions on U @ R™. Show
that Op(a) is a differential operator:

Op(a)p(x) = Y aa(r)D3p(x).
|er|<m
EXERCISE 14.4. (1 pt) Show that if a € S™(U x R™), then Op(a) : E'(U) —
D'(U) restricts to a sequentially continuous operator C2(U) — C*(U), giving (14.19).
(Hint: write Op(a)te = EZO where B is a certain integral operator. Then show that if
p € C2(U) then Bp(§) = O((£)~°), either by using Fourier transform or directly by
repeated integration by parts.)

EXERCISE 14.5. (1.5 = 0.5+ 1 pts) This ezercise carries out the elliptic parametriz
construction (Theorem 14.17) for a one-dimensional Schridinger operator on R

P:=-0*+V(x)=D:+V(x) whereV € C*(R). (14.57)
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(a) Let b € S™(R x R). Show that the symbol P#b from Lemma 1/.19 is given by
P#b(w, &) = Eb(w, &) + 26D,b(x, €) + (D3 + V(2))b(w, §).

(b) Find g € S72(R x R) such that 1 — P#q € S™*(R x R). Please give an explicit
formula for q(x,&) for |£] > 1 and do not use Borel’s Theorem.



CHAPTER 15

Elliptic operators and Sobolev spaces

In the previous chapter we established regularity for elliptic differential operators
P € Diff™ (Theorem 14.2): if u is a distribution and Pu € C'*° then u € C* as well.
We now turn our attention to elliptic operators acting on Sobolev spaces.

We first show an analog of Theorem 12.20: if Pu € H;_ then u € H>'™ (Theo-
rem 15.1). We also prove the corresponding elliptic estimate (Proposition 15.6, The-
orem 15.7). We next show the Rellich-Kondrachov Theorem on compact embeddings

of Sobolev spaces (Theorems 15.8, 15.10).

We finally restrict to the case of compact manifolds and use the elliptic estimate
and the Rellich-Kondrachov Theorem to show that P : H*t™ — H® is a Fredholm
operator (Theorem 15.13). The Fredholm mapping property means that P is invertible
modulo finite dimensional spaces; under additional assumptions one can show that P
is invertible, which means that the problem Pu = f is well-posed in Sobolev spaces.
One of the consequences of the Fredholm property is that one can study the index
of P, which can be computed by the Atiyah—Singer index theorem — we mention this
at the end of this chapter but do not state the theorem itself.

15.1. Elliptic regularity in Sobolev spaces

Let M be a manifold and P € Dift™ (M) be a differential operator (see §13.3.2).
Then P defines a sequentially continuous operator on the local /compactly supported
Sobolev spaces from §13.2.3:

P:HT"™M) — HE (M), HF™(M) = HS(M) for all s € R. (15.1)

loc

This follows from Definition 13.8 and the fact that for each chart »c: U — V on M,
the pushforward sz, P is an order m differential operator on V' and thus is sequentially
continuous H;,t™ (V) — Hi (V) by Proposition 12.13.

In this section we assume that P is elliptic and establish various regularity results
on P in Sobolev spaces. The simplest one to state is

THEOREM 15.1. Assume that P € Diftf"(M) is an elliptic differential operator.
Then we have for all u € D'(M) and s € R

Pue H (M) = ue€ HI"™M). (15.2)

loc

199
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As an example, if g is a Riemannian metric on M and A, is the corresponding
Laplace-Beltrami operator, then Aju € L2 (M) implies that u € HZ (M).

loc

REMARK 15.2. Theorem 15.1, as well as Theorems 15.7 and 15.15 below, ap-
plies also to elliptic differential operators acting on sections of vector bundles, defined
in §14.2.3. The proofs are exactly the same (generalizing the elliptic parametriz con-
struction to the setting of matrices of operators as explained in §1/.2.3), so to keep
notation simple we state the results in the scalar setting.

15.1.1. Pseudodifferential operators acting on Sobolev spaces. To show
Theorem 15.1, we revisit the proof of Elliptic Regularity III in §14.2.2. We need to
show that the operators @), @ constructed in Theorem 14.17 have the right mapping
properties on Sobolev spaces; this is given by

PROPOSITION 15.3 (Continuity of pseudodifferential operators on Sobolev spaces).
Assume that U @ R™, s,m € R, and a € S™(U x R™). Let Op(a),Op(a)’ : &'(U) —
D'(U) be defined in §14.1.5. Then Op(a) and its transpose restrict to sequentially
continuous operators

Op(a),Op(a)' : HZ™(U) — H; (U). (15.3)

REMARK 15.4. A special case of Proposition 15.5 is when m € Ny and a(x,§) is a
polynomial in &, so that Op(a) is a differential operator — see Exercise 1.3 and (15.1).
In particular, for m = 0 we get continuity of multiplication by smooth functions on
Sobolev spaces, which was previously established as a corollary of Proposition 12.9.

Our proof of Proposition 15.3 follows the scheme of proof of Proposition 12.9 above.
We first establish the following analog of Young’s convolution inequality (Lemma 12.10):

LEMMA 15.5 (Schur’s bound). Assume that K € L*(R*") and define the integral
operator A : LY(R™) — L>®(R™) by

Af© = [ Klensmdn fel®), e (15.4)
Assume that the following constants are finite:
Crimsup [ Emldn. Coi=sup [ (e de (15.5)
£ER™ n neRr” n

Then we have for any f € L'(R") N L*(R")

[Afllz2@ny < VCL1C || ]| 2@y (15.6)
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PROOF. For any £ € R", we estimate

2

[AfEF =

[ ks

< ([ eman) ([ el sk an)
<ci [ K@l el dn

Here in the second line we write [KC(&,7)f(n)| = /IK(& n)] - (VIK(E n)] -] f(n)]) and

use Cauchy-Schwarz. Integrating in £ and using Fubini’s Theorem we get

A7 e <€ [ ([ € mlde) st an
< GGl fllz2n
which gives (15.6). O
We now give

PrROOF OF PROPOSITION 15.3. 1. Fix x € C(U). We will show the following
bound: there exists a constant C' depending on Y, a, s such that

Ix Op(a)@ll s @ny < Cllpl|gstm@ny  for all p € CZ(U). (15.7)

Recalling the definition (12.5) of the norm on H*(R™), we have

el rresm@ny = [l z2@ny, (X Op(@)@llms@m) = [[w]r2@n) (158)
where v(n) := ()" 3(n), w(&) = (§)"F(x Op(a)¢)() '
By (14.17) and Fubini’s Theorem we compute
w© = [ K&y where
! ) (15.9)
Kl = m) " oS [ e ata ()
2. We write
K6 = @r) B pe— ) where F(Gn) = [ e Salwx(o) .
’ (e &7 =, ’

Integrating by parts in z, we see that for each multiindex «

C*F(¢m) = / e D (a(x,n)x(x)) da.

U
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Since a € S™(U x R™), from (14.3) we see that this is bounded by some constant
times (n)™. Since a can be taken arbitrary, we see that for each N there exists a
constant C'y such that

[F(Cm] < O™ (™ for all ¢,n € R™.

Combining this with (12.26) we see that for each N there exists a constant C such
that

K& n)| < Cp(€—m)™" forall§,neR"
Taking N :=n + 1, we see that
sup [ |K(&n)ldn <oo, sup [ [K(&,n)d§ < oo.
¢eRn JRr ner™ JRn
By Lemma 15.5, and recalling (15.8) and (15.9), we get the bound (15.7).

3. Arguing similarly to the proof of Theorem 11.29, using the bound (15.7), density of
C*(U) in Hi™™(U), and completeness of H*(R™), we see that for each v € H:™™(U)
and y € C(U), the distribution x Op(a)u lies in H?(U) and we have the norm bound

Hs+m(Rn) (15.10)

[x Op(a)ul| gs@ny < Cllul

where the constant C' depends on x,a,s, but not on u. This shows that Op(a) :
H™U) — HE.(U) is sequentially continuous. Finally, sequential continuity of

Op(a)’ follows from here by duality, using Proposition 12.14; we leave the details
as an exercise below. U

15.1.2. Elliptic estimate. We now show regularity results for elliptic operators
on Sobolev spaces. We start with

PrROOF OF THEOREM 15.1. We follow the proof of Theorem 14.2 in §14.2.2. As
in Step 1 in that proof, we can reduce to the case of operators on U @ R"™. Take
arbitrary ¢ € C°(U) and fix y € C°(U) such that supp(1 — x) Nsupp ¢ = 0. Let @
be the left elliptic parametrix for P constructed in Theorem 14.17. Multiplying both
sides of (14.51) by v, we get

u = PQxPu + V(Q[P,x] + Ry)u. (15.11)

By (14.49), we have Q@ = Op(q)! where § € S~™(U x R™). Therefore, by Proposi-
tion 15.3 (with m replaced by —m) and since Pu € H; (U) and thus xyPu € HZ(U)
we have

YQxPu € H:™(U). (15.12)
Next, the operator w(@[P, x| + éX) is smoothing:

H(@QIP.X] + Ry) : D'(U) —» CZ(U). (15.13)
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This uses pseudolocality of @ (Proposition 14.15). Indeed, recall that supp ¢¥>Nsupp(1—
X) = 0 and the coefficients of [P, x] are supported on supp x Nsupp(l — x) € U. Take
X' € C*(U) such that

[P,x] = X'[P,x], suppx Nsuppv = 0.

Then w@[P x| = VY [P, x|, but QY is smoothing similarly to (14.29). Thus
wQ[P x| is smoothing. We also know that R is smoothing. Together these give (15. 13).

Putting together (15.12) and (15.13) and using that C>°(U) C Ht™(U), we see
that Yu € HST™(U). Since this holds for any ¢ € C>®(U), we get u € HS™(U),

loc

finishing the proof. U

From the proof above we get the following quantitative version of Theorem 15.1:

ProprosITION 15.6 (Elliptic estimate on open subsets of R™). Assume that U G R™
and P € Diff""(U) is an elliptic differential operator. Take any %J € C(U) such
that supp(1 — QZ) Nsuppy = 0. Then for each s, N there exists a constant C' such that
for allu € HZT™(U) we have

loc

PROOF. Fix a cutoff

X € C=(U), supp(1l — ) Nsupp x = supp(1l — x) Nsupp ¢y = 0.

We write 1u in the form (15.11); since 15 = 1 near supp x, we have

Yu=QYPu+Riu, Q:=v¢Qx, R:=v(QP,x]+Ex)
Since @ = Op(q)* for some ¢ € S~™(U x R™), by Exercise 15.1 below the operator Q
is bounded H*(R"™) — H*T™(R™).
As in (15.13), the operator R is smoothing, more precisely its Schwartz kernel
lies in C2°(U x U). Thus this operator is bounded H¥(R") — H**™(R"). Indeed, if
|k || -~ ®ny — 0, then vy, — 0 in D’(R™). Since R is smoothing and its Schwartz kernel

is compactly supported, we have Rv, — 0 in C°(R"™), which implies that Ruy — 0 in
H*t™(R™). This implies the needed boundedness statement on R.

We now have

[ull zovm @ny < 1Q

giving the estimate (15.14). O

Hs(R™)— Hs+m( R”)’WPUHHS R™) ‘|'||RHH N(R")— Hs+m(Rn) H@UUHH N(R™)

From Proposition 15.6 we get the following statement, which is used crucially in this
and the next chapter to establish mapping and spectral properties of elliptic operators
on compact manifolds. We will use this estimate as a black box, so the reader does
not need to follow all the details of its proof to understand how it is applied later.
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THEOREM 15.7 (Elliptic estimate on compact manifolds). Assume that M is a
compact manifold, P € Diff" (M) is an elliptic differential operator, and fix s, N € R.
Then there ezists a constant C' such that for all w € HT™(M) we have

Here the norm on Sobolev spaces is defined in Exercise 15./.

PRrOOF.S Recalling Exercise 13.4, take a finite collection of charts s : U, — Vj,
¢=1,...,N and a partition of unity

N
L= ¥, € CE(UL).

(=1

Choose cutoffs

b € OX(Uy),  supp(1 — ) Nsupp vy = 0.

Applying Proposition 15.6 to the elliptic operator s, P € Diff"(V};) and the distribu-
tion ¢ u with the cutoffs sep,1by, .10 we get for each ¢ and some constant C' (whose
value will change from place to place in the argument)

|| 520+ (Yeu) |
We have

prem () < O30 (Ve P) || s ey + C|| 20 (ett) || - (gny- (15.16)

520 (ev)]

Indeed, if ||vg||gs(my — O then (by Exercise 13.4) the sequence v, converges to 0
in H; (M), thus (recalling the discussion following Definition 13.8) we have s, v, — 0
in HE (V;) and thus |3 (¢)] msrr) — 0. This shows (15.17). The same estimate
holds for the space H~", so (15.16) implies that

mern) < Cllv]

vy  for all v e HY(M). (15.17)

loc

[ (Pew) [ ovmzny < CllPullms ) + Cllull - am)-
Adding these estimates for all ¢ and recalling the definition (13.74) of the norm
||| rs+m gy, we get (15.15). O

15.2. Compact embedding in Sobolev spaces

We are almost ready to combine Theorem 15.7 with an argument from functional
analysis to get the Fredholm mapping property on Sobolev spaces for elliptic differ-
ential operators on compact manifolds. The remaining ingredient is the fact that for
a compact manifold M, the space H*(M) is precompact inside H*(M) when s > t,
and this is what we establish in this section. We start with the case of Sobolev spaces
on R™:
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THEOREM 15.8 (Rellich—-Kondrachov Theorem on R™). Assume that s,t € R, s > t,
ur € HZ(R™) is a sequence, and there exist constants Cy, R such that for all k
suppux C B(0, R), (15.18)

[
Then there exists a subsequence uy, which converges in H'(R™).

REMARK 15.9. We cannot completely get rid of (15.18): if x € C(R) then the
sequence ug(z) = x(x — k) satisfies (15.19) for any s but it does not have a limit
in L*(R). We cannot get rid of (15.19) either: the sequence ug(z) = Vkx(kz) sat-
isfies (15.18) and is bounded in L*(R) but does not converge in this space. However,
with more work one can replace conditions (15.18) and (15.19) by the weaker assump-
tion that ||(x)°ug(z)| rrsmny < Co for some § > 0. One can summarize this statement
informally as

improved reqularity + improved decay at infinity = precompactness.

PRrROOF. 1. We carry out an Arzela—Ascoli type argument on the side of the Fourier
transform. Recall from Proposition 11.26 that, since uy € &'(R™), we have u; €
C>*(R™).

We first show that uy is locally bounded and Lipschitz continuous uniformly in £,
namely for each T > 0 there exists a constant Cr such that for all k

|uk(§)] < Cp  for all £ € B(0,T), (15.20)
@(€) — W) < Crlé —n| for all £, € B(O,T). (15.21)
Fix N € Ny such that s+ N > 0 and take a cutoff function x € C°(R") which is equal

to 1 near B(0, R). For each multiindex o and £ € R" we compute (with the constant
C\, depending on «, Cy, x but not on k)

|08 (E)] = [ (un (), 2%x (2)e )]
< Collz*x(2)e™™ || g gy
< Collz®x(@)e™™ [l om gy
< Cal&)™.

(15.22)

Here in the first line we use Proposition 11.26 and the support condition (15.18). In
the second line we use Proposition 12.7 and the bound (15.19). In the third line we
use Proposition 12.1 and the fact that y € C2(R™).

Taking (15.22) with a = () we get (15.20). Taking (15.22) with |a| = 1 we estimate
|duy (€)| which gives the bound (15.21).
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2.R We now use (15.20)—(15.21) and the Arzela—Ascoli theorem to see that there exists
a subsequence ug, such that for some v € C°(R™) we have as £ — 0o

Uk, (§) = v(€) locally uniformly in £ € R™. (15.23)

Here ‘locally uniformly” means ‘uniformly on each compact subset of R™. Since the
version of the Arzela—Ascoli theorem that we use is not the one most commonly stated
in a real analysis course, we briefly review how the proof goes.

Let &, € R™ be a sequence of points which is dense in R" (e.g. one can take
all the points with rational coordinates, which form a countable set). By (15.20) we
know that for each fixed m, the sequence u(§,,) is bounded. Then there exists a
sequence ky; — 0o such that Uy, (&) — v1 for some v; € C, and we can iteratively
construct sequences kg, — oo for m > 2 such that k,,, is a subsequence of k;,,_; and
Ug, . (&m) — vm for some v, € C. Take the diagonal sequence k; := kg, then

U, (Em) = vy as £ — oo for all m.
We next claim that @y, (£) is a Cauchy sequence locally uniformly in £, that is for each

T > 0 we have

sup  sup |ug,(§) — ug, (§)| =+ 0 asr — oo. (15.24)
£L'>r £€B(0,T) ‘

This can be shown using the fact that for each € > 0 there exists m. so that each point
£ € B(0,T) is e-close to one of the points &, with m < m.. Now |uy,(&m) — Uk, (§m)]
for m < m, is estimated using (15.23) and |ug,(§) — U, (&m)| (as well as the similar
quantity for ¢') is estimated by the Lipschitz bound (15.21).

