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1 The Dual Nature of the Complex Plane

A complex number is usually written z = x + iy, where i2 = −1, and x, y are
real numbers. On the one hand, you can think of it as a point on the plane,
which therefore has two coordinates. On the other hand, we like to think of
z as a single number. This duality has a lot to do with what makes complex
analysis different from real analysis.

Addition of complex numbers is just the same as addition of real two-
dimensional vectors. In this sense, we like to say that C ∼= R2. We may
even write z = x + iy = (x, y). However, C has something important that R2

doesn’t have; it has a funny multiplication. This multiplication is defined so
that i2 = −1. If we write the complex numbers z1 = (x1, y1) and z2 = (x2, y2),
then we get the funny formula:

z1z2 = (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

This formula implies in particular that (0, 1)2 = −1 = (−1, 0), and it’s what
makes the complex numbers different from just ordinary vectors in the real
plane. Of course, we still like to think of complex numbers as vectors in the
plane; we just have to remember that they’re more than that.

Now, you might say that we can multiply elements of R2 by setting (x1, y1)(x2, y2) =
(x1x2, y1y2). However, this type of multiplication does not have the nice prop-
erty that every nonzero element is invertible. In other words, for multiplication
of complex numbers, whenever z 6= 0, there is a complex number z−1 such that
zz−1 = z−1z = 1.
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In terms of limits and topology, we also think of the complex numbers as no

different from R2. We define |z| =
√
x2 + y2, and we define the open ball

Dr(z0) := {z ∈ C | |z − z0| < r}

A subset Ω ⊆ C is said to be open if it is the union of open balls of the form
Dr(z0) (possibly for infinitely many z0 ∈ C and r ∈ R>0). An open subset Ω of
the complex plane is often called a (complex) domain or open region.

If f is a function defined on an open neighborhood of z0, then we say
lim
z→z0

f(z) = w if for all ε > 0, there is δ > 0 such that f(z) ∈ Dε(w) for

all z ∈ Dδ(z0).

Another way to put all of this is that the “∼=” in C ∼= R2 preserves ev-
erything to do with addition and with geometry, but it does not preserve the
multiplication of complex numbers. Or in other words, this ∼= forgets the struc-
ture of multiplication in C. The use of the word “forgets” is a common one in
mathematics.

2 Complex Differentiation

If Ω ⊆ C is an open subset of C (equivalently, of R2), and f : Ω → C is a
function, we can try to say what it means to differentiate f .

It is natural to define

f ′(z) := lim
h→0

f(z + h)− f(z)

h
, (1)

if the limit exists, in which case we say that f is complex differentiable, analytic,
or holomorphic. The notes by Orloff use the term analytic, while I tend to use
the term holomorphic.

Notice that the expression f(z+h)−f(z) only uses addition and subtraction,
both of which are simply vector operations. The thing that makes this definition
fundamentally about C and not about R2 is the division of the top by the
bottom.

Now, we can of course forget the structure of C and just think of f as a
function from Ω ⊆ R2 to R2. When we do this, it’s best to write f(x + iy) =
u(x, y) + iv(x, y), where u and v are real-valued functions on R2. For functions
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on R2, we have the notion of partial derivative from multivariable calculus. In
particular, we have

∂u

∂x
(x, y) = lim

h→0

u(x+ h, y)− u(x, y)

h

∂u

∂y
(x, y) = lim

h→0

u(x, y + h)− u(x, y)

h

∂v

∂x
(x, y) = lim

h→0

v(x+ h, y)− v(x, y)

h

∂v

∂y
(x, y) = lim

h→0

v(x, y + h)− v(x, y)

h
.

Remark 2.1. Notice a key difference between the limits here and 1 is that the
h in 1 is a complex number, whereas the limits just above are only real numbers.
In particular, the limit in 1 must be the same regardless of which direction h
approaches zero from.

More precisely, in the definition of limit, we require that for all ε > 0, the
expression is within ε of the limit for all h within δ of 0. But the key question
is what “for all” means. The set of all real h within δ of 0 is a line segment of
length 2δ, while the set of all complex h within δ of 0 is a circle around zero.
For the former, we sometimes write lim

h→0h∈R
instead of just lim

h→0
.

Therefore, it is harder for a complex limit to exist than for a real limit to
exist; i.e., if lim

h→0
of something exists, then lim

h→0
h∈R

automatically exists and equals

the former limit. It is because of this that it is harder for a function to be complex
differentiable than for it to be a (two-variable) real differentiable function.

