Math 185 Problem Set 6

Problem 1. (12 points)

Say whether the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{1+2i}{1-i} \right)^n$$
 (b) $\sum_{n=0}^{\infty} i^n$ (c) $\sum_{n=0}^{\infty} \left(\frac{1-i}{1+2i} \right)^n$ (d) $\sum_{n=0}^{\infty} \frac{n!}{10^n}$

Problem 2. (8 points)

Find the radius of convergence.

(a)
$$f_1(z) = \sum_{n=0}^{\infty} \frac{z^{3n}}{2^n}$$
 (b) $f_2(z) = 1 + 3(z-1) + 3(z-1)^2 + (z-1)^3$

Problem 3. (8 points)

Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ is R. Find the radius of convergence of each of the following.

(a)
$$\sum_{n=0}^{\infty} a_n z^{2n}$$
 (b) $\sum_{n=1}^{\infty} n^{-n} a_n z^n$

Problem 4. (10 points)

- (a) Give a function f that is analytic in the punctured plane $(\mathbf{C} \{1\})$, has a simple zero at z = 0 and an essential singularity at z = 1.
- (b) Suppose f is analytic and has a zero of order m at z_0 . Show that g(z) = f'(z)/f(z) has a simple pole at z_0 with $\text{Res}(g, z_0) = m$.

Problem 5. (20 points)

(a) What is the order of the pole of
$$f_1(z) = \frac{1}{(2\cos(z) - 2 + z^2)^2}$$
 at $z = 0$.

Hint: Work with $1/f_1(z)$.

(b) Find the residue of
$$f_2(z) = \frac{z^2 + 1}{2z\cos(z)}$$
 at $z = 0$.

(c) Let $f_3(z) = \frac{e^z}{z(z+1)^3}$. Find all the isolated singularities and compute the residue at each one.

1

(d) Find the residue at infinity of $f_4(z) = \frac{1}{1-z}$.

(e) Let $f_5(z) = \frac{\cos(z)}{\int_0^z f(w) dw}$, where f(z) is analytic and f(0) = 1. Find the residue at z = 0.

Problem 6. (10 points)

Write the principal part of each function at the isolated singularity. Compute the corresponding residue.

- (a) $f_1(z) = z^3 e^{1/z}$
- **(b)** $f_2(z) = \frac{1 \cosh(z)}{z^3}$

Problem 7. (8 points)

- (a) Let $f(z) = (1+z)^a$, computed using the principal branch of log. Give the Taylor series around 0.
- (b) Does the principal branch of \sqrt{z} have a Laurent expansion in the domain 0 < |z|?

Problem 8. (15 points)

Using variations of the geometric series find the following series expansions of

$$f(z) = \frac{1}{4 - z^2}$$

about $z_0 = 1$.

- (a) The Taylor series. What is the radius of convergence?
- (b) The Laurent series on $1 < |z 1| < R_1$. What is R_1 ?
- (c) The Laurent series for |z-1| > 3.

Problem 9. (15 points)

- (a) Use the residue theorem to compute $\int_{|z|=3} \frac{e^{iz}}{z^2(z-2)(z+5i)} dz$.
- **(b)** Evaluate $\int_{|z|=1} e^{1/z} \sin(1/z) dz$.
- (c) Explain why Cauchy's integral formula can be viewed as a special case of the residue theorem.

Problem 10. (15 points)

In this problem we will compute $\sum_{-\infty}^{\infty} \frac{1}{n^2}$ using the residue theorem. The techniques learned here are general. In particular, the use of $\cot(\pi z)$ is fairly common.

- (a) Let $\phi(z) = \pi \cot(\pi z) = \pi \frac{\cos(\pi z)}{\sin(\pi z)}$. At all the singular points give the order of the pole and the residue.
- (b) Take the contour C_N which is the square with vertices at $\pm (N+1/2) \pm i(N+1/2)$. Use the Cauchy residue theorem to write an expression for

$$\int_{C_N} \frac{\pi \cot(\pi z)}{z^2} \, dz.$$

You'll need to do some work to compute the residue at z = 0.

(c) We'll tell you that $|\cot(\pi z)| < 2$ along the contour C_N . Use this to show that

$$\lim_{N \to \infty} \int_{C_N} \frac{\pi \cot(\pi z)}{z^2} \, dz = 0.$$

(d) Use parts (b) and (c) to compute
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
.

Problems below here are not assigned. Do them just for fun.

Problem Fun 1. (No points)

By considering the 3 series $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, $\sum_{n=1}^{\infty} \frac{z^n}{n}$, $\sum_{n=1}^{\infty} z^n$, show that a power series may converge on all, some or no points on the boundary of its disk of convergence.

Problem Fun 2. (No points)

Suppose that there exists a function f(z) which is analytic at z = 0 and which satisfies the differential equation

$$(1+z)f'(z) = 2f(z)$$
, with $f(0) = 1$.

- (a) Solve this equation to get a closed-form expression for f(z).
- (b) Find the formula for the power series coefficients of f(z) directly from the differential equation.
- (c) Check your answer to part(b) against the Taylor series obtained by expanding out the closed-form expression for the solution found in part (a).

Problem Fun 3. (No points) Show that $|\cot(\pi z)| < 2$ along the contour in problem 10. Hint, show that along the vertical sides $|\cot(\pi z)| < 1$, while along the horizontal sides $|\cot(\pi z)| < 2$.

Problem Fun 4. (No points) Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ is R. Show

that the radius of convergence of $\sum_{n=0}^{\infty} n^2 a_n z^n$ is also R.