Finally, (15.24) implies the local convergence statement (15.23) (since the space of
continuous functions on B(0,7") with the uniform norm is complete).

3. By Fatou’s Lemma and the Sobolev norm bound (15.19) we have

| @10 s <timint [ (€ ) d¢ < o
Thus (£)%v(€) € L*(R™), so there exists
ue H(R™), u=nw.
It remains to show that for ¢ < s we have the convergence
|k, — vl e @ny — 0,

which is equivalent to

JRGECAGEGRST (15.25
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Take arbitrary 7' > 1. We have

2t U, (€) — v 2 g¢ < o72(t) 2s T, 2 ()2
L 7€) —w(@) de <27 [ 2 (e QO + e de 1

< C«TQ(t—s)

where the constant C' is independent of ¢ and 7. Here in the second line we use the
uniform Sobolev bound (15.19) and the fact that (€)*v(¢) € L?(R™). It follows that

/ Mk (&) — () dg < OTH + / (€ ik, (§) — (&) de.

B(0,T)

The second term on the right-hand side converges to 0 as ¢ — oo by (15.23). It follows
that
lim sup / (&) [y, (&) — v(€)[*de < 0T,
{—00 n
Since this is true for all T, and t < s, we get the convergence statement (15.25),
finishing the proof. O

We now give the version on compact manifolds:

THEOREM 15.10 (Rellich-Kondrachov Theorem on compact manifolds). Assume
that M is a compact manifold and s > t. Then H*(M) embeds compactly into H' (M),
in the following sense: if up € H*(M) is a sequence such that ||uy|
then there exists a subsequence uy, which converges in H'(M).

(M) s bounded,

PRrOOF.S Recalling Exercise 13.4, take a finite collection of charts s, : Uy, — Vin,
m =1,..., N and a partition of unity

N
1= ZXmu Xm € Cgo(Um)
m=1
For each m, the sequence s, (Xmur) € HE(V,y,) is supported in ¢, (supp xm) € Vi
and is uniformly bounded in H® norm. Applying Theorem 15.8 N times, we see that
there exists a subsequence uy, such that for each m, we have as £ — oo

s (XmUk,) = Wy, in HY(V,,)  for some w,, € HY(V,,).
By Exercise 13.3, we see that xp,ur, — 5w, in HL (M), where st w,, € £'(U,,) is

extended by 0 to an element of H*(M). Summing over m and using Exercise 13.4, we

see that
N

|luk, — ul| gty — 0 where u 1= Z 7 Wy,

m=1

finishing the proof. U
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15.3. Fredholm theory

15.3.1. Fredholm property of elliptic operators on compact manifolds.
We now combine the elliptic estimate (Theorem 15.7) with Rellich-Kondrachov The-
orem 15.10 to show that elliptic differential operators on compact manifolds have the
Fredholm property on Sobolev spaces.

We first give the definition of a Fredholm operator:

DEFINITION 15.11. Let Hq, Ho be Banach spaces and P : Hy — Ho be a bounded
linear operator. We say that P is a Fredholm operator if all of the following conditions
are satisfied:

(1) the kernel ker P := {u € H, | Pu = 0} is finite dimensional;

(2) the range ran P := {Pu | u € H1} is a closed subspace of Ha;

(3) the range ran P has finite codimension in the sense that the quotient Hs/ ran P
s a finite dimensional space.

If P is a Fredholm operator, then we define its index as the integer
ind(P) := dim(ker P) — dim(Hs/ ran P). (15.27)

REMARK 15.12.% The property (2) above is actually unnecessary: one can show
that (1) + (3) = (2). However, a typical proof of the property (3), such as the one for
elliptic operators given below, establishes property (2) along the way.

Now, let M be a compact manifold and P € Diff"(M) be a differential operator.
By (15.1), the operator P : D'(M) — D'(M) restricts to bounded operators

P,: H""™(M) — H*(M), seR. (15.28)

The transpose P' is a differential operator in Diff™(M; Q| — |Q|), where |Q] is the
bundle of densities over M (see (13.73)), and it restricts to bounded operators

Pl H™(M: Q) — HY(M;|Q]), seR. (15.29)

We have the identity (which is immediate from the definition of P! for u,v € C* and
extends to general u,v by a density argument, with the pairing defined similarly to
Proposition 12.14)

(Pyu,v) = (u, P',_, v) forallue H"™(M), ve H*(M;|Q]). (15.30)

Note that we can fix a smooth positive density wg on M which identifies sections of
|©2] with functions, and consider P! as a scalar operator. In this case (15.30) is valid
for all u € H*™™(M), v € H (M) and the pairing (e, ®) extends to Sobolev spaces

the integral (f,g) := [, fgwo.
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If the differential operator P is elliptic, then by Theorem 14.2 the kernels of the
operators P,, P! are independent of s:

ker Py = ker P := {u € C*(M): Pu = 0},

15.31
ker P! = ker P' := {v € C®(M;|Q]): P'v = 0}. ( )

We are now ready to present the main result of this section:

THEOREM 15.13 (Fredholm property of elliptic operators). Let M be a compact
manifold and P € Diff " (M) be an elliptic differential operator. Then for each s € R,
the operator Py defined in (15.28) has the Fredholm property. Moreover, the range of
Py is characterized as follows:

ran P, = {w € H*(M): for all v € ker P* we have (w,v) = 0}. (15.32)

REMARK 15.14. A standard application of (15.32) is the following existence theo-
rem: if g is a Riemannian metric on a compact connected manifold M and A, is the
corresponding Laplace—Beltrami operator (see (13.63)) then for each w € H*(M) we
have

w=Agu for someu € H*"*(M) <= / wdvol, = 0. (15.33)
M
We leave the proof of (15.33) as an exercise below.

REMARK 15.15.% Ewven though the space ker P consists of smooth functions, to
show that this space is finite dimensional one needs to use spaces with fixed reqularity
(such as Sobolev spaces) and compact embedding (such as Theorem 15.10).

Proor. We follow a classical argument from functional analysis, using Theo-
rems 15.7 and 15.10 as black boxes.
1. We first show that ker P; = ker P is finite dimensional. We argue by contradiction.
Assume that ker P is infinite dimensional. Fix N > —s—m. Using the Gram—Schmidt
process, we construct a countable orthonormal system

1, k=K,

' (15.34)
0, otherwise.

up € ker P, (up, g ) -~ (v = {

By Theorem 15.7 there exists a constant C' such that for all k

ur] zstmnmy < Cllugl| -~ = C.

Using the compact embedding H**™(M) C H~" (M) given by Theorem 15.10, we
see that wu;, has a subsequence which converges in H~"(M). However, this contra-
dicts (15.34) since [[uy — wp || -~ (p) = V2 and thus no subsequence of u; can be a
Cauchy sequence in H=~(M). This shows that ker P is finite dimensional.
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2. We next show that ran Py = {Pu | u € H*" (M)} is a closed subspace of H*(M).
Assume that w lies in the closure of ran P in H*(M). Then there exists a sequence

up € H"™(M),  ||Pu, — w|| gs(my — 0. (15.35)

We would like to find a subsequence of u; which converges to some u in H*T™(M),
which would show that w = Pu lies in ran P,. This proceeds in three steps:

(a)

(b)

We can add an element of ker P to any u, without changing (15.35). Thus we
replace uy by its projection to the orthogonal complement of ker P in H5t"(M),
so that

(g, [)astmay =0 for all f € ker P. (15.36)

We claim that the sequence wuy is bounded in H¥7™(M). We argue by con-
tradiction. If uy is not bounded, then we can pass to a subsequence to make
| || s +m a1y = 00. Put

~ U
U =
ST

By (15.35) we have

Nl geem oy = 1 (15.37)

Hs+m(M)

| Pug || s (pmy — 0. (15.38)

Using the compact embedding H**™(M) C H~" (M) given by Theorem 15.10),
we can pass to a further subsequence to make u; converge in H—(M). By
Theorem 15.7 applied to u, — ug, there exists a constant C' such that for

all k, k'

() + Oty — g || -3 () (15.39)

Since Puy is a Cauchy sequence in H*(M) by (15.38) and uy is a Cauchy
sequence in H~Y(M), we see that the right-hand side of (15.39) converges
to 0 as k, k' — oo. Thus uy is a Cauchy sequence in H*t™(M). Since
H**t™(M) is complete, we have

@y, — || grs+mpgy = 0 for some @ € H*™(M). (15.40)
Passing to the limit in (15.36), (15.37), and (15.38), we see that
(w, fYgstmmy =0 forall fekerP, |ul

Hs+m(M) = 17 Pﬂ == 0

Thus u € ker P. Taking f := u above, we get a contradiction.

Now that the sequence uy is bounded in H** (M), we use the compact em-
bedding H**™(M) C H=N(M) given by Theorem 15.10 to pass to a subse-
quence and make uy converge in HV(M). Since Puy is a Cauchy sequence
in H*(M) by (15.35), we argue in the same way as for the proof of (15.40) to
see that

l|lur, — ul ms+mm) — 0 for some u € Hs+m(M)-
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Passing to the limit in (15.35), we see that w = Pu and thus w lies in ran P;.
This shows that ran P; is a closed subspace of H*(M).

3. We now show the characterization (15.32) of the range ran P;. First of all, if
w € ran P, and v € ker P' then we write w = Pu for some v € H*t"(M) and
compute by (15.30)

(w,v) = (Pu,v) = (u, P'v) = 0.

It remains to show that if w € H5(M) and (w,v) = 0 for all v € ker P', then
w € ran P;. We argue by contradiction. Assume that w ¢ ran P;. Since ran P; is a
closed subspace of H*(M), there exists a bounded linear functional

F:HM)—C, Flanp, =0, F(w)#0.

For example, one can use the Orthogonal Complement Theorem 1.3 to find nonzero
w € H*(M) such that w — w € ran P; and w is orthogonal to ran Ps (with respect to
the H*® inner product), and put F'(h) := (h, W) gs(m) for all h € H*(M).

Similarly to Proposition 12.14, there exists v € H*(M;|€|) such that the func-
tional F' has the form
F(h) = (h,v) forall h € H*(M).
Since F|ian p, = 0, we have for all u € H¥"(M)
0 = (Pu,v) = (u, P'v)

where we used (15.30). In particular, this is true for all u € C*°(M), which (similarly
to Theorem 1.16) shows that P'v = 0. Thus v € ker P*. But we also have (w,v) =
F(w) # 0, which gives a contradiction.

(As a side remark, we could have avoided Proposition 12.14 and (15.30) by restrict-
ing F' to C*°(M;|Q|) and constructing v as a distribution in D'(M). We did not do
this to produce a more robust proof which applies to other, potentially non-elliptic,
situations.)

4.5 Denote by (ker P')’ the space of linear functionals on ker P!. Note that ker P! is
finite dimensional by Step 1 of this proof applied to the elliptic operator P!. The map
T:H(M)— (ker PY), T(w)w) = (w,v)

is surjective. Indeed, if v € ker P* C C*(M;|Q]) is such that T'(w)(v) = 0 for all
w € H*(M), then in particular (w,v) = 0 for all w € C*°(M) which (similarly to
Theorem 1.16) gives v = 0. Since any proper subspace of (ker P')" annihilates some
nonzero v € ker P?, we see that the range of T is the entire (ker P*)’.

By (15.32), the kernel of T' is equal to ran P;. Thus T induces an isomorphism
H*(M)/ran P, ~ (ker P")'. (15.41)
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This shows that ran P, has finite codimension and completes the proof of the Fredholm
property. [l

15.3.2. General Fredholm theory®. We now give a brief review of general
properties of Fredholm operators. We refer the reader to [Hor07, §19.1] and [Lax02,
§21.1,24.1-24.2] for the proofs.

We first define the notion of a compact operator:

DEFINITION 15.16. Let Hq, Ho be Banach spaces and A : Hiy — Ha be a bounded
linear operator. We say that A is a compact operator if the image of the ball B(0, 1)
in Hy under A is precompact in Ho, that is for any bounded sequence u, € Hy the
sequence Auy € Ho has a convergent subsequence.

Some standard properties of compact operators are collected in

PROPOSITION 15.17. The set of compact operators is a closed ideal in the space of
bounded operators, namely:

(1) linear combinations of compact operators are compact operators;

(2) if Ha A Ho LN Hs are bounded operators and one of the operators A, B is
compact, then the composition BA : Hi1 — Hz is a compact operator;

(3) if Ag : H1 — Ha is a sequence of compact operators and A : Hy — Ha is a
bounded operator such that | Ax— Al|x, -1, — 0, then A is a compact operator.

We next give standard properties of Fredholm operators and their index.

PrRoOPOSITION 15.18. 1. The set of Fredholm operators is open in the space of
bounded operators and the index is a locally constant function on this set, namely for
each Fredholm operator P : Hy — Hs there exists € > 0 such that for any bounded
operator @ : Hy — Ho with ||P — Q|3 o, < €, the operator Q has the Fredholm
property and ind P = ind Q).

2. Fredholm operators are stable under compact perturbations: if P : Hy — Ho is a
Fredholm operator and W : Hi — Hs is a compact operator, then P+ W is a Fredholm
operator and ind(P + W) = ind P.

3. If Hy i Ho N Hs are two Fredholm operators, then their composition QP is
also a Fredholm operator and ind(QP) = ind P + ind Q.

15.3.3. A touch of index theory. We now very briefly discuss index theory of
elliptic operators. Let M be a compact manifold, &, .%# be two vector bundles over M
and P € Diff"(M;& — F) be an elliptic differential operator (see §14.2.3). We use
operators on vector bundles since the index of a scalar differential operator is always
equal to 0, see Exercise 15.5 below.
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The operator P acts on Sobolev spaces similarly to (15.1), and the version of
Theorem 15.13 for vector bundles shows that the index of P on each of these spaces is
given by (recalling (15.41))

ind P = dim ker P — dim ker P". (15.42)

We give here some basic properties of this index. We start with the statement that
the index only depends on the principal symbol:

ProprosSITION 15.19. Assume that P,Q € Dif"™"(M;& — F) and 0,(P) =
om(Q). Then ind P = ind Q.

PROOF. Take any s € R. The operator P — Q lies in Diff" ' (M;& — .#) and
thus is bounded H**"(M;&) — H**1(M; F). Now, the inclusion H*™'(M;.F) —
H*(M;.%) is a compact operator by Theorem 15.10, thus by Proposition 15.17(2) we
see that Py — Qg : H*™™(M;&) — H*(M;.F) is a compact operator. By part 2 of
Proposition 15.18, we have ind Py = ind Q. 0

Given Proposition 15.19, we can define the index associated to a symbol: for a
degree m homogeneous polynomial p € C*(T*M;7* Hom(& — 7)) (see (13.72))
which is elliptic in the sense of Theorem 14.23, define

indp € Z
to be the index of any P € C*(T*M; & — #) such that o,,(P) = p.

We remark that ind p is homotopy invariant: if p,, 0 < r < 1is a continuous family
of elliptic symbols, then ind p, is independent of r. Indeed, we can choose the family
of corresponding differential operators Py, 0,(P()) = pr, depending continuously
on 7. Then the function 7 + ind P,y = ind p, is locally constant, and thus constant.
Indeed, fix r € [0, 1] and take some s € R. We have

IPe) = Pollassmme) e =0 asr’ =

Therefore, by part 1 of Proposition 15.18 there exists € > 0 such that for |7/ — 7| < &
we have ind P(T/) =ind P(r).

There is a general formula for the index of any elliptic differential operator, known
as the Atiyah—Singer index theorem. It states that the index ind p is the integral of
the product of the Chern character of p (which is a cohomology class with compact
support on T*M) with a certain cohomology class on M pulled back to T*M. It
takes considerable effort to define the two objects above, so we refrain from stating the
index theorem here. We instead refer the reader to [H6r07, Chapter 19] and [Tay11b,
Theorem 10.5.1] for details. See also [Mel93] whose focus is the case of manifolds with
boundary.
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One application of the Atiyah—Singer index theorem is to the Gauss—Bonnet the-
orem for Riemannian surfaces, where the Euler characteristic of the surface appears
as the index of the even-to-odd Dirac operator (d + d*)even : C°(M;Q° & Q?) —
C>(M;Q), see Proposition 17.20 below for a bit more information and [Tay11b,
§10.7] for a detailed presentation (which includes the case of general even dimensions,
known as the Chern-Gauss—Bonnet theorem). Another application is the Riemann—
Roch theorem on Riemann surfaces, see [Tay11b, §10.9].

15.4. Notes and exercises

Our presentation partially follows [Hor07, §19.1-19.2] and [Mel, Chapter 6].