Despite how hard it is, we will soon see many examples of complex-differentiable
functions. On the other hand, as I will explain in Section 3, the property of
being complex-differentiable implies a lot of nice properties that don’t hold for
real-valued functions.

2.1 Cauchy-Riemann Equations

Let’s say f(z) = u(x, y)+iv(x, y) is holomorphic in a domain Ω ⊆ C, and that u
and v have all partial derivatives in Ω. We want to understand how the notion
of being holomorphic relates to partial derivatives.

Following the idea of Remark 2.1, let’s see what happens as h approaches 0
along the real axis versus what happens as h approaches 0 along the imaginary

3



axis. If the function is holomorphic, then both of these limits should exist, and
they should be equal to each other.

First, we consider the limit

lim
h→0
h∈R

f(z + h)− f(z)

h
.

Writing in terms of real and imaginary parts, we get

f ′(z) = lim
h→0
h∈R

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

= lim
h→0
h∈R

u(x+ h, y)− u(x, y)

h
+ i lim

h→0
h∈R

v(x+ h, y)− v(x, y)

h

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y)

It follows that

f ′(z) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y).

Now let’s consider the limit from the imaginary direction. To do this, we
consider the limit

lim
h→0
h∈R

f(z + ih)− f(z)

ih
.

This limit should also equal f ′(z).

Writing in terms of real and imaginary parts, we get

f ′(z) = lim
h→0
h∈R

u(x, y + h) + iv(x, y + h)− u(x, y)− iv(x, y)

ih

= lim
h→0
h∈R

v(x, y + h)− v(x, y)

h
− i lim

h→0
h∈R

u(x, y + h)− u(x, y + h)

h

=
∂v

∂y
(x, y)− i∂u

∂y
(x, y)

It follows that

f ′(z) =
∂v

∂y
(x, y)− i∂u

∂y
(x, y).
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But this is strange - we have two different expressions for f ′(z)! In order for
f ′(z) to be well-defined (i.e., for f to be holomorphic), these expressions have
to be equal. So we find that if f is holomorphic, then

∂v

∂y
(x, y)− i∂u

∂y
(x, y) =

∂u

∂x
(x, y) + i

∂v

∂x
(x, y).

Since an equality of complex numbers implies an equality of the correspond-
ing real and imaginary parts, we find that

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

at all points of Ω.

These are the celebrated Cauchy-Riemann Equations.

Note that we haven’t proven that any differentiable function satisfying the
Cauchy-Riemann equations is holomorphic; we’ve simply shown that in order
for a function to be holomorphic, it must satisfy these equations. Soon, we’ll
show that the converse is true, i.e., that these equations imply holomorphicity.
This theorem is stated in Section 2.7.2.

2.2 Geometric Interpretation

As we said before, the key structure that distinguishes C from R2 is the method
of multiplying complex numbers. Let’s fix a complex number w = a + ib, for
a, b ∈ R, and let’s consider the function from C to C sending

z 7→ wz.

Identifying C with R2, this can be written as

(x, y) 7→ (ax− by, ay + bx).

Alternatively, we may represent this by the matrix(
a −b
b a

)
. (2)

Representing it by a matrix recalls for us that it’s a linear transformation.
Geometrically, this linear transformation corresponds to a rotation by θ and

scaling by r, where w = reiθ, or equivalently, r =
√
a2 + b2 and θ = arctan(b/a).
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Conversely, any linear transformation consisting of a rotation and a scaling
can be written as a matrix of the form 2 and corresponds to multiplication by a
complex number. In this sense, we can consider C as a subset of the set M2(R)
of all 2× 2 real matrices, where the complex number a+ bi corresponds to the
matrix 2.

Now, let’s go back to calculus. If we have an open set Ω ⊆ R2 and a
differentiable function f(x, y) = (u(x, y), v(x, y)) : Ω → R2, then at each point
(x, y) ∈ Ω, there is the Jacobian matrix

J(x, y) =


∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y



The Jacobian has a nice interpretation in terms of linear approximations of
functions. In ordinary calculus, if g(x) is a single-variable differentiable real-
valued function, then g′ can be defined by saying that for any x0 ∈ R, the linear
function

g′(x0)(x− x0) + g(x0)

is the best linear approximation to the function g(x) near the point x = x0.
Similarly, around a point (x0, y0), the best linear approximation to f(x, y) is
the function

J(x0, y0)

(
x− x0
y − y0

)
+

(
u(x0, y0)
v(x0, y0)

)
,

where we view R2 as the space of 2× 1 column vectors.

