Math 185 Problem Set 8

Problem 1. (15 points)
Let $z=x+i y$. Describe the image of each of the following regions under the mapping $w=\mathrm{e}^{z}$.
(a) The strip $0<y<\pi$.
(b) The slanted strip between the lines $y=x$ and $y=x+2 \pi$.
(c) The half-strip $x>0,0<y<\pi$.
(d) The rectangle $1<x<2,0<y<\pi$.
(e) The right half-plane $x>0$.

Problem 2. (18 points)
(a) Find a fractional linear transformation that maps the right half-plane to the unit disk such that the origin is mapped to -1 .
(b) A fixed point z of a transformation T is one where $T(z)=z$. Let T be a fractional linear transformation. Assume T is not the identity map. Show T has a most two fixed points.
(c) Let S be a circle and z_{1} a point not on the circle. Show that there is exactly one point z_{2} such that z_{1} and z_{2} are symmetric with respect to S.
(Hint: start by proving this for S a line.)
Problem 3. (20 points)
Suppose you want to find a function u harmonic on the right half-plane that takes the values $u(0, y)=y /\left(1+y^{2}\right)$ on the imaginary axis. The first obvious guess is $u(z)=\operatorname{Im}\left(z /\left(1-z^{2}\right)\right.$. But this fails because $z /\left(1-z^{2}\right)$ has a singularity at $z=1$. Find a valid u using the following steps.
So, forget about this guess and go back to only knowing that u is harmonic and $u(0, y)=$ $y /\left(1+y^{2}\right)$.
(a) Show that rotation by α is a fractional linear transformation which corresponds to the matrix $\left(\begin{array}{cc}\mathrm{e}^{i \alpha / 2} & 0 \\ 0 & \mathrm{e}^{-i \alpha / 2}\end{array}\right)$.
(This is not hard, it's just here in case you need it in part (b).)
(b) Find a fractional linear transformation that maps the right half-plane to the unit disk, so that u is transformed to a function ϕ with $\phi\left(\mathrm{e}^{i \theta}\right)=\sin (\theta) / 2$.

Hint: make sure 1 is mapped to 0 . If your transformation still doesn't transform u to the correct ϕ try composing with a rotation.
(c) Show that $\phi(w)=\frac{1}{2} \operatorname{Im}(w)$.
(d) Use the fractional linear transform to take ϕ back to u on the right half-plane.

Problem 4. (12 points)
(a) Show that the mapping $w=z+1 / z$ maps the circle $|z|=a(a \neq 1)$ to the ellipse

$$
\frac{u^{2}}{(a+1 / a)^{2}}+\frac{v^{2}}{(a-1 / a)^{2}}=1 .
$$

(b) Where does it map the circle $|z|=1$?
(This problem will be helful when we look at Joukowsky transformations.)
Problem 5. (24 points)
(a) Find a harmonic function u on the upper half-plane that has the following boundary values.

$$
u(x, 0)= \begin{cases}1 & \text { for } x<-1 \\ 0 & \text { for }-1<x<1 \\ 1 & \text { for } 1<x\end{cases}
$$

(b) Find a harmonic function, $u(x, y)$, on the unit disk that boundary values indicated in the figure.

That is, $u\left(\mathrm{e}^{i \theta}\right)= \begin{cases}1 & \text { for }-\pi<\theta<\pi / 4 \\ 0 & \text { for }-\pi / 4<\theta<\pi / 4 \\ 1 & \text { for } \pi / 4<\theta<\pi\end{cases}$
(c) Find a harmonic function, $u(x, y)$, on the infinite wedge with angle $\pi / 4$ shown. Such that u has the boundary values indicated in the figure.

End of pset 8