The Fredholm property of Theorem 15.13 holds for elliptic differential operators
on compact manifolds with boundary, if we incorporate the boundary conditions into
the operator and assume that they satisfy what is known as the Lopatinski-Shapiro
condition. See [Hor07, §20.1] for a general treatment. An important special case is
that of the Dirichlet boundary value problem for the Laplace-Beltrami operator: if
(M, g) is a compact connected Riemannian manifold with nonempty boundary oM,
then the operator

we  H (M) = (Agu,ulopm) € LHM) & H2 (M)

is invertible. Here H- (M) is a Sobolev space on M as a manifold with boundary, de-
fined by requiring that 9“u € L?*(M) for |a| < 2. The boundary restriction operator
u +— ulgp can be defined following Exercise 12.9. One does not need the machin-
ery of general elliptic differential operators to solve the Dirichlet problem, there is a
much simpler approach using the Dirichlet principle — see for example [Tay11b, §5.1],
[Eval0, Chapter 6], or [Hor07, pp.28-29].

EXERCISE 15.1. (0.5 pt) Assume that U G R", m,s € R, a € S™(U x R™), and
X, ¥ € C2(U). Show that v Op(a)tx is a bounded operator H5*™(R™) — H*(R"), and
thus Op(a) is a sequentially continuous operator H:™(U) — Hf (U). (Hint: use
the mapping property of Op(a) proved in Proposition 15.3 and the duality statement,
Proposition 12.7.)

EXERCISE 15.2. (1 pt) Show that the following elliptic estimate for the Laplacian
A on R?,
||¢u||H2(R2) < O”XAUHLQ(R?) + OHXUHL?(R?)
does not hold when 1 = x. (You may choose x € C>°(R?) as you want. Hint: try to
construct a sequence of solutions to Au =0 of the form f(x1)g(x2).)

EXERCISE 15.3. (1.5 pts) Let a € R. Fiz x € C®(R) such that [, x(x)dz =1
and put ug(x) = k*x(kx) for k € N. For which s € R is the sequence uy bounded
in H*(R)? For which s does it have a limit in H*(R), and what is this limit?



15.4. NOTES AND EXERCISES 215

EXERCISE 15.4. (1 pt) Show (15.33). (Hint: use (13.63) to understand the kernel
of A,, and note that A, is its own transpose with respect to the density dvol,.)

EXERCISE 15.5. (1 pt) Let M be a compact manifold and P € Diff"(M) be an
elliptic differential operator. Show that ind P = 0. (Hint: fixing a smooth positive
density, we can think of the transpose P' as an operator in Diff"(M). What is its
principal symbol?)

EXERCISE 15.6. (1 pt) This exercise gives a basic example of a 0™ order pseudo-
differential operator on the circle S' = R/277Z which has nonzero index. Consider the
operators 115 on L?(S') defined using Fourier series as follows:

Hi( E Ckezkx) — E : Ckezkx
keZ keZ
+k>0

for any sequence (c) € (*(Z). Let £ € Z and define the operator P on L*(S') by
Pf(x) = @I f(2) + T f(2),  f € LA(S)).

Show that P is a Fredholm operator of index —{. (With more knowledge of microlocal
analysis, one could actually show that this is true with e*** replaced by any nonvanishing
function a € C*(S"), and ind P = —% fSl % dx is minus the winding number of the
curve a : St — C about the origin — this is a ‘baby index theorem’.)






CHAPTER 16

Spectral theory

In this chapter we study the spectral theory of elliptic self-adjoint operators on
compact manifolds. The main result is Theorem 16.1 which shows that the spectrum
is given by a sequence of eigenvalues going to infinity and there is a Hilbert basis of
corresponding eigenfunctions. The proof uses the Fredholm property (Theorem 15.13),
the Rellich-Kondrachov Theorem 15.10, and the Hilbert—Schmidt Theorem 16.3 below.

16.1. Spectral theorem for self-adjoint elliptic operators

16.1.1. Self-adjoint operators and statement of the spectral theorem. We
first introduce adjoints of differential operators. Let M be a compact manifold. We
fix a positive density (see §13.1.7)

wp € C°(M;[9Q]), wo > 0.

For two functions f,g € L?(M), define their inner product by

(F. 9) 22 oty = /M fgwo. (16.1)

The resulting space L?(M;wy) is a separable Hilbert space.

If P € Diff"(M) is a differential operator, then the adjoint P* € Diff" (M) with
respect to the density wy is defined by the identity

<Pf7 g>L2(M;w0) = <f7 P*g>L2(M;wo) for all fag € COO<M> (162>

Using the density wy to identify densities on M with functions, we view the transpose
P! (see (13.73)) as an operator in Diff"(M). Then P* and P! are related by the
formula

P*u = Pty for all u € D'(M). (16.3)

For s € R, let P, : H*™™(M) — H*(M) be the action of the operator P on Sobolev
spaces, see (15.28). The spectrum of Py is defined as follows:

Spec(Ps) :={X € C| P; — X is not invertible}. (16.4)

Here by Banach’s bounded inverse theorem, if Py — A : H*™™(M) — H*(M) is invert-
ible, then the inverse is a bounded operator H*(M) — H*T™(M).

217
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We are now ready to state the main result of this chapter. We use the term ‘formally
self-adjoint’ to keep in line with general spectral theory, see §16.3 below.

THEOREM 16.1 (Spectral Theorem). Assume that M is a compact manifold with a
given positive density wy, m > 1, and P € Diff"™ (M) is an elliptic differential operator.
Assume that P is formally self-adjoint on L*(M;wy) in the sense that P* = P where
P* is defined in (16.2). Then there exist sequences indezed by k € N

Ur € COO(M), A: € R, |)\k| — 00,
such that ug is an eigenfunction of P with eigenvalue \:
Puy, = Apug,

and {uy.} is a Hilbert basis of L*(M;wy), namely it is an orthonormal system in L?(M;wy)
and the span of {uy} is dense in L?(M;wy). Moreover, the spectrum of Py for any s
15 given by

Spec(Ps) = Spec(P) = { )\ | k € N}. (16.5)

REMARK 16.2X Theorem 16.1 does not hold for m = 0. In this case P is a multi-
plication operator: Pu = au for some a € C*°(M;R). The spectrum of P is the range
of a, which is typically an interval in R, and is not a discrete set unlike (16.5). The-
orem 106.1 also does not apply to noncompact manifolds: for example, the spectrum of
the Laplacian A on R™ is the half-line (—o0, 0], since the Fourier transform conjugates
A to the multiplication operator by —|£|*. See Exercise 16.1 below for another concrete
example.

The standard example of an operator to which Theorem 16.1 applies is the Laplace—
Beltrami operator A, € Diff*(M) associated to a Riemannian metric g on M. Here
we put wy := dvol, and formal self-adjointness of A, follows from (13.63). We discuss
more advanced results on the eigenvalues and eigenfunctions of A, in §16.2 below.

As a consequence of Theorem 16.1, we can write any f € L?(M) as the sum of a
generalized Fourier series

f= kauk where f;, € C, Z | fe|? < . (16.6)
k=1 k=1

This makes it possible to write down solutions for the heat and the wave equation
on R; x M,. For example, if {u;} is a Hilbert basis of eigenfunctions of —A, with
eigenvalues Ay > 0 (see §16.2 below), then the solution to the initial value problem for
the heat equation

(O — Agu(t,z) =0, t>0, v e M,

u(0,z) = f(x)
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is given by the Fourier series

Ze tA’“fkuk where f(x Z frug(x

k=1
Using this, one can show for example that, assuming that M is connected, we have
exponential convergence to equilibrium

u(t,e) =

/fdvol +O(e™ ) 2

where § > 0, sometimes called the spectral gap of M, is the smallest positive eigenvalue
of —A,.

The proof of Theorem 16.1 below generalizes to the case of an elliptic formally
self-adjoint operator P € Diff""(M;& — &) acting on sections of a complex vector
bundle & (see Remark 15.2). Here to make sense of the adjoint P*, in addition to wy we
fix an Hermitian inner product (e, e)s, on each fiber &(x) which depends smoothly
on x € M. Then we put

(f,9) 2(mie) = /M<f($),9(93)>£(z) wo forall f,g € L*(M;&) (16.7)

and define P* similarly to (16.2). The standard examples of formally self-adjoint oper-
ators on vector bundles are the Hodge Laplacian and the Dirac operator on differential
forms, see §17.3.3 below.

16.1.2. Compact self-adjoint operators®. The proof of Theorem 16.1 uses the
following general statement from functional analysis on Hilbert spaces:

THEOREM 16.3 (Hilbert—Schmidt Theorem). Assume that H is a Hilbert space and
A:H—H, A#0, is a compact self-adjoint operator (see Definition 15.16). Then A
has a nonzero real eigenvalue, that is there exist p € R\ {0} and v € H, v # 0, such
that Av = pwv.

REMARK 16.4.X The full Hilbert-Schmidt theorem states that there exists an or-
thonormal basis of eigenvectors of A. We do not give this part of the statement because
we do not use it in the proof of Theorem 16.1 below.

Proor. 1. We first use self-adjointness of A to show the following identity:

A
|Al|#—n =7 where r:= sup [{Au, u)|

(16.8)
uer, w0 |[ull3
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The > inequality in (16.8) follows from Cauchy—Schwarz. To show the < inequality,
we estimate for all u,v € H
4Re(Au,v)y = (A(u+v),u+v)y — (A(u —v),u — v)y

< r(flu+ vl + [lu = vl3,)

= 2r ([lullz + llvll3)-
Here in the first line we used that A is self-adjoint and thus (Av, u)y = (v, Au)y.

Putting v := t Au, we see that for all t > 0
4t Aull, < 2 (Jlull3, + ]| Aull3,).

Assuming that Au # 0 and putting ¢ := ||u||3/||Aull, we get from here that || Aul|y <
7||u||3, finishing the proof of (16.8).
2. Since A # 0, we know from (16.8) that » > 0. Take a sequence

U € H, HukHH = 1, |<Auk,uk>H\ — 7.

Note that (Au,u)y is always real. Thus we may assume that (Aug, uy)z converges to
either r or —r. Without loss of generality (replacing A with —A if necessary) we then
assume that

Since A is a compact operator and ||ug|| is bounded, we can pass to a subsequence
to make

Aup, —v inH for some v € H.
We claim that v is an eigenvector of A with eigenvalue r. To show this, we bound
[ Aur — ruellz, = | Auwellz, — 2r (A, )z + 72| lux 3, (16.10)
< 2r% — 2r(Auy, ug)z — 0. '
Here in the inequality we used (16.8) and in the limiting statement we used (16.9).

Since Auy, — v in ‘H, (16.10) implies that
rup — v in H.

Therefore ||v||z = r > 0. Moreover, r Auy, = Aruy, converges to both rv and Av in H,
thus Av = rv. This shows that v is an eigenvector of A with eigenvalue r. O

16.1.3. Proof of the spectral theorem. We now prove Theorem 16.1. The
proof proceeds in several steps. To simplify notation, we denote L*(M) := L*(M;wy).

1. We first show that the spectrum of P is real, independent of s, and consists only
of eigenvalues:

Spec(Ps) ={A e R | Ju e C®°(M), u#0, Pu= Iu}. (16.11)
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To see this, let A € C. Since P € Dift™ (M) and m > 1, the operator P—\ € Diff"" (M)
has the same principal symbol as P. In particular, since P is an elliptic differential
operator, so is P — \. By Theorem 15.13, Py — X\ : H*t"™(M) — H*(M) is a Fredholm
operator, and we have

A ¢ Spec(P;) <= ker(P —\) =ker(P'—\) =0 (16.12)

where ker(P—M\), ker(P'—\) C C'°(M) are defined in (15.31) and we use the density wy
to identify densities on M with functions. Since P is formally self-adjoint, by (16.3)
we see that ker(P! — \) is the complex conjugate of the vector space ker(P — \), so in

particular
ker(P' —\) =0 <= ker(P—\)=0. (16.13)

Assume that A € C\ R. Then for each u € ker(P — \) we compute
(Im A) | Z2 gy = Im(Pu, ) p2pg) = 0

where in the last equality we used that P is formally self-adjoint, so by (16.2) with
f = g = u we have (Pu,u)r2m) = (U, Pu)rz(my = (Pu,u)r2ag). It follows that
ker(P — \) = 0. Similarly we have ker(P — ) = 0, so by (16.12) and (16.13) we have
A ¢ Spec(P;). We have thus shown that the spectrum Spec(Ps) is contained inside R.

Assume now that A € R. Then by (16.12) and (16.13) we see that A\ ¢ Spec(P;) if
and only if ker(P — X) = 0. This finishes the proof of (16.11).

Henceforth we denote for each A € R the eigenspace
Ey\:=ker(P —\) C C®(M),
which by (16.11) is nontrivial if and only if A € Spec(P) = Spec(Fs). Since Ps; — A is
a Fredholm operator, each space F, is finite dimensional.

2. We next claim that the spectrum Spec(P) is a discrete subset of R. Fix \g €
Spec(P); we need to show that there exists € > 0 such that A ¢ Spec(P) for all A € R
such that 0 < |A — | < €.

Define the L2-orthogonal complements
L3 :={u€ L*M) |for all v € Ey, we have (u,v)z2n) = 0},
HT" := L3 N H™(M).
We have
L*M) =L ®E,, H"(M)=HoE,, (16.14)
where the latter statement follows from the fact that the orthogonal projector L?(M) —
L? maps H™(M) — H'" since E\, C C*(M).
The operator Py — Ao : H™(M) — L*(M) has range equal to L? by (15.32) and
the discussion preceding (16.13). Its restriction to H",

Pl —X: H — L2
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is an invertible operator. Indeed, the kernel of P, — )¢ is given by H* N E,, = {0},
and the range of P; — )\q is equal to ran(Py — \g) = L?. By Banach’s Bounded Inverse
Theorem, P, — Ay has bounded inverse.

For any A € R, we can write the operator Py — X : H™(M) — L*(M) in block-
diagonal form with respect to the decompositions (16.14):

(PL—=X 0
PO—/\_< . AO_Q.

Since P, — A\¢ has bounded inverse, there exists € > 0 such that if |[A — A\¢| < € then
P, — ) is invertible. If additionally A # \g, then we see that Py — A is invertible, that
is A ¢ Spec(P). This finishes the proof of discreteness of Spec(P).

3. The spaces E) are orthogonal to each other for different A. Indeed, if A # X and
u € E\, v € Ey then we compute

)\<U,UI>L2(M) = (Pu, ul>L2(M) = <U, Pu/>L2(M) = )\/<U,U,>L2(M),
implying that (u,u’)r2a) = 0.

Putting together orthonormal bases of all the spaces E\, A € Spec(P), we arrive
to an L?-orthonormal system

u, € C¥(M), keX, (16.15)

and a collection of numbers A\, € R such that Pu, = A\iu,. Here the index set J# is
at most countable, in fact since each F) is finite dimensional and the set Spec(P) is
discrete we have

#{ke X || <R} <o forall ReR. (16.16)

However, at this stage in the argument we have not excluded the possibility that #
is finite or even empty.

4. We now show that the system wu; constructed in (16.15) is a Hilbert basis, that is
the span of this system is dense in L?(M). Since L*(M) is infinite dimensional' this
implies that the index set %" is infinite, so we can just take # = N. The sequence
Ai satisfies |A\x| — oo by (16.16), so the Hilbert basis property finishes the proof of
Theorem 16.1.

To show the Hilbert basis property, it suffices to prove that the orthogonal com-
plement of the span of {u}, given by

H = {u € L*(M) | for all X € Spec(P), v € Ey we have (u,v)2v) = 0},

is equal to {0}. We argue by contradiction. Assume that H # {0}. Since H is a closed
subspace in L?(M), it is a Hilbert space.

I¥or a particularly pedantic reader, we should have assumed in the statement of Theorem 16.1
that the manifold M has positive dimension and is nonempty.
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Since Spec(P) is discrete, we can fix some \g € R\ Spec(P). Consider the inverse
Q:=(Py— ) ' : L2 (M) — H™(M).

Then @ is a compact operator L*(M) — L*(M), since H™(M) embeds compactly
into L?(M) by Theorem 15.10. Moreover, @ is a self-adjoint operator on L*(M) since
for each u,v € L*(M) we have

(Qu,v) 2(my = (Qu, (P — M) Qu) L2y = (P — M) Qu, Qu) 2y = (U, QU) 2

where the second equality above follows from (16.2), the formal self-adjointness of P,
and the fact that C*°(M) is dense in H™(M).

The operator () maps the space H into itself. Indeed, assume that v € H. Then
we have for all A € Spec(P) and v € E)

(Qu, v)r2m) = (U, Qu) 2y =0

since Qu = (A — \p)"'v. Thus Qu € H.