The Cauchy-Riemann equations are in fact equivalent to the statement that
J(x, y) is of the form 2, i.e. that J(x, y) lies in C ⊆M2(R).

Thus, geometrically, we can think of a holomorphic function as a function
that locally acts like multiplication by a complex number (and in fact, this com-
plex number is precisely the derivative of that function); equivalently, a function
that locally acts by rotation and scaling (but not skewing). One important con-
sequence of this is that holomorphic functions are conformal, which is a fancy
way of saying that they preserve angles.

3 Properties Enjoyed by Holomorphic Functions

If f is a function from a complex domain Ω to C, then the property of being
holomorphic on Ω implies a lot of nice properties of f that are not implied by
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real differentiability. We list some of these properties, as a series of “Facts,” in-
terspersed with comments about how these differ from real analysis. References
are to Jerry Orloff’s notes for 18.04.

Fact 3.1 (Theorem 4.6.1). If f is holomorphic on Ω, then f ′ is also holomorphic
on Ω. In fact, letting f(x+ iy) = u(x, y) + iv(x, y), if f is holomorphic, then u
and v are infinitely differentiable in either variable.

Note that the corresponding statement is very much false if we simply assume
that f is differentiable in the variables x or y. A simple example would be to
set u(x, y) = x2 for x ≥ 0 and −x2 for x ≤ 0, and v(x, y) = 0.

Fact 3.2 (Theorem 7.5). If f is holomorphic on Ω, and Dr(z0) ⊆ Ω for some
z0 ∈ Ω and r ∈ R>0, then on Dr(z0), we have

f(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k.

Again, the corresponding statement is false in real analysis. There are real
differentiable functions that are infinitely differentiable but not equal to the sum
of their Taylor series. For example, consider the function f : R → R such that
f(x) = 0 for x ≤ 0 and f(x) = e−1/x for x > 0.

Fact 3.3 (Theorem 3.13(i)). If f is holomorphic on a simply connected domain
Ω, and γ is a curve in Ω, then ∫

γ

f(z)dz = 0.

If f is an arbitrary differentiable function from Ω to R2, then this is not
guaranteed to hold. But I actually claim that we can understand this statement
in terms of ordinary multivariable calculus.

To see this, we write f(z) = u(x, y) + iv(x, y), and we note that dz =
d(x+ iy) = dx+ idy. Then we write∫

γ

f(z)dz =

∫
γ

(u(x, y) + iv(x, y))(dx+ idy)

=

∫
γ

(u(x, y)dx− v(x, y)dy) + i(u(x, y)dy + v(x, y)dx)

=

∫
γ

u(x, y)dx− v(x, y)dy + i

∫
γ

u(x, y)dy + v(x, y)dx.
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Now, assuming that all the partial derivatives of u and v exist and are
continuous, Green’s Theorem from multivariable calculus tells us that∫

γ

Fdx+Gdy =

∫
Dr(z0)

∂G

∂x
− ∂F

∂y
dxdy.

Applying Green’s Theorem to the real and imaginary parts of the previous
equations, we find that

∫
γ

f(z)dz =

∫
γ

u(x, y)dx− v(x, y)dy + i

∫
γ

u(x, y)dy + v(x, y)dx

=

∫
Dr(z0)

∂(−v)

∂x
− ∂u

∂y
dxdy + i

∫
Dr(z0)

∂u

∂x
− ∂v

∂y
dxdy

=

∫
Dr(z0)

0dxdy + i

∫
Dr(z0)

0dxdy

= 0,

where the second to last step holds because of the Cauchy-Riemann equations.

Related to Fact 3.3, it turns out that every holomorphic functions f(z) on
a disc has a primitive, i.e., a holomorphic function F (z) such that F ′(z) = f(z)
for all z in the disc (see Theorem 3.13(iii)). You can try to define a primitive for

a function f by defining F (z) =

∫ z

z0

f(z)dz. The problem with this definition

is that it a priori depends on which path you choose from z to z0! But Fact 3.3
can be used to show that this integral does not depend on the path! On the flip
side, if you think of γ as starting and ending at z0 + r (the rightmost point of
the circle γ), then applying the fundamental theorem of calculus would tell you∫

γ

f(z)dz = [F (z)]
z0+r
z0+r

= F (z0 + r)− F (z0 + r) = 0. (3)

Note that in Fact 3.3, we had to assume that the function f(z) was holo-
morphic on all of Ω, and in particular, in the entire interior of the circle γ. The
following fact shows that this assumption was necessary:

Fact 3.4. If γ is the circle as above, then∫
γ

1

z − z0
dz = 2πi.

This fact is described in Example 3.11(iii).
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Proof. To prove this, let’s parametrize γ by γ(t) = z0 + re2πit for t ∈ [0, 1].
While I haven’t defined complex line integrals yet, you can imagine that dz =
dγ(t)

dt
dt = 2πire2πit, so we have

∫
γ

1

z − z0
dz =

∫ 1

0

1

γ(t)− z0
dγ(t)

dt
dt

=

∫ 1

0

1

re2πit
2πire2πitdt

=

∫ 1

0

2πire2πit

re2πit
dt

=

∫ 1

0

2πidt

= 2πi.

That was a rigorous derivation; but more importantly, this has a nice intu-
itive explanation in terms of the complex logarithm, as follows.

Recall that eiθ = cos θ + i sin θ, which implies de Moivre’s formula e2πi =

e0 = 1. Assume for simplicity that z0 = 0. Then we should think of

∫
γ

1

z
dz

as an integral from z = 1 to z = 1, and since the antiderivative of
1

z
is the

logarithm, it should be log(1)− log(1). But the fact that e2πi = e0 = 1 suggests
that log(1) has more than one possible value, and so it makes sense (some weird
sense) to say that log(1)− log(1) = 2πi− 0 = 2πi.

In other words, the fact that the integral of
1

z
along a path around the origin

is nonzero is related to the fact that the complex logarithm is ambiguous, at
least up to an integer multiple of 2πi. This is an important idea that will come
up a lot in complex analysis.

In fact, an important corollary of Fact 3.4 is the following, known as the
Cauchy Integral Formula:

Fact 3.5 (Theorem 4.1). Let f(z) be a holomorphic function in a domain Ω,
and suppose Dr(z0) is an open ball whose boundary γ is also contained in Ω.
Then ∫

γ

f(z)

z − z0
dz = 2πif(z0).
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Here’s a simple intuitive reason to believe Fact 3.5. By Fact 3.2, we can

write f(z) as a power series

∞∑
k=0

f (k)(z0)

k!
(z−z0)k in that ball. Assuming we can

interchange integration and infinite summation, we have∫
γ

f(z)

z − z0
dz =

∫
γ

∑∞
k=0

f(k)(z0)
k! (z − z0)k

z − z0
dz

=

∫
γ

∞∑
k=0

f (k)(z0)

k!
(z − z0)k−1dz

=

∞∑
k=0

∫
γ

f (k)(z0)

k!
(z − z0)k−1dz

=

∫
γ

f (0)(z0)

0!
(z − z0)−1dz

=

∫
γ

f(z0)

z − z0
dz

= 2πif(z0).

The third-to-last step, which gets rid of all the terms for k > 0, follows by

Fact 3.3 because
f (k)(z0)

k!
(z − z0)k−1 is holomorphic on all of Ω when k > 0.

The last step follows from Fact 3.4.

3.1 The Principle of Analytic Continuation

The amazing thing about the Cauchy Integral Formula is that it tells you that
if f is holomorphic, then the value of f at z0 is determined by the values of f
on any circle around z0. This fact should come as quite a surprise; we shouldn’t
normally be able to determine the value of the function in terms of some far
away values!

In fact, this relates to a very important principle in complex analysis: if you
know that a function is holomorphic and you know some of its values, then you
know what the function is. This is a principle known as analytic continuation.

More precisely:

Fact 3.6 (Theorem 13.2). Let f(z) and g(z) be holomorphic functions on a
connected domain Ω. If g(z) = f(z) on a subset S ⊆ Ω with a limit point in Ω
(for example, S contains an open subset or even an interval), then g(z) = f(z)
for all z ∈ Ω.
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3.2 Meromorphic Functions and the Residue Theorem

If Ω is a domain, z0 ∈ Ω, and f holomorphic on Ω, then we can always write
f(z) = (z − z0)mg(z), where g is a holomorphic function that does not vanish
at z = z0. The integer m is unique and is known as the order of f at z0.