The discussion above shows that the restriction A := Q|4 is a compact self-adjoint
operator on the Hilbert space H. We also have A # 0 since H # {0} and for any
v € ‘H we have (P — A\g)Av = v. Now Theorem 16.3 applies and shows that A has an
eigenvalue, more precisely there exist

veH\{0}, pweR\{0}, Av= .

We have (P — \g)uv = v, which implies that v € Ey with X := \g + u~1. This gives
a contradiction with the fact that v € H and finishes the proof that {u;} is a Hilbert
basis of L?*(M).

16.2. Advanced results on Laplacian eigenvalues and eigenfunctions

We now discuss various classical and recent results on the spectrum of the Laplace—
Beltrami operator A,.

16.2.1. Basics and examples. Let (M, g) be a compact Riemannian manifold.
We assume that M is connected. It will be convenient for us to use the operator —A,
instead of A,. One advantage is that, as follows from (13.63) (taking both f, g there
to be equal to an eigenfunction) the spectrum of —A, is contained in [0, c0), and the
eigenspace at A\ = 0 consists of constant functions. Ordering the numbers \; from
Theorem 16.1 in increasing order, we get sequences

0:)\1<>\2§)\3§..., )\k—>OO,

16.17
U € COO<M), —Aguk = A\pUp, HukHL2(M) = 1. ( )
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It is generally impossible to give a formula for the eigenfunctions and eigenvalues of
the Laplacian on a given Riemannian manifold. However, it is possible to explicitly de-
scribe the Laplacian spectrum for the torus and for the sphere. We give this description
in dimension 2 to simplify the formulas, but it generalizes to any dimension.

The case of torus corresponds to Fourier series:
PROPOSITION 16.5. Assume that M = T? = R?/Z? is the two-dimensional torus,

and g is the metric induced by the Euclidean metric on R%. Then a Hilbert basis of
eigenfunctions of —A, is given by

M =42 (K2 + kD), k= (ki ko) € 7%, w(wy, 1) = 257, (16.18)

The spectrum of the Laplacian on the 2-sphere was studied in Exercise 13.8 above.
Examining the solution to this exercise we can also compute the multiplicities of eigen-
values, yielding

PROPOSITION 16.6. Assume that M = S? and g is the round metric. Then the
spectrum of —A, is given by

M =k(k+1), keNy, with multiplicity 2k + 1. (16.19)

The corresponding eigenfunctions are the restrictions to S C R3 of polynomials U

on R which are homogeneous of degree k and harmonic (that is, AoU = 0 where A
is the Fuclidean Laplacian).

From this point on, no proofs are provided in this section, instead we give references
to various articles on the topics covered.

16.2.2. Weyl Law®. We first discuss asymptotic behavior of eigenvalues: once
you have an infinite discrete set of numbers, it is hard to resist counting them. Let Ay
be given by (16.17). For R > 0, define the counting function

N(R) :={k e N |\ < R*}.

Let n := dim M; denote by w, the volume of the Euclidean unit ball in R™ and by
volg(M) = [,,dvoly the Riemannian volume of M. Then the asymptotic behavior
of N(R) is given by

THEOREM 16.7 (Weyl Law). We have as R — o0
N(R) = (27) "w, vol,(M)R" + O(R™1). (16.20)
The reader is encouraged to check that Theorem 16.7 holds in the special cases in

Propositions 16.5 and 16.6.

Theorem 16.7 with an o(R"™) remainder was first proved by Weyl [Wey12] in the
related case of Dirichlet eigenfunctions for domains in R”. The O(R"!) remainder
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FIGURE 16.1. Eigenvalue counting function for the sphere S?, the
torus T?, and a hyperbolic surface. The latter uses data provided by
Alexander Strohmaier and computed using the method in Strohmaier—
Uski [SU13]. Top: a plot of the function N(R) := N(R)/c where
¢ = (2m) "wy, voly(M). Middle: A zoomed in version of the top plot.
Bottom: a plot of the maximum of the error [N (R) — R?| in the Weyl
law over the interval [0, R], as a function of R.

225



226 16. SPECTRAL THEORY

is due to Levitan [Lev53] and Avakumovi¢ [Ava56]. Other proofs can be found for
example in [H6r09, §29.1] and [Zwo12, Theorem 14.11].

A natural question is whether the O(R™"™!) remainder in (16.20) can be improved:

e In general this is not possible since on the sphere S?, the high multiplicity of
the spectrum (see Proposition 16.6) means that remainder is not o( R"1).

e However, for most manifolds the remainder can be improved. More precisely,
Duistermaat—Guillemin [DG75] showed that if the volume of the set of peri-
odic geodesics (considered as a subset of the sphere bundle SM) is equal to 0,
then (16.20) holds with remainder o( R"™1).

e There are quantitative forms of the remainder under various assumptions on
the geodesic flow, see for example [CG22] for a review of the literature. In
particular, Bérard [Bér77] showed that on manifolds without conjugate points
(which includes manifolds of nonpositive sectional curvature) the remainder
is O(R"!/log R).

e It is a folk conjecture that on negatively curved manifolds (a prime example
of which is given by hyperbolic surfaces, which have Gauss curvature —1),
the remainder in (16.20) should be O(R"~!~°) for some § > 0. This is widely
open.

e For the 2-torus, by (16.18) the function N (R), up to rescaling, is just the
number of integer points in the disk of radius R. The question about the
remainder is known as the Gauss circle problem. It is conjectured that the
remainder is (’)(R%Jre) for any € > 0, and the best known upper bound to date
is O(R25 %), due to Huxley [Hux03].

See Figure 16.1 for a numerical illustration of the Weyl law.

16.2.3. Nodal sets. For this topic we will restrict to real eigenfunctions uy, which
is not an issue since —A, has real coefficients. (So for example, the formula (16.18)
would have to be replaced with one featuring sines and cosines.)

The nodal set of an eigenfunction uy is defined to be its zero set:
u; ' (0) = {z € M | up(z) = 0}. (16.21)

We will present here some results on the area of nodal sets. Generically we expect the
nodal set to be a smooth submanifold of M of codimension 1. In this case, define

Area(u;*(0)) >0 (16.22)

to be the Riemannian volume of u; '(0) (with respect to the restriction of the metric g
to u;,'(0)). In general, Area(u;*(0)) is defined as the (n — 1)-dimensional Hausdorff
measure of uy ' (0).
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I A=5003.1509, Iy = 2.5, 1 = 2.6, I3 = 24,11 =0, t = 0.4, t3 = 0.2 |

FIGURE 16.2. Left: an eigenfunction on S* with the sets {uy > 0}
and {ur < 0} separated by the nodal set. Source: https://www.
pngwing.com/en/free-png-sooby. Right: a high energy (A ~ 5000)
eigenfunction on a hyperbolic surface. Here the surface is a quotient of
the Poincaré disk model of the hyperbolic space by a group of isometries,
and the eigenfunction is drawn on a fundamental domain of this group
action. The thin lines are the nodal sets. Picture courtesy of Alexander
Strohmaier, computed using the method in Strohmaier—Uski [SU13].

In 1982 Shing-Tung Yau made the following conjecture: for each compact Rie-
mannian manifold there exist constants 0 < ¢ < C such that we have for all £k > 2

cv/ A < Area(u; 1(0)) < Cv/ . (16.23)

While the upper bound in the conjecture is still open, there have been many significant
results on it. We list here only two such results, referring the reader to [LM20] for a
comprehensive review of the history of the conjecture:

e Donnelly-Fefferman [DF88]: the conjecture (16.23) holds if the metric ¢ is
real analytic;
e Logunov [Logl8a, Logl8b]: for any C'™ metric we have the bounds

cv/ Ak < Area(u, ' (0)) < CAY (16.24)

where N is a large constant depending only on the dimension of the mani-
fold M. This in particular settles the lower bound in Yau’s conjecture.

See Figure 16.2 for numerical illustrations of nodal sets.
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16.2.4. Macroscopic behavior of eigenfunctions. We finally discuss Quan-
tum Ergodicity and related results. To state these we use the notion of weak limits
from probability:

DEFINITION 16.8. Assume that uy, is a sequence of Laplacian eigenfunctions. We
say that it converges weakly to a probability measure p on M, if

/ a(z)|ug, ()]* dvoly(z) — / adyp asl— oo foralla € CO(M).  (16.25)
M M

Note that here we first fix the observable a and then let ¢ — oo, which is why this
is a macroscopic limit.

We now assume that (M, g) has negative sectional curvature. This has the con-
sequence that the geodesic flow on M has strongly chaotic behavior, see for exam-
ple [K1i95, Theorem 3.9.1]. A fundamental example is given by hyperbolic surfaces,
see the right half of Figure 16.2. (The theorems below actually apply under various
weaker conditions.) We refer the reader to the author’s reviews [Dya2la, Dya21b]
for more information.

e The Quantum Ergodicity theorem of Shnirelman [Shn74a, Shn74b], Zelditch
[Zel87], and Colin de Verdiere [CdV85] states that there exists a density I
sequence of eigenfunctions wy, which converges weakly to the volume mea-
sure dvol, /voly(M). This means that in the high energy macroscopic limit,
eigenfunctions equidistribute.

e The Quantum Unique Ergodicity conjecture of Rudnick—Sarnak [RS94] states
that the entire sequence of eigenfunctions converges weakly to the volume
measure. It is widely open except for Hecke eigenfunctions in arithmetic
cases, see Lindenstrauss [Lin06].

e The entropy bounds of Anantharaman and Nonnenmacher [Ana08, ANOT7]
show that eigenfunctions cannot concentrate too much. For example, no se-
quence of eigenfunctions can converge weakly to the delta measure on a geo-
desic (settling a conjecture of Colin de Verdiere [CdV85]).

e The lower bounds on mass of Dyatlov—Jin-Nonnenmacher [DJIN21] show that
in dimension 2, for any nonempty open set U @ M there exists a constant
cy > 0 such that for all k&

||1U’uk|lL2(M;dvolg) Z Cy. (1626)

This also shows that no sequence of eigenfunctions can converge weakly to
the delta measure on a closed geodesic; in fact, it shows that each weak limit
of a sequence of eigenfunctions is a measure of full support. Proving the
bound (16.26) in dimensions higher than 2 is currently an open problem.
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16.3. Notes and exercises

Our presentation in §16.1 partially follows [Mel, §6.5]. We only invoke the theory
of bounded compact operators on Hilbert spaces at the end of the proof, in the form of
Theorem 16.3. Other proofs reduce to this theory earlier on, often by taking (P +1)~!
which is possible if P is nonnegative, e.g. P = —A,, but would not work for the Dirac
operator studied in §17.3.3 below; see for example [Eval0, §6.5].

A differential operator P of positive order does not map L*(M) to itself. The
right abstract theory to study these operators is the spectral theory of unbounded
self-adjoint operators. In this theory we have a Hilbert space H, a dense subspace
D C H, and a linear operator P : D — H whose graph is a closed subspace of H x H.
The operator P is called formally self-adjoint if

(Pu,v)y = (u, Pv)y for all u,v € D.

There is a stronger property called self-adjointness, which is equivalent to additionally
requiring that both operators P+i : D — H be invertible. (If P is a bounded operator,
i.e. D = H, then self-adjointness follows from formal self-adjointness.) For self-adjoint
operators there is a spectral theorem which shows that they are unitarily conjugated
to a multiplication operator on the space L? with respect to some measure; the latter
is related to the spectral measure of the operator P.

In our setting, P € Diff™ (M) is a differential operator on a compact manifold
without boundary, H = L?*(M;wy), and D = H™(M). We assumed formal self-
adjointness of P and we established actual self-adjointness in Step 1 of the proof of
Theorem 16.1. The operator P has compact resolvent, which is why the spectrum is
purely discrete. In more general settings, the situation might be different. For example,
if M has a boundary, then one has many choices of the domain of P on which it will be
self-adjoint (the two common choices correspond to Dirichlet and Neumann boundary
conditions), and if M is not compact, then the spectrum may no longer be discrete
(in fact, typically one would expect that P has no eigenvalues). We refer to the book
of Davies [Dav95] for details.

EXERCISE 16.1. (1.5 pts) This exercise gives an example of a self-adjoint operator
with non-discrete spectrum. Consider the following multiplication operator on L?(S!)
where S* = R/2nZ:

Pf(z) = (cosa)f(z), f e LA(SH.
Compute the spectrum Spec(P) (see (16.4)). For A € Spec(P), does the operator
P—X\:L*(SY) — L*S') have a nontrivial kernel? Is the range of this operator closed?

(We could actually take any other generic real function in place of cosx. However,
one nice thing about cos x s that using Fourier series, one can see that the operator P
is unitarily conjugated to a shifted discrete Laplacian.)






CHAPTER 17

Differential forms and Hodge theory

In this chapter we discuss differential forms and develop Hodge theory. Most of
the material here belongs to differential geometry (differential forms, the operators
of Hodge theory) and algebraic topology (de Rham cohomology, Hodge’s Theorem).
However, the key ingredient bringing de Rham cohomology and Hodge theory together
relies on the Fredholm property for elliptic operators (Theorem 15.13). This is why
this ingredient, while indispensable to Hodge theory, is often missing from textbooks
on it."! We also give an application of pullbacks of distributions to degree theory.

17.1. Differential forms®

We first briefly review the standard theory of differential forms and operations on
them such as wedge product, differentiation, and integration. We give few details,
referring the reader to [Leel3, Chapters 14-16] for a comprehensive treatment.

17.1.1. Exterior powers of vector spaces. We start by defining the ¢-th exte-
rior power of a vector space V, which is the space of all antisymmetric maps V¢ — R:

DEFINITION 17.1. Let V be a finite dimensional real vector space and ¢ € Ny. We
say that a multilinear map u : V¢ — R is antisymmetric if for each vy, ..., v, € V and
a permutation v on {1,...,¢} of sign sgny € {1, —1} we have

U(0y(1), - -5 Uy(p) = (sgny)ufv, ..., vp). (17.1)
Denote by ANV* the space of all antisymmetric maps V¢ — R.

Note that we put A°V* = R by definition, and A'V* = V* is the space of linear
functionals V — R.

All the spaces AYV* are finite dimensional. More precisely, if dim V = n then

1Chern [Cheb56, p.128] writes ‘ This is the main theorem and we shall not give a proof as the details
would take too much time.”. Huybrechts [Huy05, p.285] writes ‘ The following however requires some
hard, but by now standard, analysis.’. Voisin [Voi07] refers to Demailly [BDIP02], who in turn
reviews the material of our §§12.1,14,15 on 5 pages, replacing most of the details by the comment ‘ We
will need the following fundamental facts, that the reader will be able to find in many of the specialized
works devoted to the theory of partial differential equations’ not followed by any references. Other
books such as Warner [War71] do give an earnest proof of the theorem.
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o for ¢ < n, the dimension of A‘V* is equal to the binomial coefficient (’Z);
e for / > n, the space A‘V* is trivial.

This can be seen by fixing a basis on V to identify it with R™. Then for ¢ < n, we have

the following basis of A“(R"™)*, indexed by size £ subsets of {1,...,n}:
dey € N(R™)* where T = {iy, ... i} C{l,....,n}, i1 <iy<...<iy, (17.2)
dzr(vy, ..., v) = det ((da;, (UT))?TZI) for all vy, ..., v, € R" .

where dz;(v) denotes the i-th coordinate of v € R™. We often denote dzy = 1.

The space A"(R™)* is one-dimensional, spanned by the element dz; _,, defined by
dxy. p(vi, ..., v,) =det([vr ... v,]) (17.3)

where [v;...v,] is the matrix with columns vy,...,v,. It follows that for any n-
dimensional space V and any linear map A : )V — V we have

u(Avy, ..., Av,) = (det A)u(vy,...,v,) forallue A"V*, wvy,...,v, €V. (17.4)

As an example, we describe AY(R?)* for £ =1,2,3:

e a basis of A'(R?)* = (R*)* is given by dzy,dxs, dxs where dz;(u) = u; is the
j-th coordinate of u € R3;
e a basis of A?(R?)* is given by dz19, dr13, dze3 where for u,v € R3

dzy2(u,v) = det (u1 Ul) :

U2 Vo
dwzi3(u,v) = det (ul Ul) : (17.5)
Us Vs
dzas(u,v) = det (u2 U2> ;
usz U3
e a basis of A*(R?)* is given by dz93 where for u,v, w € R3
Uy vV wp
dIlgg(u, v, ’LU) = det Uy Vo Wo
Uz Uz wWs
One can define the wedge product
uc AV, ve A"V = uAve ATy (17.6)

with the following properties:

e u A v is bilinear in u, v;
e (UAV)AW=uA(VAW);
e vAu=(—1)"uAv where u € A'V* and v € A™V*;
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e on R", we have
dep = dxy, Ndxgy A--- ANdx;, where I = {iy, ... 0}, 41 <...<i.
So for example, on R? we have
dxi Ndxy = —dxe Ndxy = dxro, drxy ANdxy =0, driz A\dry = drs N\ driz = —drss.
It will often be convenient for us to consider the total exterior algebra (where n =
dim V)
AV = P AV (17.7)
=0

which is a 2"-dimensional space. A basis of A*R" is given by dx; where I ranges
over all subsets of {1,...,n}. One can think of the wedge product as a bilinear map
AV X AV* — ATV

17.1.2. Differential forms and exterior derivative. Let M be an n-dimensional
manifold. We define the vector bundle Q of ¢-forms over M:

Qfz) == N'TIM, € M. (17.8)

That is, an element of Qf(x) is an antisymmetric multilinear map from (T, M) to R.
Note that Qf(z) = {0} when ¢ > n. We use real valued forms here, but one can easily
consider instead complex valued forms, which we do without further discussion later.