More generally, if f is a function defined on Ω\z0, and f(z) = (z−z0)mg(z)
for a holomorphic function g in a neighborhood of z0 that does not vanish at
z = z0, then we say that f is meromorphic at z = z0. Then m is unique, and if
m < 0, we say that f has a pole at z = z0. The positive integer −m is called the
order of the pole. Note that if m ≥ 0, then f(z) can be defined as a holomorphic
function on all of Ω, by Riemann’s theorem on removable singularities (****)

Note that while most functions defined on a punctured disc are meromorphic,
the function f(z) = e1/z is not meromorphic. It has what’s known as an essential
singularity at z = 0.

Facts 3.3 and 3.5 seem to suggest that the only reason for the integral of a
holomorphic function around a loop to be nonzero is if the holomorphic function
has some sort of singularity in the region bounded by the loop. The residue
formula (Theorem 8.5) gives a formula for the integral of any meromorphic
function f along a closed loop as a sum over the poles of f . Then Fact 3.5, the
Cauchy integral formula, is a special case of this formula.

The residue formula is important for many applications, as discussed below
for zeta functions and elliptic functions. It also allows us to evaluate certain
real integrals, such as the beautiful formula:∫ ∞

−∞

cosx

x2 + 1
dx =

π

e
.

4 Special Topics

Here are introductions to some (but not all) of the later topics in the book. In
particular, I’ve left out Chapters 4 and 8 in this discussion, but I might still
talk about them this semester.

4.1 The Gamma Function

One consequence of the principle of analytic continuation is the following:
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Fact 4.1. This is a unique function f(z) defined and holomorphic on Ω =
C \ {−1,−2,−3, · · · }, such that f(n) = n! for all positive integers n.

This allows us to give meaning to expressions like i! and 1.5! and so on and
so forth. Without this, we would know that whatever 1.5! is, it should be half
of 0.5!, but we wouldn’t know what that is. So the notion of being holomorphic
can tell us the correct way to extend a function beyond its natural domain of
definition.

Furthermore, it turns out that there is no way to extend the factorial function
holomorphically to the whole complex plane. Somehow, the factorial function,
as defined on the integers, knows that it has to have singularities at the negative
integers.

For historical reasons, one writes Γ(z) = f(z− 1), where f is the function of
Fact 4.1. This is the gamma function, which is studied in Topic 13.

4.2 Product Formulas

Definition 4.2. A holomorphic on the entire complex plane is known as an
entire function.

Polynomials give the most basic class of entire functions. It’s a well-known
fact that a polynomial p(z) can be expressed as a product

p(0)
∏

p(α)=0

(
1− z

α

)
at least if p(0) 6= 0, where the zeroes are counted with multiplicity (and if
p(0) = 0, we multiply by a power of z).

One might try to generalize this to an entire function like the sine function.
The sine function has as its zeroes nπ, for n ∈ Z. These zeroes are in fact sym-

metric under negation, and, noting that
(

1− z

nπ

)(
1− z

−nπ

)
=

(
1− z2

n2π2

)
,

we might hope that

sin(z) = z

∞∏
n=1

(
1− z2

n2π2

)
.

It turns out that this is true, and it is part of a more general discussion about
infinite products in Chapter 5 of Stein-Shakarchi. As part of this discussion,
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one may prove Hadamard’s factorization theorem, giving a general formula for
a function with a prescribed set of zeroes, assuming those zeroes satisfy certain
growth conditions.

4.3 The Riemann Zeta Function

If one compares the product formula sin(z) = z
∏

n∈Z>0

(
1− z2

n2π2

)
with the

Taylor series
sin(z) = z − z3/6 + · · · ,

one might hope that some infinite version of Viete’s formulas hold. More
specifically, comparing the coefficent of z3 on either side, one might hope that
∞∑
n=1

− 1

n2π2
= −1

6
, or that

∞∑
n=1

1

n2
=
π2

6
.

This is actual a special case of the Riemann zeta function, defined originally
by Riemann as

ζ(s) =

∞∑
n=1

1

ns
.