Similarly to (17.7) we define the total form bundle Q* over M by
Q*(x) =P (x), veM. (17.9)
=0

Smooth sections of 2, that is elements of C*°(M;QF), are called £-forms, while dis-
tributional sections in D'(M;QF) are called /-currents. Note that O-forms are just
functions and 1-forms are sections of the cotangent bundle 7* M described in §13.1.5.

The wedge product (17.6) is defined on forms as follows: for u € C*(M;Qf) and
v € C°(M; Q™) we have

uAvEC®M; Q™) (uAv)(z) =u(z)Av(z), z€M. (17.10)
Any smooth map ® : M — N between two manifolds induces the pullback operator
O C(N; QY — C®(M; Q),
O v(z)(vy,...,v0) = v(P(2))(dP(x)vy, ..., dP(x)v)) (17.11)
forall z € M, vq,...,v, € T, M.
Note that wedge product is equivariant under pullback:

P (vAw) = (D'V) A (P*W) for all v,w € C°(N;Q°).
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If 5 : U — V is a chart on M, then to each u € C*(M; Q") corresponds its pushfor-
ward

o= () (uly) € C=(V; Q0. (17.12)
We can write »,u in the basis (17.2):
PAVES Z ur(z)dx;, ur € C*(V;R) (17.13)
Ic{1,...,n}
#(D=e

which gives coordinate representations for differential forms.
We next define the exterior derivative. This is a family of differential operators
(see §13.3.2)
dy € Diff'(M; QF — QY dy : C°(M; QY — C°(M; Q), (17.14)
defined using coordinate representations (17.13) as follows: for any chart »: U — V

and u € C*(M; Q) we have
s dyu = Zdul ANdx
T

(17.15)
Where%*u—ZuI Ydxy, duy = Za ur(x) d;.

Note that for £ = 0 and f € C*(M;Q°) = C=(M), d()f € C®(M; Q) = C®(M;T*M)
is just the differential of the function f defined in (13.17). On the other hand, we have
d,, = 0 where n = dim M.

Put together, the operators d, give the total exterior derivative operator
d € Diff'(M; Q* — Q°). (17.16)

As an example, we compute the exterior derivative on forms in R? (using the more
commonly used basis dzs A drs = dxos, des N\ dry = —dxy3, dxy A\ dre = dxis rather

than (17.5)):
df (x) = Oy, f(x) dxy + Oy, f (x) dxy + Oy, f () ds,
d(uy(z) dzy) = Opguy(x) dzs A daxy — Opyuq () day A das,
d(ug(z) dzy) = O, us(x) dzy A dg — Opyus(x) das A das,
d(ug(z) dzs) = Opyus(x) drg A dag — Oy uz(x) dxs A day, (17.17)
) =
) =
) =

d(U23(l’) dl‘g A d!L‘g angg(Zlf) d$1 VAN dl’g VAN dl’g,
d(ugi(x) dxg A dxy () dzy A dxo A drs,

83537112( ) d[El A dl’g A dl’g.

8:62“’31

d( ( ) dl’l A dl‘g
Note that dy : C®(R3;Qf) — C®(R3; Q1) correspond to the gradient (¢ = 0), curl
(¢ = 1), and divergence (¢ = 2) operators in multivariable calculus. (However, this
requires us to identify forms of various degrees using the Euclidean inner product and
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so a more correct interpretation would feature the Hodge star operator, see (17.41)
below).
We list below the standard properties of the operator d:

e d%> =0, that is
dyrdpa =0 for all u € C*°(M; QY); (17.18)
o if ue C®°(M;Qf) and v € C®(M; Q™) then we have the Leibniz rule
duAv) = (du) Av+ (=D uA (dv); (17.19)
o if d: M — N is a smooth map, then for each v € C*(N;Q°*) we have
d(®*v) = d*(dv). (17.20)

Note that in the example of R? considered above, (17.18) corresponds to the curl of the
gradient, and the divergence of the curl, being zero. For the case £ =0 and m =1, 2,
the formula (17.19) corresponds to the formulas for the curl and the divergence of the
product of a function and a vector field.

17.1.3. Orientation, integration, and Stokes’s Theorem. We now discuss
integration of differential forms, which is perhaps the main reason why they are so
useful. To integrate a differential form in a coordinate invariant way one has to fix
only one additional piece of data: a choice of orientation on a manifold.

This is not a purely technical issue: certain quantities in multivariable calcu-
lus/physics such as work and flux are naturally dependent on the choice of direction of
travel. Mathematically this choice is expressed by fixing an orientation, and work and
flux are best thought of as integrals of differential forms. On the other hand, quantities
such as length, area, mass, or charge do not depend on the choice of orientation, and
are best thought of as integrals of densities (see §13.1.7).

We first define the concept of orientation on a vector space:

DEFINITION 17.2. Let V be an n-dimensional real vector space. Denote by B(V) C
V" the set of bases on V. An orientation on V is a map

o: BV)—{-11}
such that for any linear isomorphism A :V —V and any (vq,...,v,) € B(V) we have
o(Avy, ..., Av,) = sgn(det A)o(vy, ..., v,). (17.21)

We say that (vy, ..., v,) € B(V) is positively oriented with respect to o, if o(vy, ..., v,) =
1, and negatively oriented otherwise.
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Each finite dimensional vector space has exactly two orientations. For R"™, these
are the standard orientation

o(v1,...,v,) = sgndetfvy ... v,],
where [v; ... v,] denotes the matrix with columns vy, ..., v,, and the opposite orienta-
tion —o.

Next, let M be a manifold. A basis of T, M for some x is called a frame. An
orientation on M is defined to be a choice of orientation on each tangent space,

o(z) : BT M) —{-1,1}, zeM,

which is continuous in x (where continuity can be defined, for instance, using charts
on M). We say M is oriented if it is endowed with an orientation, and orientable if
there exists an orientation on M. There exist nonorientable manifolds, of which the
simplest example is the Mdbius strip (or if one prefers a compact manifold without
boundary, the Klein bottle). If M is a connected orientable manifold, then it has
exactly two possible orientations.

For a diffeomorphism ® : M — N of oriented manifolds M, N, we say that it is
orientation preserving if its differential maps any positively oriented frame on M to a
positively oriented frame on N, and orientation reversing if positively oriented frames
are mapped to negatively oriented ones.

We are now ready to define the integral of a differential form. Let M be an
oriented n-dimensional manifold with orientation o and u € C°(M; Q") be an n-form
on M. For any point € M, basis (v1,...,v,) € B(T,M), and linear isomorphism
A: T, M — T, M we have

u(z)(Avy, ..., Av,) = (det A)u(z)(vy, ..., v,),
o(z)(Avy, ..., Av,) = sgn(det A) o(x)(vy, ..., v,)

where the first equality follows from (17.4). This implies that the map ou(z) :
PB(T, M) — R satisfies

(ou)(x)(Avy, ..., Av,) = | det A| (ou)(x)(vy, ..., v,),
which means that ou is a density on M (see §13.1.7):
ou € CX(M;|Q]).

Now we can define the integral of the differential form u by

/Mu::/Mou (17.22)

where the integral on the right is an integral of a density, defined in §13.1.7.
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Alternatively one can repeat the procedure in §13.1.7, breaking u into pieces sup-
ported in charts. If ¢ : U — V is a chart on M and suppu € U, then we have

/u::lz/u(x)dx where u € C°(V), su=u(x)dry A--- Ndz,,
M \%

the integral on the right-hand side is the usual integral with respect to Lebesgue
measure, and the + sign is + when s is orientation preserving and — if s is orientation
reversing.

The notion of integration extends naturally to u € L!(M) and in fact to compactly
supported distributions, yielding the linear map

uel(M;Q") — / uecR. (17.23)
M

This map is equivariant under diffeomorphisms: if ® : M — N is an orientation
preserving diffeomorphism then

/ P*v = / v forall ve&'(N;Q"). (17.24)
M N

The key result on integration of differential forms is the following

THEOREM 17.3 (Stokes’s Theorem for differential forms). Assume that M is a
compact n-dimensional oriented manifold with boundary OM and u € C>®(M;Q"1).

Then
/ du—/ (17.25)
oM

Here du = d,,_yu € C*(M;Q") is defined in (17.14).

Theorem 17.3 implies as special cases several theorems from multivariable calculus:

e the usual Fundamental Theorem of Calculus (M C R is an interval, n = 1);

e Fundamental Theorem of Calculus for line integrals (M C RY is a curve,
n=1);

e Green’s Theorem (M C R? is a domain, n = 2);

e Stokes’s Theorem (M C R? is a surface, n = 2);

e Divergence Theorem in 3D (M C R? is a domain, n = 3).

To make the statement of 17.3 precise we would have to define the notion of a manifold
with boundary and explain how an orientation on M naturally induces orientation
on OM — see for instance [Leel3, Theorem 16.11] for details. We do not develop this
here, since all we need is the following version:
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THEOREM 17.4 (Stokes’s Theorem without boundary). Assume that M is an n-
dimensional oriented manifold without boundary and u € C°(M; Q" 1) is an n — 1-

form on M. Then
/ du = 0. (17.26)
M

In fact, the main case of Theorem 17.4 that we use below is when M is a compact
manifold without boundary, when every u € C*°(M; Q") is automatically compactly
supported.

17.2. De Rham cohomology

We now review the de Rham cohomology theory. We again keep the presentation
brief and omit most proofs, sending the reader to [Leel3, Chapters 17-18| for de-
tails. This theory belongs to algebraic topology, which is a big field associating various
topological invariants to manifolds and more general topological spaces.

Let M be a manifold. Recall the exterior derivative dy : C°°(M; Q) — C°(M; Q)
defined in (17.14). The starting point of the de Rham theory is the identity (17.18),
namely dyd,_; = 0. It implies that the space of ezact ¢-forms, defined as

dp_1 (C(M; Q) i={dp_v | v € O®(M; Q1)) (17.27)

is contained inside the space of closed ¢-forms, defined as
kerges dy := {u € C=(M; Q") | dpu = 0}. (17.28)
The order ¢ de Rham cohomology space is defined as the quotient of the space of closed

forms by the space of exact forms:

kerpe d
i . L C 4
H (M;R) := d[_]_<C(OO(M;Q€71))7 (17.29)

which is a real vector space. The ¢-th Betti number is defined as

be(M) = dim H(M;R) € Ny U {o0}. (17.30)

To each closed (-form u € kergw dy corresponds its cohomology class
[u] € H(M;R).
Here are some basic properties of de Rham cohomology:
e We have HY(M;R) = {0} when ¢ > dim M, simply because Qf = 0.
e If M is connected, then by(M) = 1. Indeed, we have d_;(C(M; Q1)) =
{0}, since 27! = 0 by convention. On the other hand, kerce dy consists of

functions f € C*°(M) which satisfy df = 0; since M is connected, such
functions are constant.
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e If M C R"is an open subset which is convex (or more generally, star-shaped),
then HY(M;R) = {0} for all £ > 1. This is commonly known as the Poincaré
Lemma. In particular, this applies to M = R".

e If M is connected and u € kerg dj, then [u] = 0 if and only if the integral
of u on every closed curve in M is equal to 0. (In fact, the space H'(M;R) is
related to the fundamental group of M, as a corollary of Hurewicz’s theorem
in algebraic topology.)

Additional information about the cohomology of M is given by the product structure.
It follows from (17.19) that the wedge product of two closed forms is closed, and the
wedge product of a closed and an exact form is exact. Thus the wedge product descends
to cohomology:

[u] € HY(M;R), [v] € H"(M;R) — [uAv] € HT™(M;R).

17.2.1. Some examples. A basic example of a manifold with nontrivial coho-
mology H! is given by

PROPOSITION 17.5. Let M := R?>\{0}. Then by(M) =1 and H*(M;R) is spanned
by the cohomology class [u] of the closed 1-form

I dl‘g — X9 d[L'l
2?2 + 23

(17.31)

The part of Proposition 17.5 that is easier to prove is the fact that [u] # 0, that
is u is not exact. Indeed, if u = df for some f € C(R?\ {0}), then by Stokes’s
Theorem 17.4 we see that fwu = 0 for any closed curve . However, for the curve
v = {(cost,sint) | 0 < t < 27}, oriented in the direction of increasing t, one can
compute fvu = 2. In fact, for a general immersed closed curve v C R?*\ {0}, the

integral % fw u is the (signed) winding number of v about the origin.
A fundamental example of cohomology computation is that of the sphere S™: we
have

be(S") = {1’ t=0oré=n, (17.32)
0, otherwise.
Another example is given by compact connected oriented surfaces. Such surfaces are
characterized by their genus g € Ny which can be interpreted as the ‘number of holes’:
in particular the sphere S? has genus 0 and the torus T? has genus 1. If M is a compact
connected oriented surface of genus g, then
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As an application of Hodge theory, we will show below (see §17.3.5) that on a com-
pact manifold M (without boundary) of dimension n the spaces H(M;R) are fi-
nite dimensional and if M is additionally orientable, then we have Poincaré duality
by_e(M) = by(M); in particular if M is connected then b, (M) = 1.

17.3. Hodge theory

Hodge theory is the theory of differential forms on oriented Riemannian manifolds.
The choice of metric and orientation induces several operations on differential forms:

e an inner product on the fibers of 2°,

e the Hodge star operators %, : C*(M; Q) — C=(M; Q"*) where n = dim M,
e the codifferentials dj : C°°(M; Q) — C®(M;QY),

e the Dirac operator d + d* : C°(M;Q°) — C®°(M;Q*),

e and the Hodge Laplacian A, = (d + d*)*.

We define these in §§17.3.1-17.3.3.

We next specialize to compact manifolds and prove Hodge’s Theorem which gives
a bijection between de Rham cohomology classes and harmonic forms, which are ele-
ments of the kernel of the Dirac operator (or equivalently, the Hodge Laplacian). The
key ingredient of the proof is the Fredholm property of d + d* which follows from The-
orem 15.13. As an application of Hodge’s Theorem, we prove Poincaré duality. We
also discuss degree theory.

17.3.1. Inner product on exterior powers and the Hodge star. We first
define an inner product on exterior powers of vector spaces studied in §17.1.1 above.

Let V be a finite dimensional real vector space with a fixed inner product (e, e)y.
Then we have a natural inner product on each exterior power A‘V*, defined as follows:

LEMMA 17.6. There exists unique inner product (e, ).y« on A“V* such that for
allay,...,uy, vy, ..., v, € V" we have

<111 VANRIERIVAY Uy, Vi VANREIRWAN V@)AZV* = det ((<Uj7 Vk:>V*>§,k:1) (1733)

where (o, @)y is the inner product on the dual space V* induced by (e, ®)y.

PRrROOF. Fixing an orthonormal basis of V, we identify it with the space R™ with
the standard Euclidean inner product. Both sides of (17.33) are linear in each of the
vectors u;, vy, thus for (17.33) to hold in general it is enough for it to hold when
each of the vectors uy,...,uy, vy,..., vy is equal to one of the canonical basis vectors
dxy,...,dr, € (R")*. In this case each u; A --- A uy is either zero or equal to +dz;
where dxy is an element of the basis (17.2), and same is true for vq A---Av,. It follows
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that (17.33) holds if and only if
{dey | T C{1,...,n}, #(I)={} is orthonormal with respect to (e, e),cy. (17.34)

which gives the desired existence and uniqueness statement. 0

One can also define the inner product on the total exterior algebra A*V*, by making
the spaces A‘V* orthogonal to each other for different ¢. If V = R™, this is the inner
product in which the basis {dz; | I C {1,...,n}} is orthonormal.

Assume next that in addition to an inner product, we fix an orientation o on V (see
Definition 17.2). Define the volume form dvoly, € A"V*, where n = dim V), as follows:
for any basis vy,...,v, € V

dvoly(vy,...,v,) = o(vy,. .. ,vn)\/det (({vy, Uk>y)?’k:1). (17.35)

To see that this is indeed an element of A"V* note that if V is equal to R™ with the
Euclidean inner product, then dvoly, = dzy A - -+ A dx,, that is dvoly(vq,...,v,) =
det[v; . ..v,] where [v; ...v,] is the matrix with columns vy, ..., v, € R™ (see (17.3)).

We now define the Hodge star operator:

LEMMA 17.7. Assume that V is an n-dimensional vector space with given inner
product and orientation. Let v € N'V*. Then there exists unique xv € N""*V* such
that

U A (xv) = (0, V) pepe dvoly  for all u € ANV*. (17.36)

We call xyv the Hodge star of v.

PRrROOF. For each u € A’V* and w € A" “V*, the wedge product uAw lies in A"V*
which is a one-dimensional vector space spanned by dvoly,. The map

u/\w
ue ANV

dVOlV
is a linear functional, therefore it is equal to u + (u, Tw) ey for some T'w € AV*.
In other words,

UAW = (0, TW) e dvoly  for all u € ATV*

This defines a linear map T : A"~“V* — AYV*. This map is invertible: indeed, the
spaces A" V* and A‘V* have the same dimension (Z), and T is injective since a
computation using the basis (17.2) shows that if u A w = 0 for all u € A*V*, then
u=_0.

Now the Hodge star of v is equal to x,v = T~ !v. U

Lemma 17.7 defines the linear operators

*pt NOVE — ATTEVR (17.37)
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Putting these operators together, we get the Hodge star operator on the total exterior
algebra

* AV = ATV (17.38)
The next proposition lists the standard properties of Hodge star. We leave the proof
as an exercise below.

PROPOSITION 17.8. 1. The operator x; is equal to its own inverse up to sign, more

precisely we have
*p kg = (—1)10), (17.39)

2. The operator ; is an isometry with respect to the inner products (e, )iy
and (e, @) \n—ey.

We now give explicit formulas for the Hodge star operator on R? and R? with the
Euclidean inner product and the standard orientation. We leave the verification as an
exercise below.

e On R?, we have
*(1) = dl’l N dl’g, * (dl‘l A dill'z) = 1,

17.40
*(dx1) = dxg, * (dxy) = —du;. ( )

In particular, the operator x; : (R?)* — (R?)* is the counterclockwise rotation
by angle 7.
e On R3, we have
*(1) = dxy A dzy A dzs, dxy N dxy N\dxs) =1,

*
*(dxl) = de‘Q A d{L‘g, * (dl’g VAN dl’g) = df]fl,
(17.41)
*(dl’g) = dl‘g N de‘l, * (dl’g VAN dl’l) = de‘Q,
*(dl’g) = dl‘l A de‘Q, * (dCL’l VAN dIQ) = d[L‘g.

In particular, if u,v € (R?)*, then % (uAv) is equal to the cross product of u
and v.

17.3.2. The d* operator. Let (M, g) be an n-dimensional oriented Riemannian
manifold. For each x € M, the tangent space T, M has the inner product given by
g(x) and the orientation coming from the orientation on M. Thus Lemma 17.7 defines
the Hodge star operator

*o(x) : Qx) = Q" z), =€ M.

This operator depends smoothly on x and thus defines a bundle homomorphism %, €
C>®(M;Hom(Q° — Q%)) see §13.1.8. This bundle homomorphism acts on differen-
tial forms as a O-th order differential operator:

ot CR(M Q) — O (M Q0 % : OF(M Q) — CF(M:Q°). (17.42)
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We now study the differential operator
d; € Diff' (M; Q! — QF)

which is the adjoint of the exterior derivative dy defined in (17.14). (Note that the
is the same as the transpose of dy, since all the operators studied act on real-valued
forms.)

To make sense of dj, we first have to fix an inner product on L2(M;Q¢) for all .
Using (16.7), we see that one needs to fix a positive density on M and an inner product
on each fiber Qf(x). We take the density dvol, induced by the metric g (see (13.29))
and the inner product (e, )q:(,y induced by g(z), defined in Lemma 17.6. This gives
the following inner product on L2(M;Q°):

(W, v) 2 (00 ::/ (u(z),v(z))qem dvoly(z) for all u,v € LZ(M; Q). (17.43)
M

The integral in (17.43) can be interpreted as an integral of a differential form, if we let
dvol, € C*(M;Q") be the volume form defined in (17.35), which is just the product
of the Riemannian volume density given by (13.29) and the orientation on M. Thus
Lemma 17.7 gives the following formula for the inner product (17.43):

(W, v) 20ty = / uA (%v) forall u,v e L2(M; Q). (17.44)
M

Here the right-hand side is an integral of a differential n-form.

We are now ready to compute the adjoint (which again, is the same as the trans-
pose) of dy:

LEMMA 17.9. Define the differential operator
dz = (_1)n£+1 Kp—f dn_g_l*g_H c DIHI(M, QZ—H — QE) (1745)
Then dj is the adjoint of dy in the following sense:

<dgll, V>L2(M;Ql+1) = <u, dZV>L2(M;QZ)

17.46
for allu € C®(M;Q), v € O=(M; Q). ( )

PROOF. Let u,v be as in (17.46). We compute

(dea, V) 20y — (W, dV) 2 a0ty = / (deu) A (kpp1v) — A (xedyv)
M

= /M dp—1 (WA (k1)) =0,

giving (17.46). Here in the first equality we used (17.44), in the second equality we
used (17.19), (17.39), and (17.45), and the last equality follows from Stokes’s Theo-
rem 17.4. 0
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Putting the operators d; together, we get the total codifferential operator
d* € Diff'(M;Q* — Q°). (17.47)
We remark that by definition, df = 0. Moreover, since d* = 0 by (17.18), we have
(d*)? = 0 as well:
dy_,d; =0. (17.48)

As an example, we use (17.17) (and its analog on R?) together with (17.40) and (17.41)
to compute the codifferential in R? and R? with the Euclidean metric:

e On R?, we have

dy(ur () dzy + us(x) drg) = —(0p, ur () + Opyua(x)),

)
&3 (f(x) day A dzs) = Oy, f(2) day — Oy, f(z) das (17.49)

That is, df corresponds to divergence and dj corresponds to gradient rotated
by angle 7.
e On R?, we have

—

_(aﬂvlul l’) + a:mu?(m) + aw3u3(x))>

) )
dT<UQ3(l’) dIEQ A\ dlL’3) = 6333’&23(%') dCL’Q — 8$2u23(x) dlL’3, (17 50)
d’f(u;),l(x) dl‘g VAN d.iUl) = 8x1u31 (ZL’) dl’g - axgu;ﬂ(x) dxl, .
dT(Ulg(l’) d$1 VAN d.TQ) == 8$2U12(I) dl’l - c%lulg(a:) dLUQ,
and
d5(f(z) dxy A dxs N dx
5(f(x) dwy A dwy A das) (17.51)

= —(0p, f(x) dxy N\ dag + Oy, f(2) dxs N dxy + Oy f(2) dxy A ds).
We see that df; corresponds to divergence, dj to curl, and dj to gradient.

REMARK 17.10.% An attentive reader might have noticed that we actually do not
need to fix an orientation on M to define the inner product (17.43) and the codifferen-
tial operator d*. However, having an orientation lets us access the Hodge star operator,

which makes the formulas nicer, and it will also be used in the proof of Poincaré duality
(Theorem 17.18) below.

REMARK 17.11.% For readers familiar with Riemannian geometry, one can check
that on any oriented Riemannian manifold (M, g), if X € C®(M;TM) is a vector
field and X" is the 1-form corresponding to X by the metric, then the function diX"
1s equal to minus the divergence of X with respect to the Levi—Civita connection.
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17.3.3. The Dirac operator and the Hodge Laplacian. Asin §17.3.2 above,
let (M, g) be an n-dimensional oriented Riemannian manifold. The operators d, d* €
Diff* (M; Q* — Q°) cannot be elliptic if n > 2: for example, d maps functions (sections
of the 1-dimensional trivial bundle) to 1-forms (sections of the n-dimensional cotangent
bundle). However, if we add these together then we obtain the Dirac operator

d+d* € Diff'(M;Q° — Q°) (17.52)

which, as we show below, is elliptic. Note that d + d* does not respect the degree of a
differential form: for example, if u is a 1-form then (d + d*)u is the sum of a 0-form
and a 2-form. Nevertheless, it switches the parity of the degree. More precisely, if we
decompose the bundle Q* defined in (17.9) as

Q° = Q" @ where Q7" = P O, = O (17.53)

£ even ¢ odd

then the operator d + d* is the direct sum of its restrictions

(d + d*)oven € DI (M; Q" — Q).

17.54
(d+ d*)odd e Diﬁl(M;QOdd N Qeven)' ( )

Before proceeding with the general properties of the operator d + d*, let us compute
it for R? and R? with the Euclidean metric, using (17.17) and (17.49)—(17.51). Since
° in these cases is the trivial bundle, we fix a frame on 2°* and think of the operator
d 4+ d* as a matrix of first order differential operators.

e On R? in the frame 1,dx; A dxy; dxy, dzy, we have

. (0, Oy N (=0 —O,
(d+d*)even = (am _aml) , (d+d)oaa = (_am 0., ) . (17.55)

In other words,

0 0 -0, -0,

0 0 -8, 0
— : 17.
ard =, 5 (17.56)
a$2 _axl O O
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e On R?in the frame 1, dvoAdxs, drsAdxy, dxi Adxy; dx AdxeaAdxs, dxy, dxs, das,
we have

* _ 81‘1 O _axg axg
(d + d )eVeH - 81‘2 axs O _axl )
Ops —0py  Ony 0
oo (17.57)
* _ _0171 0 _8353 awz
drd)oaa=|_5" 5 o _o.

—Opy —Opy Oy 0
The following lemma is used in the proof of Hodge’s Theorem in §17.3.4 below.

LEMMA 17.12. The Dirac operator d + d* € Diff'(M;Q* — Q°) is elliptic in the
sense of Theorem 1/.25.

PROOF. We need to show that for each (29, £%) € T* M with £° # 0, the principal
symbol o1 (d+d*)(z°, £°) is an invertible linear map on (the complexification of ) Q®(z).
Since oy(d + d*)(z, &) is homogeneous of degree 1 in &, without loss of generality we
may assume that (£%,£%),0) = 1.

To simplify the computation, fix a chart s : U — V on M such that 2° € U and
%(_Z'O) = 07 d%(,’L’O)—Té‘D — dl']_, %*g(()) e de?
j=1

Then we need to compute the principal symbol of s.(d + d*) at (0,dx;) € T*V and
show that it is an invertible linear map on (the complexification of) A®(R™)*.

We start with the principal symbol of s,d, which is equal to the operator d on V
by (17.20). Using the formula (17.15) we compute

01(56.d)(0,dz1)v =idxy Av  for all v.e A*(R™)".
In the standard basis of A®*(R™)* given by (17.2) we have for all I C {1,...,n}

o1(36.d) (0, dr )day = {0’ tel, (17.58)
idl‘]u{l}, 1 ¢ 1.
To compute the symbol oy (s.d*)(0, dzy)dz;, one could use the fact that s d* is the
d* operator for the metric »,¢g and the formula (17.45). Here the Hodge star is a 0-th
order differential operator, and its symbol at (0, dz;) depends only on 3,.¢(0) which is
the Euclidean metric.

However, we instead use that s,.d* is the adjoint of sz,.d with respect to the inner
product on L*(V; Q*) induced by the metric »,g. Then the vector bundle version of the
Adjoint Rule (13.52) implies that o1 (s¢,.d*)(0, dxy) is the adjoint of oy (22.d)(0, dz;) with
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respect to the Hermitian inner product on (the complexification of ) A®*(R™)* induced by
the Euclidean inner product »,g(0). Recalling (17.34) we see that this inner product

-----

—1 d%[\{l}, lel,
o1(2.d")(0,dxy)dx = 17.59
() 0. )y {07 oy (17.59
Adding (17.58) and (17.59) we see that
—id lel
o1 (52, (d + d)) (0, day)dap = M ’ (17.60)
deju{l}, 1 §é [,

which implies that oy (s.(d + d*))(0,dz;) is an invertible linear operator on the com-
plexification of A*(R™)*, finishing the proof.

(The above computation is somewhat abstract and relies on the version of Adjoint
Rule (13.52) for vector bundles, which has not been properly developed even though
it follows by a direct computation from the usual Adjoint Rule. The reader is strongly
encouraged to look at the coefficients of 0,, in (17.56) and (17.57) to see that the
formula (17.60) does hold in these special cases.) O

We next define the Hodge Laplacian as the square of the Dirac operator:
A, = (d+d*)? € Diff’(M;Q* — Q°). (17.61)

Since d? = (d*)? = 0 by (17.18) and (17.48), we have the following alternative formula
for the Hodge Laplacian:
A, =dd" +d"d. (17.62)

Since d maps ¢-forms to ¢ 4+ 1-forms and d* maps ¢ + 1-forms to ¢-forms, we see that
A, maps (-forms to (-forms, for any ¢. That is, the Hodge Laplacian is the direct sum
of its restrictions

A, € DIff(M; QF — Q). (17.63)
Note that, as d* is the adjoint of d (see Lemma 17.9), the Dirac operator and the
Hodge Laplacian are both self-adjoint (or equivalently, equal to their own transposes
since we are working on real bundles):

d+d")" =d+ d*, A=A, 17.64
g g

A direct calculation using (17.55) shows that on R? with the Euclidean metric, the
Hodge Laplacian is just a diagonal matrix with entries —A, where Ay = 92 + 02, is
the usual scalar Laplacian:

0
0 0

= 0 o -a 0 (17.65)
0 — Ay
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A similar calculation using (17.57) shows that the same is true for R3. We note that
for R, the formula (17.62) on 1-forms gives the curl of curl identity in multivariable
calculus. The same form of the Hodge Laplacian is valid on any R"™ with the Euclidean
metric, which follows by a direct computation which we do not give here.

For general (M, g), the operator A, = didy € Diff>(M) is equal to —A, where
A, is the Laplace-Beltrami operator, as follows from (13.63) and (17.46). Moreover, as
one can show using the formula (17.60) for the principal symbol of the Dirac operator
in the proof of Lemma 17.12 above and the vector bundle version of the Product
Rule (13.49), the principal symbol of the Hodge Laplacian is given by

02(Ag)(x,&) = (£,&)gy! forall (z,&) € T M (17.66)

where [ is the identity homomorphism on Q°(x).

REMARK 17.13.% This remark is not directly relevant to the analytical results of
this chapter, since the metric used is not positive definite, so the ‘Laplacian’ obtained
here is really a wave operator, and in particular not elliptic. However, it is a connection
of Hodge theory to physics which I could not resist including in these notes.

Consider the space R* = R; x R3 with the Minkowski ‘metric’
g = —dt* +dr? + da3 + dx3.

Note that g is a nondegenerate quadratic form on R* but it is not positive definite; it
gives what is known a Lorentzian metric instead of a Riemannian metric. The for-
mula (17.33) produces the quadratic form on Q°* = A*(R*)* in which the basis elements
dxy from (17.2) are orthogonal to each other and we have in particular

1, uc {dl’g Adxs, dxs N\ dxy, dry N dl’g},
-1, ue {dt/\dIl, dt N\ dxs, dt/\d$3}

<u,u>/\2(R4)* = {

The volume form is dvol = dt A\ dxqy N\ dxy N\ dxs. The Hodge star operator is defined
in the same way as in Lemma 17.7 and we compute

*(dxo A\ dxg) = dt Ndxy, *(dxs Adxy) =dt Ndxe, *(dry Adzry) = dt A dxs,
*(dt Ndxy) = —dxo Ndxg,  *(dt Ndxe) = —drs Ndxy, *(dt Adxs) = —dxy A dxs.

Now, let u € C*(R*;Q?) be a 2-form. We write the analogue of the harmonic form
equations du = d*u = 0 from (17.73) below; by Lemma 17.9 these are equivalent to

du=0, d(xu)=0. (17.67)
Let us write u in the form

u=dtAN (El dxl + E2 dxz + E3 dx3) + (Bl dﬂ?g A d.?f3 + BQ dl’g A dﬂfl + Bg dﬂi’l A dﬂfz)
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where E = (B, By, E3) and B = (By, By, Bs) are smooth maps from R* to R®. Then
the equations (17.67) can be rewritten using the vector calculus operators curl and div
(acting in the x variables only) as follows:

0B = — curl E,
divB =0,

O,E = curl B, (17.68)
divE = 0.

These are (in the right choice of units) the vacuum Maxwell’s equations, describ-
ing electrodynamaics: here E is the electric field and B is the magnetic field. Note
that (17.67) implies the ‘Hodge d’Alembertian equation’ (dd* + d*d)u = 0, which is the
same as each component of E, B solving the wave equation.