This function is discussed in Chapter 6. The series converges absolutely for
Re(s) > 1, and since all the terms are holomorphic in s, the series defines a
holomorphic function for all such s by Theorem 5.2 of Ch 2. In Chapter 6,
it’s shown that ζ(s) can be extended to a holomorphic function on C \ {1}. Of
course, by analytic continuation, such an extension is unique.

The real power of ζ(s) comes from the formula for ζ(s) in terms of the prime
numbers:

ζ(s) =
∏

p prime

(1− p−s)−1.

In Chapter 7 of Stein-Shakarchi, it is explained how this can be used to
prove the prime number theorem, which determines the asymptotic distribution
of the prime numbers. One key part of this proof uses the residue theorem to
write the indefinite integral∫ ∞

−∞

xc+ix+1

(c+ ix)(c+ ix+ 1)

(
ζ ′(c+ ix)

ζ(c+ ix)

)
dx
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for a real number c > 1 as a certain sum over prime numbers.

4.4 Elliptic Functions

The function f(z) = ez satisfies the nice identity f(z) = f(z + 2πi). We can
visualize this by saying that the function “wraps around” as one goes up along
the imaginary axis. More precisely, one could imagine taking the complex plane,
like a sheet of paper, and rolling it up into a cylinder so that z and z+ 2πi line
up with each other. Then one should think of the exponential function as being
defined on this cylinder.

The thing about the complex plane is that it has two independent directions,
and so we could imagine rolling up the cylinder in the other direction. This
would give us a torus.

Algebraically, this would be asking for a function f with two periods ω1

and ω2 (i.e., f(z) = f(z + ω1) = f(z + ω2) for all z) such that ω1 and ω2 are
independent over R.

The group generated by ω1 and ω2, i.e. the set of all complex numbers
mω1+nω2 for m,n ∈ Z, is a lattice (see the picture on p.263 of Stein-Shakarchi).
When we look at C modulo this lattice, we get a torus. An elliptic function is
a function with two such independent periods, and we should think of it as a
function on a torus.

One first proves some general facts about elliptic functions, using the residue
theorem and the symmetry of the period parallelogram (see the figure on p.264).

This leaves the question of finding a nonconstant example of an elliptic
function. For simplicity, we may set ω1 = 1, and we write τ = ω2. Next, one
defines the Weierstrass ℘-function by

℘(z) =
1

z2
+

∑
(m,n)∈Z2\{(0,0)}

1

(z +m+ nτ)2
− 1

(m+ nτ)2
.

This gives a nontrivial example of an elliptic function (it is in fact a mero-
morphic function, not a holomorphic function, meaning it has a pole).

The more amazing part is that ℘ satsifies a differential equation of the form

℘′(z)2 = 4℘(z)3 − g2(τ)℘(z) + g3(τ),

14



where g2 and g3 are holomorphic functions of τ (but independent of z). This
means that the map C→ C2 defined by

z 7→ (z1, z2) = (℘(z), ℘′(z))

has image inside the graph of the equation z22 = 4z31 − g2z1 + g3. This equation
defines an elliptic curve, a type of mathematical object that is very important in
number theory and became famous from Wiles’ proof of Fermat’s Last Theorem.

5 How We’re Going to Prove All of This

What I’ve described in Section 3 is what you might call the phenomenology of
complex analysis. In other words, I’ve told you about what phenomena show up
in complex analysis and how they’re different from real analysis, but I haven’t
told you why these phenomena are true (except in a few cases). That’s useful
for getting an intuitive feeling for how complex analysis works, but we will still
have to learn how to rigorously prove all of these facts.

The tl;dr I’m trying to get across here is that the order in which we prove
the previous Facts is different from the order in which they are presented in this
document.

More specifically, it turns out that we will first prove a version of Fact 3.3 for
triangles rather than circles. This is known as Goursat’s Theorem. While the
argument I presented to you assumed that the partial derivatives existed and
were continuous (because it used Green’s Theorem), our proof will only assume
that the function is holomorphic (i.e., that the limit defining f ′(z) exists for
every z ∈ Ω).

Once we prove Goursat’s Theorem, we can use it to show that the integral∫ z

z0

f(z)dz is well-defined (independent of path), which shows that f(z) has a

primitive in any disc. It then follows by the fundamental theorem of calculus
that the integral along any closed curve inside a disc is zero.

This then allows us to prove the Cauchy-Integral formula. The Cauchy
Integral formula is very powerful, and it implies other results like analyticity
and analytic continuation.

15
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