17.3.4. Harmonic forms and Hodge’s Theorem. As before, let (M, g) be an
n-dimensional oriented Riemannian manifold. We now additionally assume that M is
compact. The Dirac operator d+d* € Diff'(M;Q* — Q°) is elliptic by Lemma 17.12, so
by Theorem 14.23 we see that any solution u € D'(M;2*) to the equation (d+d*)u = 0
is smooth. These solutions are called harmonic forms and they are characterized by

LEMMA 17.14. Let (M, g) be a compact oriented Riemannian manifold and u €
C®(M; Q%) be a differential form on M. Then the following are equivalent:

du = d*u = 0; (17.69)
(d+d*)u = 0; (17.70)
Ayu=0. (17.71)

PROOF. Since A, = (d + d*)?, it is easy to see that (17.69) = (17.70) = (17.71).
Thus it remains to assume that Aju = 0 and show that du = d*u = 0. By (17.62)
and since d* is the adjoint of d by (17.46), we compute

0= <Agu, u>L2(M;Q') = (dd*u, u>L2(M;Q-) + (d*du, u>L2(M;Q')

= (d"u,d"u) 2 00 + (du, du) 200 (17.72)

implying that du = d*u = 0 as needed. 0
Denote by J#°(M) the space of harmonic forms of all degrees:

(M) ={ue C®M;Q%) | du=du=0} (17.73)

This space is finite dimensional by Theorem 15.13 applied to the operator d+d*, which
is elliptic by Lemma 17.12:

dim #* (M) < . (17.74)
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As follows from its definition, the space #7*(M) is the direct sum of the spaces of
harmonic forms of specific degrees:

. ¢
M) = ZG?% M) (17.75)
where (M) = {uec C®(M;Q") |du =0, di_ju=0}.
The spaces #°(M) depend on the choice of the metric g; however, as we will see in
Theorem 17.17 below, their dimension is independent of g.
We are now ready to prove the main results of this chapter.

THEOREM 17.15 (Hodge’s Theorem). Assume that (M, g) is a compact oriented
Riemannian manifold. For any ¢, we have the Hodge decomposition

C™(M; Q) = A (M) @ dp_y (CO(M; Q1Y) @ d (CP(M; Q). (17.76)

That is, any smooth differential form can be written in a unique way as the sum of a
harmonic form, an exact form (an element of the range of d), and a coexact form (an
element of the range of d*).

REMARK 17.16.% As in Remark 17.10, orientability is not actually necessary for
Theorem 17.15 and Theorem 17.17 below to hold.

PROOF. 1. First of all, arguing similarly to (17.72) (taking the L*-inner product
with v) we see that for each v € C*°(M;Q*)

d'dv=0 = dv=0, (17.77)
dd'v=0 = d'v=0. (17.78)

We now show that the sum in (17.76) is direct, that is if
O=h+dv+dw, hes* v,welC®M;Q%, (17.79)

then h = dv = d*w = 0. To see this, we apply d* and d to (17.79) and use that
d*> = (d*)*> =0 by (17.18) and (17.48) to get
d*dv =0, dd'w =0,
which by (17.77)—(17.78) gives dv = d*w = 0 and thus h = 0 as well.
2. We next show that for each u € C*°(M;Q*) we can write
u=h+dv+dv forsomehe (M), veC°M;Q%. (17.80)

This is the step where we use the theory of elliptic operators developed in the earlier
chapters. The Dirac operator d + d* € Diff'(M;Q* — Q°) is elliptic by Lemma 17.12
and the manifold M is compact, so by the formula (15.32) in the statement of the
Fredholm property (Theorem 15.13) we see that for any s € R and u € H*(M;Q°)
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we have (noting that there is no difference between transpose and adjoint for opera-
tors on real-valued forms and the operator d + d* is self-adjoint by (17.64); see also
Remark 15.2)

u=(d+d")v forsomevec H"H(M;Q°)

T (17.81)
(@, h) 200y = 0 for all h € ker(d + d*).

By Lemma 17.14, the space ker(d+d*) is the same as the space 5 of harmonic forms.
Take arbitrary u € C*°(M;*) and decompose it as

u=h+u where h € 7#°*(M)

and u € C®°(M;Q°*) is orthogonal to J#°*(M) with respect to the inner product
on L?*(M;Q°®). Fix s € R. Then (17.81) implies that u = (d + d*)v for some v €
HsH(M;Q°), and we have v € C®(M;Q°) by Theorem 14.23. This gives existence
of the decomposition (17.80).

3.5 We now show that C°°(M;Qf) is contained in the right-hand side of (17.76).
Let u € C®°(M;Q%) and write it in the form (17.80) for some h € 5#*(M) and
v € C%(M;Q*). We decompose

h = Zn:hr, v = ivr
r=0 r=0

where h, € #7(M) and v, € C°(M;Q"). Taking the part of (17.80) corresponding
to Qf we see that

u=h,+dvy_; + d*Vg_H (17.82)
which shows that u lies in the right-hand side of (17.76). O

As an application of Theorem 17.15 we show that harmonic ¢-forms are in one to
one correspondence with de Rham cohomology classes reviewed in §17.2, in fact each
cohomology class contains a unique harmonic form:

THEOREM 17.17. Assume that (M, g) is a compact oriented Riemannian manifold.
For each ¢ we have the decomposition featuring the spaces of closed and exact forms
introduced in (17.28) and (17.27)

kergeo dp = (M) @ dy_1 (C(M; Q7). (17.83)

Moreover, the space (M) of harmonic forms is isomorphic to the de Rham coho-
mology space H (M;R) defined in (17.29).

PROOF. The sum on the right-hand side of (17.83) is direct by (17.76) and it is
contained in the left-hand side of (17.83). Thus it remains to show that each u €
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C>®(M;QF) such that du = 0 can be written as the sum of a harmonic form and a
closed form. Let us write the decomposition (17.76) for u:

u=h+dv+dw where h € (M), veO®(M;Q), we C®(M; Q).

Applying d to both sides and using that du = dh = 0 and d*> = 0 by (17.18), we see
that dd*w = 0. By (17.78) this shows that d*w = 0. Thus u = h + dv, which finishes
the proof of (17.83).

Finally, consider the map from harmonic forms to their cohomology classes:
h € #'(M) — [h] € H(M;R). (17.84)
By (17.83) this map is an isomorphism. O

17.3.5. Applications of Hodge theory. Theorem 17.17 and (17.74) imply that

when M is a compact manifold, its de Rham cohomology groups are finite dimensional:

be(M) = dim H(M; R) = dim (M) < oo. (17.85)

Another consequence of this theorem is the de Rham version of Poincaré duality for
the Betti numbers (17.30):

THEOREM 17.18. Assume that M is a compact orientable manifold. Then we have

foralll=0,...,n

be(M) = bp_e(M). (17.86)

REMARK 17.19.% Unlike Theorems 17.15 and 17.17, Theorem 17.18 uses ori-

entability of M in an essential way, via the existence of the Hodge star operator.

In fact, if M is connected and not orientable, then H"(M;R) = {0} in contrast
with (17.89) below, see for example [Leel3, Theorem 17.34].

PRrROOF. Fix an orientation and a Riemannian metric on M. By Theorem 17.17,
we have by(M) = dim s#%(M). Recalling the formula (17.45) for the operator d* and
the identity (17.39), we see that for each u € C*(M; Q) we have

du=0 <= d*(»xu)=0,
du=0 <= d(*xu)=0.
Thus the Hodge star operator x, restricts to a linear isomorphism
*p 2 M) — HHM) (17.87)
which implies (17.86). O
As a corollary of (17.87), if M is a compact connected oriented Riemannian man-
ifold then we can compute the highest and lowest degree harmonic forms on M:

HO(M) =R1, #"(M)=Rdvol, (17.88)
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where dvol, € C*(M; Q") is the volume form induced by the metric g and the choice
of orientation, see the paragraph following (17.43). In particular, we have

bo(M) = by (M) = 1. (17.89)

We finish this subsection with a simple formula for the index of the even and odd parts
of the Dirac operator d + d*, see §15.3.3 and (17.54):

PROPOSITION 17.20. Let M be a compact oriented Riemannian manifold. Then

n

ind(d + d*)even = — ind(d + d*)oaa = » _(—1)"bp(M). (17.90)
=0
The expression on the right-hand side of (17.90) is called the Euler characteristic
of M.

PROOF. Since d + d* is self-adjoint (see (17.64)) and the spaces C>°(M;Qever)
and C°°(M;Q°44) are orthogonal to each other with respect to the L?(M;Q®)-inner
product, we have

((d+ d)even)” = (d+ d*)oda-
By (15.42) (where there is no difference between transpose and adjoint since we are
working with real bundles), we have

ind(d + d")eyen = —ind(d + d*)oaa = dim ker(d + d*)even — dimker(d + d*)oaq-
Next, Lemma 17.14 shows that
ker(d + d")even = EP) H(M),  ker(d + d*)oaa = @) #(M).
{ even £ odd
Now (17.90) follows from Theorem 17.17. O

17.3.6. Degree theory. Assume that M, N are two compact connected oriented
manifolds of the same dimension. Let

> M- N

be a smooth map (not necessarily a diffcomorphism). In this section, we define a
topological invariant corresponding to @, called the degree of ®. We next use this
invariant to give a proof of the Hairy Ball Theorem.

We first make a few preliminary definitions:
DEFINITION 17.21. 1. Let x € M. We say that x is a regular point for @, if the
linear map d®(x) : TyM — TowN is invertible. In this case, we define
sgndet d®(z) € {1, -1}

to be equal to 1 if dP(x) is orientation preserving (with respect to the orientations fized
on M, N') and —1 otherwise.



254 17. DIFFERENTIAL FORMS AND HODGE THEORY

2. Lety € N. We say that y is a regular value for ® if each v € ®~(y) is a
reqular point for ®. (This includes the case when ®1(y) =0.)

Any smooth map ® has a regular value. In fact, Sard’s Theorem [Leel3, Theo-
rem 6.10] shows that the set of non-regular values of ® has Lebesgue measure 0 in V.
Note that if y is a regular value, then ®!(y) has to consist of isolated points and thus
is a finite set.

We can now give the definition of the degree. We in fact give two definitions and
the statement below shows that they coincide.

THEOREM 17.22. Let M, N be compact connected oriented manifolds of the same
dimension n and ® : M — N be a smooth map. Then there exists an integer

deg® € Z, (17.91)
called the degree of ®, with the following properties:
(1) for any n-form v € C*(N;Q"), we have

/Mq)*v:(degq))/jvv (17.92)

where ®*v € C°(M; Q") is the pullback of v by ®, defined in (17.11);
(2) for any y € N which is a reqular value of ®, we have

deg ® = Z sgndet d®(x). (17.93)

zeP~1(y)

Before proceeding to the proof, let us give a few remarks:

e If @ is an orientation preserving diffeomorphism, then deg® = 1 as follows
from either (17.24) or (17.93). Similarly, if ® is an orientation reversing dif-
feomorphism, then deg® = —1.

e If @ is not onto then, taking y € N'\ ®(M) in (17.93), we see that deg ® = 0.

e From (17.92) we see that the degree of the composition of two maps is the
product of their degrees.

e As an example, if M = N = S! := R/Z and ®(x) = mz mod Z for some
m € Z, then deg ® = m, as can be seen from either (17.92) (taking v = dz,
in which case ®*v = mdz) or (17.93). If we think of S' as the unit circle
in C, then ® corresponds to the map z + 2™, explaining the use of the word
‘degree’.

e X The degree of a map is a special case of the induced maps on de Rham
cohomology spaces defined in (17.29). More precisely, if u € C*°(N; Q) is a
closed form, then its pullback ®*u is closed, and if u is an exact form then
d*u is exact (both follow from (17.20)). Thus ®* descends to a linear map
o; : HY(W;R) — HY(M;R). By (17.89), we have H"(M;R) ~ H"(N;R) ~
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R, with the identification being canonical using the integral of an n-form over
the entire manifold. Then the map ®; is the multiplication by the degree of ®.
The fact that the degree is an integer is related to the existence of cohomology
groups with integer coefficients, which we do not study here.

Our proof of Theorem 17.22 relies on the following characterization of exact n-forms:

LEMMA 17.23. Assume that M is an n-dimensional compact connected oriented

manifold and v € C®°(M;Q"). Then

v=dw for some w € C®(M; Q") — /VzO.
M

PROOF. The = direction follows immediately from Stokes’s Theorem 17.4, so it
remains to show the < direction. Assume that [ mV = 0. Fix a metric g on M.
By (17.82) we write

v=h+dw for some h € #" (M), w € C®(M;Q" ).

Taking the integrals of both sides over M and using Theorem 17.4 to see that the
integral of dw is equal to 0, we see that f/vt h = 0. But s#"(M) is spanned by dvol,
by (17.88), and [, dvoly = voly(M) > 0. It follows that h = 0 and thus v = dw as
needed. 0

We are now ready to give
PrROOF OF THEOREM 17.22. 1. Fix any
v € C°(N;Q), / vo = 1.
N

For example, one can fix a Riemannian metric on N and let v, be a multiple of the
corresponding volume form. Now, put

deg@::/ d*'vy € R.
M

We first show that (17.92) holds. Take arbitrary v € C*(N;Q") and put ¢ := [, v.
Then [,,v — cvo = 0 and thus by Lemma 17.23 we have

v —cvg=dw for some w € C°(N; Q" 1).
Then by (17.20) we get
d'v — cd vy = dO*W
and thus by Theorem 17.4 we have [, ®*v — c®*vy = 0 which gives (17.92).

2. It remains to show that (17.93) holds, which (since ® has a regular value) also implies
that deg® € Z. Let y € N be a regular value for ®. Denote by 0, € D'(N;Q") the
delta-current at y. It is similar to the delta-density defined in (13.46) but incorporates
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the orientation fixed on M. More precisely, supp 6, = {y} and if 5 : U — V is a chart
on N such that y € U, then we have

2,0y = (sgndet dse(y))0,q) day A -+ A da,. (17.94)
The currents defined on the right-hand side of (17.94) satisfy compatibility conditions

analogous to (13.43), as follows from (10.10), and thus give rise to a current J, on N.

Now (17.93) follows by applying (17.92) with v := §,. Since ¢, is not a smooth
form, some explanations are in order. Since y is a regular value for ®, we have

“Yy) ={x1,...,ox} forsome z1,...,o5 € M

and d®(zy) is invertible for each k. By the Inverse Mapping Theorem, we can fix a
neighborhood ¥V G N of y such that

N
@710)) = |_| U,, x1 € Uy,
k=1
and the restriction of ® to each U, is a diffeomorphism U, — V. Using the pullback
operators on distributions by these diffeomorphisms, we can define the operators of
pullback on differential forms (@, )* : E'(V; Q") — £ (Uy; 2™). Adding these together
and extending by zero to M, we get the pullback operator

O E'(V; Q") = D(M; QM)

which is sequentially continuous and agrees with the usual pullback of differential forms
on CX(V; Q™). Since C(V; Q") is dense in E'(V;Q"), from (17.92) we see that

/ O*v = (deg <I>)/ v forall ve&'(V;Q").
M N

Now apply this with v := §,. The right-hand side is equal to deg ®. Using (17.94) we
see that the left-hand side is equal to

/ Z sgndet d®(zy))o Z sgndet d®(xy).
M

k=1
This gives (17.93). O

A classical application of Theorem 17.22 is the following

THEOREM 17.24 (Hairy Ball Theorem)* Assume that n is even and X € C>(S™; TS")
is a vector field on the sphere S™. Then there exists x € S™ such that X (x) = 0.

PROOF. Fix the standard metric on S* C R"*! coming from the Euclidean met-
ric and take the standard orientation o on S™ corresponding to the outward nor-
mal: that is, for each € S" and a basis vy,...,v, € T,S* C R""! we have
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o(vi,...,v,) = sgndet|zv; ...v,] where [xvy...v,] is the (n + 1) x (n + 1) matrix
with columns z,vq, ..., v,.

We argue by contradiction. Assume that the vector field X is nonvanishing. Divid-
ing it by its length, we may assume that |X| = 1 everywhere. Then for each z € S",
X(x) € R™™ is a unit vector orthogonal to z. Now define the family of smooth maps

O, :S" = S", te0,n], Pix)=(cost)x+ (sint)X(x).
That is, ®;(z) is the result of following for time ¢ the geodesic on S™ with initial position
x and initial velocity X (z). Consider the degree
deg ®, € Z.

It is a continuous function of ¢ as can be seen from (17.92) and takes integer values.
Thus deg @, is constant. This gives a contradiction since we can compute

deg®y =1, deg®, =—1.

Indeed, @, is the identity map (which is an orientation preserving diffeomorphism)
and ®,(z) = —z is the antipodal map, which (as n is even and thus n + 1 is odd) is
an orientation reversing diffeomorphism. 0

17.4. Notes and exercises

For an introduction to the de Rham cohomology theory and some of its applica-
tions (including degree theory and the Brouwer fixed point theorem) see Lee [Leel3,

Chapters 17-18]. For a more comprehensive treatment of differential topology see Bott
and Tu [BT82].

For Hodge theory and its applications, the reader is referred to the books [Che56,
BDIP02, Huy05, Voi07, War71]|. Many of these consider the case of complex or
Kahler manifolds, in which the manifold has a complex structure which gives additional
structure for the de Rham cohomology spaces and for the operators d, d*.

EXERCISE 17.1. (1 pt) Prove Proposition 17.8.
EXERCISE 17.2. (0.5 pt) Verify (17.40) and (17.41).
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convolution, see §§81.3.1,6.1,8.1,8.2

Hodge star, see §17.3.1

tensor product of distributions, see §7.1

asymptotic sum, see §14.1.2

wedge product, see §17.1.1

exterior power, see §17.1.1

total exterior algebra, see §17.1.1

Lebesgue almost everywhere, see §1.2.1

Betti number, see §17.2

the open ball in some metric space centered at a point x and of radius r
the closed ball in some metric space centered at a point x and of radius r
the space of k-times differentiable functions on U, see §1.2.3

the space of compactly supported functions in C*(U), see §1.2.3
the space of infinitely differentiable functions on U, see §1.2.4
the space of smooth sections of a vector bundle, see §13.1.8

the space of compactly supported functions in C*°(U), see §1.2.4
see (4.1)

inner product on R", see §11.1

the space of distributions on U, see §2.1

the space of distributions on a manifold M, see §13.2

exterior derivative, see §17.1.2

see §17.1.1

codifferential, see §17.3.2

the partial derivative operator in j-th variable

the higher order partial derivative w.r.t. multiindex «, see §1.2.3
the operators —id,;, (=)l see §11.1.3

Dirac delta function, see §2.1

the Laplace operator 92 + ---+4 92 on R”

Laplace-Beltrami operator, see §13.3.2

Hodge Laplacian, see §17.3.3

the space of densities of a vector space V, see §13.1.7

the space of differential operators, see §§9.1.1,13.3
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Riemannian volume density or volume form, see §§13.1.7,17.3.2
the space of distributions with compact support on U, see §4.2
the Fourier transform of f, see §§11.1-11.2

the Heaviside function, see (3.3)

Sobolev space, see §§12.1.2,13.2.3

see §§812.1.5,13.2.3

de Rham cohomology space, see §17.2

the space of harmonic forms, see §17.3.4

the bundle of linear homomorphisms, see §13.1.8

the index of an operator P, see §15.3.1

the indicator function of a subset, see (1.17)

the Jacobian of a diffeomorphism @, see §10.1.3

pushforward by a chart, see §§13.1.3-13.1.7,13.2.2,13.3.2

the kernel of an operator P, see §15.3.1

dilation operator, see §5.1.2

compactly supported LP functions, see §1.2.1

locally LP functions, see §1.2.1

distributional pairing, see §2.1

L? Hermitian inner product, see (1.19)

see §12.1.2

the bundle of densities on a manifold, see §13.1.7

the bundle of /-forms on a manifold, see §17.1.2

the total bundle of differential forms on a manifold, see §17.1.2
open subset, see Definition 1.1

quantization procedure, see §14.1.3

the transpose of an operator, see §§7.3,13.3.3

the adjoint of an operator, see §§7.3,16.1.1

pullback of a function or a distribution by a map ®, see §10.1
principal value integral, see §5.2.3

the range of an operator P, see §15.3.1

the space of Schwartz functions, see §11.1.2

the space of tempered distributions, see §11.2.1

the space of Kohn—Nirenberg symbols, see §§12.2.3,14.1.1
rapidly decaying symbols, see §14.1.1

the n-dimensional sphere, see §13.1.2

the principal symbol of a differential operator, see §13.3
singular support of a distribution, see §8.3

spectrum of an operator, see §16.1.1

compactly contained, see Definition 1.1

support of a function (see §1.2.3) or a distribution (see §4.1)
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the n-dimensional torus, see §13.1.2
tangent bundle, see §13.1.4
cotangent bundle, see §13.1.5

see §5.2

see §1.2.3

261






[AN07]

[Ana08]
[Ava50]

[BDIP02]

[Bea02]
[Bér77]

(BTS2
[CAVS5]
[CG22]

[Che56]
[Dav95]

[DF8S]
[DGT75]
[DIN21]
[DS8g]

[Dya2la]
[Dya21b]

[Eval0]

[FJ98]

Bibliography

Nalini Anantharaman and Stéphane Nonnenmacher. Half-delocalization of eigenfunctions
for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble), 57(7):2465-2523,
2007. Festival Yves Colin de Verdiere.

Nalini Anantharaman. Entropy and the localization of eigenfunctions. Ann. of Math. (2),
168(2):435-475, 2008.

Vojislav G. Avakumovié. Uber die Eigenfunktionen auf geschlossenen Riemannschen Man-
nigfaltigkeiten. Math. Z., 65:327-344, 1956.

José Bertin, Jean-Pierre Demailly, Luc Illusie, and Chris Peters. Introduction to Hodge
theory, volume 8 of SMF/AMS Texts and Monographs. American Mathematical Society,
Providence, RI; Société Mathématique de France, Paris, 2002. Translated from the 1996
French original by James Lewis and Peters.

H.S. Bear. A Primer of Lebesque Integration. Elsevier Science, 2002.

Pierre H. Bérard. On the wave equation on a compact Riemannian manifold without con-
jugate points. Math. Z., 155(3):249-276, 1977.

Raoul Bott and Loring W. Tu. Differential forms in algebraic topology, volume 82 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.

Yves Colin de Verdiere. Ergodicité et fonctions propres du laplacien. In Bony-Sjdstrand-
Meyer seminar, 1984-1985, pages Exp. No. 13, 8. Ecole Polytech., Palaiseau, 1985.

Yaiza Canzani and Jeffrey Galkowski. Logarithmic improvements in the weyl law and ex-
ponential bounds on the number of closed geodesics are predominant, 2022.

S.S. Chern. Complex Manifolds: Lectures. Lu-Chiang, 1956.

E. B. Davies. Spectral theory and differential operators, volume 42 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1995.

Harold Donnelly and Charles Fefferman. Nodal sets of eigenfunctions on Riemannian man-
ifolds. Invent. Math., 93(1):161-183, 1988.

J. J. Duistermaat and V. W. Guillemin. The spectrum of positive elliptic operators and
periodic bicharacteristics. Invent. Math., 29(1):39-79, 1975.

Semyon Dyatlov, Long Jin, and Stéphane Nonnenmacher. Control of eigenfunctions on
surfaces of variable curvature. J. Amer. Math. Soc., 2021.

N. Dunford and J.T. Schwartz. Linear Operators, Part 1: General Theory. Wiley Classics
Library. Wiley, 1988.

Semyon Dyatlov. Around quantum ergodicity. Annales mathématiques du Québec, 2021.
Semyon Dyatlov. Macroscopic limits of chaotic eigenfunctions, 2021. https://arxiv.org/
abs/2109.09053.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI, second edition, 2010.

F. Gerard Friedlander and Mark Joshi. Introduction to the Theory of Distributions. Cam-
bridge University Press, 1998.

263


https://arxiv.org/abs/2109.09053
https://arxiv.org/abs/2109.09053

264

[GS94]

[Hor65]

[Ho103]

[Hor05]

[Ho6r07)

[Hor09]

[Hux03]
[Huy05]
[Jon01]
[K1i95]
[KN65]
[Lax02]
[Leel3]
[Lev53]
[Lin06]

[LM20]

[Log18al
[Log18b]
[Mel]

[Mel93]

BIBLIOGRAPHY

Alain Grigis and Johannes Sjostrand. Microlocal analysis for differential operators, volume
196 of London Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1994. An introduction.

Lars Hormander. Pseudo-differential operators. Comm. Pure Appl. Math., 18:501-517,
1965.

Lars Hormander. The analysis of linear partial differential operators. I. Classics in Mathe-
matics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of
the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)].

Lars Hormander. The analysis of linear partial differential operators. II. Classics in Math-
ematics. Springer-Verlag, Berlin, 2005. Differential operators with constant coefficients,
Reprint of the 1983 original.

Lars Hormander. The analysis of linear partial differential operators. I11. Classics in Math-
ematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.
Lars Hormander. The analysis of linear partial differential operators. I'V. Classics in Math-
ematics. Springer-Verlag, Berlin, 2009. Fourier integral operators, Reprint of the 1994 edi-
tion.

M. N. Huxley. Exponential sums and lattice points. III. Proc. London Math. Soc. (3),
87(3):591-609, 2003.

Daniel Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An in-
troduction.

F. Jones. Lebesgue Integration on Euclidean Space. Jones and Bartlett books in mathemat-
ics. Jones and Bartlett, 2001.

Wilhelm P. A. Klingenberg. Riemannian geometry, volume 1 of De Gruyter Studies in
Mathematics. Walter de Gruyter & Co., Berlin, second edition, 1995.

J. J. Kohn and L. Nirenberg. An algebra of pseudo-differential operators. Comm. Pure
Appl. Math., 18:269-305, 1965.

P.D. Lax. Functional Analysis. Pure and Applied Mathematics: A Wiley Series of Texts,
Monographs and Tracts. Wiley, 2002.

John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathe-
matics. Springer, New York, second edition, 2013.

B. M. Levitan. On expansion in characteristic functions of the Laplace operator. Doklady
Akad. Nauk SSSR (N.S.), 90:133-135, 1953.

Elon Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity. Ann.
of Math. (2), 163(1):165-219, 2006.

Alexander Logunov and Eugenia Malinnikova. Review of Yau’s conjecture on zero sets of
Laplace eigenfunctions. In Current developments in mathematics 2018, pages 179-212. Int.
Press, Somerville, MA, [2020] (©)2020.

Alexander Logunov. Nodal sets of Laplace eigenfunctions: polynomial upper estimates of
the Hausdorff measure. Ann. of Math. (2), 187(1):221-239, 2018.

Alexander Logunov. Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture
and of the lower bound in Yau’s conjecture. Ann. of Math. (2), 187(1):241-262, 2018.
Richard Melrose. Differential analysis, lecture notes for 18.155 and 156. https://math.
mit.edu/~rbm/18.155-F16/GradAnal . pdf.

Richard B. Melrose. The Atiyah-Patodi-Singer index theorem, volume 4 of Research Notes
in Mathematics. A K Peters, Ltd., Wellesley, MA, 1993.


https://math.mit.edu/~rbm/18.155-F16/GradAnal.pdf
https://math.mit.edu/~rbm/18.155-F16/GradAnal.pdf

[RSS1]
[RS94]

[Rud64]
[Ruds7]
[Rud91]

[Sch50]

[Sch57]
[Shn74a]

[Shn74b]

[Sob36]

[Sob91]

[Spi65]
[Str11]

[SU13]

[Taylla)
[Tayl1lb]

[Voi07]

[War71]

[Wey12]

BIBLIOGRAPHY 265

M. Reed and B. Simon. I: Functional Analysis. Methods of Modern Mathematical Physics.
Elsevier Science, 1981.

Zeév Rudnick and Peter Sarnak. The behaviour of eigenstates of arithmetic hyperbolic
manifolds. Comm. Math. Phys., 161(1):195-213, 1994.

W. Rudin. Principles of Mathematical Analysis. International series in pure and applied
mathematics. McGraw-Hill, 1964.

W. Rudin. Real and Complexr Analysis. Higher Mathematics Series. McGraw-Hill Educa-
tion, 1987.

W. Rudin. Functional Analysis. International series in pure and applied mathematics.
McGraw-Hill, 1991.

L. Schwartz. Théorie des distributions. Number v. 1 in Actualités scientifiques et indus-
trielles : Publications de I'Institut de Mathématique de I’Université de Strasbourg. Jouve,
1950.

L. Schwartz. Théorie des distributions. Number v. 2 in Actualités scientifiques et indus-
trielles. Hermann, 1957.

Alexander Shnirelman. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk,
29(6(180)):181-182, 1974.

Alexander Shnirelman. Statistical properties of eigenfunctions. In Proceedings of the All-
USSR School in Differential Equations with Infinite Number of Independent Variables and
in Dynamical Systems with Infinitely Many Degrees of Freedom, Dilijan, Armenia, May
21-June 3, 1973. Armenian Academy of Sciences, Erevan, 1974.

Sergei Sobolev. Méthode nouvelle a résoudre le probleme de cauchy pour les équations
linéaires hyperboliques normales. Matematiceskij sbornik, 43(1):39-72, 1936.

Sergei Sobolev. Some applications of functional analysis in mathematical physics, volume 90
of Translations of Mathematical Monographs. American Mathematical Society, Providence,
RI, 1991. Translated from the third Russian edition by Harold H. McFaden, With comments
by V. P. Palamodov.

Michael Spivak. Calculus on manifolds. A modern approach to classical theorems of ad-
vanced calculus. W. A. Benjamin, Inc., New York-Amsterdam, 1965.

D.W. Stroock. FEssentials of Integration Theory for Analysis. Graduate Texts in Mathe-
matics. Springer New York, 2011.

Alexander Strohmaier and Ville Uski. An algorithm for the computation of eigenvalues,
spectral zeta functions and zeta-determinants on hyperbolic surfaces. Comm. Math. Phys.,
317(3):827-869, 2013.

Michael E. Taylor. Partial differential equations I. Basic theory, volume 115 of Applied
Mathematical Sciences. Springer, New York, second edition, 2011.

Michael E. Taylor. Partial differential equations II. Qualitative studies of linear equations,
volume 116 of Applied Mathematical Sciences. Springer, New York, second edition, 2011.
Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, english edition,
2007. Translated from the French by Leila Schneps.

Frank W. Warner. Foundations of differentiable manifolds and Lie groups. Scott, Foresman
& Co., Glenview, Ill.-London, 1971.

Hermann Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dif-
ferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math.
Ann., 71(4):441-479, 1912.



266 BIBLIOGRAPHY

[Ze187) Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces.
Duke Math. J., 55(4):919-941, 1987.

[Zwol2] Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2012.



	Preface
	Chapter 1. Prologue: motivation and background
	1.1. A bit of motivation
	1.2. Functional spaces
	1.3. Convolution and approximation by smooth functions
	1.4. Notes and exercises

	Chapter 2. Basics of distribution theory
	2.1. Definition of distributions
	2.2. Distributions and convergence
	2.3. Localization
	2.4. Notes and exercises

	Chapter 3. Operations with distributions
	3.1. Differentiation
	3.2. Multiplication by smooth functions
	3.3. Notes and exercises

	Chapter 4. Distributions and support
	4.1. Support of a distribution
	4.2. Distributions with compact support
	4.3. Fréchet metric and Banach–Steinhaus for distributions
	4.4. Distributions supported at one point
	4.5. Notes and exercises

	Chapter 5. Homogeneous distributions
	5.1. Basic properties
	5.2. Homogeneous distributions on R
	5.3. Notes and exercises

	Chapter 6. Convolution I
	6.1. Convolution of a distribution and a smooth function
	6.2. Approximation of distributions by smooth functions
	6.3. Notes and exercises

	Chapter 7. Tensor products and distributional kernels
	7.1. Tensor product of distributions
	7.2. Distributional kernels
	7.3. The transpose of an operator and defining operators by duality
	7.4. Notes and exercises

	Chapter 8. Convolution II
	8.1. The case of compact supports
	8.2. The case of properly summing supports
	8.3. Singular support and convolutions
	8.4. Notes and exercises

	Chapter 9. Fundamental solutions and elliptic regularity
	9.1. Fundamental solutions
	9.2. Elliptic regularity I
	9.3. Notes and exercises

	Chapter 10. Pullbacks by smooth maps
	10.1. Defining pullback
	10.2. Application to the wave equation
	10.3. Notes and exercises

	Chapter 11. Fourier transform I
	11.1. Fourier transform on Schwartz functions
	11.2. Fourier transform on tempered distributions
	11.3. Notes and exercises

	Chapter 12. Fourier transform II
	12.1. Sobolev spaces
	12.2. Elliptic regularity II
	12.3. Notes and exercises

	Chapter 13. Manifolds and differential operators
	13.1. Manifolds
	13.2. Distributions on a manifold
	13.3. Differential operators
	13.4. Notes and exercises

	Chapter 14. Elliptic operators with variable coefficients
	14.1. Pseudodifferential operators
	14.2. Proof of Elliptic Regularity III
	14.3. Notes and exercises

	Chapter 15. Elliptic operators and Sobolev spaces
	15.1. Elliptic regularity in Sobolev spaces
	15.2. Compact embedding in Sobolev spaces
	15.3. Fredholm theory
	15.4. Notes and exercises

	Chapter 16. Spectral theory
	16.1. Spectral theorem for self-adjoint elliptic operators
	16.2. Advanced results on Laplacian eigenvalues and eigenfunctions
	16.3. Notes and exercises

	Chapter 17. Differential forms and Hodge theory
	17.1. Differential forms
	17.2. De Rham cohomology
	17.3. Hodge theory
	17.4. Notes and exercises

	List of notation
	Bibliography

